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Abstract 

 
The interdisciplinary "systems biology" approach of combining traditional 

biological investigations with tools from the mathematical and computer 

sciences has enabled novel insights into many highly complex and dynamic 

biological systems. The use of models has, for instance, revealed much 

about the intricate feedback mechanisms and acute importance of gene 

regulatory networks, and one such network of special note is our internal 

time keeper, or circadian clock. The circadian clock plays a pivotal role in 

modulating critical physiological processes, and has also been implicated, 

either directly or indirectly, in a whole range of pathological states.  

This research project investigates how the underlying dynamics of the 

circadian clock in the zebrafish model organism may be captured by a 

mathematical model, considering in particular the entrainment effect due to 

external cues such as light. Simulated data is contrasted with experimental 

results from different light regime experiments to validate the model and 

guide its refinement. Furthermore, various statistical methods are 

implemented to process the raw data and support its analysis. Extending the 

initial deterministic approach to take into account stochastic effects and 

additive population level effects emerges as a powerful means of 

representing the circadian signal decay in prolonged darkness, as well as 

light initiated re-synchronization as a strong component of entrainment. 

Consequently, it emerges that stochastic effects may be considered an 

essential feature of the circadian clock in zebrafish. A further cornerstone of 

the project is the implementation of an integrated simulation environment, 

including a Sequential Monte Carlo parameter estimation function, which 

succeeds in predicting a range of previously determined and also novel 

suitable parameter values. However, considerable difficulties in obtaining 

parameter values that satisfy the entire range of important target values 

simultaneously highlights the inherent complexity of accurately simulating the 

circadian clock. 
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Introduction 
 

The Rise of Systems Biology 
 
Systems biology is an interdisciplinary approach that draws heavily on 

mathematical and computational modelling techniques in order to further 

understanding of obscure mechanisms and complex interactions in biology. 

The main aim is to identify, analyze, and predict trends and underlying 

dynamics in biological processes, with a special focus on viewing systems in 

a pluralistic and holistic way, as well as on discovering instances of 

emergence. Emergent properties are those qualities of a system that cannot 

be reduced to the individual components of this system when considered 

separately, but rather they depend on the complex interrelations of the 

various constituents. In this way, systems biology has previously been able 

to shed light on convoluted and highly dynamic settings, such as enzyme 

kinetics or neurophysiological signalling cascades, which tend to defy 

elucidation through classic reductionist approaches. Of course, the use of 

bioinformatics also plays a prominent role in the field, and with the recent rise 

to prominence of big data analysis, data mining, and related approaches, it 

appears likely that this trend is bound to open up fascinating new research 

insights.  

As one major avenue of investigation that already sees widespread use, 

models can be constructed to capture the dynamics of interactions in 

complex systems, and subsequently the simulated data thusly generated 

may be compared and contrasted with the available experimental data. In 

this way modeling does not only improve the theoretical grasp of a system, 

revealing for example if any postulated relationships are suitable inputs for 

generating plausible solutions, but it can also provide practical cues to guide 

experimental studies and make them faster, cheaper and more effective. 

Namely, gaps in the existing knowledge can be more readily pointed out, 

sensible starting points for lab research determined, and unexpected 

predictions pin pointed as the target for future investigation. Once a model 

has been found to adequately depict the essential behaviours under scrutiny, 

it can of course also provide significant advantages by bringing to bear the 
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immense speed advantage of present day numerical solvers and hardware. 

In this way it may be possible, for example, to run in the space of mere 

minutes or hours, dozens of simulated trials over varying substrate 

concentrations or environmental conditions, which may otherwise require 

weeks or months of laboratory work. While simulations may admittedly never 

become a full substitute for traditional bench work, we are nevertheless likely 

only beginning to see their potential as powerful compliments. 

 

Gene Regulatory Networks 
 
A central target for systems biology investigations are gene regulatory 

networks (GRNs). These collections of DNA segments are present in all 

cells, where they express certain key RNA and, indirectly, proteins, and 

interact via these products with one another or other substances in the cell. 

The specific protein products may range from structural cell membrane 

constituents over enzymes, i.e. molecular catalysts that drive important 

biochemical reactions, to transcription factors, which play a major role in 

modulating regulatory cascades by binding to the promoter regions of other 

genes. Throughout all these and other modes of action, GRNs are highly 

involved in controlling and coordinating most critical functions at the cellular 

level - housekeeping intracellular processes, reactions to external stimuli, as 

well as developmental and adaptational switches. The precise mechanisms 

are often multifaceted and highly complicated, as GRNs can describe various 

processes on multiple levels, such as transcriptional control, RNA 

processing, transport and degradation, translation, and protein activity and 

degradation. In consequence, it is not rare to discover additional, hereto 

unknown functions of even well studied GRNs, and our understanding is 

frequently updated and challenged by novel insights into the basis of 

regulation at the cellular level. For example, the important role played by 

chromatin modification on re-folding DNA and subsequently allowing or 

negating transcription, a mechanism know as epigenesis, has been 

repeatedly confirmed, but remains poorly understood in the context of GRNs. 

Not surprisingly, this level of intricacy poses a considerable challenge to 

make sense of it all. Thankfully, mathematical techniques can aid immensely 
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with the quantification and qualitative description of data and elucidation of 

underlying relationships. For example, a schematic view could represent 

transcription factors as network inputs, genes as nodes of the network, and 

gene expression levels as the resulting output. Disentangling these varying 

interconnections plays an indispensable part in building functional models of 

cellular behaviour. 

 

The Circadian Clock 
 
A GRN concerned with keeping track of earth's rotation around its axis and 

the accompanying changes in light, temperature and humidity etc. is 

commonly referred to as a circadian clock. The ability to anticipate recurring 

environmental fluctuations such as the aforementioned has emerged as an 

immense selective advantage, allowing organisms to tailor their behaviour 

and biological processes to expected future opportunities and challenges, 

and before this background it may not be surprising that most living entities, 

from human beings to cyanobacteria, make use of such daily time-keeping 

mechanisms. Moreover, these systems are generally much more 

multifaceted than simple hourglass timer, featuring for example the ability to 

adjust to different day light spans, and in doing so can even double as a 

useful seasonal timer. The importance of time keeping is easily evident on 

the behavioral level, for example looking to flowers synching their blooming 

periods to daylight hours, nocturnal rodents sensing when to return to the 

safety of their burrows in time before dawn, or migratory birds punctually 

embarking on their yearly journeys across the globe. Many of us are also 

very familiar with the experience of waking up just a few minutes before the 

alarm clock, or having a good sense of when our usual meal times come 

around, and understanding the behavioural influences of the circadian clock 

is also acutely relevant from a therapeutic angle, for example in the context 

of chronic sleeping disorders, or the jet lag evoked by modern means of 

travel. 

As fascinating as the interactions of our subconscious routines with our inner 

time keeper may be, it is also well worth remembering that there exists 

another, far deeper level to circadian rhythms. In fact, in many organisms the 
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functioning, regulation, and adaptation of circadian time is exclusively 

effected at the cellular level, including of course all circadian clocks in 

unicellular organisms; but there are also more complex organisms and even 

vertebrates, such as zebrafish, where no central pacemaker has been 

identified and instead many cells and tissues contain autonomous circadian 

clocks. Even in other species where a central circadian pacemaker has been 

identified, usually in discrete regions in or close to the brain, such as the 

optic lobes of Drosophila or the suprachiasmatic nuclei (SCN) in the 

hypothalamus of mammals, the circadian signal nevertheless may be 

bolstered by peripheral oscillators and remains closely integrated with 

cellular processes. It is known, for example, that the critical process of 

mitosis, or cell division, is strictly timed around certain key checkpoints, such 

as the transition from G2 to M, G1 to S, and the so-called metaphase 

checkpoint. Interestingly, even in the absence of environmental stimulation 

the circadian clock follows an oscillating rhythm termed the free running 

period. However, in nature the clock is habitually entrained by external inputs 

to the daily rhythm of exactly 24 hours, and making sense of the particulars 

of this entrainment remains an active research area. While even species 

living in constant darkness are known to possess circadian clocks, and an 

entire variety of potential environmental cues has been identified including 

feeding and tidal rhythms, the widely most prominent and important regulator 

remains exposure to sun light. 

 

Zebrafish as a Model Organism 
 
Zebrafish are not only a widely used vertebrate model species in general, but 

also appear as an especially interesting candidate in the context of studying 

the circadian clock and light entrainment in particular. One of the main 

reasons lies in the fact that they exhibit several similarities to mammals in the 

circadian clock makeup, but no central circadian pacemaker has been found 

in zebrafish, with timekeeping seemingly effected at a cellular level. This 

makes it possible to work with populations of zebrafish cell lines while limiting 

distortions due to interference due to centralized coupling, etc. as would be 

the case in many other vertebrates. Furthermore, individual cells are known 
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to be very light sensitive and possess a direct light entrainment pathway 

including photopigments, allowing for a strong entrainment effect due to light 

exposure, and recent studies also point to many other aspects of cell biology 

being influenced by light-induced gene expression in zebrafish. 

The aim of the project is to construct a model of the GRN underlying the 

zebrafish circadian clock, and subsequently to adapt and extend this model 

to elucidate the mechanisms behind entrainment. Firstly, various existing 

mathematical techniques have to be selected, adapted and combined in 

innovative ways to support the quantitative and qualitative description of the 

available data. Utilizing this processed data as a guide alongside well 

established mathematical modelling techniques, an initial mathematical 

model of zebrafish circadian clock key molecular components and their 

respective interactions is constructed. Key behaviours from this stimulatory 

framework are then compared and contrasted with results obtained from 

laboratory experiments, in which the effect of various light regimes on 

populations of zebra fish cells is measured. Bolstered by additional 

experimental insights and data generated specifically to aid the modeling 

efforts, the initial deterministic model is supplemented with stochastic 

approaches to take into account noisy cellular processes and to better 

capture the dynamics of natural de-synchronization over time and re-

synchronisation under the influence of light. A final, and at times surprising, 

challenge is the identification and implementation of how and where light 

entrainment should be incorporated into the model. It is hoped that the efforts 

presented here will help to clarify the functioning and underlying dynamics of 

the zebrafish circadian clock, while also revealing implications for circadian 

clocks, light entrainment, and especially the importance of stochastic 

behaviour in basic cellular processes in general. Moreover, the employed 

mathematical techniques, and the computationally implemented models and 

experimental simulations should also posses intrinsic value, as they could be 

easily adapted as a starting point for further investigations on the zebrafish 

circadian clock and related GRNs, especially those where noise and 

entrainment effects play a major role.  
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Chapter 1: Background to Modelling the Circadian Clock 

1.1 Biological Basis of the Circadian Clock 

1.1.1 The Role of GRNs in Regulating Biological Processes 
 
It has been shown that the incredible complexity of the human physiology is 

contained in over 20,000 protein-coding genes, while even the much simpler 

unicellular yeast organism already relies on over 6,000 genes. However, the 

majority of these genes are not expressed universally, but rather differentially 

across a range of specific tissues and cells. In order to ensure a smooth 

physiological operation, this process of selective expression is tightly 

controlled at various levels, including transcription, mRNA stability, mRNA 

translation, and protein stability, and further modulated in response to 

intracellular or extracellular cues. A cornerstone is the control of mRNA 

synthesis, which is largely effected by specialized molecules known as 

transcription factors (TFs), which interact with cis-regulatory DNA sequences 

located within or close to the target genes. Next to changes in the 

concentrations of TFs, expression levels of genetic downstream targets are 

also affected by transcriptional cofactors binding to TFs, specialized proteins 

or microRNAs binding to mRNAs to influence their translation or stability, and 

there has also been much recent attention paid to the effect of chromatin 

modification and the mechanism of epigenesis.  

These different regulatory functions, such as TFs, are in turn themselves 

extensively regulated and embedded in complex interactions, such as 

between multiple other TFs and genes. In order to make sense of the critical 

functioning of these intricate systems for regulating growth, developmental 

patterning,  and proper stress responses, the specific transcriptional 

programs and DNA sequences involved are often thought of and visualized 

as a Gene Regulatory Network (GRN). As an example of a GRN, the 

expression pattern of Hox genes may provide positional information to the 

developing Drosophila embryo, and alterations to usual expression levels 

may result in legs in the place of antennae (Casares et al. 1996). 

Interestingly, these genetic building blocks are often conserved throughout 

development and across species, but may have markedly different purposes 
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in each case. Ras signalling, for example, is involved in eye development in 

the fly, but controls vulval development in C. elegans and mutations have 

been linked to cancer in humans (Han 1992). It has been speculated that 

core networks conserved across species may be adapted to such variable 

functions under the presence of additional network nodes or variations in the 

expression levels of existing nodes (Macneil & Walhout 2011). Additionally, 

many GRNs are also capable of receiving and integrating multiple inputs, in 

the form of activating or repressing regulatory proteins that recognize specific 

sequences within them. 

 

Important Network Motifs of GRNs 
 
The complexity of GRNs does not stop there, however, with modularity also 

frequently playing a role. The target overlap between different TFs has 

previously been identified via topological overlap coefficient analysis and 

used to differentiate GRN modules (Vermeirssen et al. 2007), and it has 

been suggested that this architecture may act to increase TF redundancy of 

the network, while also insulating compartments against local surges or 

drops in expression levels. Finally, modularity may also promote 

differentiated responses to external stimuli and  is frequently encountered in 

networks that react to environmental changes, as has been demonstrated in 

the case of a C. elegans metabolic GRN (Arda et al. 2010). Moreover, 

studies of yeast transcriptional networks have also found that regulatory 

mechanisms may be subject to a hierarchical organization (Jothi et al. 2009). 

TFs could be categorized into distinct groups, with shared properties and 

similar abundance and noise levels across each group, and it has been 

suggested that this organization may support adaptive responses, by 

enabling the same network to show varied responses for different cells within 

a population. 
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FIGURE 1 Examples of Feed-Forward Loops 
The eight different types of Feed-Forward loops (FFL) can be categorized into coherent (the sign of the effect on Z 
is the same if coming from X directly and indirectly from X over Y) and incoherent (the sign of effect is different – 
e.g. the direct effect is activating while the indirect one, over Y, is inhibitory and vice versa). The arrow sign denotes 
activation, whereas the ⊥ sign denotes repression. 

 

Another network motif that is highly relevant and common in the case of 

GRNs is autoregulation, i.e. a TF increasing or decreasing its own 

expression via interactions with its promoter. It is noteworthy that positive 

autoregulation has been found to increase stochasticity (Alon 2007), which 

can increase the variability of a population, whereas negative autoregulatory 

loops are more commonly found in settings, where the aim seemingly is to 

establish or maintain steady-state levels. Another ubiquitous GNR motif are 

Feed-Forward Loops (FFLs), sets of two regulators affecting a downstream 

target, while one regulator also regulates the other. Regulatory interaction 

can be either positive or negative, and either coherent or incoherent, 

resulting in eight possible FFL permutations. Examples of all these possible 

FFLs have indeed been described in vivo, but interestingly it was also noted 

that the most abundant FFLs of the coherent type display very little noise, 

while the most abundant FFLs of the incoherent type exhibit the highest 

levels of noise (Ghosh et al. 2005).  

Here, the term "coherent" describes a loop, in which the first regulator's 

indirect, via the interaction between the regulators, and direct effects on the 

downstream target are of the same quality, i.e. both positive or both 

negative. In an "incoherent" loop, on the other hand, the regulator may up-

regulate the downstream target directly, but its effect on the other regulator 

would down-regulate the downstream target. However, it is important to note 

that these opposing effects would not simply cancel each other out, but might 
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often be part of a mechanism to delay or otherwise modulate the timing of a 

translational response following a stimulating cue. Such a delay could be 

useful, for instance, to differentiate between sporadic and sustained stimuli, 

and to only trigger a response for the latter, a mechanisms that may also 

serve to filter out noise. It was also demonstrated that an incoherent FFL 

may generate a transient spike in expression levels (Kuttykrishnan et al. 

2010). In the case of the yeast S. cerevisiae, Rgt1 and Mig2 are part of an 

incoherent FFL that stimulates expression of the glucose transporter Hxt4 

following exposure to glucose. Rgt1 subsequently suppresses both MIG2 

and HXT4, and the magnitude of this negative response determines whether 

a pulse in gene expression can be observed or not. The example also serves 

to point to an important qualifier, namely that the ability of a network motif to 

generate a specific response may be modulated by input from elsewhere in 

the network. 

 

Understanding the Network Topology of GRNs 
 
Technological advances over the last decade or so in high-throughput 

approaches have enabled the description of a multitude of genes and TFs. 

Following on from this, modeling and computational analysis have been 

employed to generate valuable insights into the network topology of GRNs, 

and to elucidate how system architecture contributes to differential gene 

expression. Furthermore, understanding these conserved paradigms is also 

considered useful for tracing the flow of information in biological systems, for 

understanding fluctuations in expression levels under varying conditions, and 

for indentifying novel mechanisms in biological systems. In order to 

graphically represent these interconnections in GNRs, genes and/or their 

regulators are commonly designated as the nodes of a regulatory system, 

while their interactions comprise the edges joining these nodes together. The 

precise nature of those physical interactions is frequently investigated by 

scanning the genome for regions that may interact with a TF of interest. 

Alternatively, or rather complementarily, one would seek to identify TFs that 

may be able to interact with a target DNA sequence of interest. The latter 

method, also known as "gene-centered", is still less frequently implemented, 
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but as one example the yeast one-hybrid (Y1H) system has been used to 

study GRNs in Arabidopsis (Brady et al. 2011).  

However, apart from physical interactions the edges in a GRN may also 

represent regulatory relationships, for example those inferred by correlating 

gene expression profiles. This approach offers a powerful tool for 

deciphering complex GRNs, but may struggle to reveal redundancies or to 

differentiate between direct and more indirect interactions between TFs and 

their gene targets. Yet another limitation would be the inability to identify 

interactions based on post-translational modifications or cofactors, and 

consequently it appears desirable to integrate data on regulatory and 

physical relationships in order to construct GRN models. Another quality of 

GRNs that should be mentioned, is the concept of in-bound and out-bound 

directionality, which is based on the circumstance that TFs regulate target 

genes, but are usually not likewise affected. Following on from this, the "in-

degree" describes the number of TFs that a given gene can interact with, 

while the "out-degree" refers to the number of genes that a specific TF can 

interact with. Many GRN nodes exhibit relatively low in- or out-degrees, but 

there also occur some very highly connected "hubs" (Yu & Gerstein 2006), 

whereby the information paths linking through such a note are referred to by 

the "flux capacity" and calculated as the product of in-degree and out-

degree. It has also been noted that the distribution of out-degree follows a 

power-law distribution, while the distribution of in-degree follows an 

exponential distribution (Luscombe et al. 2004). Finally, the concept of 

"between-ness" describes the number of shortest paths that are routed 

through a specific node, and consequently centrally located and well 

connected nodes would exhibit a high between-ness.  

 

Robustness as a Key Feature 
 
Interestingly, there appears to exist a considerable level of phenotypic 

robustness, that is a retention of seemingly normal traits despite changing 

expression levels, and it has been reported for example that >80% of yeast 

genes can be individually deleted without lethal effect (Dixon et al. 2009). 

This observation is very interesting from system-level view and points to a 
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high level of redundancy, so that gene loss may only become apparent in 

double mutants or under challenging environmental conditions. It has also 

been noted, regarding the level of gene expression, that essential genes 

appear to exhibit lower levels of variability, thusly linking gene expression to 

phenotypic robustness. While not all details of gene expression outputs and 

redundancy at the GRN are clearly understood, recent research has been 

able to shed a lot of light on several underlying mechanisms. Firstly, it has 

been reported for Drosophila that next to the established primary enhancers, 

there also exist shadow enhancers, which are located relatively distant to the 

transcriptional start site, but appear to demonstrate largely similar expression 

patterns. In the case of the Drosophila snail gene it was further shown that 

loss of one distal or proximal enhancer lead to no discernible differences for 

embryos reared at 22°C, but that embryos reared at 30°C showed marked 

deficits for the knock-out, but not the wild type control group (Perry et al. 

2010). It appears that redundancy may be more critical under adverse than 

under optimal conditions. As a second avenue for bringing about 

redundancy, multiple TFs from the same family may be able to bin the same 

cis-regulatory DNA element, as has been shown in C. elegans, where both 

FLH-1 and FLH-2 TFs bind the same microRNA promoters. Loss of either TF 

had little effect on microRNA expression, but double mutants showed a 

significant increase in larval lethality (Ow et al. 2008). Finally, redundancy 

can also be furthered, when TFs from different families bind to different cis-

regulatory elements on a single enhancer, as appears to be the case in C. 

elegans in a GRN centered on the TF SKN-1. A study found skn-1 mutants 

to show highly variable expression of the TF END-1, which has in turn be 

linked to lethal phenotypes only occurring in a proportion of genetically 

identical organisms (Raj et al. 2010). 

The critical network aspect of robustness discussed above may serve as a 

reminder just how multifaceted GRNs can present themselves. In turn, the 

inability, due to strong redundancy, of single TF knock-outs to produce 

observable differences in gene expression may clearly defy reductionist 

attempts to elucidate their function, making instead a case for a more holistic 

understanding of the entire embedding system. 

 



18 
 

1.1.2 Genes and their Transcription 

The Central Dogma of Molecular Biology 
 
It was in 1909, not long after Gregor Mendel's groundbreaking work on 

inheritance patterns in pea plants, that the Danish botanist Wilhelm 

Johannsen proposed the word "gene" to describe the basic hereditary units 

of form and function. Several decades later, genetic information was found to 

be contained in large molecules of Deoxyribonucleic acid (DNA), consisting 

of sequences of four nitrogen-containing nucleobases - namely adenine, 

cytosine, guanine, and thymine - as well as a backbone of a phosphate 

group and the monosaccharide sugar deoxyribose linking individuals 

nucleotides into long chains. Double strands of DNA with paired nucleotide 

bases - A to T and C to G - were soon found to be coiled into the famous 

double helix shape, and one of the originator of this discovery, Francis Crick, 

further coined the "central dogma of molecular biology", describing the 

transfer of sequence information between information-carrying biopolymers 

(Crick Mc 1970). Specifically, individual DNA stands can firstly replicate to 

form more DNA, as observed in the preparation of cell division; secondly, 

DNA can be transcribed into shorter molecules of RNA, in eukaryotes mainly 

pre-mRNA subsequently processed with a 5' cap and a poly-A tail, acting 

primarily as cellular messengers of genetic information; finally, RNA is 

translated in cellular factories called ribosome into protein, with each codon - 

a triplet of nucleobases - signifying a specific amino acid to be integrated into 

the newly formed protein's polypeptide chain.  

The "central dogma" remains the cornerstone of our understanding of how 

genetic information is expressed and converted into physical and 

physiological structures, processes, and behaviours. At the same time, 

however, important exceptions and special cases have been described since 

its inception to the rule that information cannot be transferred back up the 

sequence, including for example the ability of retroviruses to convert RNA 

into new DNA segments through a reverse-transcription process, or the 

direct replication of RNA, a mechanism found not only in viruses, but also 

eukaryote RNA silencing. Prions posses the ability to pass information to 

other proteins by inducing conformational changes, while parasitic intein 
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sequence can even integrate their protein-contained information back into 

the DNA strand (Wu et al. 1998). More commonly and importantly, it has 

been revealed that a number of ubiquitous processes not covered by central 

dogma also affect genetic impression in crucial ways, such as methylation of 

DNA affecting transcription rates, or the posttranslational modification of 

amino acid chains, which is a major contributor to protein shapes, functions, 

and stability.  

 

Molecular Topology of a Gene 
 
Similarly to how our understanding of the central dogma has been 

challenged and expanded over the years, so has been our grasp of what 

constitutes a gene. Initially, it was assumed that each gene is represented by 

a continuous segment on the DNA, an assumption that in fact mostly holds 

true in single cell prokaryote organisms. In more complex eukaryotes 

however, a single strand of mRNA is derived from non-contiguous regions on 

the chromosome through the interactions of numerous regulatory and 

modifying elements. Most fundamentally one can distinguish between exon 

and intron sequences, with the former coding for a protein, while the latter 

have no bearing on the associated amino acid chain. In this context it is also 

important to point to the concept of the reading frame; since nucleotides are 

clustered into triplets when guiding specific amino acids into the polypeptide-

chain, the reading frame can be thought of as sorting the metaphorical 

nucleotide "letters" into codon "syllables". The open reading frame (ORF), in 

turn, refers to a continuous stretch of DNA codons with the potential to 

encode a protein, often spanning both active exons and intervening introns, 

and contained between a transcription initiation site and a stop codon. 

Upstream of the actual coding sequence exists a promoter region, where the 

enzyme RNA polymerase attached to the DNA in order start the transcription 

process. Promoters typically contain a TATA box sequence acting as a 

docking point, that RNA polymerase can bind to in conjunction with additional 

nuclear proteins known as basal transcription factors, whereas group of 

transcription factors called TBP-associated factors, or TAFs, can stabilize the 

TATA-binding protein complex to prevent it from falling off the promoter. 
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Usually close by downstream of the promoter lies the transcription initiation 

site, or cap, which signifies the start of the transcribed sequence and will 

contribute the 5' end of the RNA strand. Downstream of the cap, by a 

distance varying widely across genes, the translation initiation site can be 

found, also known as the start codon. It consists of the ATG sequence, and 

the distance between transcription and translation initiation sites is referred 

to as the 5' untranslated region, or also as the leader sequence, and can 

determine the rate at which the resulting mRNA is translated (Gilbert 2000). 

