328 research outputs found

    Performance-preserving clustering of elastic controllers

    Get PDF
    Asynchronous and latency-insensitive circuits offer a similar form of elasticity that tolerates variations in the delays or the latencies of the computation and communication resources of a system. This flexibility comes at the expense of including a control layer that synchronizes the flow of information. This paper proposes a method for reducing the complexity of the control layer by clustering controllers with similar functionality. The approach reduces the control layer and the number of elastic buffers to a significantly smaller elastic skeleton that preserves the performance of the system. The method also takes into account layout information, thus avoiding optimizations that can be physically unfeasible. The experimental results indicate that drastic reductions in the complexity of the control can be obtained.Postprint (author's final draft

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Efficient data mining algorithms for time series and complex medical data

    Get PDF

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    A model-based approach for the specification and refinement of streaming applications

    Get PDF
    Embedded systems can be found in a wide range of applications. Depending on the application, embedded systems must meet a wide range of constraints. Thus, designing and programming embedded systems is a challenging task. Here, model-based design flows can be a solution. This thesis proposes novel approaches for the specification and refinement of streaming applications. To this end, it focuses on dataflow models. As key result, the proposed dataflow model provides for a seamless model-based design flow from system level to the instruction/logic level for a wide range of streaming applications

    Workshop - Systems Design Meets Equation-based Languages

    Get PDF

    Interactive Model-Based Compilation: A Modeller-Driven Development Approach

    Get PDF
    There is a growing tendency for using domain-specific languages, which help domain experts to stay focussed on abstract problem solutions. It is important to carefully design these languages and tools, which fundamentally perform model-to-model transformations. The quality of both usually decides the effectiveness of the subsequent development and therefore the quality of the final applications. However, as the complexity and safety requirements of modern systems grow, it becomes increasingly burdensome to create highly customized languages and difficult to provide reasonable overviews within these tools. This thesis introduces a new interactive model-based compilation methodology. Compilations for arbitrary model-to-model transformations are themselves described as models. They can be instantiated for particular inputs, e. g. a program, to create concrete compilation runs, which return the result of that compilation. The compilation instance is interactively observable. Intermediate results serve as new inputs and as documentation. They can be used to create highly customized views and facilitate understandability. This methodology guides modellers from the start of the compilation to the final result so that they can interactively refine their models. The methodology has been implemented and validated as the KIELER Compiler (KiCo) and is available as part of the KIELER open-source project. It is used to implement the current reference compiler for the SCCharts language, a statecharts dialect designed for specifying safety-critical reactive systems based on a synchronous model of computation. The interactive model-based compilation approach was key to the rapid prototyping of three different compilation strategies, as well as new language extensions, variations and closely related languages. The results are verified with benchmarks, which are again modelled using the same approach and technology. The usability of the SCCharts language and the KiCo tooling is documented with long-term surveys and real-life industrial, academic and teaching examples

    Modeling complex cell regulation in the zebrafish circadian clock

    Get PDF
    The interdisciplinary "systems biology" approach of combining traditional biological investigations with tools from the mathematical and computer sciences has enabled novel insights into many highly complex and dynamic biological systems. The use of models has, for instance, revealed much about the intricate feedback mechanisms and acute importance of gene regulatory networks, and one such network of special note is our internal time keeper, or circadian clock. The circadian clock plays a pivotal role in modulating critical physiological processes, and has also been implicated, either directly or indirectly, in a whole range of pathological states. This research project investigates how the underlying dynamics of the circadian clock in the zebrafish model organism may be captured by a mathematical model, considering in particular the entrainment effect due to external cues such as light. Simulated data is contrasted with experimental results from different light regime experiments to validate the model and guide its refinement. Furthermore, various statistical methods are implemented to process the raw data and support its analysis. Extending the initial deterministic approach to take into account stochastic effects and additive population level effects emerges as a powerful means of representing the circadian signal decay in prolonged darkness, as well as light initiated re-synchronization as a strong component of entrainment. Consequently, it emerges that stochastic effects may be considered an essential feature of the circadian clock in zebrafish. A further cornerstone of the project is the implementation of an integrated simulation environment, including a Sequential Monte Carlo parameter estimation function, which succeeds in predicting a range of previously determined and also novel suitable parameter values. However, considerable difficulties in obtaining parameter values that satisfy the entire range of important target values simultaneously highlights the inherent complexity of accurately simulating the circadian clock
    • …
    corecore