The end of the ensuing coding sequence is marked by a translation 

termination codon - appearing as either TAG, TAA, or TGA - where the 

ribosome will halt translation and dissociate. Not translated, but still 

transcribed follows the 3' untranslated region, which contains the AATAAA 

sequence as a facilitator for polyadenylation. This addition of 200 to 300 

adenylate residues on the RNA transcript, known collectively as the poly(A) 

tail, has important functions in effecting mRNA stability, transport, and 

initiation of translation. 

Lastly, it should be noted that most eukaryote cells contain multiple copies of 

the same chromosome, and that here genes may be either expressed from 

multiple alleles, most commonly biallelic expression, or only from one allele, 

which is termed monoallelic expression. Significantly, the latter is often 

driven by a stochastic, somatic mechanism known as random monoallelic 

expression (RME), with different cells throughout the organism expressing 

different alleles, and recent research has differentiated between both long 

term and short term periods of monoallelic expression patterns (Reinius & 

Sandberg 2015). This finding appears especially noteworthy in the case of 

the Zebrafish, which is known to contain multiple copies of core circadian 

clock components as explained in further detail below, but specific 

implications are not clear at this time. 

 

Enhancers, Silencers, and Transcription Factors 
 
In addition to promoters, there are often also other regulatory sequences 

located on either end or even within a gene, and these so called enhancers 

can activate the utilization of a promoter. Enhancers are cis-linked, meaning 
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they only affect promoters on the same chromosome, but can act over a 

distance of more than 50 thousand bases, and be located either side of the 

gene, in an intron, or even as part of the complementary strand of DNA. 

They are essential for activating transcription in most genes, can differentially 

regulate specific temporal and local expression patterns, and notably, 

several enhancer elements can act on the same gene, either individually or 

in combination, to determine its precise transcription. An important sub-type 

of enhancers are known as silencers, or more rarely negative enhancers, 

and can in fact act to inhibit transcription in their target genes, and it is in turn 

through the stimulation by a so called transcription factor that enhancers, 

silencers, or sometimes both group in parallel are activated. 

Transcription factors (TFs) are specific proteins that regulate the transcription 

of a particular gene by binding to its associated promoter or enhancer 

regions, thus activating or repressing its expression. In fact, while evolution is 

often intuitively associated with changes in a coding transcriptome, it has 

been pointed out that mutation can also readily act, often much more 

comprehensively, via changes in regulatory elements such as TFs to drive 

differentiation in species and tissues (Necsulea & Kaessmann 2014). Most 

TFs belong to families with a shared structure, particularly with regards to the 

framework of their DNA-binding sites, although a small in amino acids may 

be sufficient to alter the specific DNA sequence the factor will bind to. Apart 

from the DNA-binding domain, TFs also contain a trans-activating domain 

that effects the regulation of a gene's associated promoters and enhancers, 

often by interacting with proteins that play a role in binding RNA polymerase. 

Finally, there may also be a protein to protein interaction domain present, via 

which the TF may itself be modulated by other transcription factors or TAFs. 

 

Chromatin and the Role of Non-Coding RNAs 
 
Apart from the much more complex structure of gene architecture in 

eukaryotes, a second important difference to prokaryotes consists in the fact 

that eukaryote DNA is mostly found folded into a complex called chromatin. 

Apart from the DNA itself, chromatin contains roughly equal amounts of 

protein, and its basic structure is the nucleosome, where two loops of the 
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DNA strand, corresponding to circa 140 base pairs, are wrapped around an 

octamer of histone proteins H2A, H2B, H3, and H4. Nucleosomes are in turn 

most of the time packed tightly into "solenoid" structures and stabilized by 

histone H1. This closely spaced default configuration is thought to be 

naturally repressed, inhibiting the access of transcription factors and RNA 

polymerase. It has long been argued that interruption of this tight coiling 

plays a role in tissue-specific gene activation (Weintraub 1984), but research 

has revealed over the last few decades, how the three dimensional shape of 

our DNA can also play a pivotal role in genetic regulation, and in fact also 

epigenetic heredity. Recent studies further report how non-coding segments 

of RNA act in turn to modify chromatin structure and to affect genome 

stability, specifically by attracting Argonaute-containing complexes to 

nascent RNA scaffolds, before effecting the recruitment of DNA 

methyltransferases and histone. Moreover, apart from acting small RNAs 

have also been shown to repress translation, to silence transcription via RNA 

interference, or also to activate transcription (Holoch & Moazed 2015). 

 

1.1.3 The Significance of the Circadian Clock 
 
In evolution's continuous battle for the survival of the fittest, the ability to 

anticipate earth's rotational movements and the corresponding, recurring 

environmental fluctuations has emerged as an immense selective 

advantage, allowing organisms to tailor their behaviour and biological 

processes to expected future opportunities and challenges. Consequently, it 

may not be surprising that most living entities, from human beings to 

cyanobacteria, make use of daily time-keeping mechanisms, also known as 

circadian clocks. These intricate and highly connected GRNs, however, are 

much more multifaceted than simple hourglass timers, featuring for example 

the ability to adjust to different day light spans, or photoperiods, and in doing 

so can even double as a useful seasonal timer. Traditionally, the importance 

of time keeping has been most apparent on a behavioural level, for example 

looking to the way different higher organisms would structure their daily or 

seasonal behaviour in line with an inner "sense of time"; flowers starting up 

their photosynthetic machinery just before dawn, migratory birds punctually 
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embarking on their yearly journeys across the globe, or nocturnal rodents 

sensing when to return to the safety of their burrows in time before dawn. 

Indeed, SCN-lesioned chipmunks in the wild have been shown to fall to 

predators more frequently (DeCoursey & Krulas 1998), while in 

cyanobacteria, strains well adapted to the photoperiod outcompete those 

strains less well aligned (Ouyang et al. 1998). It has further been shown that 

Drosophila can anticipate light-dark cycles even in laboratory conditions 

(Helfrich-Förster 2001), and that a functional circadian system increases their 

reproductive fitness (Beaver et al. 2002). 

However, leaving aside predator and prey relationships, the circadian clock 

also remains acutely relevant in our highly cultured and streamlined world.  

Many of us are very familiar with the experience of waking up just a few 

minutes before the alarm clock, or having a good sense of when our usual 

meal times come around. It is also on this behavioural level that researches 

started looking at the circadian clock intently from a therapeutic angle, for 

example in the context of chronic sleeping disorders, as it is not only known 

that the circadian clock determines the timing of sleep and sleep-dependent 

events, such as the nocturnal secretion of prolactin and growth hormone 

(Czeisler & Klerman 1999), but also that disturbed sleep patterns can 

significantly impact this endocrine programme and lead to metabolic and 

mental health imbalances (Knutson et al. 2007). Clock mutant mice were 

also shown to frequently develop obesity and metabolic syndrome (Turek 

2005). Another prominent example would be the jet-lag evoked by modern 

means of travel exposing us to radically opposed time zones in a matter of 

hours. While most frequent travellers tend to think of this delayed adaptation 

of the circadian rhythm to such a radical perturbations as a pesky 

inconvenience, experiments with mice exposed to chronic jet-lag have also 

pointed to increased mortality rates (Davidson et al. 2006).  

 

Circadian Clocks at the Molecular Level 
 
As fascinating as the interactions of our inner time keeper with our 

subconscious and rational routines may be, it is also well worth remembering 

that there exists another, far deeper level to circadian rhythms. In fact, in 
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many organisms the functioning, regulation, and adaptation of circadian time 

is effected at the cellular level, including of course all circadian clocks in 

unicellular organisms; but there are also more complex organisms and even 

vertebrates, such as zebrafish, where no central pacemaker has been 

identified and instead many cells and tissues contain autonomous circadian 

clocks (Whitmore et al. 1998; Tamai et al. 2005). It was also reported that in 

plants even neighbouring cells exhibit circadian rhythms independent from 

one another (Thain et al. 2000). In many other species a central circadian 

pacemaker has been identified in discrete regions in or close to the brain, 

such as the optic lobes of Drosophila or the suprachiasmatic nuclei (SCN) in 

the hypothalamus of mammals; but recent research has also made it clear 

that, in mammals for instance, there exists not only one centrally controlled 

circadian clock, but additionally self-sustained oscillations in most major 

organ systems throughout the body (Yamazaki 2000). These are referred to 

as peripheral oscillators and appear to control local rhythmic events. In fact, 

the occurrence of two oscillators in parallel has even been reported for 

unicellular and syncitial organisms, such as the fungus N. crassa or the 

dinoflagellate Gonyaulax polyedra. 

In any case, it holds true that the circadian signal, whether originated by 

autonomous oscillator systems or orchestrated from central and peripheral 

circadian clocks, is very closely integrated with cellular processes. Endocrine 

activity, cardiovascular activation, renal filtration function, xenobiotic and 

nutrient metabolism, and cell growth are all subject to circadian regulation   

(Hastings et al. 2003). For example, the critical process of mitosis, or cell 

division, is strictly timed around certain key checkpoints, such as the 

transition from G2 to M, G1 to S, and the so-called metaphase checkpoint, 

and one rational for this observed behaviour may be to minimize exposure of 

vulnerable DNA states to the destructive effects of UV radiation in the form of 

sun light, and to coordinate the effects of damage-repair functions. Overall, 

about 5-10% of local transcriptomes may be directly controlled by the 

circadian signal, with as much as 10-20% of the proteome being similarly 

rhythmic (Reddy et al. 2006). Many of the processes thusly modulated are 

vital functions, such as control of oxidative pathways, carbohydrate 

metabolism, or also corticosteroid biosynthesis, which is driven by a local 
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clock in the adrenal cortex (Oster et al. 2006). The SNC in mammals can 

also communicate circadian cues through parasympathetic and/or 

sympathetic pathways to drive for instance glucocorticoid synthesis (Ishida et 

al. 2005). Within the hypothalamus, SCN projections were found to regulate 

levels of adrenocorticotrophins (ACTH), gonadotrophins, and metabolic 

hormones (Kalsbeek et al. 2006). Nevertheless, the role of peripheral 

circadian clocks appears to be prominent, too, and a knock-out study in mice 

revealed that the local hepatic signal was indispensable for nearly 90% of the 

circadian transcriptome in the liver (Kornmann et al. 2007). 

 

Health Implications of Understanding the Circadian Clock 
 
Considering the central and far-reaching position of the circadian clock in our 

physiological regulatory cascades, the study of underlying mechanisms is of 

course also acutely relevant for developing novel diagnostic and therapeutic 

approaches, and recent research reveals implications of the circadian clock 

in a whole range of pathological states. This breadth includes cases, where a 

compromised state of the molecular basis of the circadian clock directly 

constitutes or contributes to the health problem, others in which the circadian 

clock may be indirectly affected, or those cases in which its cyclical effects 

on physiological processes may simply be leveraged to modulate treatment 

options. After all, the human body has evolved to promote smooth and 

maximized functioning by operating within constrained daily cycles, that 

synchronize constituents with each other, as well as with social and wider 

environmental conditions. It is helpful to remember, however, that these 

rhythms may also interact with pre-existing pathologies, as manifested in the 

observation that cardiovascular and cerebrovascular events are most likely 

following the routine increase of cardiovascular activity after waking up 

(Hastings et al. 2003). On the other hand, there exist also well documented 

defects originating directly in the circadian system, such as a Per2 mutations 

that speeds up the circadian period and consequently causes the familial 

advanced sleep phase syndrome(Toh et al. 2001). A related field that is 

seeing a lot of interest lately, are disturbances of the circadian system 

brought about not by congenital defects, but rather adverse working or living 
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conditions. Since animal models show very clearly that circadian cascades 

influence very directly blood pressure, heart rate (Curtis et al. 2007) and 

blood glucose levels (Rudic et al. 2004), it is not entirely unexpected that 

greater risks of hypertension, metabolic syndrome, mental health problems, 

and gastrointestinal disturbances have all been identified for shift workers 

(Sookoian et al. 2007). 

 

The Link between Chronobiology and Cancer 
 
Even more likely to grab headlines might be the diverse link of the circadian 

clock to malignant neoplasms. Once again, shift workers have been found to 

possess an elevated risk of being diagnosed with cancer (Schernhammer et 

al. 2006), and rotating lighting schedules have also been found to promote 

tumour progression in mice (Filipski et al. 2004). Looking at molecular 

mechanisms, it was found that altered expression of Per1 can affect the 

apoptosis behaviour of human cancer cells (Gery et al. 2006), and of course 

a disrupted circadian system could also affect tumour progression in indirect 

ways, such as altering immunocompetence, growth factor expression, or the 

endocrine environment (Hastings et al. 2007). Understanding better the 

exact role of the circadian clock in timing and modulating critical cellular 

processes offers not only insights into the disrupted states of cancer cells, 

however, but this knowledge may also readily and significantly boost the 

outcome of therapeutic procedures. For example, it was shown in several 

models how outcomes were significantly improved by simply varying the 

administration of cytotoxic chemotherapy drugs, so as to coincide with 

windows of vulnerability within tumour cells (Bernard et al. 2010; Altinok et al. 

2009). Even so, it has been pointed out that the approach of such timed 

regimes should ideally also take into account the base circadian effect on 

drug metabolism and inactivation (Levi & Schibler 2007). Despite all the 

fascinating findings relayed above and the already surging interest in novel 

chronotherapeutic avenues, it is likely still fair to claim that we are presently 

only seeing the proverbial tip of the iceberg in the field of chronotherapy, and 

that years to come are likely to fundamentally alter our thinking on the timing 

aspect of health, disease, and therapeutic intervention.    
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Following on from the diverse regulatory effects exerted by the circadian 

clock, there is an understandably strong desire to elucidate its core 

functioning and underlying mechanisms. Indeed, since Period was identified 

in Drosophila melanogaster as the first clock gene (Konopka & Benzer 

1971), understanding has moved forward considerably. Classical 

experiments by Colin Pittendrigh shaped the hypothesis of not just a single, 

but two distinct oscillators with different properties, termed E(vening) and 

M(orning) oscillators. There is now a wealth of evidence, both from 

behavioral and physiological studies, for multioscillator organization in 

circadian systems, and numerous gene outputs purely controlled by the 

circadian clock appear to fluctuate with coordinated periods (Storch et al. 

2002). It has further become clear that rhythm generation is based on 

molecular transcription–translation feedback loops consisting of various clock 

genes and their protein products, and featuring both positive and negative 

reinforcement (Young & Kay 2001). Looking at biological oscillators in 

general, negative feedback is found to be essential to ensure a network is 

carried back to its starting point, while a sufficient delay ensures that 

reactions do not settle on a stable steady state. Oscillations in particular 

appear impossible in a two-component negative-feedback loop. It was also 

reported that circadian phases in Neurospora  were aligned to clock protein 

levels, but not the respective RNA expression (Tan et al. 2004), suggesting 

that feedback loops may be partially uncoupled from clock function. Aside 

from the transcription-translation loops featured in most circadian 

mathematical models, there is now affirmation of post-transcriptional and 

post-translational mechanisms, such as protein phosphorylation, which have 

been demonstrated in cyanobacteria, and recently also in human red blood 

cells and the green algae Ostereococcus tauri. This phosphorylation action is 

not only understood to influence circadian rhythms by modulating clock-

protein half-life (Görl et al. 2001; Young & Kay 2001), but might also be 

involved in shuttling between cellular compartments or triggering TFs.  

 

 



28 
 

Key Protein Interactions in the Circadian Clock  
 
The molecular basis of the circadian system has been found to be 

remarkably conserved among species, and key components including Per, 

Cry, Clock, and Bmal have been identified repeatedly; the zebrafish model 

species, for instance, even contains extra copies of most key clock genes. 

As a general theme in the auto-regulatory feedback loop of core clock 

components, CLOCK and BMAL1 proteins hetero-dimerize and bind to E-box 

regulatory sequences on the Period and Cytochrome families of genes, 

triggering their transcription at the start of a new circadian cycle (Vallone et 

al. 2004). In this context, it has also been shown that Clock and Bmal1 both 

contain basic helix–loop–helix (bHLH) motifs at their N-terminus, which are 

known to play a key role in DNA binding. The resulting Per protein products 

in turn inhibit CLOCK/BMAL1, even if the nature of this interaction is not 

entirely clear. Proposed mechanisms include induction of phosphorylated 

states (Dardente et al. 2007), or physical interposition in CLOCK and BMAL1 

binding, thereby compromising their dimeric action. Even possible effects on 

histone structure have been investigated (Ripperger & Schibler 2006), but in 

any case the C-terminus of Bmal1 plays a key role in activating transcription 

and has also been suggested to form part of a switch routing repression by 

Cry (Kiyohara et al. 2006). In fact, it was shown in zebrafish that Cry1a is up-

regulated by light and may directly interact with specific regions of CLOCK - 

namely PAS B - and BMAL1 - including bHLH, PAS B and C-terminal 

domains - blocking their ability to form an active dimer and initiate 

downstream transcriptional activation (Tamai et al. 2007). This core loop is 

further augmented by stabilizing accessory loops, such as the one involving 

the two orphan nuclear receptor proteins Rev-Erb α and Rora. Both are 

upregulated alongside Per and Cry, and are understood to direct rhythmic 

expression of the Clock and Bmal genes, with Rora exhibiting positive 

feedback and Rev-Erb α acting as a suppressor of Bmal1 (Sato et al. 2004). 

As a consequence, Bmal1 and Per mRNAs usually rise and fall in anti-

phase, and a surge of Bmal1 expression is seen to promote Per and Cry 

levels so as to just coincide with the waning of negative feedback. It has also 

been noted that the existence of various circadian loops may markedly 
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increase robustness, and single knock-outs of Per1, Per2, Per3, Cry1, Cry2, 

Rev-Erbα and Clock have all proven insufficient to completely silence clock 

function (Ko & Takahashi 2006).   

 

The Role of Environmental Cues 
 
Despite recent advances in elucidating the molecular basis of the circadian 

clock, neurophysiological and system-level properties, for instance, still 

demand more investigation. After all, the endogenous capacity to generate 

circadian oscillations does not immediately explain the pacemaker's ability to 

effect rhythmicity to other structures. Another basic research area of 

particular note is the way in which external stimuli may interact with and 

adjust our inner time keeper. Such environmental cues, named Zeitgeber - 

meaning time giver in German - on the suggestion by Aschoff, play an 

important role in setting the phase of many circadian systems and can affect 

the underlying GRN directly at the cellular level, or indirectly through 

interactions or coupling among cells and networks at many levels of 

organization. An entire variety of potential environmental cues has been 

identified including feeding and tidal rhythms, and it appears well 

established, for example, that entrainment is effected by temperature cycles 

in the case of frequency (frq) -less Neurospora strains (Merrow et al. 1999); 

but even if species living in constant darkness are known to possess 

circadian clocks, the generally most prominent and important entrainment 

mechanism remains exposure to sun light. Interestingly, it was reported that 

retinal rod and cone photoreceptors are not required for circadian 

entrainment, and that the photopigment melanopsin, which is found in certain 

retinal ganglion cells (Qiu et al. 2005), alone is sufficient to achieve 

entrainment in the central circadian pacemaker. Even in the absence of light 

input, the circadian clock follows an oscillating rhythm with a period usually 

close to 24 hours, which is termed the free running period and specific to 

each species. In nature, however, the clock is habitually entrained by light 

input to the daily rhythm of exactly 24 hours. In this context, it is very 

interesting to note that in many species the overall signal strength of the 

circadian clock may also readily degrade in the absence of normal light/dark 
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cycles. However, it has been demonstrated that individual oscillators 

continue functioning, but will increasingly desynchronize over time (Carr & 

Whitmore 2005). This suggests, in turn, that the major way in which light 

entrains the circadian clock may only become apparent when considering 

synchronization effects at the cell population level. 

 

1.2 Ordinary Differential Equations Based Models  

1.2.1 Describing a System by Fluctuating Concentrations  
 
While some basic modeling methods are relatively simple to implement and 

yet able to point out important trends, they often fall short of capturing the 

finer points of dynamical systems. These dynamical networks are usually 

relatively small and their components can change their properties and hence 

the system state in a non-linear fashion over time, mirroring both interactions 

among these components and influences from outside the system. A reliable 

prediction of such a network's response to various environmental changes 

and stimuli calls for a more mathematically robust modus operandi, which is 

readily provided in the form of ODEs. ODEs modeling the concentration 

changes of molecules over time have already been widely used to analyze 

biological systems and GRNs, and by expressing the rate of production of a 

component of the system as a function of the concentrations of other 

components, this procedure is well suited to emulating gene regulation 

(Polynikis et al. 2009). Several reactants and reactions can be accounted for 

by systems of differential equations, but in practice the number of equations 

is oftentimes reduced by making a quasi-steady-state assumption on the 

mRNA concentrations. Of course, there exists a wide range of possible 

modification to the basic ODE methodology, each with their own specific 

advantages and drawbacks, such as the approach of discrete-time maps, in 

which the system progression is resolved in discrete time steps, rather than 

on a continuous scale (Coutinho et al. 2006), or the combination of pathway-

specific ODE and mixture models in order to tackle kinetic snapshot data on 

the dynamics of distinct subpopulations (Hasenauer et al. 2014). 
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TABLE 1 A comparison of modeling and analysis techniques for high-throughput 
data. Taken from (Bordbar et al. 2014). 

Method Model systems Parameterization Typical 
prediction type 

Advantages Disadvantages 

Stochastic 
kinetic 
modeling 

Small-scale 
biological 
processes 

Detailed kinetic 
parameters 

Reaction fluxes, 
component 
concentrations and 
regulatory states 

• Mechanistic 
• Dynamic 
• Captures 
biological 
stochasticity and 
biophysics 

• Computationally 
intensive 
• Difficult to 
parameterize 
• Challenging to 
model multiple 
timescales 

Deterministic 
kinetic 
modeling 

Small-scale 
biological 
processes 

Detailed kinetic 
parameters 

Reaction fluxes, 
component 
concentrations and 
regulatory states 

• Mechanistic 
• Dynamic 

• Computationally 
intensive 
• Difficult to 
parameterize 

Constraint-
based 
modeling 

Genome-scale 
metabolism 

Network topology, 
and uptake and 
secretion rates 

Metabolic flux 
states and gene 
essentiality 

• Mechanistic 
• Large scale 
• No kinetic 
information is 
required 

• No inherent 
dynamic or 
regulatory 
predictions 
• No explicit 
representation of 
metabolic 
concentrations 

Logical, 
Boolean or 
rule-based 
formalisms 

Signalling 
networks and 
transcriptional 
regulatory 
networks 

Rule-based 
interaction network 

Global activity 
states and on–off 
states of genes 

• Can model 
dynamics and 
regulation 

• Biological 
systems are rarely 
discrete 

Bayesian 
approaches 

Gene regulatory 
networks and 
signalling networks 

High-throughput 
data sets 

Probability 
distribution score 

• Non-biased 
• Can include 
disparate and even 
non-biological data 
• Takes previous 
associations into 
account 

• Statistical 
• Issues of over-
fitting 
• Requires 
comprehensive 
training data 

Graph and 
interaction 
networks 

Protein–protein 
and genetic 
interaction 
networks 

Interaction network 
that is based on 
biological data 

Enriched clusters 
of genes and 
proteins 

• Incorporates prior 
biological data 
• Encompasses 
most cellular 
processes 

• Dynamics are not 
explicitly 
represented 

Pathway 
enrichment 
analysis 

Metabolic and 
signalling networks 

Pathway 
databases (for 
example, KEGG, 
Gene Ontology 
and BioCyc) 

Enriched pathways 

• Simple and quick 
• Takes prior 
knowledge into 
account 

• Biased to human-
defined pathways 
• Non-modeling 
approach 

 
Notably, where exact solutions cannot be found, it is possible to solve ODEs 

systems numerically, a functionality offered by and indeed at the centre of a 

great number of software implementations. In this context an important 

concept is the idea of convergence, i.e. the quality of the numerical solution 

to approach the exact solution as the size of integration steps tends to 0. 

Since all numerical algorithms are iterative processes, it is easy for errors to 

propagate, and step sizes have to be determined carefully to account for this 

tendency. The most common approach to evaluating lies looking at 

residuals, but at other times it is also possible to critically evaluate overall 

system dynamics, or to track a variable's value stabilizing at a monitor point. 

There a different methods available for arriving at numerical solutions, which 
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can be broadly categorized as either linear multistep methods or Runge-

Kutta methods, and many of which interestingly date back as far as the 19th 

century (Butcher 2000); for example, the Adams-Bashforth method that is 

widely used in software was first presented in a paper by Boshforth and 

Adams in 1883, while a manuscript by Runge in 1895 is considered the 

origin of all modern one-step methods. On the other hand, there is of course 

nevertheless constant adaptation and refinement occurring in the field of 

numerical solvers, such as applications of non-standard finite difference 

methods (Mickens 2003), or further developments to e.g. specifically 

preserve fixed points (Vigo-Aguiar & Ramos 2011) . 

 

Limitations of ODEs 
 
A key limitation of systems of ODEs, however, is the need for complete and 

quantitative data on the parameters used, such as concentrations, reaction 

rates and degradation rates, which may be difficult to measure 

experimentally. As a result, these values are often estimated in practice from 

the limited data available, or even established by trial and error from an 

intuitively plausible range. In addition to this, ODEs have difficulties handling 

non-homogenous local concentrations, and if certain processes such as 

compartmentalization can be expected to factor in partial differential 

equations (PDEs) should be preferred, as these can process spatial as well 

as temporal dependencies. There have also been numerous recent 

extensions to basic ODE methods, e.g. explicitly defined compartment 

exchange rates, to symbolize biological processes more realistically. 

Considering ODE sets on a practical level, the state of a dynamical system 

is, at any instant of time, specified by the values of the concentrations of all 

species in the network. However, the differential equations do not tell us 

"where we are" but "where we are going", that is how much each 

concentration will change in the next small increment of time. For the 

mathematical description of the GRN, each change in variable, that is the 

component concentration of interest, is described by the other components 

via parameters - quantities that are given a value - and constants - quantities 

with a fixed value. In order to predict the temporal progression of each 



33 
 

component, the differential equations must be integrated, while a time course 

can graphically show the time evolution of one of the studied components 

over time, e.g. concentration of a protein or mRNA. It is also possible to 

visualize the dynamical system as a vector field or phase plane plot. 

 

Vector Fields 
 
In short, a vector fields maps vectors to individual points in a given 

subspace. The constitutive components include the state space - the set of 

numbers that quantify each component - the parameter space with the 

numbers that influence the rates of change of state variables, and fixed 

points, where the rates of change of all variables in a system are exactly 

zero. In the conservative sense, a fixed point simply signifies that a point of 

the function's domain is effectively mapped to itself, but attracting fixed points 

also see close-by values converging to them. Each point in state space is a 

vector that specifies the magnitude and direction in which the state variables 

are changing, and looking at a two-dimensional vector field, for example, the 

vectors could be represented as arrows with varying magnitudes and 

directions, each attached to a point on a plane. Of course, vector fields are 

not generally limited to a bi-dimensional form, and in an n-dimensional 

Euclidean space the vector valued-function linking to the points in the 

domain would likewise generate n-dimensional values. Consequently, vector 

fields are more generally defined on differentiable manifold, which appear 

similar to Euclidean space on small, but not larger scales. An orbit or 

trajectory is a path through state space traversed over time as a dynamical 

system follows the underlying vector field from an initial state to a final state. 

Since most real systems are nonlinear, they show interesting behaviours 

under such analysis.  

 

Concepts of Stability 
 
An example of noteworthy behavior can be that the vector field will point to 

certain attractors, the stable solutions of the differential equations, and such 

attractors can be seen as points of no movement, representing observable 
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physiological states. With equilibrium points or periodic orbits, small 

perturbations to a system at a fixed point will often be accompanied by a 

return to this steady state, in which case the steady state is considered not 

only stable, but also attracts nearby orbits. Put a different way, a nearby orbit 

remaining close to a given orbit on an indefinite time scale would be 

considered stable, while a convergence of the first orbit to the given orbit 

would show asymptotical stability. When specifically considering dynamical 

systems, Lyapunov stable refers to a forward orbit remaining contained in a 

small neighborhood. Generally, stability of an equilibrium can be tested 

through the use of Lyapunov functions, scalar functions named after the 

Russian mathematician Aleksandr Mikhailovich Lyapunov. There exists no 

universal method for constructing Lyapunov functions, but the qualitative 

perturbation response of an orbit may also be analyzed based on the 

linearization of the local system. Specifically, for a smooth dynamical system 

with n-dimensional space, according to the Hartman–Grobman theorem an n 

x n matrix can be determined with eigenvalues describing the behaviour of 

nearby points, where the proportion of imaginary and real valued 

eigenvalues can provide insights into the underlying stability.  

However, there are also unstable steady states, where perturbations grow 

larger with time so that the control system ultimately leaves the vicinity of the 

steady state. These repellers have surrounding vectors pointing away from 

them, while saddle points attract some nearby orbits and repel others. A 

popular metaphor for the different steady states is that of a damped 

pendulum. It would normally return to rest at a stable steady state with the 

bob hanging directly below, but an unstable steady state might be possible 

with the bob precariously balanced directly above the pivot point.  

 

Oscillations and Limit Cycles 
 
There are also oscillatory solutions, where the attractor is a closed orbit in 

state space. This behaviour, known as a limit cycle when one or more other 

trajectories spiral into or away from this closed orbit over time, was first 

described by Poincaré, and has traditionally been an important tool for 

modeling nonlinear systems. This type of system could for example denote 
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protein concentrations changing in time, but repeating themselves after a 

characteristic period, as would for instance be observed for oscillating clock 

genes. Generally speaking, self-sustained oscillations and perfectly periodic 

system behaviour would be implied by attracting limit cycles, and these in 

turn act mostly analogous to "simpler" single point attractors, in that the 

system returns to their orbit following any small perturbations. Following the 

Jordan curve theorem, the plane would be divided into an exterior and 

interior of the curve by the closed trajectory, and identifying a trajectory 

approaching the limit cycle over time would point to a vicinity where all 

trajectories, or periodic solutions, are winding towards the attracting cycle. 

This constellation is known as a stable limit cycle, or ω-limit cycle, but there 

also exists the opposite constellation of an unstable, or α-limit cycle, where 

the neighbouring trajectories are approaching the limit cycle as time 

approaches negative infinity. In other words, considering this case from the 

normally assumed positive directionality of time, the trajectories would in fact 

be moving away from the limit cycle. Finally, a semi-stable limit cycle would 

exhibit some trajectories spiraling towards it, and others away from it.     

 

Bifurcation Diagrams 
 
Bifurcation theory, another term coined by Henri Poincaré in 1885, describes 

the study of qualitative or topological changes within e.g. a family of vector 

fields or solutions of differential equations representing a dynamical system. 

A bifurcation is observed when small changes in the bifurcation parameter 

under investigation lead to a sudden change of the systems behaviour, and 

this concept can be applied to continuous as well as to discrete systems. In a 

2D or even 3D vector field, the different steady states can habitually be 

identified by simply looking at the diagram, and they all, including even the 

unstable ones that cannot be directly observed in vivo, carry far reaching 

physiological consequences. Attractors could, for example, represent 

different differentiation states of a cell, while unstable fixed points may 

denote physiological thresholds. In the case of a dynamical system with 

numerous components, these deductions principally hold true; n components 

can be represented by a point in an n-dimensional state space, where the set 
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of all p parameters entailed can be represented by a point in a p-dimensional 

parameter space. Bifurcation theory can be used to analyze the bifurcations 

in parameter space by comparing simulation results to those obtained for the 

normal form, comparing their similarity as for example expressed by 

topological equivalence. This can often serve the objective of confirming the 

structural stability of the normal form. However, it is evident that for larger 

values of n a convenient visualization is impossible, and also that the exact 

nature of the steady states will depend on the precise values of the 

numerous parameters. The way out of this predicament lies in considering 

that there are only certain possible transitions between the different steady 

states, e.g. two steady states annihilating each other, or a stable steady state 

giving way to a stable limit cycle. In this way, bifurcation theory allows the 

analysis of the variation of steady states with certain combinations of 

parameters, as bifurcation points occur at specific values of the parameters. 

There are also several corresponding software packages that rely on 

different algorithms to solve defining equations for these bifurcation types 

and to determine coefficients of the normal form.  

Once again, this is easily viewed in a one-parameter bifurcation diagram, 

where possible long-term values - including equilibria, fixed points, or 

periodic orbits - of a variable representative of the whole dynamic system are 

plotted against one parameter of choice. It is usual to represent stable 

solutions with a solid line and unstable solutions with a dotted line. In the 

setting of a biological system, these would be concentrations of a master 

factor, e.g. in the zebrafish circadian clock, Per1 concentration stands out as 

possible candidate. Common patterns on bifurcation diagrams include bi-

stability of two stable fixed points. There is usually also a third steady, but 

unstable state, which can act as a separator between the orbital attractions 

of the two stable states. When the steady state makes a sudden jump at a 

particular value of the parameter, hysteresis occurs. There is also multi-

stability, but in such a system, the random fluctuations in molecule numbers 

would tend to preferentially mask the existence of steady states with low 

average copy numbers. It should be noted, of course, that multi-stability, 

unstable steady states, and hysteresis can all be coexisting and interrelated.  

Other examples are a Hopf bifurcation, where a limit cycle evolves out of a 
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stable point, and a saddle-node bifurcation, where two fixed points of a 

dynamical system collide and disappear. Bifurcation analysis will also give 

insight into which parameters are important for a transition from a stationary 

point to oscillations or vice versa, and at what parameter range oscillations 

occur. In local bifurcations, the parameter changes leading to an altered 

equilibrium stability can be confined to arbitrarily small vicinities by 

approximating the critical threshold bifurcation point with the bifurcation 

parameter. Global bifurcations, on the other hand, are often a result of larger 

invariant sets colliding with an equilibrium or each other. It is not possible to 

detect this category of bifurcation purely by stability analysis of the fixed 

points, and the resulting changed in the trajectory topology in phase space 

cannot be pinpointed to a limited neighbourhood, but rather reach out to an 

arbitrarily large distance. Finally, the term "codimension" describes the 

number of parameters that have to be changed simultaneously in order to 

manifest the bifurcation. 

 

1.2.2  Major Dynamics in Representing GRNs as ODEs 
 
GRNs exert their regulatory function on multiple levels and through various 

processes, such as transcriptional control, RNA processing, transport and 

degradation, translation and protein activity and degradation. In order to 

mathematically express many of these mechanisms, it is possible to utilize 

enzyme kinetic models, and given the analogy between enzyme kinetics and 

other biological processes, for instance transcription reactions, these kinetic 

models now find many uses. For example, many network models, including 

translation-transcription, signalling, and metabolic networks, are described by 

equations containing Michaelis Menten (MM) kinetics to model enzyme-

mediated degradation of gene products, Hill functions to represent 

transcriptional activation, and linear functions for translation and protein 

transport rates in and out of the nucleus. Furthermore, if multiple types of 

posttranscriptional regulation and trafficking play a pivotal role in a GRN, 

these may be included in a model by treating them as different intermediary 

or states. 
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Law of Mass Action and Michaelis Menten Kinetics 
 
The basis of practically all kinetic models is the Law of Mass Action, 

originally a mathematical construct that describes the behaviour of solution in 

dynamic equilibrium. It was first devised by Cato M. Guldberg and Peter 

Waage in 1864 following their work on reaction mixtures and equilibrium 

constants on the one hand, and rate equations for elementary reactions on 

the other. It was recognized early on that in order to maintain equilibria in a 

dynamic process, forward and backward reaction must exhibit equal rates of 

reaction, and this novel take on rate equations proved to be a breakthrough 

in predicting molecular kinetics. Specifically, the Law of Mass Action states 

that the reaction rate of any chemical reaction is proportional to the 

probability of a collision of the reactants, which in turn is proportional to the 

concentration of reactants to the power of the molecularity, i.e. the number in 

which they enter a specific reaction. Consequently, if two copies of a 

molecule are jointly participating in one part of the reaction, the concentration 

term for this component is squared. The rate constants - e.g. k1, etc. - are 

constants of proportionality in the application of the Law of Mass Action, 

which represent the relative affinity for different reaction steps to occur. It 

should be noted, however, that an important assumption, and in some cases 

possible limitation, is that all reactants are in well-mixed conditions 

throughout the reaction process  (Murray 2002; Klipp et al. 2009). Outside of 

describing classical chemical or kinetic processes, the law has also been 

applied as the basis of, for example, the Lotka–Volterra equations, which 

describe the dynamics of predator and prey populations in mathematical 

ecology. As another example of its universal usefulness, the Law of Mass 

Action has also inspired the compartmental model of disease spread in 

mathematical epidemiology, which simulates disease dynamics as the 

interactions of susceptible, infected, and recovered individuals (Adivar & 

Selen 2011).  

 
Michaelis Menten (MM) kinetics are a simple, well known and widely used 

model of enzyme kinetics. After Victor Henri had first established that 

enzyme catalysis occurred through a binding interaction with the substrate, 
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his work was continued by Leonor Michaelis and Maud Menten, who 

investigated the kinetics of the invertase enzymatic reaction mechanism 

hydrolyzing sucrose into fructose and glucose (Cornish-Bowden 2013). 

Having successfully accounted for factors such as pH, they were able in 

1913 to develop their observations into the now famous mathematical model 

of conversion from substrate to product based on enzyme concentration. In 

detail, the MM equation is derived from the kinetics of a one-substrate 

reaction without backward reaction. The substrate S and the enzyme catalyst 

E reversibly form an enzyme-substrate complex ES and irreversible release 

product P, while k1, k-1 and k2 are constants of proportionality associated with 

the reaction rate. Double arrows indicate a reversible reaction and a single 

arrow a one-way one. 
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k

 
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21

1

  (1.1) 

 
 
Using the Law of Mass Action, this simple system can be mathematically 

described by the following system of ODEs, expressing the rate of formation 

of the different constituents dependant on their respective substrate 

concentrations, as modified by the different constants of proportionality: 
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The reaction rate is equal to the negative decay of the substrate or the rate 

of product formation: 
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dt

dP

dt

dS
v ==   (1.6) 

 
This system cannot be solved analytically as it is, so several assumptions 

have been made for simplification. Firstly, it is assumed that there is a quasi-

equilibrium between the free enzyme and the enzyme-substrate complex, 

meaning that the reversible conversion from E and S to ES is much faster 

than the decomposition of ES to P and E, i.e. k1, k-1  k2. Secondly, it is 

also assumed that a quasi-steady state is achieved, where the concentration 

of ES remains virtually constant: 

0=
dt

dES
 (1.7) 

 
This statement is only justified if the initial substrate concentration is much 

higher than the enzyme concentration, otherwise such a state could not 

realistically be established. 

 
Looking at the ODEs for ES and E, it can be seen that 

constantESEEor
dt

dE

dt

dES
total ==0=   (1.8) 

 
showing that enzyme is neither produced nor consumed in this reaction, so 

the total enzyme concentration remains the same throughout and is either 

found unbound or as part of the complex. 

 
Adding equation 1.3 in at this point under steady state assumption Eq. 1.7 

gives: 

 

0=)()(= 211 ESkkSESEk
dt

dES
total    

thus 

ESkkSESEk total )(=)( 211    

thus 
 

ESkkSESkSEk total )(= 2111    

                (1.9) 

 
and thus 
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From Eq. 1.5 and 1.6 it then follows that: 
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To represent this in a more convenient form, the following parameters are 

introduced: maximum velocity 

totalmax EkV 2=  (1.12) 
 
which is the maximal rate that can be achieved when the enzyme is 

completely saturated with substrate; 

  
and the Michaelis constant 
 

1
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kk
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  (1.13) 

 
 
which is equal to the substrate concentration that yields a half-maximal 

reaction rate. Using this simpler form the classical expression of the MM 

kinetics can be derived: 

m

max

KS

SV
v


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=  (1.14) 

 
 
In other words, it can be seen that the reaction rate increases with substrate 

concentration S, approaching steadily but asymptotically, that is never quite 

reaching, the theoretical maximum reaction rate Vmax when all enzyme would 

be bound to substrate at the same instant in time. As has been described 

above, the Michaelis constant Km points to the substrate concentration 

resulting in half the maximum reaction rate, and this way acts as an inverse 

indicator of the affinity for the substrate binding the enzyme. Thus, a small 

Michaelis constant would signify a high affinity and speedy approach to the 

maximum reaction rate, but it should be noted that the exact value of Km is 

not only dependent on both the enzyme and the substrate, but also such 



42 
 

environmental conditions as temperature and pH. Oftentimes, in order to 

determine the different constants used in a specific application of MM, first 

initial reaction rates are measured through enzyme assay measurements. 

Subsequently, suitable parameters for the equation can be obtained through 

graphical methods involving linearization or, especially since the advent of 

corresponding computational capabilities, more commonly through non-linear 

regression.    

 
Interestingly, it is widely accepted that many underlying assumptions of MM 

kinetics, including a rapid equilibrium and steady state, withstand a close 

scrutiny only for a small subset of conditions. For instance, the Law of Mass 

action used in the derivation of MM relies on free diffusion, but it has been 

noted that the cytoplasmic environment in a cell may more resemble a gel 

than a liquid and consequently affect molecular movement and reaction rates 

(Zhou et al. 2008). Especially in regulatory processes relying on relatively 

few copies of key molecules, the condition that substrate concentrations far 

exceed the enzyme concentration may further be compromised, and only 

sustain valid results for large values of Km. Finally, the assumed irreversibility 

of the product formation step is also rarely confirmed. Practically speaking, 

the simplification may remain a good approximation when substrate 

concentrations far exceed product concentrations, such us when the product 

is continually removed by follow-on reaction steps, or when the reaction's 

energy release is very large, but in other conditions the simple MM kinetics 

may break down. Despite these caveats, however, MM has been found to 

describe many reactions adequately well, and has been employed for related 

settings, including antibodies binding antigen or DNA-DNA hybridization, but 

also outside areas such as the photosynthesis-irradiance relationship, 

richness of the species pool, or clearance of blood alcohol (Jones 2010). 

Numerous extension have also been proposed over the years, including the 

application of the Michaelis-Menten equation to single molecules (Kou et al. 

2005). 
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Hill function 
 
A Hill function is yet another, if more complex, enzyme kinetic law, or more 

generally one that describes the fraction of a macromolecule bound by a 

ligand as a function of ligand concentration. In order to make sense of its 

biological context, one first needs to visit the concept of cooperative binding. 

While enzyme mediated binding events already add a layer of complexity to 

reactions of "pure" mono-valent substrates, cooperative binding considers 

the case of one molecular species, possessing multiple binding sites and 

being commonly classified as a macromolecule, binding to multiple copies of 

another molecular species, the latter one being commonly referred to as a 

ligand. However, rather than being mutually independent events, each 

successive binding of a ligand may alter the shape of the macromolecule, a 

mechanism known as cooperativity and affecting the subsequent affinity for 

binding further ligands. It should be noted, however, that cooperativity can be 

negative as well as positive, with Hill coefficients <1 denoting the former and 

coefficients >1 the latter, and since it is observed in a wide range of proteins 

and other biopolymers, cooperative binding is understood as affecting a large 

range of physiological processes. One important consequence can be the 

occurrence of ultra-sensitivity, that is a response that is much more sensitive 

to ligand concentration as compared to standard responses such as the MM 

equation, and can lead to sudden fluctuations in steady state in biological 

systems. In a signalling pathway, such as activation, ultrasensitivity would 

alter the quality of the response to the extracellular stimulation from the 

normal hyperbolic response to a more sigmoidal curve. 

One important example of cooperativity in a multi-site protein is the binding 

of oxygen to haemoglobin, which was extensively studied by Christian Bohr 

as early as 1904. Building upon this work, Archibald Vivian Hill described in 

1910 equilibrium relationships between oxygen tension and the resulting 

saturation of haemoglobin, and in particular he was looking to explain the 

sigmoidal curve obtained for the binding of oxygen to haemoglobin with the 

interaction between the binding sites located on haemoglobin's subunits. Hill 

suggested a phenomenological equation that assumed complete 

cooperativity and a predicted Hill coefficient for haemoglobin's binding to 
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oxygen of 2.8 from experimental data (Hill 1910). It is known today that 

haemoglobin has four binding sites and that cooperativity is not complete, 

but nevertheless the Hill coefficient remains a key element in modeling the 

various instances of physiological multi-site binding, including the regulation 

of multimeric enzymes, the opening of ion channels composed of several 

pseudo-identical domains, or cooperative binding in proteins, either found in 

complexes of homologous subunits, but also some proteins with several 

binding sites for a specific ligand. Moreover, the Hill equation has also been 

employed extensively in pharmacology to model quantitative drug–receptor 

relationships and other pharmacokinetic–pharmacodynamic dynamics 

(Goutelle et al. 2008). In the mathematical representation of the Hill function, 

a high Hill coefficient suggests extensive cooperativity and ultrasensitivity. 

Significantly, while in MM kinetics a fairly large change in substrate 

concentration range is required to effect a significantly different outcome, Hill 

kinetics work on a much smaller range and are thus more economical for the 

cell. Similar to MM, the Hill function is derived from enzyme kinetics 

(Polynikis et al. 2009). 

 
A molecule that binds to a protein is called a ligand, e.g. a ligand S binds to a 

protein E: 

ESSE     (1.15) 
 
the binding constant KB is given by 
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The fractional saturation Y of the protein is the number of subunits that have 

ligands bound, divided by the total number of subunits available. For one 

subunit this would be: 
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It should be noted that here the plot of Y versus S looks like the plot of V 

versus S in MM kinetics. In a process, where binding of S to E is followed by 

the release of a product and the initial concentration of S is much higher than 

E, the reaction rate is proportional to the concentration of ES: 

Y
E

ES

V

v

totalmax

==  (1.18) 

 
If considering a dimeric protein with two identical binding sites, where the first 

ligand binding facilitates the second ligand binding, and E is the monomer 

and E2 the dimer, the equation can be written as: 
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The fractional saturation Y is now given by 

 .
222

2
=

2

2
=

2222

222

2,

222

SESEE

SESE

E

SESE
Y

total 


 (1.20) 

 
Assuming the affinity of the second ligand is strongly increased by the 

binding of the first ligand, E2S will react with another S as soon as it is 

formed, and the intermediate E2S can be ignored. This provides a case of 

complete cooperatively, i.e., the protein is either unbound or fully bound, 

which would reduce the above system to: 

 222 2 SESE   (1.21) 
 
with a binding constant of 
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Generally, for a protein with n subunits, the rate is expressed as 
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which is known as the general form of the Hill equation. 

 
Notably, in the derivation complete homotropic cooperativity, with all ligands 

binding at the same time, was assumed. A plot of fractional saturation Y 

versus substrate concentration S shows a sigmoidal curve with an inflection 

point at 1/KB, and an indication of the slope of the Hill plot is given by the Hill 

coefficient n. Furthermore, plotting the Hill function on a log scale will appear 

as a logistic function, but in the inverse a pure logistic function may model 

those behaviors better, in which concentrations leading to saturation do not 

extend over several orders of magnitude.  

 
Today the Hill coefficient is often still regarded as a quantitative measure of 

cooperativity, particularly as an estimate of the minimal number of interacting 

binding sites in positively cooperating systems (Abeliovich 2005), although it 

is not directly related to how ligand binding at one site is affected by that at 

another and is usually less than the number of binding sites. Moreover, even 

where the Hill coefficient may give information on the number of interacting 

sites, it fails to distinguish between various underlying mechanisms (Prinz 

2010). It has further been shown that for simple sequential or independent 

binding schemes the Hill coefficient is always less than 2 for up to 10 binding 

sites, and thus best thought off as an interaction coefficient (Weiss 1997). In 

summary, the Hill coefficient is only an accurate estimation of the number of 

binding sites if there is a high degree of cooperativity and when intermediate 

states are short-lived. Indeed, attempts have been made to replace the Hill 

functions commonly utilized in models, for instance using piecewise-linear 

approximations (Casey et al. 2006), but nevertheless the Hill function 

remains widely used and useful model, especially when the coefficient is 

considered as a more general interaction coefficient - a notion of a general 

change in affinity upon binding. 

 

Gene regulation function 
 
The various kinetic laws presented above can be utilized as building blocks 

in constructing more involved kinetic models of gene expression pathways, 
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and in doing so it is often simplistically assumed that transcription rates only 

depend on regulator activity, while other influences are ignored. In simpler 

prokaryotes, a transcription process description may indeed accurately be 

derived from theoretical models, but in eukaryotes transcription is an 

extraordinarily complex process that depends on the precise orchestration of 

myriad interactions (Maston et al. 2006). Genetic promoters can be 

influenced by a large number of inputs and enhancers, DNA sequences that 

can bind a variety of  transcription factors at multiple sites and activate 

transcription irrespective of their location and orientation relative to target 

promoters, in some cases even initiating transcription on different 

chromosomes (Lomvardas et al. 2006), and the interactions of enhancers 

and promoters can in turn be further modulated by elements including 

cohesin and non-coding RNAs (Ong & Corces 2011). As a tool for untangling 

this intricate mechanisms, a gene regulation function describes the binding of 

regulators to their recognition nucleotide sequence, and for a quantitative 

model two basic assumptions are routinely made here: 

Firstly, on the time scale of interest thermodynamic equilibrium between 

different states is achieved and the probability of each state is dependent on 

the binding energy and concentration of any regulator present. Secondly, in 

each instance transcription initiation occurs randomly at a certain state. In 

order to translate a network structure into a dynamical model, signal strength 

s and response magnitude r have to be taken into account: 

 

 ),(= rsf
dt

dr
 (1.25) 

 
 
 
Solving the steady state equation 0=f(s,r) for r yields a steady-state response 

curve, i.e. the input-output relation for this arrow in the network. 

Looking to the response curves resulting from different underlying dynamics, 

it can be observed that a linear network modelled with MM kinetics yields a 

hyperbolic response. Similarly, a loop structure modelled with linear kinetics 

gives an overall hyperbolic response, while a sigmoid response can be 

achieved by a loop structure with MM kinetics or a double loop structure with 



48 
 

linear kinetics. Notably, it is thus emphasized that different motifs with 

different kinetics implementations can result in a similar overall response 

curve, a circumstance that can be utilized to reduce the number of equations 

and thus computation effort in a model system, while still capturing the most 

important dynamics of more complicated underlying mechanisms. A Hill 

function, for example, is often used in GRN models to represent in one term, 

what would instead have to be written out in several successive steps, such 

as transcription, modulation and trafficking. 

 

Parameter estimation 
 
One of the limitations of constructing ODE-based mathematical models, as 

mentioned before, consists of the requirement to first define various 

parameters. Especially in the case of many biological systems, this necessity 

may pose a problem as exact rate constant are often unknown and 

experimental data available tends to be incomplete and noisy. Previously, 

parameters were chosen manually in a time consuming trial and error 

manner, frequently not producing the optimal set and only generating a 

rudimentary view of the viable parameter space. Moreover, in complex 

models relying on a large number of parameters, the sheer number of 

possible combinations can quickly defy such manual attempts, except when 

sets perform well over a particularly large range of values, for instance using 

high Hill coefficients. Nowadays, once again largely driven by advances in 

computational techniques and prowess, several new approaches have 

thankfully been applied to searching the available parameter space and 

detecting optimal parameter sets. While top-down modeling statistical 

estimation procedures, for instance, are used to fit parameters from 

experimental data, Bayesian methods use Bayes' theorem to provide a fully 

probabilistic framework for describing experimental data, as summarized by 

a likelihood function, and prior knowledge about parameters to form a 

posterior distribution. This method is often applied to microarray or other high 

throughput data. However, the data analyzed may also be low-throughput 

with only a few different biochemical species, but a high time resolution, and 

data could also be collected either at the population or at single cell level. 
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Even with noisy and varied time course data, where absolute and relative 

levels are unknown, parameters can still be fitted for a deterministic model to 

reproduce experimental results. 

It should be noted, however, that all approaches of parameter estimation are 

showing some interplay between value optimization and, since most ODEs 

show nonlinear behaviour, simulating the equation trajectory. In this context it 

has also be noted that most estimation approaches display either a relatively 

small convergence region or considerable computational costs (Peifer & 

Timmer 2007). Individual optimization techniques can differ markedly and are 

often labelled as either local or global optimization procedures, with global 

routines often being based on clustering approaches, simulated annealing, 

adaptive stochastic methods, or evolutionary computation (Banga et al. 

2004). The equation's trajectory, on the other hand, is usually simulated 

using available ODE solvers, and a simple approach to improve the 

"goodness of fit" of a given model lies in calculating the distance between the 

simulated and the experimental data; parameters can be tuned with an 

optimization procedure to minimize this distance. In order to provide a 

quantitative value for the goodness of fit, a cost function can also be 

constructed by summation of several terms, each quantifying on a different 

level the agreement between model and experimental data, such as correct 

period, phase, and entrainment. Most optimization algorithms are 

constructed around checking different parameter sets, finding the best ones, 

and then using these as a starting point to find alternative or even better 

sets, as the loop starts over again. Of course, there are numerous specific 

implementations of this general theme, each with their own strengths and 

drawbacks, and numerous extensions of the methodology include, for 

example, utilizing a framework of measurement error in connection with a 

local smoothing approach and a pseudo-least squares (PsLS) principle 

(Liang & Wu 2008). Once suitable parameter sets have been identified, 

sensitivity and robustness analysis can also be readily performed to check 

how variation of parameters affects the output of a model. 
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1.3 Accounting for Stochastic Variation 

1.3.1  Biological systems are noisy 
 
Much bio-molecular research may aim to neatly identify pathways, classify 

interaction partners, and measure concentrations, but even so, at a 

microscopic level many biological processes are fundamentally characterized 

by noisy and random events that, among other things, lead to fluctuating 

amounts of substance molecules. As genes are generally only present in 

very few copies, i.e. one or two, and transcription factor molecules in the 

order of tens or hundreds, deterministic modeling approaches, where a given 

initial state always leads to the same observed state at a specific time later, 

may not be unconditionally valid. Rather, such fluctuating dynamics may be 

more accurately represented by several types of mathematical random or 

stochastic processes, based either on individual reaction events such as in 

the Chemical Master Equation and direct simulation, with frequencies in a 

given time interval as utilized in τ-leaping, or randomly drifting substance 

concentration, for instance implemented in Chemical Langevin Equations. 

 

Noise as a Selective Advantage 
 
It has been frequently observed that even genetically identical or highly 

similar cells, which are furthermore at least apparently exposed to entirely 

the same environmental conditions and stimuli, can show marked divergence 

in gene expression, protein levels, and more general phenotype. Such 

variability is attributed to inherent stochasticity, or the presence of random 

behaviours, which can not only frustrate research studies not prepared for its 

impact, but which has also been linked to detrimental clinical outcomes. For 

instance, increased transcriptional noise in older cardiomyocytes has 

generated the suggestion that DNA damage in the aging heart may be at 

least in part attributed to this increased stochasticity (Bahar et al. 2006). 

Overall though, stochastic gene expression and the resulting phenotypic 

diversity across population of cells or organisms is mostly described as 

highly evolutionary advantageous, and for instance genes highly involved in 

stress response and energy production have been shown to display greater 
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translational fluctuations than other genes (Bar-Even et al. 2006). Indeed, in 

cells exposed to extreme stress, noisy gene expression provides a 

demonstrable fitness advantage (Blake et al. 2006). In particular, noisy 

expression has frequently linked to flipping cellular switches, such as the 

entry and exit from "persistence" in bacteria, which relies on the stochastic 

expression of the hipA gene and transforms a fraction of a given populations 

into a slow-growing state that can protect from antibiotic treatment or other 

environmental stress (Rotem et al. 2010). Related mechanisms also exist in 

complex multicellular organisms, and so it was shown that a population of 

haematopoietic progenitor cells exhibited frequently arising outliers as 

determined by SCA1 levels, with either very high or low SCA1 expression. 

Subsequent populations propagated from these outlier cells started off with 

similarly unusual SCA1 levels, but slowly self-corrected to the more broadly 

distributed SCA1 levels of the original cell population (Chang et al. 2008). 

There are also various examples, in which a switch appears originally fuelled 

by stochastic behaviour, but is subsequently stabilized in a more robust 

state. For example, somatic cells can be reprogrammed into induced 

pluripotent stem cells (iPS) by the TFs OCT4, SOX2, KLF4, and MYC 

(Wernig et al. 2007) in a stochastic manner, but subsequently display a 

stable pluripotent state and robust expression program (Boyer et al. 2005). 

Moreover, noisy gene expression can also be an ingrained part of guiding 

permanent cellular variation, such as the stochastic expression of olfactory 

receptors in mammals, whereby each sensory neuron expresses only one of 

hundreds of potential olfactory receptors encoded by the genome 

(Mombaerts 1999). The resulting distribution of different receptors across a 

population of cells is critical for establishing a response to odors with 

immense granularity. Finally, it should be noted that processes may also 

quickly switch from stochastic to more robust modes. For example, in 

Drosophila eye development only a single cell in each ommatidium develops 

into an R8 photoreceptor, whereupon other cells are immediately repressed 

from developing into R8 cells and instead guided to become other 

photoreceptors (Roignant & Treisman 2009).      
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Types of Noise 
 
Noise can be classified into intrinsic and extrinsic noise. Intrinsic noise 

cannot be controlled for and stems from the inherently probabilistic nature of 

such cellular mechanisms as promoter/DNA binding events, mRNA 

transcription and degradation, translation, as well as protein-protein 

interactions. Notably, it can be observed even for identical genes in the same 

intracellular environment, and these chance events are able to have such a 

prominent effect due to the small number of molecules within a single cell. 

Extrinsic noise, on the other hand, can theoretically be controlled for and is 

related to different cellular environments, e.g. cell-to-cell differences in cell 

size and number of ribosomes, or to inputs from elsewhere in the network, 

such as in the concentrations of the specific trans-acting gene regulators 

(Swain et al. 2002).  

While noise is undoubtedly an inherent feature of practically all biological 

system, it can be reduced or otherwise regulated in a gene specific mode. In 

fact, individual genes have been found to range considerably in their 

propensity for plasticity, and inspecting elements of their genetic architecture, 

the promoters of high-plasticity genes display high nucleosome occupancy 

upstream of transcriptional start sites and low occupancy more distally, 

whereas low-plasticity genes exhibit with greater frequency nucleosome free 

regions around their promoters (Tirosh & Barkai 2008). Nucleosomes are 

known to adversely affect the binding of TFs to target DNA segments, and so 

interactions or competitions between nucleosomes and TFs may contribute 

to stochasticity (Choi & Kim 2009). Further to this proposed link between 

gene architecture and expression noise, gene promoters featuring a TATA 

box were also shown to display more noise in their expression pattern 

(Tirosh & Barkai 2008). On the side of TFs, it is evident that their expression 

levels can also have an impact on noise in their target gene expression 

levels. After all, the interactions of TFs and genes are inherently probabilistic 

and depend not only on TF diffusion rates, affinity for different DNA 

sequences, the DNA's orientation, etc., but critically also the TFs 

concentration. TFs with low expression levels may thus exhibit a lower 

probability of binding a particular DNA sequence, especially if it competes for 
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the same downstream target with a more abundant TF, and the response to 

the lowly expressed TF may thus show greater variability. Genes with low 

expression levels have also been shown to fluctuate more in their expression 

(Bar-Even et al. 2006), and noise can further be transmitted through a 

network from a TF to a downstream target (Pedraza & van Oudenaarden 

2005), including other activator or repressor TFs, which may further 

propagate this noisiness. On a tightly related note, mutations in the binding 

sites of TFs may also change the strength and residence time of its 

interaction with regulatory DNA sites, thus altering the level of stochasticity in 

the expression of these genes. It could be speculated that a change to a 

lower binding affinity would increase noise in this way, while an 

approximation of the theoretically optimal TF motif would strengthen protein–

DNA interactions and result in more robust downstream target expression.   

 

Stochastic Timing of Expression 
 
It should also be noted that stochastic or robust expression patterns are not 

limited to the variation in acute mRNA levels, but may also manifest in the 

timing of expression. For instance, it has been shown that in the 

embryogenesis of Drosophila many promoters are preloaded with RNA 

polymerase II, a mechanism that can accelerate the induction of gene 

expression (Hendrix et al. 2008), and furthermore that this preloading can 

reduce variability in not only transcriptional induction, but also overall 

phenotype; conversely, genes lacking stalled RNA polymerase II displayed 

not only significant stochasticity in their activation times across different cells, 

but also much greater variability in the expression profiles in the 

Drosophila presumptive mesoderm (Boettiger & Levine 2009). Furthermore, 

there is evidence that transcription occurs in bursts, with short periods of 

rapid production of multiple transcripts, interspersed with relatively long 

periods of no production, and this pattern, in turn, would have considerable 

implications for our understanding of general system dynamics and the origin 

of noise. However, it may be useful to remember at this point that stochastic 

behaviour is neither strictly negative nor positive, but rather that it depends 

on the precise nature of target genes whether changes in noise level may be 
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beneficial or not; e.g. stress genes could possibly benefit from increased 

plasticity, whereas the disruption of robust essential processes might be 

more problematic. As such, it is not surprising that some systems have 

evolved to suppress noisy gene expression or to exploit it, e.g. the bi-stable 

systems in which cells can select from two phenotypes even in uniform 

genetic and surrounding conditions to facilitate adaptation to fluctuating 

environments. Even at the GRN level, different notes have been found to 

display different levels of noise. For example, highly connected nodes in 

protein-protein interaction networks, which are more likely to be essential 

and involved in multiple regulatory processes, also exhibit significantly lower 

levels of noise in the expression pattern when compared to nodes with fewer 

edges (Lehner 2008). 

 

1.3.2  Stochastic Modeling Approaches 

Chemical Master Equation 
 
Before delving into the description of different modeling approaches for 

simulating the behaviour and effects of biological stochasticity, it should also 

be appropriate to point out that a process may, and in fact usually will, exhibit 

and be classified by different properties at the same time. Of particular 

interest in the modeling of noise is, of course, the random or stochastic 

process, which describes a system that can move randomly between 

different states in state space. On the other hand, A Markov process, named 

after the Russian mathematician Andrey Andreyevich Markov, is one, in 

which the behaviour of the system is determined by only the present state 

and not by past ones, unlike e.g. delay equations. Indeed, the Markov 

property is not only important for deterministic ODEs, but plays an even more 

prominent role in many stochastic processes, as long as a transition 

probability between the current and future states, without dependence on the 

past, can be assumed. When time and space are considered on a discrete 

scale, the process is habitually termed a Markov chain, and when the scale 

is continuous, the term continuous Markov process is used. Falling 

somewhere in between this major distinction, in a Markov jump process 

states are still discrete, but state transitions occur in continuous time. For 
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instance, a discrete random walk would be an example of a Markov chain, 

but for many biological processes discrete time steps may not be suitable, 

and thus continuous time is often preferred for constructing models in this 

context.  

 
A very exact representation of a system is provided by the Chemical Master 

Equation (CME), an equation that determines at an elementary level the 

probability that each species will have a specified molecular population at a 

given future time (Gillespie 1992). Here, the assumption is that for a very 

small interval ∆t → 0 the probability for a transition within this interval is 

proportional to the size of ∆t, and the transition probability can be 

approximated by the proportionality constant, i.e. the transition rate. The 

transitions will lead to temporal changes of the state probabilities depending 

on a system of differential equations, namely the CME. Even though the 

cellular environment is densely populated and may exhibit localization, it is 

further assumed that the system is well-stirred and thus the positions and 

velocities of individual molecules are ignored.  

 
 N different molecules or chemical species S1, ... ,SN, which interact in 

one or more of 

 M chemical reactions R1, ..., RM in volume Ω 

 Xi(t) = number of molecules of species Si in the system at time t 

 making up the state vector X(t)≡(X1(t),...,XN(t)) 

 
The state vector X(t) can change whenever one of the M type reactions takes 

place according to the state-change vector. 

 Each reaction channel Rj is characterized mathematically by 

1. stoichiometric state-change vector ݒ௝ ≡ ,ଵ௝ݒ) … ,   (ே௝ݒ

where ݒ௜௝ is the change in the Si molecular population caused by one 

Rj  reaction, i.e. if from state x one Rj reaction occurs, the system 

immediately jumps to state x + ݒ௝ 

2. propensity function aj (see below) 

the function whose product with dt gives the probability that a 

particular reaction will occur in the next infinitesimal time interval dt 
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The aim is to estimate the state vector X(t), given that the system was in 

state X(t0)=x0 at some initial time t0. 

 

Propensity 
 
The propensity function provides the stochastic rates of the participating 

reactions: 

aj(x)dt = the probability, given X(t) = x, that one Rj reaction will occur 

somewhere inside Ω in the next infinitesimal time interval [t,t+dt) 

Furthermore, 

aj(x) = cj hj(x) 

where cj is the specific probability rate constant for Rj, defined so that cj dt 

gives the probability that a randomly chosen pair of Rj reactant molecules will 

react accordingly in the next infinitesimal time interval dt. This probability is 

related to the average relative speed, collision cross section, and inversely to 

volume Ω, and the probability that the collision energy exceeds a threshold 

level. hj(x) is defined to be the number of distinct combinations of Rj reactant 

molecules available in state x. 

If Rj is the unimolecular reaction S1 → product(s), the underlying physics, 

which is usually quantum mechanical, dictates the existence of some 

constant cj, s.t. cj dt = probability that any particular S1 molecule will react in 

the next infinitesimal time dt. 

Thus, if there are currently x1 S1 molecules in the system the probability that 

any one of them will undergo the Rj reaction in the next dt is x1 * cj dt. 

Following on from this observation, the propensity function can be written     

aj (x) = cj x1. 

For a bimolecular reaction of the form S1 + S2 → product(s), the propensity 

function becomes aj (x) = cj x1 x2 whereas for S1 + S1 → product(s): the 

propensity function becomes aj (x) = cj ½ x1 (x1-1). 

 
It is noteworthy that for a unimolecular reaction, cj is numerically equal to the 

reaction-rate constant kj of conventional deterministic chemical kinetics, 
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whereas for a bimolecular reaction, cj is equal to 
௞ೕ

ఆ
 if the reactants are 

different species, or 2 
௞ೕ

ఆ
 if they are the same species. 

 

Derivation of the CME 
 
The propensity function is probabilistic in nature, and so exact predictions on 

the state vector X(t) cannot be made, but the probability that X(t)=x given 

X(0) can still be attempted to be inferred as follows: 

 
 }=)(,=)({=),|,( 0000 xtXgivenxtXProbtxtxP  (1.26) 

 
In other words, the probability to obtain a specific state x at time t given a set 

of initial condition equals the probability evolution of the state vector over this 

time interval. In order to derive the appropriate time evolution, it can be 

considered what happens in the time increment dt, which is so small that the 

probability of several reactions occurring is negligible compared to the 

probability of only a single one; dtxa j

M

j
)(1

1=   is the probability of no 

reaction taking place: 
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
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Here, the probable reaction over the next time increment dt is considered in 

terms of the mutually exclusive and collectively exhaustive paths leading to a 

specific state over a time interval. As can be seen, the multitude of potential 

paths to reach this state depends on the set of potential reactions - or no 

reaction - occurring, with corresponding initial states and individual 

associated probabilities that, in light of their mutual exclusiveness, can be 

simply added up. This leads to the CME: 

 )],|,()(),|,()([=
),|,(

0000
1=

00 txtxPxatxtxPxa
t

txtxP
jjjj

M

j




    (1.28) 

 

Principally, the CME completely determines the function ),|,( 00 txtxP  over 

time evolution based on fixed initial conditions; on a practical level the CME 

is actually a set of coupled ODEs, with one equation for every possible 

combination of reactant molecules. However, considering each molecule 
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individually in this fashion, the sheer amount of possible states of the system 

can quickly reach truly exorbitant values, and as a practical consequence, a 

CME generally has such high dimensions that it cannot he handled 

analytically or computationally at the present time on any feasible scale for 

simulation purposes. 

 

Stochastic Simulation Algorithm 
 
It has been pointed out above that the CME can rarely be solved for the 

probability density function of X(t), but knowledge of the system can still be 

gained by generating numerical realizations of X(t), i.e. sample trajectories of 

X(t) over time. The stochastic simulation algorithm (SSA), also called 

Gillespies algorithm, uses a Monte Carlo procedure and, rather than solving 

the full set of CME ODEs to generate a probability distribution over all 

possible states for each time interval, random samples of X(t) are produced; 

i.e. realizations of the state vector {t, X(t)} are computed in such a way that 

the chance of a particular realization being selected reflects the 

corresponding probability given by the CME. After the algorithm was 

presented by Dan Gillespie in 1976 (Gillespie 1977), drawing heavily on 

earlier work by Joseph Doob, it soon rose to widespread use in systems 

biology and for modeling biochemical dynamics in general. Its properties are 

especially appealing for system with only few reactants, which are only 

poorly represented by "bulk" biochemical rate equations, whereas the SSA 

handles well discrete and stochastic simulation of low numbers of molecules, 

with each reaction being explicitly simulated. On the other hand, while the 

SSA is clearly based on the CME, shares most of its base assumptions, and 

presents a trajectory that is an exact sample from the CME, its computational 

requirements are on a much more realistic scale. Indeed, with the constant 

advance of computational power, increasingly complex systems have been 

implemented in the SSA form.             

 
For the SSA, the next-reaction probability density function - i.e. given state X, 

the probability that the next reaction will occur within time τ - is computed: 
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 dtxjp ),|,(  = Probability that, given X(t)=x, the next reaction in Ω will occur 

in the infinitesimal time interval [t+τ, t+ τ +d τ ), and will be an Rj  reaction.  

 
 
In order to derive an exact formula for ),|,( txjp  , laws of probability can be 

applied to the propensity function: 

),)(()(=),|,( 0  xaexpxadtxjp j   
(1.29) 

where 

)(=)(
1=

0 xaxa j

M

j



  

This is the mathematical basis for the SSA, implying that τ is an exponential 

random variable. dtxa j

M

j
)(

1=  is the probability that some reaction will occur 

in the next dt. The exponential distributions are a class of continuous 

probability distribution, describing the time between events in a Poisson 

process, i.e. a process in which events occur continuously and independently 

at a constant average rate.  

 
Two random numbers r1 and r2 are drawn from the uniform distribution in the 

unit interval, and used to compute 
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=j the smallest integer satisfying )(> 02)(
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The algorithm goes as follows: 

     1.  Initialize the time 0= tt   and the initial system’s state 0= xx   

    2.  With the system in state x at time t, evaluate propensities xa j  for all 

possible reactions and their sum xa0  

    3.  Generate values for the time to next reaction event τ and reaction j 

using Eq. 28 and 29  

    4.  Effect the next reaction by replacing  tt   and  
jxx =   

    5.  Record ),( tx . Return to step 2 or end simulation.  
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One X(t) trajectory produced by this algorithm can be thought of as a 

stochastic version of one that would be obtained solving ODEs. If every SSA-

generated trajectory is indistinguishable from the ODE counterpart, it can be 

concluded that micro-scale randomness and noise are ignorable, but in the 

opposite case, where there is a significant deviation, the micro-scale 

randomness and noise are an important part of the system's true dynamics. 

As the number of reactions increases, the factor 
)(

1

0 xa
  in Eq.1.30 causes 

the SSA to become very slow, and so despite its widespread use, SSAs may 

be infeasible for larger, complex networks and different timescales.  

 

Approximate Simulation Strategies 
 
The direct SSA can be prohibitively slow if the network under scrutiny is 

complex or if reactions otherwise occur frequently, but one way to speed up 

calculations is to lump several reactions together for an interval of length tau 

and to only update state vectors once these reactions have all fired. This so 

called tau-leaping method introduces an error, but one that will be relatively 

small if the state vector changes are small, and in return the efficiency of 

simulating the chemically reacting system is improved considerably by 

updating the propensity function less often. The number of reaction firings 

are approximated by Poisson random numbers, and since the tau-leaping 

methodology's original inception various modifications have been proposed, 

e.g. to increase overall accuracy, or to prevent the population of some 

reactants being driven negative due to a randomly selected extremely large 

Poisson value (Cao et al. 2005). Of course, estimating a good value for τ to 

advance time by is also important. After all, the assumption that no time step 

will alter the value of any propensity function significantly will critically 

depend on preselecting τ from within an appropriate range, and once again 

different procedures have been presented to automate or aid with this 

selection (Cao et al. 2006). It is interesting to note that, while the tau-leaping 

approach is removed by several notable efficiency and thus computational 

speed boosting simplifying assumptions from the CME, it still remains rooted 
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in it and is frequently utilized when simulations are concerned with very low 

copy numbers of molecules.  

Moreover, when the number of firings of each reaction channel during tau-

leaping is much greater than one, a further simplification to the 

approximation can be made to yield the Chemical Langevin Equation (CLE). 

A diffusion approximation of the process can be implemented by closely 

matching a Markov jump process with a Stochastic Differential Equation 

(SDE), which acts much like an ODE and also features continuous 

trajectories, but by contrast contains an additional, stochastic term. Over a 

wide range of conditions and especially when computing with large numbers 

of molecules, any differences between the approximate and exact model are 

usually understood to be dwarfed relative to the error introduced by the 

underlying assumptions to this point. Now Poisson random numbers can also 

be well approximated by normal random numbers, and the CLE resembles a 

set of N SDEs. The state vector is now a continuous time, real valued 

process, and in moving from the CME to the CLE, the dimensions of the 

system are reduced from integers to real values when describing the number 

of molecules, and changed from a probability distribution over a large, 

discrete set to a continuous probability distribution for N chemical species. 

The Fokker-Planck equation can be used for a Langevin equation with 

continuous states, rather than in discrete state space and continuous time as 

the CME, by computing the probability density for the corresponding SDEs. 

More precisely, it is a partial differential equation (PDE) specified by a drift 

vector and a diffusion tensor, that describe the time evolution of the 

probability distribution functions of the SDEs. 

It has been pointed out above that SDEs can be instrumental in implemented 

Approximate Simulation Strategies, and they are indeed widely used to 

model diverse phenomena ranging from thermal dynamics, over stock price 

fluctuations, to biological regulatory systems. Mathematically, they are 

differential equations, in which at least one term is a stochastic process, such 

as Gaussian white noise derived from the Wiener process, or also randomly 

fluctuating jump processes. It should be noted that the Wiener process is 

very complex mathematically and practically impossible to differentiate, and 

consequently specific rules had to be devised to handle this kind of 



62 
 

stochastic calculus, the two most widely used versions being Ito and 

Stratonovich stochastic calculus. There are significant difference between 

the two approaches, with advantages and disadvantages for each, so care 

should be taken when selecting one over the other. Moreover, it has been 

found that algorithms used for solving ODEs will generally show very poor 

numerical convergence when applied to SDEs and thus deliver 

unsatisfactory results, except in simpler cases of "additive noise" type 

stochastic terms. Fortunately, a selection of methods has been developed 

over the last decades to find numerical solutions specifically for SDEs, the 

most common being the Euler-Maruyama method, Milstein method, and a 

generalized form of the Runge-Kutta method. 

 

1.4 Modeling the Circadian Clock  

1.4.1 The Circadian Clock as a Major Regulator   
 
This following section will aim to provide a short overview and description of 

modeling approaches for circadian clocks in general, as well as specifically in 

different important model species. The immense advantage imbued by 

possessing an internal time keeper is highlighted by that fact, that circadian 

clocks have probably evolved several times independently, an occurrence 

termed parallel evolution, and cyanobacteria circadian proteins for instance 

appear unrelated to any other. On the other hand, however, it is also 

speculated that there may have been a basic clock mechanism in an ancient 

common ancestor, e.g. even before separation of insects and mammals. In 

any case, while there are some orthologs between mammals, flies and 

maybe even fungi, the basic circadian clock layout has also been extensively 

modified and extended over the course of evolution and across species, e.g. 

through the inclusion of central pacemakers and sensitivity to new 

environmental cues. 

 

Variation within and across Species 
 
It has also been observed in other contexts that TF binding sites can differ 

greatly between species, even in genes and pathways that are highly 
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conserved, and CEBPA and HNF4A binding in livers of human, mouse, and 

dog, for example, only appears to overlap as little as 10%–22%  between 

any two of these species (Schmidt et al. 2010). Moreover, looking at the 

variation of TF binding within the same species, it has been shown in human 

lymphoblastoid cell lines that 25% of NFKB and 7.5% of Pol II binding sites 

were different even between specific individuals (Kasowski et al. 2010). An 

explanation for this somewhat surprising finding may be the realization that 

non-coding regions of the genome evolve much faster, a circumstance that 

can also affect TF binding sites and in this way drive variations in gene 

expression and, ultimately, speciation. Indeed, a study scrutinizing wild 

versus laboratory strains of the yeast S. cerevisiae  found significant 

variations in the expression of almost a quarter of all genes, namely 1528, 

and 62 genes even varied in their respective expression more than eightfold 

(Brem et al. 2002). Related gene expression differences investigated through 

the use of S. cerevisiae and Saccharomyces paradoxus hybrids were mostly 

attributed to cis-effects (Tirosh et al. 2009) , pointing to variations in 

regulatory DNA sequences. However, it is also known that environmental 

stress tends to strengthen variability through trans-effects, such as TF 

activity, and these findings may point to the coexistence of several 

mechanisms to drive evolutionary mutations depending on various 

circumstances.  

In the case of the circadian clock, several circadian proteins with certain 

highly conserved domains have been identified in a range of species, such 

as the DNA binding basic Helix-Loop-Helix (bHLH) domain and the protein-

protein interacting PAS domain. Often there exists also a transcriptional 

activator, i.e. a positive network element, that is active as a heterodimer and 

can activate one or more negative elements after transport from the 

cytoplasm to the nucleus. The negative element typically accumulates in the 

cytoplasm for several hours after its synthesis and, in order to exert 

repressive effects, it must translocate to the nucleus, where it clears the 

positive element. Adding significantly to overall complexity, there may also 

be elements with a dual activator and inhibitor role in different loops, and 

light entrainment can occur through components acting as a light input 

pathway to the GRN. 
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1.4.2 Concepts Relevant to Circadian Modeling  

Advanced Concepts 
 
Various species-specific, but also more general circadian clock models have 

been implemented to date, but before delving into a discussion of their exact 

implementation, it is warranted to first mention certain areas and behaviours 

that beg particular attention in the simulation of the clock. While most 

broader points for the modeling of GNRs raised elsewhere are of course still 

valid in this context, there are also some less common elements, which are 

nevertheless of special importance for our inner time keeper. Firstly, the 

ability to synchronize internal to external rhythms through a mechanism 

called entrainment is of clearly recognized importance, and a critical aspect 

of this feature in turn lies in the fact that an external stimulus can have 

varying or even opposing effects, depending on the timing of when the 

system is exposed to it over the course of its underlying trajectory. This basic 

drift component is of course manifested as an oscillation pattern, which 

should on one hand persist robustly in isolation, as well as under the 

influence of significant perturbing and persisting cues, while still being 

sufficiently flexible to adjust to these outside signals. Before this background 

it is interesting to remember that "adaptation", i.e. the challenge for a system 

to adjust its state in response to continuous exposure to physiological, 

environmental, or pathological cues, can be a common occurrence in 

biology, as well exemplified by the adaptation of neuronal responses. In 

some cases, new states are reached, but under perfect adaptation the 

system would return to exactly its original state. Interestingly, contemplating 

how biochemical adaptation can be affected at the level of three-node 

network structures, researchers found that only two core topologies support 

adaptation, namely a form of FBL with a buffering node, or secondly an 

incoherent FFL including a node proportionally activated by upstream 

elements (Ma et al. 2009). A fascinating question lies in linking this finding of 

highly robust small-scale design principles in with more complex, larger-scale 

networks and GRNs. 
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Entrainment 
 
Across species where central pacemaker are found, the exact structure of 

these central rhythm generators can vary widely, but all are capable of 

generating a uniform and reliable timing signal with remarkable precision, 

often only deviating by a few minutes a day. Looking to the mode in which 

this system is handling information on external conditions, it was found that 

several stimuli are capable of entraining the oscillator to their rhythm. In 

order to describe the standardized 24-hour notation of the phase in the 

entrained clock, habitually the notation of Zeitgeber time (ZT) is used, in 

which ZT 0 indicates the beginning of the photoperiod, e.g. the lights being 

switched on or the sun rising. While photic entrainment, that is caused by the 

alternation between day and night and to which most species are sensitive, 

is often most prominent, other stimuli might be relevant, too, such as food 

availability, social contacts and even tides, temperature, and moonlight. 

Strictly speaking, entrainment is not the same as synchronization, which 

would imply that the waveform of the driving rhythm coincides with the 

waveform of the driven rhythm. However, the molecular clock is not 

necessarily synchronized to the environmental cycle when it is entrained; 

rather, the consequences of entrainment are that the period of the biological 

rhythm becomes equal on average to that of the entraining stimuli and that a 

stable phase relationship is established between the entraining and 

entrained oscillations. Thus, in order to demonstrate that a zeitgeber cycle 

has indeed entrained the molecular rhythm, firstly the period of the rhythm 

should equal the period of the zeitgeber cycle with a stable, unique phase 

angle, and secondly, after removing the inputs from a zeitgeber cycle, the 

FRP should resume with a phase determined by the zeitgeber cycle. 

Conversely, if the FRP starts up from a different phase, the stimuli may have 

forced expression of the overt behaviour without actually entraining the 

underlying dynamics, a phenomenon that is referred to as masking, and that 

can be a serious artefact of investigations relating to entrainment. It is also 

interesting to note that a previous entrainment cycle may influence the FRP. 

This circumstance means that light-dark cycles of different photoperiods or 
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different periods can have profound after-effects on the subsequent FRP, but 

these after-effects usually decay in time after transfer to constant conditions. 

 
For many species the main entrainment factor is light, as has been pointed 

out repeatedly, but notably light does not always have the same effect on the 

circadian clock. Further complicating matters, tests in the laboratory using 

square-type photoperiods may not necessarily mimic real-life entrainment 

and, for instance, behavioural responses to simulated twilights have been 

shown to differ in the range and quality of entrainment. It also appears that 

multiple photoreceptor pathways are involved in circadian entrainment and 

masking. While short light pulses induce discrete or nonparametric 

entrainment of rhythms, longer or even constant light durations tonically 

affect the frequency of the clock through continuous or parametric 

entrainment. These disruptions of circadian rhythmicity depend on the 

intensity of light and exhibit a continuum of responses, ranging from subtle 

behavioural changes to complete arrhythmicity. Interestingly, although 

constant light (LL) is able to desynchronize SCN cells in mammals, the 

molecular clock is not stopped and circadian changes in the expression of 

clock genes persist. This finding may signify that brief light pulses cause 

phase advance or delay in the clock through changes in the expression of 

clock genes, while chronic light affects SCN neurons coupling via a 

mechanism as of yet unidentified. Following a transfer to constant darkness 

(DD), circadian rhythms in behaviour and gene expression are also observed 

to quickly resume from a specific phase, suggesting that the clock output 

may have been masked. The parametric entrainment model has been based 

on the observation by Jürgen Aschoff, considered one of the founders of 

chronobiology, that the FRP is dependent upon light intensity. This view 

further postulates that light has a continuous action on the clock in entraining 

it to the light-dark (LD) cycle, and a proposed mechanism is the acceleration 

and deceleration of the FRP, via its angular velocity, by varying light 

conditions, which would allow the continuous adjustment of clock cycle 

length to the duration of the environmental rhythm. In a mathematical model, 

these velocity changes necessarily affect at least one parameter for the 

duration of light exposure, hence the term parametric, and in turn this 
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continuous manipulation of photic parameters can modify circadian period 

and phase. The nonparametric model was put forward by Pittendrigh and is 

suggested to act through instantaneous phase shifts in response to light 

transitions. The basic premise of the model is that an entrained clock is in 

equilibrium with a LD cycle consisting of repetitive light pulses (the 

zeitgeber), and that equilibrium would be achieved when each light pulse 

falls at a phase so as to elicit a phase shift that is equal to the difference 

between the FRP and the period of the entraining cycle. In nature the 

zeitgeber would be the dawn and dusk transitions, which can be mimicked in 

the laboratory by brief light pulses. Since the effect of light is due to discrete 

time cues, as opposed to parameter changes in the underlying molecular 

oscillator, this mechanism has been called discrete or nonparametric 

entrainment. However, the view has emerged that in nature entrainment is 

likely shaped by both parametric and nonparametric effects. 

 

Phase Response Curve 
 
One of the most useful approaches for investigating entrainment is the 

construction of phase response curves (PRCs), which describe the effect of 

the same stimuli at different times of the reference period. The concept of 

Circadian time (CT) (cf ZT) describes the state of the clock and timing of 

activity in constant conditions, where CT0 is usually the time when lights 

would have been turned on as part of a LD cycle, i.e. the start of subjective 

day. The PRC indicates the time points at which an entrainment signal can 

induce phase delays, phase advances, or no change at all, thus transforming 

the intrinsic circadian period τ to T, the period of the environmental zeitgeber. 

Graphically, the PRC plots the phase shifts of a circadian rhythm, as for 

example determined by a peak of gene expression or locomotor activity, as a 

function of the circadian phase of a zeitgeber, and by convention, phase 

advances are plotted as positive and phase delays as negative values. 

Photic PRCs are typically biphasic, such that light pulses presented in the 

subjective day have little or no effect, a behaviour sometimes described as a 

dead zone, but phase delays occur at the beginning and phase advances at 

the end of the subjective night. In contrast, non-photic PRCs may exhibit 
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clear phase advances during the subjective day and little, if any, responses 

during the subjective night. However, it should be noted that the precise 

waveform and amplitude of the PRCs are an intrinsic property of the 

circadian oscillator and thus species specific. Moreover, these qualities also 

depend on the type, strength and duration of the stimulus and may even be 

affected by previous photoperiodic history, such as the length of time an 

organism has been subjected to constant DD or LL conditions.  

PRCs are also often classified depending on their strength in terms of phase 

shifting, where weak type 1 PRCs display maximal phase shifts in the order 

of a few hours and gradual transitions between phase advances and delays, 

while type 0 PRCs have larger maximal phase shifts, of up to 12 h, and the 

transition between delays and advances is quite abrupt and discontinuous. It 

has been pointed out, however, that the breakpoint discontinuity of type 0 

PRCs appears to be in some cases merely a plotting convention of arbitrarily 

assigning phase shifts as delays vs. advances. Examples of the different 

PRC types include Drosophila pseudoobscura, which exhibits a type 0 strong 

light resetting PCR, whereas nocturnal rodents display type 1 weak resetting. 

It is further noteworthy that in many multicellular, but rarely in unicellular 

organisms, there often exists transient behaviour in the first few cycles after 

a perturbation by a stimulus. Following from this, a PRC approach may make 

important assumptions that cannot be directly measured, since the steady-

state consequences of an intervention can only be observed one or even 

more days after it has been presented. It is not known then, whether the 

steady state was due to a transient change in velocity, i.e. parametric in 

nature, or due to an acute change in phase, that is nonparametric. 

Considering the more recent understanding of how complex circadian 

systems usually are at all levels, and with a view to the poor temporal 

resolution of circadian experiments, it is conceivable that the system could in 

fact need much of its cycle to manifest a response (Roenneberg et al. 2010). 

 

Modeling Oscillators and Entrainment 
 
Oscillators are commonly observed in physiological regulatory systems, and 

accordingly also frequently modelled in biological and synthetic control 
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systems. Generally, all biochemical oscillator GRNs are characterized by 

negative feedback with time delay (Novák & Tyson 2008), and his time delay 

can be achieved by several approaches, including a few highly non-linear 

reactions or chains of intermediates between cause and effect. An additional 

way to generate oscillations in genetic circuits consist of modifying bistable 

systems by adding a destabilizing negative feedback loop, and in analogy to 

magnetic spin systems this has been called frustration (Krishna et al. 2009). 

Bistable systems are quite common in biological systems, where they are 

used as switches and memory elements, but in contrast to "true" oscillators, 

bistable systems must necessarily contain a positive feedback loop. The 

shape of the resulting oscillations can be readily tuned to produce spiky and 

asymmetric oscillations, and the time period and amplitude can also be 

manipulated. Furthermore, it has been found that these oscillators are easy 

to reset or to switch on and off using a tuneable external input. 

 
In order to describe and quantify a particular rhythm, common qualities to 

note include the period T, cyclic frequency, i.e. oscillation cycles per unit 

time, ݂ =
ଵ

்
 and angular frequency ߗ = ݂ߨ2 =  

ଶగ

்
(2π radians =360°). The 

phase determines the state of a periodic oscillator; it increases by 2π within 

one oscillatory cycle, the period, and thus phases that differ by 2π are in the 

same state. In a dynamical system, the circadian clock could be presented 

as a limit cycle, where the state variables move around a stable trajectory in 

phase space, corresponding to rhythmicity.  

In contrast, arrhythmicity would simply correspond to a fixed point in phase 

space. The periodic output of an oscillator can be denoted by the process 

x(t), but in order to describe the state of an oscillator the value of x is not 

sufficient, and in many cases two variables x and y are used, e.g. angle of a 

pendulum and angular velocity. A complete description of the system is 

achieved by the time evolution of the pair (x,y), and the coordinates (x,y) are 

called the coordinates of phase space, or state space, and can be plotted as 

y(t) vs x(t). After period T the oscillation is repeated, thus corresponding to a 

closed curve in the phase plane, making up the limit cycle. Should the 

oscillations be close to a sine wave, then the oscillator is quasi-linear, or 

quasi-harmonic, and the limit cycle is represented as a circle. If the oscillator 
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is perturbed, i.e. the state variables are pushed off the limit cycle, they will 

return to it, in phase with a specific point on the limit cycle (Pikovsky et al. 

2001). Here, isochrons are a set of points in phase space, which specify 

values for the state variables that will return to the limit cycle in the same 

phase. I.e. an isochron appears as a line in phase space originating in the 

centre of the limit cycle, that leads to the same asymptotic phase (iso=same; 

chronos=time). For example, a sinusoidal oscillator has equally distributed 

phase points and isochrons, whereas a spike-like oscillator would display an 

asymmetric distribution of isochrons, compressing them around the point 

where the majority of time is spent. 

Mathematically, external stimuli may reset a limit-cycle oscillator by changing 

the parameters, or additional terms in the differential equations may allow 

direct changes of the state variables, and in these ways state variables could 

change rapidly in response to excitation by zeitgebers. If a change moves 

the state variables from one isochron to a different one, a phase shift would 

be observed, since a different phase is reached when the state variables 

move back to the limit cycle.  Stimuli presented at phases in the dead zone 

may not modify the state variables, since no phase shift results; however, 

while this can be true for some specific models, it is not a necessity of a limit 

cycle model in general. Alternatively, the stimuli presented during the dead 

zone may induce changes of the state variables, but these altered values 

would move the variables approximately along the original isochron. 

Consequently, state variables of the oscillator are not necessarily insensitive 

to the stimulus during the dead zone, as a stimulus could potentially induce 

large changes of the state variables, which however do not move the 

oscillator to a different isochron. Moreover, since limit cycle oscillators are 

nonlinear, incremental increases in stimulus strength may not necessarily be 

linear. The two different types of PRCs mentioned could be explained in turn 

by the distinction, whether the state variable is moved beyond the singularity, 

i.e. the central point from which the isochrons radiate. Type 1 resetting would 

be expected if there is a small move, not reaching beyond this central point, 

whereas Type 0 resetting occurs if the stimulus is strong enough to move the 

variables beyond the singularity. Thus a transition from Type 1 to Type 0 



71 
 

resetting could simply follow from an increase in the magnitude of the 

stimulus, then pushing beyond the singularity. 

 
The transient time required to reach a stable phase relation would depend on 

the initial conditions, the entrainment signal, and the properties of the 

oscillator, but theoretical studies have also found that this transient time is 

governed chiefly by two basic properties inherent in oscillators: the radial 

relaxation time and the phase velocity distribution around the limit cycle 

(Granada & Herzel 2009).  Furthermore, the radial relaxation timescale 

determines the rate of convergence back to the unperturbed amplitude, and 

the phase velocity distribution determines the waveform of the oscillation. 

Finally it can be noted, that the longest entrainment time is observed in a 

sinusoidal limit cycle temporal pattern and when the radial relaxation time is 

long, a pattern sometimes described as a sloppy, not rigid oscillator. As a 

final point of note regarding the quality of oscillating systems, it should be 

pointed out that flexibility and robustness are not necessarily opposing 

concepts. After all, flexibility is a measure of the degree, to which the 

rhythmic profiles of the various interacting system components can be varied 

by modulating either external inputs or biochemical parameters. Robustness, 

on the other hand, describes the maintaining of a system function, such as 

the phase of a particular component of the circadian clock, under varying 

conditions. The mechanisms of flexibility and robustness are thus interlocked 

in a complex relationship, the precise nature of which will depend on the 

particular properties of the individual system; in some instances, flexibility 

may reduce overall robustness by boosting sensitivity to perturbations, but in 

other cases robustness could even be improved, as the network gains a 

greater scope to tackle key environmental responses. 

  

1.4.3 Circadian Models across Species 

Minimal models 
 
The earliest attempts to model circadian rhythms were not based on the then 

unknown molecular mechanisms, but generic properties of limit cycle 

solutions to nonlinear dynamical systems. As it became clear that repression 
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of gene transcription was important for circadian timekeeping, a model was 

constructed based on Goodwin's negative-feedback paradigm (Goodwin 

1965), equations that were first used to model periodic enzyme synthesis in 

bacteria using a negative feedback loop without autocatalytic terms. 

Nowadays, the Goodwin model is considered a minimal model for the 

circadian clock, i.e. it contains only its most important elements. 

 
The equations for the original Goodwin model are: 
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Here, clock gene mRNA (X) produces a clock protein, (Y) which, in turn, 

activates a transcriptional repressor (Z). The latter inhibits the transcription of 

the clock gene, closing a negative feedback loop. Sustained oscillations can 

be obtained only by choosing a steep feedback function with a high Hill 

coefficient, and this constraint exists mainly due to the linear terms used for 

the degradation steps. Specifically, Gonze and collaborators found that a Hill 

coefficient of n=8 was effective in obtaining limit cycle oscillations, 

representing a very high value for how bound ligands induce cooperative 

affinity. Subsequently, the original Goodwin model was often adapted to 

include Michaelian kinetics for the degradation steps, and this modification is 

generally deemed reasonable in circadian clocks, as protein degradation is 

controlled by phosphorylation, ubiquitination, and proteasomal degradation 

(Gonze et al. 2005). 
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In this updated version of the model, limit cycle oscillations can be obtained 

for a much lower Hill coefficient of n=4, much more in line with experimental 

observations on cooperative binding, and this iteration has further been 

utilized as the basis for several other clock models. The variable X 

represents mRNA concentration of a clock gene, per or cry; Y is the resulting 

protein, PER or CRY; and Z would stand for the active protein or the nuclear 

form of the protein acting as an inhibitor. 

 
A characteristic feature in the Goodwin and related models is that 

degradation of clock-mRNA and clock protein species plays an important role 

in the control of the oscillator's period. Indeed, as predicted by this 

assumption, experimental results from Neurospora crassa indicate that the 

clock (FRQ) protein of the4 long period mutant frq 7 is degraded only 

approximately half as fast as the corresponding wild-type protein (Ruoff et al. 

1999). The Goodwin model has also been used for stochastic simulations, to 

simulate and assess the effect of molecular noise (Gonze et al. 2002), and 

here the deterministic model is decomposed into elementary reaction steps. 

The oscillations predicted by the stochastic simulations agree with those 

obtained with the deterministic version of the model, showing that robust 

circadian oscillations can occur already with a limited number of mRNA and 

protein molecules, in the range of tens and hundreds, respectively. 

Furthermore, entrainment by light and cooperativity in repression enhance 

the robustness of circadian oscillations with respect to molecular noise. 

 

Fungi 
 
The fungus Neurospora crassa possesses a comprehensively studied and 

well understood circadian system. The output is measured in constant 

darkness as a 22-hour rhythm in asexual spore formation, as well as other 

circadian rhythms in, for example, metabolism and stress response. While 

the components of the Neurospora clock are not homologous to the other 

species discussed, the principle of the feedback loops is nevertheless 

conserved. The central components include the rhythmic gene frequency 

(frq) and the constitutively expressed genes white collar-1 (wc-1) and white 
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collar-2 (wc-2), which form a heterodimeric white collar complex (WCC) via 

PAS domains, comprising the positive elements by activating transcription of 

frq. When FRQ accumulates, it inhibits WCC's activation of frq transcription, 

thus closing the negative feedback loop. In addition, FRQ positively regulates 

expression of WC-1, resulting in a positive feedback loop interlocking with 

the primary loop, and photoentrainment has been found to occur through the 

blue-light photoreceptor WC-1. Light-activated WC-1 enhances transcription 

of frq by leading to a slower migration of the WCC complex. 

 
 

 
FIGURE 2 Interlocked feedback loop model of the Neurospora circadian clock.  
(Akman et al. 2010) WC-1 is the positive element, while FRQ is the negative element. FRQ also 
upregulates the level of WC-1, yielding a positive interlocked feedback loop. WC1* represents light-
activated WC-1. There is a delay between the translation of FRQ and conversion into its active form. 

A stochastic version of a simple Neurospora model further showed that 

robust circadian oscillations can already occur with a limited number of 

mRNA and protein molecules, once again in the range of a few tens and 

hundreds, respectively (Gonze & Goldbeter 2006). Robustness is enhanced 

by a range of factors, including an increase in the number of molecules, 

entrainment through light-dark cycles, cooperativity in repression, and also 

intercellular coupling, whereas the proximity of a bifurcation point leads to 

less robust oscillations. The binding/unbinding rate of the inhibitory protein to 

the promoter of the clock gene appears to be crucial for the coherence of 

circadian rhythms, and it was also shown that multiple interlocked feedback 

loops increase the flexibility and in turn promote robustness of the clock's 

rhythmic behaviour (Akman et al. 2010). A loss of free-running rhythmicity 

observed in a mutant strain was found to arise as a consequence of a 

supercritical Hopf bifurcation, as coupling strength is altered, and decreasing 

the bifurcation parameter past a certain critical value collapses the DD limit 

cycle onto an equilibrium point, with the amplitude of oscillations decreasing 

continuously to zero as this happens. Alternative mechanisms could be the 
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destruction of the limit cycle through its collision with an unstable limit cycle 

generated by a subcritical Hopf bifurcation or a saddle node on an invariant 

circle bifurcation, in which stable and unstable equilibrium points are created 

simultaneously on the limit cycle. In contrast to the supercritical Hopf 

bifurcation, the latter two are characterized by a sudden loss of rhythmicity, 

but without significant amplitude changes at the bifurcation point. In addition, 

the saddle node bifurcation has a distinct experimental signature in which the 

rhythm freezes at a well-defined phase as the bifurcation is approached. 

 

Fruitfly 
 
The fly Drosophila circadian clock proteins show some homology to 

mammalian ones, and a group of 20-30 lateral neurons in the adult fly brain 

have been found to act as a pacemaker. However, rhythmic clock gene 

expression has also been observed outside pacemaker structures, e.g. in 

other cells of the nervous system, gut, thorax and abdomen. These 

oscillations can continue for several cycles in absence of the brain and 

environmental cues, indicating that peripheral oscillators may function at 

least as local circadian pacemakers. Period (PER) and timeless (TIM) 

proteins accumulate and dimerize in the cytoplasm during the day, peaking 

in the early evening, and subsequently translocate to the nucleus, where 

they may dissociate. Once in the nucleus, they also interact with the DNA-

binding heterodimer CLOCK/CYCLE (CLK/CYC), and since one of the 

targets of CLK/CYC are the per and tim genes, PER and TIM thus negatively 

regulate their own expression. PER and TIM are degraded before dawn, so 

that CLK/CYC can once again activate PER and TIM, but posttranslational 

regulation also appears to cause a temporal delay between CLK/CYC 

transcriptional activation and PER/TIM repression. Several other factors, 

such as doubletime (dbt), shaggy (sgg) and vrille (vri) refine this system with 

additional interlocked feedback loops. In order to synchronize the internal 

clocks to the 24-h cycle of sunlight, Drosophila utilize the cell-autonomous 

blue-light photoreceptor Crytochrome (CRY), which interacts with TIM, 

promoting its degradation. In constant light, wildtype flies become arrhythmic, 
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while mutant flies lacking cryptochrome as one of the light input factors 

remain rhythmic. 

 

 
FIGURE 3 Drosophila Model Network diagram  
Simplified interlocked feedback loop model of the Drosophila circadian clock as modelled by (Fathallah-Shaykh et 
al. 2009). PER and TIM proteins accumulate, dimerize, and inhibit CLK/CYC. Several other factors that make up 
interlocked feedback loops are summarized in grey 

 
 
The effect of molecular noise was considered in a stochastic version of a ten-

variable PER and TIM deterministic Drosophila model (Gonze et al. 2003). 

Namely, the previous model was decomposed into elementary steps and 

numerical simulations were performed with Gillespie's algorithm. As with the 

Neurospora stochastic model, the predictions of the Drosophila stochastic 

approach agree with those of the deterministic model with respect to both to 

sustained oscillations of the limit cycle type, as well as to the influence of the 

proximity from a bifurcation point beyond which the system evolves to a 

stable steady state. It is further confirmed once more that robust circadian 

oscillations can emerge at the cellular level even when the maximum 

numbers of mRNA and protein molecules involved in the oscillations are of 

the order of only a few tens or hundreds. Interestingly, chaotic behaviour 

seen in the deterministic approaches is also observed in the presence of 

molecular noise. 

 

Arabidopsis models 
 
A current A. thaliana model has been suggested on the basis of experimental 

investigation and extensive mathematical modeling, after several plant 

circadian clock models had previously been constructed in succession, 

adding on details to keep up to date with experimental data. The first, 
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minimal description of the Arabidopsis clock network contained seven 

coupled differential equations with 29 parameters: LHY and TOC1 mRNA, 

protein in the cytoplasm or nucleus, and light (Locke, Millar, et al. 2005). MM 

kinetics were used to describe enzyme-mediated degradation of proteins, 

and Hill functions to describe the transcriptional activation term of the mRNA 

for LHY, with LHY and CCA1 being modelled as one gene, since they were 

considered indistinguishable for the model's purpose. Light input was 

modelled using a simple mechanism involving an interaction of a light 

sensitive protein P with the LHY gene promoter: 1 when light was present, 0 

otherwise. The essential features are that P is produced only when light is 

absent and is degraded strongly when light is present. Notably, this model 

was one of the first clock models to use an empirical cost function to provide 

a quantitative value for the goodness of fit to essential qualitative features 

present in experiments. Parameter stability analysis revealed that a small 

reduction in transcription rate of TOC1 mRNA causes the oscillations to 

dampen to experimentally undetectable levels after 300 h in darkness. 

However, as the LHY/CCA1-TOC1 network alone did not account for some 

aspects of circadian behaviour, such as the long delay between TOC1 

transcription in the evening and LHY/CCA1 activation the following morning, 

the model had to be extended (Locke, Southern, et al. 2005). First, an extra 

gene, called X, was added to the pathway, a constant light activation term 

was added to TOC1, and in order to ensure a better experimental fit, the 

interlocked feedback loop model was extended by an extra loop. Here, a 

hypothetical gene Y activates TOC1, and TOC1 then feeds back to repress 

Y. Furthermore, the light input into this loop is moved from TOC1 to Y. 

 
Additional experimental data next lead to a model of three interlocked 

transcriptional-translational feedback loops (Locke et al. 2006). In the first 

negative feedback loop, CCA1 and LHY directly inhibit TOC1, while TOC1 in 

turn upregulates the expression of CCA1 and LHY via a still unknown factor 

X. In the second, or morning loop, the expression of CCA1 and LHY is 

inhibited by morning-phased clock components, such as PRR9, PRR7 and 

PRR5. While single mutant phenotypes are subtle, the prr5 prr7 prr9 triple 

mutant was found to be essentially arrhythmic, providing the rational for this 
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loop. A further evening negative feedback is formed by an unknown 

component Y, which positively regulates TOC1 expression and is itself 

negatively regulated by TOC1, CCA1, and LHY; the evening-expressed 

GIGANTEA (GI) has been suggested to play a role here. The precise 

mechanism of how light entrainment is achieved is still unclear, but it may 

occur via modulation of multiple clock genes at different regulatory levels. 

Expression of CCA1, LHY, PRR9, and GI, for instance, is induced by light 

and these are target genes for light resetting, but light also promotes 

degradation of CCA1 mRNA and increases the translation rate of LHY 

mRNA, as well as regulating the stability of many clock proteins. 

 

 
FIGURE 4 Plant Model Network diagram  
Three interlocked feedback loop model of the plant circadian clock as modeled by (Locke et al. 2006). CCA1/LHY 
inhibit TOC1 which in turn activates CCA1/LHY via X. A morning and evening loop are interlocked 
 
A more recent model now further includes PSEUDO-RESPONSE 
REGULATOR 7 (PRR7) and ZEITLUPE (Pokhilko et al. 2010), and this 
revised model matches data in varying environments and mutants, and also 
gains robustness to parameter variation. The results suggest that the 
activation of important morning-expressed genes follows their release from a 
night inhibitor, and experiments support the predicted night inhibitor function 
and implicate a PRR5 gene contribution. 
 

Mammals 
 
The mammalian circadian clock has been intensively studied, mainly with 

rodents, such as mice, rats, and hamsters as model organisms. In mammals, 
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the circadian clock once again consists of several integrated feedback and 

feed-forward loops, and many mammalian clock genes have been identified, 

including bHLH-PAS transcription factors, Clock and Bmal1, period genes, 

cryptochrome genes, and two orphan nuclear hormone receptors Rev-Erbα 

and Rora. While the mammalian circadian master clock is primarily located in 

the suprachiasmatic nucleus (SCN) in the hypothalamus and entrained by 

light through the retina, different peripheral oscillators in other organs and 

tissues possess endogenous clocks, but are still synchronized by the SCN. 

The SCN contains about 8000 neurons on each side and, while the circadian 

rhythmicity is cell-autonomous, rhythmicity in some cells may be driven by 

rhythmic neighboring cells, i.e. in SCN slices, where tissue architecture is 

better preserved than in cell culture, a higher percentage of cells are found to 

be rhythmic. Individual, dissociated SCN neurons, on the other hand, display 

large variability in period length, and cells are independently phased. 

Interestingly, each SCN nucleus contains two anatomically and functionally 

different regions, the ventrolateral and dorsomedial SCN, which are coupled 

and show different properties during re-entrainment to a shifted 

environmental Light/dark cycle. It will be of great interest to investigate which 

functions the distinct subregions within the pacemaker serve. While some 

peripheral rhythms decline in amplitude within several cycles in absence of 

the SCN, possibly caused by desynchronization across rhythmic cells, some 

tissues are able to express persistent circadian rhythms at the tissue level 

even in absence of the SCN. It might also be the case that peripheral 

oscillators are synchronized not only by systemic cues, but also by local 

oscillators. Additionally, it appears that interactions also exist between the 

SCN and the periphery, with information from outside the SCN having direct 

effects on the SCN neuronal activity, either phase shifting the pacemaker or 

attenuating phase resetting by light. 

 
At the molecular level, CLOCK and BMAL1 dimerize and activate, both 

directly and indirectly, transcription of the Per and Cry genes through E-box 

elements. The PER and CRY proteins accumulate in the cytosol and are 

then translocated, following phosphorylation, into the nucleus, where they 

form regulatory complexes and inhibit the activity of CLOCK and BMAL1, by 
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binding to the CLOCK-BMAL1 complex. Bmal1 expression is also subjected 

to negative autoregulation by BMAL1, through the product of the Rev-Erbα 

gene. The complex between PER2 and CRY1 or CRY2 enhances Bmal1 

expression in an indirect manner by binding to CLOCK-BMAL1, thereby also 

reducing the transcription of the Rev-Erbα gene. Light can entrain circadian 

rhythms by inducing the expression of a Per gene, though this mechanism 

needs further investigation, and constant light has been found to 

desynchronize mammalian clock neurons, while individual neuronal 

oscillators still have the ability to generate circadian rhythms (Ohta et al. 

2005). Therefore, constant light appears to disrupt cellular organization of the 

SCN clock, thus causing desynchronization among rhythmic pacemaker 

cells, but does not stop the individual clocks themselves. These findings 

emphasize that, for proper functioning of the circadian timing system, 

synchronization and coupling mechanisms within the SCN are indispensable. 

Interactions also exist between the SCN and the periphery, for example and 

as in green algae, it was recently shown that rhythmic cycles in activity of 

peroxiredoxin enzymes can occur without transcription (O’Neill & Reddy 

2011). An interesting insight on this link is provided by mature human red 

blood cells, which lack a nucleus and several other organelles, and are thus 

unable to perform transcription. However, within them peroxiredoxins can 

dimerize and these redox transitions were found to occur with a self-

sustained approximate 24-hour period that could be entrained by 

temperature cycles.  

 
FIGURE 5 Mammalian Model Network diagram 
Simplified interlocked feedback loop of a more complex model of the mammalian circadian clock with 19 kinetic 
equations (Leloup et al. 2003). PER and CRY proteins are phosphorylated and transported to the nucleus (not 
shown for simplicity), dimerize and inhibit CLK/Bmal1. REV-ERBa compromises a negative feedback loop. 
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A detailed mammalian model has been proposed (Leloup et al. 2003) and 

includes the regulatory interactions between the products of Per, in several 

phosphorylation states, Cry, Bmal1, Clock, and Rev-Erbα genes. The model 

is governed by a set of 16 ODEs, or 19 if Rev-Erbα is included, and since 

most parameter values remain to be determined experimentally, 

semiarbitrary choice of parameter values was used to obtain oscillations. 

Furthermore, light was included to have an effect on the maximum rate of 

Per expression in the form of a square wave, and interestingly, when trying 

to entrain to an LD cycle, the model often gave quasi-periodic oscillations. 

Entrainment, if and when it occurred, was observed only over a reduced 

range of the maximum rate of light-induced Per expression, and the reason 

for this lack of robust entrainment could be traced to the need for a 

sufficiently high level of CRY protein. Indeed, during the light phase, Per 

mRNA increases, and as a result, the level of PER protein also rises. If CRY 

is not present in adequate amounts, free PER will accumulate, because 

there is not enough CRY present to form a complex with it, and in such 

conditions, entrainment by the LD cycle fails to take place. In a different, 

dynamical model for the coupling of a population of circadian oscillators in 

the SCN, cellular oscillators based on the three-variable Goodwin model are 

coupled through the global level of neurotransmitter concentration. It was 

found that global coupling is efficient to synchronize a population of 10,000 

cells and that entrainment by a 24-h light-dark cycle can be observed. 

Synchronization is achieved by the oscillatory component of the mean field, 

although phases of individual cells are governed by their intrinsic periods and 

efficient synchronization by average neurotransmitter concentration would 

dampen individual oscillators. Moreover, simulations of the two regions of the 

SCN also demonstrate that the driven population can be phase-leading 

(Gonze et al. 2005). 

 

Circadian Pacemakers 
 
In conclusion, the circadian GRNs of several species have been well defined, 

even though the importance of post translational modifications for these is 

only just emerging. Complexity is added to many such systems by the 
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discovery of peripheral oscillators, as well as by the observed responses of 

circadian pacemakers to stimuli other than light, such as sleep and 

behaviour. The original view of the central circadian pacemaker has to be 

consequently updated not just in the mammalian clock to take into account 

various new insights, such as not only a dominant master pacemaker that is 

mainly responsive to light, but also the capacity to integrate signals from 

within and outside the central nervous system. The conventional model of 

the circadian system, consisting of a linear signalling pathway with a light 

input pathway, rhythm generating component, and output pathway thus 

should likely be reconsidered as overly simplistic. Unlike in mammals, where 

the SCN is required to maintain synchrony among different tissues, the 

circadian system in other species is also organized in a less hierarchical 

way. While the isolated peripheral tissues of several species exhibit circadian 

rhythms in the expression of clock genes, the zebrafish clock shows a high 

degree of autonomy as peripheral rhythms can be directly entrained by light. 

This circumstance singles it out as a great model organism to investigate the 

clock and entrainment pathways. 

 

1.4.4 The Circadian Clock in Zebrafish 

Zebrafish as Model Organism 
 
Zebrafish (Danio rerio), its name derived from the five horizontal blue stripes 

on both sides of the body, is a tropical freshwater fish, member of the 

minnow family, and not least an important vertebrate model organism. The 

species is believed to have evolved in the Ganges region, and is found not 

only natively in the waters and streams of the southeastern Himalayan 

region, but also cultured in home aquariums around the world. Here, 

especially budding fish keepers value the sturdy nature of zebrafish, allowing 

to raise it at high density and very low cost,  but those are just some of many 

extraordinary qualities that have destined D. rerio as a common and useful 

biological model system in scientific research, in particular studies into gene 

function and vertebrate development. In this context, researches profit not 

only from the aforementioned easy upkeep, but also the relatively short 

lifecycles, large clutch sizes, and rapid embryonic development of zebrafish. 
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The species has consequently been used as the basis for several transgenic 

strains, including a much noted transparent variety (White et al. 2008), was 

the first vertebrate to be cloned, and is even among the few species so far to 

have been sent into space. Zebrafish have also been noted for their unusual 

regenerative ability, allowing them to re-grow fins, skin, hair cells, or heart 

tissue. In fact, zebrafish have even been found to regenerate photoreceptor 

cells and retinal neurons, and, moreover, they also display similarity to 

mammals in toxicity testing and in their diurnal sleep cycle. As a result of this 

multitude of fascinating qualities, research with D. rerio  has facilitated new 

discoveries in cardiovascular research (Major & Poss 2007), developmental 

biology, regenerative medicine, toxicology (Hill et al. 2005), or also 

environmental sciences. In oncology, zebrafish have been the basis of 

several transgenic models of cancer (Liu & Leach 2011), such as melanoma, 

leukemia, or pancreatic cancer, and zebrafish research investigating the 

mechanisms of genetic defects is even shedding new light on human 

musculoskeletal diseases or neurodegenerative diseases. 

 

Qualities Particularly Relevant to the Circadian Clock  
 
Zebrafish being such an important model organism, it may not be surprising 

that its genome has been fully sequenced, and the zebrafish reference 

genome sequence was recently published (Howe et al. 2013). There also 

exists a dedicated online database of genetic, genomic, and developmental 

information for zebrafish (Sprague et al. 2003), and seeing this wealth of 

information, studies of gene expression in the species have also lead to the 

elucidation of several important signalling pathways, for example including 

the role of Wnt in hair cell repair (Steiner et al. 2014) . Importantly, zebrafish 

further exhibit several similarities to mammals in the circadian clock makeup, 

and zebrafish cultured fish organs and embryonic cell lines do not only 

posses a functional clock, but also a direct light entrainment pathway 

including photopigments (Whitmore et al. 2000). Notably, no central 

pacemaker has been found yet and therefore, unlike mammalian cell 

cultures, which may be affected by lack of SCN input, zebrafish cell lines 

should give a better representation of clock functioning and especially 
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entrainment in the organism as a whole. In this sense, they practically 

represent a complete vertebrate clock system contained within a single cell. 

Furthermore, core clock component transcription output can be readily 

investigated using transgenic cell lines, in which luciferase reporter gene 

activity is driven by a clock-regulated promoter, so that addition of luciferin 

will generate a bioluminescent signal that can be measured in a scintillation 

counter. Turning to the apparent dynamics of the zebrafish circadian rhythm, 

the free running period is slightly longer than 24 hours, namely ca. 25 hours 

in constant darkness and 24.4 hours in dim light (Cahill 2002). Cell lines kept 

in DD show a dampened rhythm over time, which was found to originate 

largely due to desynchronization effects across single rhythmic cells that 

continue to express functional oscillations, but doing so over a wide range of 

periods. A single 15-minute light pulse is sufficient to reset the cells to a 

common phase and reduces the range of periods, which would implicate a 

high amplitude, Type 0 PRC, usually characterized by mainly phase delays 

and some phase advance around dawn. Sustained light has been found to 

stop oscillations when the light period begins to exceed 12 hours, but if light 

is removed the oscillator starts back again from a preserved dusk state. 

Here, the sustained light induction of Cry1a is believed to play a critical role 

in this light stopping response. 

 

Zebrafish Circadian Clock GRN 
 
Various zebrafish clock genes have been identified to date, including Clock, 

Bmal, period and cryptochrome genes. The GRN resembles that of 

mammals in many ways, but differences include multiple copies of several 

clock genes, and the fact that Per2 and Cry1a are regulated by light. In brief, 

the core clock components constitute an auto-regulatory feedback loop: 

CLOCK and BMAL1 hetero-dimerize and activate transcription of Period 

(Per) (Vallone et al. 2004) and Cryptochrome (Cry) genes, which in turn 

inhibit CLOCK/BMAL1. In addition, it was shown that Cry1a is up-regulated 

by light and may directly interact with specific regions of CLOCK, namely the 

PAS B domain, and BMAL1, here at the bHLH, PAS B and C-terminal 

domains. These interactions have been shown to block the ability of CLOCK 
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and BMAL1 to form an active dimer and to initiate downstream transcriptional 

activation (Tamai et al. 2007). There exists also a stabilizing feedback loop, 

where Rev-Erbα and Rora direct rhythmic expression of the Clock and Bmal 

genes. Both, light intensity and the current phase of the clock have been 

shown to have an effect on the magnitude of Cry1a induction and the 

resulting Per1 phase shift, and depending on the specific timing of light 

pulses, light can advance, delay or have no effect on the circadian rhythm, 

effectively resetting the clocks in asynchronous zebrafish cell cultures to a 

common phase. Cry1a is a strong clock repressor, meaning that it persists at 

high levels under constant light and can consequently stop the oscillation 

system dynamic under LL constant light conditions. 

 

 
FIGURE 6 Zebrafish Model Network diagram 
Proposed network for zebrafish circadian clock. CLOCK and BMAL1 hetero-dimerize and activate transcription of 
Per and Cry genes, which in turn inhibit CLOCK/BMAL1. Cry1a is the light input to the clock. REV-ERBa might have 
an effect on fine tuning the clock trough an interlinked feedback loop. 

 
One of the characteristic features of the zebrafish clock, as was touched on 

above, is the presence of extra copies of the key clock genes. While the 

number of important clock genes is already nearly doubled from Drosophila 

to mammals, in zebrafish this situation is even more complex due to a 

genome duplication event that occurred during the evolution of the teleost 

lineage. Duplicated gene copies may have subsequently been lost during 

evolution or, in many cases, the extra copies persist. These additional genes 

may subsequently show redundancy or diverge in function from the original 

gene, giving rise to slightly different and potentially more specialized copies. 
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Clock/Bmal genes 
 
Three Clock genes, namely Clock 1a, 1b and 2, formerly known as Clock1, 2 

and 3, respectively, and three Bmal genes, namely Bmal1a, 1b and 2, 

formerly known as Bmal 1, 3 and 2, respectively, have been found. They 

display subtle differences in timing of rhythms, e.g. the expression of clock1a 

is rhythmic in tissues tested, with the exception of testis, with a peak just 

after the light-dark transition. This is in contrast to mammals, where Bmal, 

but not Clock, shows rhythmic mRNA expression. CLOCK and BMAL have 

been shown to interact pair-wise in various heterodimeric combinations, and 

these heterodimers display different transactivation properties and 

susceptibilities to be inhibited. 

 

Per genes 
 
Three Period genes have been identified, namely Per1, Per2, and Per3. Per1 

has two homologs, per1a and 1b, the latter also sometimes termed per4, and 

along with per3 its mRNA rhythms peak near dawn, whereas Per2 is 

stimulated by light; its rhythmic expression dampens immediately following 

transfer to DD and thus appears to be an important element of the light input 

pathway. Per1 is also known to contain several E-box elements (CACGTG) 

in its promoter region (Vallone et al. 2004), and these elements seem to play 

a key role in the circadian clock by forming a binding site for several bHLH 

transcription factors. Only a subset of E-boxes, termed circadian, which 

exhibit additional flanking sequences and occur in a group of multiple, 

randomly spaced E-boxes, seem to act as specific binding sites for Clock-

BMAL heterodimers (Link 1 in Fig. 6). Per2, on the other hand, was found to 

possess a Light Responsive Module (LRM) within its promoter (Vatine et al. 

2009), which is both necessary and sufficient for light-driven gene expression 

and also for a light-dependent circadian clock regulation. This LRM 

sequence is strongly conserved in other vertebrate per2 genes and contains 

closely spaced E- and D-box elements. The E-box allows circadian clock 

regulation through Clock-BMAL activity, whereas the D-box confers light-

driven expression through the zebrafish homolog of the thyrotroph embryonic 

factor (TEF) (Link 3 in Fig. 6). TEF is induced by light, and knocking it down 
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attenuates light-driven transcription from the per2 promoter in vivo. While 

predominantly regulated by light, it seems that tef expression is also 

modulated by the circadian oscillator, as in DD tef mRNA levels exhibit low 

amplitude cycling. Furthermore, a study with period3-luciferase transgenic 

zebrafish showed remarkable diversity in oscillator properties, such as 

period, phase and response to light, in various peripheral organs and tissues 

(Kaneko et al. 2006). Interestingly, per3 rhythms have been found here to 

free run in both DD and LL with similar amplitudes, phases, and periods, 

whereas this behaviour is not the case with mRNA of per2 and per1, which 

has by contrast been shown to not oscillate in constant light. It is yet unclear 

if there would be differences to this observation in cell lines, and whether 

per2 and per1 mRNA would cycle in LL in the organs studied. Three E-boxes 

have also been found in the upstream sequences of the per3 gene, but not 

tested for functionality. 

 

Cry genes 
 
Zebrafish posses six rhythmic cryptochrome genes. Cry1a and Cry1b, which 

peak during daytime, as well as Cry2a and Cry2b, which peak later in 

evening, are all similar to mammalian Cry1 in sequence and function and can 

inhibit CLOCK-BMAL dimers. Cry3, which peaks in the morning, is the most 

divergent from other vertebrates and, like Cry4, which peaks during day, 

cannot inhibit CLOCK-BMAL transactivation (Cahill 2002). However, due to 

sequence similarity to the Drosophila Cry, Cry4 function has been implicated 

as a photoreceptor. While cry genes are predominantly clock regulated, 

Cry1a shows a strong light-driven pattern of expression and appears to 

represent a key element of the mechanism underlying entrainment by light 

and also the maintenance of high amplitude cycling. A Cry1a-luciferase 

reporter cell line was generated and used to investigate the light induction of 

Cry1a, and how this induction correlates with the magnitude of Per1 phase 

shift and light intensity at different times during the day (Tamai et al. 2007). 

The PRC shows the largest shift at CT20, that is late subjective night, 

causing a 15-hour shift, while at CT4, the early subjective day, there is 

almost no phase shift observed. In LL, there is an increase of Cry1a, and 
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Per1 is highly repressed. If light is sustained for longer than 12 hours, new 

monomers of CLOCK and BMAL1, which are ordinarily formed in the late 

afternoon, cannot dimerize due to the presence of CRY1a and thus the 

oscillator is stopped. Similarly, Cry1a overexpression abolishes rhythmic 

expression of Per1 and significantly reduces basal levels in a dose-

dependent manner, thus mimicking the effect of light. 

A yeast two-hybrid system was used to further test the interactions of 

CLOCK and BMAL and to identify specific domains involved in their protein 

binding. It was reported that CLOCK1 and BMAL1 interact strongly at the 

bHLH and PAS B domains, with little or no binding between the two PAS A 

domains. Cry1a, on the other hand, binds strongly to the PAS B domain of 

CLOCK1 and to multiple regions of BMAL1, including the bHLH, PAS B, and 

C-terminal transactivation domains. It has also been shown to interact with 

CLOCK3 and BMAL3, but not CLOCK2 or BMAL2. Cry1a interferes with 

CLOCK:BMAL by inhibiting transactivation directly, binding to the C-terminal 

domain of BMAL, and furthermore by preventing formation of active dimers, 

competing for the bHLH and PAS B domains. However, if the dimer has 

already formed, Cry1a has little effect. In summary, Cry1a can interact with 

key regions of the Clock and Bmal activators, thus preventing their 

heterodimerization and hindering their ability to transactivate from E-box 

elements (Link 2 in Fig. 6). It seems that the induction of Cry1a is additionally 

mediated by a light activated MAPK pathway, which was also linked to DNA 

repair via the gene z64Phr, (Hirayama et al. 2009), and moreover, there is 

some evidence that non-canonical clock genes could contribute to the 

circadian expression of Cry1a gene in a cell autonomous manner (Miyamura 

et al. 2009). 

 

Rev-erbα 
 
Rev-erbα is a ubiquitously expressed orphan nuclear receptor, which 

functions as a constitutive transcriptional repressor and is expressed in 

vertebrates following a robust circadian rhythm. Two Rev-erbα mRNA 

isoforms, Rev-erbα and Rev-erbα 2, are generated through alternative 

promoter usage and both display a circadian expression pattern 
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(Triqueneaux et al. 2004). The promoter regions contain several E-box 

elements, and CLOCK-BMAL1 has been demonstrated to regulate Rev-erbα. 

This regulation is conserved in vertebrates, and has also been confirmed for 

the zebrafish Rev-erbα (Link 4 in Fig. 6). 

 
 
In summary, the zebrafish circadian clock GRN resembles the mammalian 

one in several important ways, although some duplicated zebrafish clock 

components have evolved to carry out specialized functions. A diagrammatic 

representation is shown in figure 6. 

 

 
FIGURE 7 Proposed GRN for zebrafish circadian clock. 
CLOCK and BMAL1 hetero-dimerize and activate transcription of Per and Cry genes, which in turn inhibit 
CLOCK/BMAL1. Cry1a is the light input to the clock. REV-ERBα might have an effect on fine tuning the clock 
trough an interlinked feedback loop. 
1: Per1 contains several E-box elements in its promoter region (Vallone et al. 2004) that allow regulation of Clock-
BMAL heterodimers. 
2: Cry1a is up-regulated by light and may directly interact with CLOCK-BMAL dimer formation. (Tamai et al. 2007).  
3: Per2 is light responsive trough the action of TEF (Vatine et al. 2009).  
4: CLOCK-BMAL1 can regulate Rev-erbα (Triqueneaux et al. 2004). 

 

Light Entrainment in the Zebrafish Circadian Clock 
 
In the zebrafish circadian clock, entrainment occurs primarily in response to 

light, with exposure triggering photoreceptors, their coupled signalling 

pathways, and finally a set of clock genes, namely per2 and cry1a. As 

mentioned, the clock shows varied sensitivity to resetting cues, i.e. 

depending on the time of day, light causes phase advance, delay or has no 

effect. Moreover, the resetting efficiency also correlates with the level of 

Cry1a upregulation. In a recent study, zebrafish larvae, heart organ cultures 

and cell cultures were light pulsed or kept in DD to examine light induced 
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changes in gene expression (Weger et al. 2011). It was found that of the 117 

light regulated genes, the majority were induced and some repressed by 

light, and that these genes are involved in circadian clock function, stress 

response and DNA repair, retinal light reception and metabolism. Promoters 

of upregulated genes revealed an enrichment for E- and D-box binding sites, 

indicating that light induction of these genes was similar as in the per2 gene. 

It is also important to note, that the exact entrainment response of the 

oscillator varies according to different light regimes. A single light pulse can, 

as previously mentioned, shift an asynchronous population of clock cells to a 

common phase of the circadian cycle, equivalent to the early day or ZT 4, 

and consequently, if cells were close to ZT 4, only a small phase shift and 

modest increase in Cry1a would be necessary for entrainment. In the late 

night, however, a much larger phase shift and higher level of Cry1a induction 

would be required. In LL cry1a is induced, while per1 is highly repressed until 

the light is removed, at which point the oscillator restarts again from dusk, at 

around ZT12, and indeed the circadian oscillator appears to be held 

motionless at about CT12, when the day length begins to exceed 12 hours. 

Curiously, light pulses also lead to the acute induction of Per1, which occurs 

before the increase in Cry1a levels and subsequent repression in Per1 

expression. It has been described that it takes approximately 3 hours for 

Cry1a to reach peak transcript levels following light exposure, during which 

time a transient increase in Per1 is observed, but the mechanism and 

potential role of this transient Per1 increase are not yet understood.  

A single light pulse every 24 hours was shown to mimic LD in per1 peak, 

timing and waveform, although the timing of the trough does not match, and 

the rising phase is advanced slightly on each entraining cycle; moreover, 

Cry1a also phase advances each day, and when the medium is transferred 

to DD, an aftereffect is observed with the FRP being about 3-4 hours shorter 

than expected. In a two-pulse light regime, also known as a skeleton light 

cycle, per1 rising phase appears more accurate, despite an acute transient 

induction of per1 at the second pulse, making the traces less clear. The 

second, or "dusk", light pulse also appears to generate a phase delay in the 

rhythm, as predicted by the shape of the PRC, and overall, phase and period 

are more similar to LD compared to a single pulse. The amplitude, however, 
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is significantly smaller, probably due to the lack of extended repression of 

per1 during the day, which would be key to high amplitude oscillations. Here, 

the FRP in DD is comparable to cells entrained in LD, which could point to 

the presence of a morning and evening oscillator. Cry1a furthermore displays 

two smaller peaks as it is up-regulated at each light pulse (Tamai et al. 

2007). Turning to a study with single-cell imaging, it was revealed that cells 

in LD show a robust rhythm with a high level of synchrony. In DD, there are 

still oscillations, but now the peak levels are distributed throughout the day 

with widely varying phases and marked stochastic fluctuations in FRP. This 

effect is greater when the cells are kept in DD for several months, providing 

evidence that for populations left in DD, single cells may still exhibit a 

functional oscillator, even if the global signal averages to a non-oscillating flat 

level due to divergence and desynchronization. However, a light pulse 

succeeds in shifting the phase of individual cells to become synchronized 

again and hence stabilizes the subsequent FRP (Carr & Whitmore 2005). In 

this regard it appears that even clonal cells may exhibit significant deviation, 

but which is ordinarily compensated for by the mechanisms of exceptional 

light responsiveness, yielding an overall accurate timing mechanism. 

 
As a final note, it is intriguing to note that light regulation of gene expression 

in zebrafish may not be reserved for the circadian clock, but rather appears 

to also play a role in the repair of DNA damaged by radiation, such as UV 

light. Specifically, the gene encoding the DNA repair enzyme 6D4 DNA 

photolyase is not only closely related to the Cry family, but was also shown 

to be light-inducible, with a proposed mechanism similar to the one of cry1a 

directing its mRNA expression. Moreover, light appears to regulate not only 

the transcription, but also the activity of this repair enzyme, and both 

zebrafish larvae and cell lines cope better with UV radiation, when also being 

exposed to light. With reports of yet more light-activated gene expression in 

the zebrafish transcriptome, it appears plausible that significantly more 

aspects of cellular function in zebrafish may be regulated by light exposure 

than currently documented (Vatine et al. 2011).  
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Aims and Objectives 
 
This project was envisioned with a broad view towards elucidating on one 

hand the underlying dynamics of the circadian clock in zebrafish, but also 

more generally the mechanisms of how GNRs may be regulated or entrained 

through signals originating from outside their network. Integrating this guiding 

motif with new insights gleaned from an extensive review of the existing 

literature, and especially the emerging view of the importance of noise in 

shaping the behaviour of cellular functions, the following aims and objectives 

are set out for the investigation at hand.  

Aims 

 to construct a functional oscillator model of the GRN underlying the 

zebrafish circadian clock, adapted and extended in order to facilitate 

simulations and improved understanding of the entrainment effects 

observed experimentally under different light regimes   

 to furthermore evaluate the validity of stochastic approaches, 

comparing and contrasting their output with deterministic simulations, 

in explaining signal dampening and entrainment effects as functions 

that are critically shaped by the noisy nature of cellular processes  

Objectives 

 A first deterministic model will be constructed as a system of linked 

ODEs on the basis of the known circadian core system in Zebrafish, 

namely describing the dynamic interactions of CLOCK, BMAL1, 

CRY1A, and PER1 using appropriate kinetic functions, and 

simulations will seek to establish the occurrence of stable oscillations 

within this core network representation. 

 An input pathway for the effect of light will be defined, primarily acting 

through CRY1A, and integrated with the deterministic model. 

Computation runs will subsequently be carried out over a range of 

simulated light conditions in order to fine-tune the dynamics and 

strength of this input, and to compare results to those suggested by 

the scientific literature.   

 Select laboratory experiments will be planned and implemented to 

generate additional reference data used in guiding refinement of 
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above model, in particular pertaining to the effect of light pulses of 

varying intensities and durations in effecting phase shifts and 

entrainment in populations of zebrafish cell lines.  

 Automated computational functions will be implemented to transform 

and analyse, e.g. using Hill Transforms and related techniques, the 

signals generated in both laboratory and simulated experiments. 

Moreover, summary statistics, such as period, relative amplitude, or 

phase, are going to be defined and utilized for a quantitative 

description of the data generated.  

 Considering the difficulty and possible bias inherent to selecting 

appropriate parameters manually, a probabilistic and self-improving 

tool will be selected from the range of existing approaches, such as 

Approximate Bayesian Computation (ABC) or Markov-Chain Monte-

Carlo (MCMC), and utilized to improve the effectiveness of this critical 

step.  

 Different stochastic implementations will be contemplated, including 

for example stochastically shifted deterministic curves, Gillespie 

algorithms, or SDEs, and potentially utilized as a basis for re-

implementing the deterministic ODE model. In particular, it will be 

evaluated whether noise terms succeed in demonstrating the 

mechanism of natural de-synchronization over time and re-

synchronization under the influence of light, as suggested by findings 

from single cell observations as a likely avenue for entrainment 

effects. 

 Finally, with the models and tools described above in place, it will be 

possible to readily adjust the simulation system by adding in e.g. the 

stabilizing Rora loop, or by varying the target or mechanism of light 

signal input. These adaptations should help elucidate the possible 

significance of adding complexity to the model, while also 

demonstrating the usefulness of the model environment as a basis or 

supporting tool for further investigations. 
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Chapter 2: Creating the Core Model and Analytical Tools  

2.1 Building an Initial Model of the Zebrafish Circadian Clock 

2.1.1 The Underlying System of ODEs  
 
One of the first steps towards investigating the dynamics of entrainment and 

noise in the circadian clock consists of constructing an initial model of the 

clock in zebrafish as a set of linked ODEs, representing the concentration 

changes of the different core molecular species of this GRN. 

 

Zebrafish Circadian Clock as a System of ODEs 
 
It has been described above, how representing the various molecular 

components of a GRN, or rather the changes in their concentrations, as a 

system of ODEs is a well-established and highly useful modeling approach, 

which combines feasible resolution speeds with the mostly accurate handling 

of even very dynamic systems, while also readily pointing to stationarities 

and other points of interest. Looking to "translate" the zebrafish circadian 

clock into such an ODE system, it has been noted that the core clock 

components constitute an auto-regulatory feedback loop, with CLOCK and 

BMAL1 hetero-dimerizing and activating transcription of Per and Cry genes, 

which in turn inhibit CLOCK/BMAL1. Moreover, negative feedback has been 

identified as essential in biological oscillators, carrying the network back to its 

starting point, while a sufficient delay ensures that reactions do not settle on 

a stable steady state. Consequently, a first sketch of the zebrafish clock is 

designed around two interlocked negative feedback loops; the first one 

consisting of the Clock-Bmal heterodimer and Per1, while the second one 

features Clock-BMAL and Cry1a. The equations for the five ODEs are: 
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The Clock-Bmal heterodimer is denoted by ClkBmal, Cry1a mRNA and 

protein by c1am and cry1a, respectively, and Per1 mRNA and protein by 

p1m and per1, respectively. Moreover, a simple light input mechanism is 

already included in the form of the term "light", which acts as a simple 

constant addition to Cry1a mRNA levels, but was initially set to 0. 

 

 
FIGURE 8 Zebrafish Model Network diagram corresponding to the model 
Graphic representation of the zebrafish circadian clock model. CLOCK and BMAL1 hetero-dimers activate 
transcription of Per and Cry genes, which in turn inhibit CLOCK/BMAL1. Cry1a is also upregulated by light. 

 

Practical Implementation and Integration Steps 
 
In order to solve these linked ODEs numerically, they were transcribed into 

the Mathematica computational software program, developed by Wolfram 

Research, using Mathematica's own specific programming language. The 

exact code can be found in the appendix, but principally a standard 

configuration of the function "NDSolve" was utilized. This function typically 

aims to find solutions to differential equations by dynamically determining, 

depending on the nature of the problem to solved, a set and order of 

methods to employ, which would generally centre on a time integration 

process for a system of differential equations, and the setting of boundary 

values. Other steps may include the simplification of equation form, the 
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processing for handling of discontinuous differential equations, or also 

discretization and symbolic index reduction steps for PDE and differential 

algebraic equations, respectively. The core numerical solver, specifically, is 

reported to be based on a multi-step Adams  method (Baumgartner et al. 

2006), an expansion of the more familiar single-step methods, such as Euler 

or Runge-Kutta. Conceptually, all these numerical methods utilize initial 

points, starting from which they try to undertake a small step forward in time 

to pin down the next solution point, thereby following an iteration of small 

time steps to map out the complete solution. However, single steps 

processes, such Euler's method, are based on only one previous point and 

its derivative in order to localize the current point, whereas other methods, 

such as Runge-Kutta for instance, further include some half- or other 

intermediate steps to obtain a higher order method for calculating the next 

solution value. Multistep methods, on the other hand, are set apart by 

retaining and utilizing information from several previous points and derivative 

values, which they may combine in linear or non-linear fashion to gain 

efficiency in their computations. Furthermore, multi-step methods are usually 

credited with producing less error than single-step methods due to their 

multiple initial points, but the precise selection of a solver method remains 

depending on a variety of factors, importantly including the equation's 

stiffness; this quality may be roughly summarized as a measure of the 

solution's numerical stability, particularly when operating outside of extremely 

small step sizes. An example of a multi-step method would be: 

 

௡ାଵݕ = ௡ݕ +  ℎ(ܾ଴݂(ݐ௡, (௡ݕ + ܾ௣݂൫ݐ௡ି௣,   ௡ି௣൯ݕ

 

where h refers to the step size, while the precise method is determined by 

the coefficient ܾ଴, … , ܾ௦, the values of which, even if they are regularly set to 

zero, are critically important for balancing ease of use versus a faithful 

approximation to the true solution. The three most commonly used families of 

linear multistep methods are Adams-Bashforth, Adams-Moulton, and 

backwards differentiations formulas, with the former two both going back to 

the work of 19th century British mathematician and astronomer John Couch 

Adams, who is further famous for the purely theoretical prediction of 
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Neptune's position and, in fact, mere existence. The Adams-Bashforth and 

Adams-Moulton methods both share a characteristic coefficient pattern and 

order maximization, but the former is an explicit method, predicting the 

system's future state purely based on the current one, while the latter method 

is implicit in nature, utilizing both current and future state in determining a 

solution. In either case however, as has been clearly stated, the Adams 

methods do not evaluate derivative functions by simply working with points 

close to the solution value, as Euler, Taylor, or Runge-Kutta methods would, 

but instead also includes interpolation based on old solution values and 

derivatives. It follows, that continuity of the function and stability of the 

numerical solution with respect to perturbations of initial points can be 

considered critical here, and only those linear multistep methods exhibiting 

"zero-stability" for a certain differential equation, that is the ability to contain 

the growth of a perturbation, would reliably converge to the exact solution.   

 

In order to conduct an initial survey of the potential effects of the light term on 

not only the levels of Cry1a mRNA, but also the behaviour of the system as a 

whole, the corresponding input was applied at a level expressed by a 

separately determined parameter of light intensity via a "Piecewise" function, 

triggering for Sin(t/4) > 0 and set to 0 otherwise, thus mimicking a regular, if 

simple, light/dark cycle. Not surprisingly, the system would exhibit stagnating 

concentrations for the vast majority of randomly selected parameter values, 

and consequently parameters were manually selected and adjusted. Within 

the limitations of this approach, it is found that stable oscillations can be 

achieved if the Hill coefficient is 4 or higher for the activation of Clock-Bmal 

by Cry1a and Per1, and further if degradation rates are Michaelian rather 

than linear decay rates. 

 

Determining Initial Parameters  
 
However, oscillations do not automatically display experimental phase 

relations, but these can be replicated through careful further adjustment of 

parameters. Similarly, the required initial values were first randomly selected 

and subsequently manually adjusted to appear in line with the relative 
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concentrations observed for the different system constituents over several 

test runs. Specifically, the parameters and initial values used are 

summarized below. 

FIGURE 9 PARAMETERS 

 

 
A graphical representation of sample simulations with parameters and initial 

values selected as outlined above can be seen in Figure 10 and clearly 

demonstrates the capacity of the system to exhibit oscillating behaviour. The 

integration interval was set to 100, to be in line with laboratory experiments 

commonly carried out on this one-week scale. It should also be noted, that 

the oscillations appear to be clearly dampening. While decaying oscillations 

under constant darkness are a feature of circadian oscillators to be possibly 

achieved through extensions of the model, it should be noted that in this 

early iteration the observed decay is unintentional, and can almost certainly 

be attributed to poorly calibrated parameters and initial values. Subsequent 

implementations consequently feature specific automated initial value and 

parameter correction algorithms, with early runs showing stable oscillations 

over ten thousands of cycles and under signal analysis via Hilbert transform.   

 

FIGURE 10 INITIAL MODEL RUNS WITH AND WITHOUT LIGHT INPUT 
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Notably, a distinct decay in oscillation strength can be observed, which can 

be likely attributed to insufficiently calibrated initial values, thus starting the 

oscillations off with an extra momentum that is gradually lost over 

subsequent periods. Moreover, it can be gleaned that light appears to slightly 

alter the shape of the output curve, while also expectedly increasing the 

amplitude of oscillations. These simple observations appear to encourage 

the use of the presented network as a starting point for more detailed 

investigations, even if various additions and refinements are necessary to 

verify and enhance the predictive power and theoretical insights presented 

by the model. 

 

2.1.2 The Significance of Fine-Tuning the Model  
  
It has been described for a wide variety of areas, ranging from theoretical 

physics to economics and biochemical systems, that models may have to be 

fine-tuned, that means their parameters adjusted very precisely, in order to 

bring their output in line with observations. While there is some ongoing 

discussion about the underlying origin and justification of this necessity, with 

different sides contributing arguments drawing on various naturalistic and 

anthropic principles, at least in the case of biological systems an explanation 

is more readily apparent. After all, it has been described how individual 

processes may, via dynamics represented by Michaelis Menten or Hill 

kinetics, be very sensitive to concentration changes around a very specific 

range; and evidently the need to predict these threshold values becomes all 
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the more acute, when representing the emergent behaviour of a system 

relying on several of such hypersensitive elements. For instance, it was 

hypothesized in the discussion of the preliminary results, how even a modest 

misestimation of initial values could have given rise to an uncharacteristically 

strong first circadian cycle, with subsequent ones experiencing a significant 

signal decay. This possibility is especially noteworthy when considering that 

the predefined initial values are only directly utilized by the numerical solver 

in the very first one, or few depending on the algorithm, of many hundred 

seemingly affected time step calculations. Of course, the significance of the 

equation parameters referenced at every single calculation step would 

arguably be much greater still, highlighting that slight initial dislocations may 

not only persist, but actually be propagated and inflated over time. 

Consequently, already small variations in parameter values can give rise to 

significant behavioural variability, pointing to the need for a thorough and 

methodical parameter estimation procedure when evaluating the dynamics 

and merit of a particular model. Moreover, considering next the obviously 

beckoning questions of precisely what quality to optimize parameters for, the 

task of creating a fit with experimental data can be surprisingly multifaceted. 

After all, a "simple" readout could be broken down into dozens of primary 

observable features, which may be further refined by statistical analysis into 

a plethora of system properties, such as maximum or minimum values 

interpreted as either absolutes or as standard deviations, average values 

understood as either means or medians, signal intensities measured as peak 

amplitudes or as integrals of signal strength over time, etc. 

 

Summary Statistics for the Circadian Clock 
 
At least in the case of the circadian clock, thankfully several main descriptors 

are relatively well established, and these include the periods, phase 

relationships and peak amplitudes of, and between, the oscillating 

concentrations of different core clock proteins and mRNA. Arrays of data 

exist for various experimental setups and measurement routines recording 

these values, and while not necessarily perfectly consistent, this trove proves 

very valuable for training model systems. Nevertheless, it can still be 
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worthwhile to additionally implement experimental runs especially attuned to 

particular aspects of the simulation objectives. Not only does this provide an 

opportunity to generate very specific conditions and readouts, which may 

uniquely boost the development and hence accuracy of the desired model 

properties, but moreover, experimental data thusly generated may also help 

to bring into better perspective the experimental frameworks and readout 

conventions employed elsewhere. For instance, it may be found that lengthy 

exposure to constant darkness may affect the subsequent observable 

behaviour under different light regimes, and insights such as this one may 

consequently help to select and sort existing data sets so as to better 

compare "like with like". Yet another, critically important aspect for testing 

simulation outputs with results from laboratory experiments refers to the 

quantification of data. While there are instances where an intuitive 

description may be potent in sorting for important qualities and/or may be 

difficult to supersede quantitatively, e.g. when sorting curves by a complex 

shape or pattern, it is generally considered more rigorous, reliable, and 

reproducible to express results along a numerical spectrum. Even in 

instances where this quality is poorly provided by raw experimental readouts, 

it is often possible to utilize mathematical techniques to extract from even 

relatively complex data certain key summary statistics, which may then be 

readily compared and contrasted across different cohorts, conditions, or 

investigative settings. In the context of analyzing oscillation, and indeed a 

wide variety of signals, various signal transforms are frequently employed, 

including for instance Fourier, Hilbert, or Wavelet transforms, to decompose 

the signal and readily extract different underlying qualities, most importantly 

periods, phase, or amplitude. It can be further noted, that the techniques can 

in principle be applied to simulated data as easily as to laboratory results, 

opening up the perspective of largely automated programmed functions that 

reference key dynamics of the model system to established observations. In 

addition, techniques such as sensitivity and bifurcation analysis can be 

employed on this basis in silico, monitoring the effect on key statistical values 

of cycling one or several parameters across a possibly wide parameter 

space. Once again, these approaches can provide a fresh and important 
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outlook on the viable range of parameter values, but work best when being 

centered on an evidently functional system as a "gold standard".       

 

Capturing Underlying Dynamics 
 
Finally, having glanced over different challenges and approaches for fitting 

the model behaviour, it should of course be pointed out that this goal is not 

intended as an end in itself, but rather serves to evaluate and establish the 

validity of the suggested underlying dynamics. Once these interaction steps 

are accepted as sufficiently faithful representations of the system behaviour 

under scrutiny, the advantages of the modeling approach truly begin to 

shine, allowing easy manipulation of the system over a wide range of 

simulated condition, on vastly accelerated or decelerated time scales, and all 

while providing life readouts of not only phenotypic characteristics, but also 

the dynamics themselves. Once again, it is hoped that such a finely attuned 

system would permit novel insights into the nature of entrainment in the 

Zebrafish Circadian Clock and GRNs more generally. The following sections 

will provide a description of the laboratory experiments carried out as part of 

this project, as well as of the program tools that are being implemented to 

analyse and compare corresponding results. 

 

2.2 Laboratory Experiments 

2.2.1 The Use of Bioluminescence Reporter Genes 
   
Following on from an initial foray into running a simulated Zebrafish 

Circadian Clock network, a set of laboratory experiment is envisioned and 

implemented to investigate the entrainment effect of exposing zebrafish cell 

line populations to single light pulses. In order to detect any resulting 

changes in gene expression levels, a common investigative approach in 

molecular biology centers on the use of embedded reporter genes. Here, a 

gene that is not natively expressed by the cell line or organism of interest is 

inserted in the form of specifically designed DNA constructs, e.g. for cultured 

prokaryotic cells or bacteria oftentimes a plasmid circular DNA segment, 

usually directly into the intracellular space.  
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Different Approaches to Using Reporter Genes 
 
Different specialized variations and applications exist for this general 

principle, including the use of reporter genes in transfection or transformation 

trials, where they can be utilized alongside a target gene that is to be 

inserted into an organism's genetic code. The procedure is only effective in a 

modest percentage of the trial population, and expressing the reporter gene 

constitutively or inducibly, so that it is always active or can be switched on by 

a trigger, can consequently serve as a crucial indicator to help identify those 

targets, where the gene of interest was successfully transferred. Here, the 

use of an independent promoter can allow for detection of the reporter 

irrespective of target activity, which may be desirable if the activation 

conditions for the latter are uncertain or laborious to bring about. A second 

important use of reporter genes consists of attaching them directly to a target 

gene in a gene fusion approach, signifying that the reporter will be 

transcribed, under the action of the same promoter, into a single mRNA 

molecule alongside the target gene. Provided that both resultantly linked 

elements of the translated amino acid chain are able to fold into their active 

protein conformations, which is often facilitated by linking the two active parts 

with a flexible polypeptide linker region, the procedure effectively gives rise 

to a "double-headed" protein. Such a molecular chimera can be highly useful 

for precisely tracking the movement and activity levels of target proteins, the 

role of which is as of yet poorly understood. Yet another, also highly 

important use of reporter genes lies in assaying the activity of a particular 

promoter. By simply placing them under the control of this promoter of 

interest, their expression levels can be quantitatively detected, often put into 

perspective relative to the strong gene expression levels encountered in 

some consensus promoter, and taken as a good approximation for the 

expression timing and levels of the genes that are normally induced by the 

same promoter. Throughout the various approaches of gene reporting, it is 

evidently critical that the output of the chosen reporter gene can be readily 

identified and measured. Routinely genes are selected that equip its target 

organism with clearly distinguishable features, such as bacteria with 
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chloramphenicol acetyltransferase genes thriving on media with the 

otherwise antibiotic chloramphenicol, or cultures changing the colour of their 

substrate due to the effect of inserted beta-galactosidase, but another 

important group of reporter genes selected for visually identifiable 

characteristics encode fluorescent and luminescent proteins. Examples 

include the red fluorescent protein dsRed, green fluorescent protein, or also 

the group of luciferase enzymes. 

 

Luciferase as a Key Reporter 
 
These oxidative enzymes occur in diverse organisms ranging from 

mushrooms, to marine creatures and, most famously, fireflies, and play a 

central role in the process of bioluminescence by catalyzing variety of light-

emitting reactions. Looking to fireflies in particular, there are over two 

thousand known species, many with their own versions of luciferase so 

distinct, they are considered a useful criterion in molecular phylogeny, but 

one particularly well-studied example is the Photinini firefly Photinus pyralis. 

Photinini luciferase is widely used as a laboratory reagent, characterized by 

an optimum pH of 7.8, and its catalytic function converts luciferin into luciferyl 

adenylate, and further into oxyluciferin in an electronically excited state, and 

light is emitted as oxyluciferin returns to the ground state by releasing a 

photon. The light emitted by luciferases via this mechanism can vary 

between yellow-green to red, with wavelengths ranging from 550nm to 620 

nm, but constitutes a high signal, which predestines them for use in high 

throughput screening applications, and has helped to turn luminescent 

reporter gene assay (LRGA) into one of the most prominent types of reporter 

gene assay, valued particularly in the fields of pharmaceutical development 

and molecular biology for its sensitivity and reliability (J. Miraglia et al. 2011). 

For instance, it was recently described how a CRE-luciferase reporter gene 

can be employed to easily detect the activities of G protein-coupled 5-HT 

receptors, which in turn are valued as potential targets in antipsychotic drug 

discovery (Chen et al. 2015). There have also been various technical 

advancements to improve signal stability, and newly developed forms of 

luciferase include red shifted variants, to reduce the absorption effect of 
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short-wavelength photons by biological tissues, leading to diminished 

sensitivity at non-superficial locations (Loening et al. 2010). 

 

2.2.2 Overview of Different Experiments Conducted 
 
For the light pulse experiments presented here, a period1-luciferase 

zebrafish cell line was used to monitor gene expression of per1, and hence 

progression of the circadian oscillator, and the details of its creation can be 

reviewed in (Vallone et al. 2004). As a short overview of the reporter cell 

line's mechanism, it can be summarized that the enzyme luciferase is 

synthesized when transcription is activated by the promoter of per1, and this 

enzyme subsequently interacts with the substrate luciferin, which can be 

added to the medium, to release light by the process of bioluminescence. 

This bioluminescence can then be systematically detected and measured as 

counts per seconds (CPS). While it is also theoretically possible to take 

measurements at a single cell level, the experimental setup and 

bioluminescence detection is much more challenging, as a single cell 

produces relatively few photons (Welsh et al. 2010). Accordingly, most 

bioluminescence experiments utilize populations of cell lines, which can 

furthermore be useful for readily comparing different implementations with 

each one holding a specific clock reporter gene construct, thus allowing a 

look at various transcriptional activities with high time resolution. 

 

Experimental Parameters 
 
Here, approximately 25x103 per1-luciferase cells per well were plated in 

quadruplicate wells of a 96-well plate in media containing 0.5 mM beetle 

luciferin. Test were carried out over a range of light intensities, and for each 

light intensity one separate plate was used, with all plates being kept in a 

dark incubator for 5 days before data recording. Light pulses were performed 

either after 24 hours of continuous readings for a duration of 15 mins, or after 

48 hours of continuous readings for a duration of 60 mins, and each timing 

format was repeated with intensities of 0.1, 1 , 10, and 1000 μW cm-², where 

a short duration and low intensities were chosen to determine what amount 
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of light may be sufficient to cause an effect. The wavelength spectrum was 

400-700nm, and assuming a mean wavelength of 520nm, this range of 

irradiance can be calculated to correspond to a photon flux ranging from 

0.0043 to 43μmol m-² s-1.  

 

Estimation of Photon Flux 
 
Photon flux refers to the number of photons impacting a reference area, 

usually expressed as 1 m², every second, and this concept is increasingly 

considered more accurate and meaningful than simple irradiance readings 

when investigating light stimulation, also and especially in biological and 

biochemical settings. Here, the light intensity per cm-², which can be 

expressed as Watt or equivalently as Joule per second, is linked via the 

energy per photon to the number of photons hitting the same area every 

second. However, as the amount of energy of a photon is directly related to 

its wavelength, the photon flux is most easily calculated for light of a specific 

wavelength. For light being emitted over a spectrum, as is usually the case 

however, the exact quantities of all spectral components are required to 

arrive at a precise value for the number of photons carrying the observed 

energy, and moreover, this wavelength composition is rarely constant, or 

even linear, across a natural light spectrum. A rough wavelength distribution 

can often be approximated by referencing the light temperature, but here a 

value was simple selected as a representative mean, keeping in mind that 

any inaccuracies should be relatively small compared to the large variability 

of the irradiance employed.  

 

Light Regime 
 
Bioluminescence was monitored on a Packard TopCount NXT scintillation 

counter, and for the administration of light pulses, the plates were taken out 

of the Packard scintillation counter and kept in a dark chamber until light 

pulsed at the desired intensity. Following the light pulse, the plates were 

returned to the scintillation counter and left in constant darkness for an 

extended period, namely 11 to 12 days, before being exposed to two 
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consecutive regular light/dark photoperiods. A control sample was also 

exposed to the same constant darkness and ultimate light/dark cycles, but 

not subjected to any light pulses. 

 

2.2.3 Denoising and Detrending 
 
Theoretically, it would of course be possible to carry out comprehensive 

analysis directly on the raw data sampled from the scintillation counter. 

However, it is generally considered prudent to first filter out misleading 

perturbation, mainly classified as noise and trends, through specialized 

procedures known as denoising and detrending, respectively.  

 

The Origin and Treatment of Noise 
 
When considering the origin of these effects, it is useful remember how 

fundamentally stochastic our world is, and apart from fluctuations in 

expression rates and protein concentrations, which have even been pointed 

to as potentially essential features of the circadian clock, there could also be 

random variation in the reporter reaction with luciferin, or the levels of 

emitted light. Not least, there are also inherent inaccuracies in detecting 

photons and recording the corresponding data, a phenomenon that is well 

characterized in the context of photography and digital imaging, and all this 

underlying "noisy" variability, although in its sum often oriented along a 

normal Gaussian distribution, can add up to create phantom peaks and 

troughs, or to distort phase and period relationships. Depending on its 

precise cause, the noise can further be classified as either correlated or 

uncorrelated, but generally a good approximation can be achieved in 

denoising approaches by treating most deviations as independent and 

identically distributed. One possible avenue for handling noise consists of 

employing more robust data analysis tools, such as complex signal 

transforms, that are inherently better at filtering out small, random distortion 

than simple maxima/minima detection algorithms. Secondly, however, it is 

also possible to filter out noisy patterns in a separate step, even if oftentimes 
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requiring a trade-off between data fidelity, noise reduction, and 

computational cost, for example by utilizing averaging filters or detail filters.  

 

The Use of Discrete Wavelet Transforms 
 
Specifically, discrete wavelet transforms can be utilized to decompose a 

dataset into discrete subbands with a corresponding set of wavelet 

coefficients. Here, the high frequency subbands describe the finer details of 

the signal, which usually contain the noise component, and provided that this 

high frequency component is small relative to the overall signal, simply 

cancelling it with a coefficient of zero can be an effective avenue for "killing 

the noise". The basic procedure is often further refined into thresholding, a 

technique that relies on a framework of cut-off values to cancel all subbands 

deemed insignificant, before reassembling the complex, but now denoised 

dataset through an inverse wavelet transformation. Other possible 

adaptations include the use of hybrid schemes of wavelet transforms and 

optimization algorithms, which can for instance be used to effectively remove 

non-stationary noise from electocardiogram (ECG) signals. Here, the critical 

selection of wavelet denoising parameter is guided by a genetic algorithm, 

resulting in maximized filtration performance with significantly improved 

quality and signal to noise ratio, when compared to wavelet thresholding 

algorithms in the same setting (El-Dahshan 2010). 

In the context of this project, a discrete wavelet transform was carried out on 

the experimental data using the inbuilt wpdencmp function of the 

MATLAB®  computational software suite, as well as using the dedicated 

application WAVOS. However, it was observed that analysis using different 

signal transforms could detect not notable differences between the original 

and denoised data, pointing to both the overall reliability of the data analysis 

tools, as well as to the relative clarity and smoothness of the experimental 

readouts. Furthermore, in the context of the simulated data, the very nature 

of the data generation should not produce appreciable levels of noise, except 

where explicitly desired through the use of stochastic simulation approaches, 

and so denoising is not deemed appropriate in this context. 
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Recognizing Underlying Trends 
 
The second type of signal distortion to be considered, before quantifying the 

entrainment effect of light on an asynchronous cell population by such 

measures as amplitude decay or the amplitude just after the pulse, is the 

existence of underlying trends in the data set, which would hinder the 

quantitative analysis and may occur in bioluminescence circadian rhythms in 

cultured cells for several reasons: Firstly, the response of cell cultures to 

different treatments is not only inherently variable, but may also be 

influenced by unaccounted factors. Secondly, the rhythms of the cell cultures 

exhibit damping, or in other words variance non-stationarities. Thirdly, these 

rhythms often show unstable baseline shifting, i.e. mean non-stationarities, 

the exact extend of which may change from experiment to experiment, or 

even from sample to sample. The factors that could give rise to these various 

non-stationarities across the time series, and to the variability between 

individual cells, sample populations, or test runs are likewise multifaceted. 

Next to more general stochastic effects pointed to above, although in the 

case of "fabricated" trends likely of a different, slower quality, there are also 

countless potentially relevant surrounding conditions, such as the 

physiological state and age of the cell populations, the existence of 

background temperature fluctuations, or artefacts related to the handling of 

the sample and collection of the data. It can be downright impossible on a 

practical level to control all these effects, and while some trends may point to 

valuable insights, it is oftentimes preferable to reduce any corrupting 

influence before the further data analysis process, and accordingly various 

approaches exist for removing these trends. One relatively simple procedure 

for removing baseline drift involves calculating and subtracting a moving 

average from the raw data, while MATLAB® also provides for an automated 

detrend function that subtracts either the mean or, depending on the data 

set, a least-squares best-fit line from the signal. The statistical self-affinity 

can also be evaluated with the use of detrended fluctuation analysis (DFA), 

which is related to spectral techniques such as autocorrelation, and is 

frequently employed for long-memory processes, even where mean or 

variance are found to be non-stationary. Although DFA has gained much 
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popularity since its introduction in 1994 by Peng et al (Peng et al. 1995), 

various update techniques for the detection of long-range correlations have 

also been suggested, including a Modified Detrended Fluctuation Analysis 

and Centered Moving Average (CMA). In particular, a recent comparison 

found that at least for weak trends, CMA shows a comparable performance 

as DFA in long data, but better results in short data(Bashan et al. 2008). 

Finally, data-driven techniques for decomposing multi-component signals 

include Empirical Mode Decomposition, which can be employed for both 

detrending and denoising by making use of partial reconstructions 

("Detrending and denoising with empirical mode decompositions"). In this 

context it is interesting to note that it is difficult to distil a precise definition of 

a trend, but it has been demonstrated for climate data how EMD can be 

utilized to determine intrinsic trends and natural variability, namely by sorting 

for intrinsically determined monotonic function, or alternatively a function with 

at most one extremum, within a certain temporal span (Wu et al. 2007). 

 

Detrending According to Moving Averages 
 
In the case of removing possible masking effects from the circadian rhythms 

under investigation here, it is found that satisfactory results can be readily 

achieved by detrending traces on the basis of a 24-hour moving average; for 

an example, please see Figure 11. After all, the oscillating signal appears to 

constitute a relatively strong pattern around a naturally apparent anchor 

point, so that removal of the underlying distortion is well suited to an 

appropriately calibrated moving average approach. In the context of the 

simulated results, however, it should once again be noted, that all inputs are 

perfectly controlled by the computational environment, signifying that 

detrending might be, if anything, counterproductive for these sets of data. In 

fact, the ability to model even very long time spans in a tightly regulated 

environment is a good example of the many advantages of a well-

established simulation system.  
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FIGURE 11 Detrending 
Example of 24-hour moving average detrending on a light pulse trace. The top shows the raw data, the middle the 
trend that is removed and the bottom the residual detrended data 

 

2.2.4 Results and Discussion 
 
The bioluminescence raw and dentrended traces for the 15 minutes and 1 

hour light pulse experiments can be seen in Figure 12 and Figure 13, 

respectively. Furthermore, amplitude after the light pulse and the decay rate 

were determined using a Hilbert Transform, described in more detail in the 

next section, and the results of the decay rate and amplitude analysis can be 

seen in Figure 14. The decay rate seems to increase slightly with higher light 

intensity and longer light pulse, while the amplitude, as expected due to a 

higher level of entraining stimulation, also increases with higher light intensity 

and longer light pulse. However, considering the fact that the number of 

photons stimulating the cell is proportional to light intensity times duration, it 

is interesting to note that 10 μW cm-² for 15 minutes has a lower initial 

amplitude than the 1 μW cm-² for 1 hour, corresponding roughly to a photon 

exposure of 378 μmol m-² versus 155 μmol m-², respectively, implying that 

the cell does not simply take account of the total number of photons it is 

stimulated by. In order to check if the light pulses also had an immediate 

effect, the data points for the first full cycle were removed and the analysis 

performed again, showing that interestingly the decay rate between the 

original and "cut" data is very similar; only the amplitude is smaller, as would 

be expected. 
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Possible Limits to the Stimulating Effect of Light Exposure  
 
One other result that emerges is the fact that no hard lower or higher limit to 

the stimulating effect on the oscillations was detected at the range of light 

intensities employed. Rather it appears, that there is a relatively constant 

relationship between the intensity of the light stimulation and resulting overall 

amplitude. As so far as this can be attributed to the re-synchronization of 

asynchronous individual oscillators, it could be argued that stronger pulses 

succeed in harmonizing the phases of individual oscillators more removed 

from the average. At the lower end it is confirmed, however, that light pulses 

of only 15 minutes are generally sufficient to evoke a clear response from 

completely asynchronous cell populations, and further that these boosted 

oscillation decay gradually, but overall persists for the entire duration of the 

experiment, that is at least 11 days. Finally, it is very interesting to note that 

there appears to exist an inversely proportional relationship between the 

intensity of the initial light pulse and the amplitude of oscillations upon the 

initiation of regular light/dark cycles. It can be speculated that this 

unexpected effect may either be attributed to statistical calibration error, or 

otherwise result from for example more of the luciferase medium being used 

up by the more intensely stimulated cells by that point. However, it may also 

be worth to follow up to what extent, if any whatsoever, asynchronous and 

synchronous cells may differ in their capacity to react to new light stimuli. As 

a more general point, readings for each separate light pulse run were based 

on 4 individual wells and appear to correspond well over the range of 

different traces, but the experimental design may still have been subject to 

additional distortions, not adequately removed by the detrending process. 
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FIGURE 12 15-min light pulse 
Bioluminescence trace of Per1 reporter cell line. Cells were kept in the dark for 5 days before data recording. A 15 
minute light pulse of varying strength as indicated was administered at 24 hours (control - no light pulse). At the end 
of the experiment cells were kept in LD for two days. Top - raw data, Bottom - detrended data 
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FIGURE 13 1hr light pulse 
Bioluminescence trace of Per1 reporter cell line. Cells were kept in the dark for 5 days before data recording. An 1 
hour light pulse of varying strength as indicated was administered at about 48 hours (control - no light pulse). At the 
end of the experiment cells were kept in LD for two days. Top - raw data, Bottom - detrended data 
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FIGURE 14 Light pulse data analysis 
Decay rate and amplitude were calculated for the different length of light pulse and 
intensities of light. Additionally, the first complete cycle of the original detrended data was 
ignored for the cut data set. 
 
 

2.3 Analyzing the Prepared Data 

2.3.1 Time-frequency Analysis by Hilbert Transform 
 
Time–frequency analysis methods see widespread use across a wide variety 

of areas, ranging from audio signal processing, over fault detection in 

industrial production (Peng et al. 2005), to medical research. In nearly all 

cases, computation efficiency and a good resolution of the time and 

frequency domains are considered advantageous, but the precise selection 

of a method, although frequently based on Hilbert transform, Wavelet 

transform, or their derivatives, will depend on the specific data set and 

research question under scrutiny.  

 

Basis of the Hilbert Transform 

 
The Hilbert transform (HT) is an analytical technique for transforming a time 

series into corresponding values of instantaneous amplitudes, frequencies 

and phases, which can then be employed, for example, to determine the 

dampening of amplitudes by using linear regression. The HT is named and 
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traced back to the German mathematician David Hilbert, who, apart from his 

famous work on the invariant theory and the axiomatization of geometry, also 

proposed the theory of Hilbert spaces, which became an important 

cornerstone of functional analysis. Following on from this pioneering work on 

integral equations, the British Mathematician G. H. Hardy described a 

rigorous implementation of a transform in 1932, which he named in honour of 

Hilbert. Over the following decades the underlying definitions were vastly 

extended and improved by a series of other mathematicians, which lead up 

to such complex concepts as trilinear Hilbert transforms, and helped to apply 

the technique to areas ranging from telecommunication to biomolecular 

studies. In short, the HT is a linear operator, transforming functions while 

keeping their domain unchanged, and its capacity to extend a real signal into 

the complex plane has proven to be a very powerful tool in the field of signal 

processing. Specifically, the HT matches a real function x(t) with a 

companion function y(t), so that z(t) = x(t) + i*y(t) can be analytically 

extended from the real line t ∈ R to the upper half of the complex plane (Liu 

2011). On a practical level, it is common to first apply a Fourier transform to 

the signal of interest, before rejecting any negative frequencies and applying 

the inverse Fourier transform, a procedure that will give rise to a complex 

valued signal with a real part and an imaginary part, also known as a Hilbert-

transform pair. Notably, provided that the original signal is narrow-banded, 

the modulus of the transformed function will appear as its slow-varying 

envelope, while the phase derivative will be an instantaneous frequency, 

effectively signifying that the signal will be restated by the HT in terms of 

amplitude and frequency modulation. This capacity has seen the HT being 

used in varied functions, such as latency analysis in neuro-physiological 

signals (Recio-Spinoso et al. 2011), even if it was initially narrowly defined 

for period or circle functions. It can further be noted that the Hilbert transform 

of a function, or in other words the companion function generated, will not 

strictly be unique, but is an example of a singular integral operator and will 

constitute a harmonic conjugate in Fourier analysis. The HT also has the 

effect of shifting the phase of all negative frequency components of the 

signal it is applied to by π/2 radians, while positive frequency components 
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will shift by - π/2 radians, but factoring in the imaginary component "i" will 

restore the positive frequencies while negating the negative ones. Discarding 

the negative frequency components in this way, which through the transform 

is possible without loss of information, designates the complex-valued 

function as an analytic signal. Here, the real and imaginary parts linked by 

the HT are both real-valued functions, and as a corollary the analytic 

representation of a real-valued function comprises the original function and 

its HT. As a clear advantage, certain attributes of the function can be more 

readily manipulated, and modulation and demodulation steps are facilitated 

in this configuration. However, as long as it still contains no negative 

frequency component, simply dropping the imaginary part of a manipulated 

complex function will revert it to a real state. 

 

Metrics Revealed by the Analytical Signal  
 
The analytical signal approach will thus, as follows readily from the aforesaid, 

enable the instantaneous phase and amplitude for a signal, the original real 

function s(t), to be found via construction of the analytical signal ζ(t), created 

by the combination of the real function s(t) and its HT )(tisH : 

)()(=)()(=)( ti
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The instantaneous amplitude A(t) and the instantaneous phase ϕ(t) are 

uniquely defined by the above equation. Furthermore, the derivative of the 

phase, i.e. its rate of change, can be identified as the instantaneous 

frequency. It can be noted that for a pure sine wave, the instantaneous 

amplitude and frequency are constant, while the instantaneous phase, 

however, is a sawtooth, reflecting the way in which the local phase angle 

varies linearly over a single cycle. 

 

sH(t): is the Hilbert Transform of s(t): 
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provided this integral exists as a principal value, meaning that the integral is 

taken in the sense of the Cauchy principal value. This is precisely the 
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convolution of s with the tempered distribution p.v. 
ଵ

గ௧
, and therefore the Fast 

Fourier Transform (FFT) based on the convolution theorem can be used to 

calculate the HT. Thus the envelope, which can be thought of as the 

amplitude variation, of a time signal can be computed, and in order to 

determine the dampening equivalent to the decay rate, a linear regression is 

performed on the logarithm of the envelope. Moreover, if the phase portrait of 

an oscillator is not a circle, the amplitude is not constant, but oscillates with a 

frequency 2 ω = 2 ·2 π / T, where T is the period of oscillation. Here, the 

instantaneous phase is also not linear. Finally, it is noteworthy that HT, like 

many data analysis methods, can also suffer from end effects, which are 

related to extending the data beyond the available range, e.g. by predicting 

the missing data based on the available points. Fortunately, these end 

effects, stemming from HT's roots in the Fourier Transform, are considered 

relatively easy to deal with. 

 

Computational Implementation 
 
Turning to practical, computational implementation, in the R programming 

environment the package seewave can be used to compute the analytical 

signal. Seewave was designed for sound analysis and synthesis and can 

determine the analytic signal of a time wave as a complex matrix through the 

HT, which constitutes the imaginary part of this matrix (Sueur et al. 2008). 

The function ifreq can be utilized to obtain the instantaneous frequency and 

phase through HT, while the function env returns the absolute or Hilbert 

amplitude envelope of a time wave. An example can be seen in Figure 15, 

where a dampened perfect sine wave was computed, and in accordance to 

experiments readings are once per hour.  
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FIGURE 15 Dampened Sine Wave 
A dampened sine wave was computed using the relationship , where A is the 
amplitude, k the decay constant and f the frequency. The time runs between 0 and 360 hours, with one data point 
every hour; Parameters used were A=750, decay=0.005. Results of HT: A=734.9663, decay=0.004873855 , 
Std.Error=5.828887e-05. 
Top: Computed sine wave and envelope, Bottom: Linear regression of the logarithm of the envelope. 
 
 

As a next step, it is envisioned to code a function in Matlab, that can be used 

to collect a set of summary statistics by leveraging the HT. This endeavour is 

much facilitated by that fact, that the program possesses an inbuilt function 

hilbert that “computes the so-called discrete-time analytic signal X = Xr + i*Xi 

such that Xi is the Hilbert transform of Xr”, by utilizing the fast Fourier 

transform (FFT). Specifically, when the FFT is applied to an original signal, 

all elements with frequency corresponding to −π < ω < 0 are set to zero, and 

finally the inverse FFT is calculated, but the function also has the capacity to 

add zero-padding or to truncate as appropriate. In this way, a complex helical 

sequence, namely the analytic signal, is returned from the real data with an 

imaginary part exhibiting a 90° phase shift. Of course, the amplitude and 

frequency content is identical to the original sequence, and the included 

phase information depends on the original signal's phase, permitting an easy 

reading of the instantaneous attributes of the time series. Here, it holds true 

as described above that the instantaneous amplitude corresponds simply to 



120 
 

the amplitude of the Hilbert transform, while the instantaneous frequency is 

the gradient of the change in instantaneous phase angle. 

In the practical implementation of the code, the entirety of which can be 

found in the appendix, the function hilbert is applied to the data set of 

interest, before the results are sorted into their respective real and imaginary 

components. Maxima are located by determining the points, and their 

corresponding time values, just before and after the imaginary component 

moves from a negative to a positive value. The zero-crossing itself is then 

approximated by finding a point between the last negative and first positive 

point in such a way, as to lie between them proportionally to their respective 

modulus, that is the magnitude of their deviation from zero. Once the first 

and last value of each set are discarded in order to minimize edge effects, 

periods are determined by simply computing the time difference between 

consecutive maxima points. In order to determine trough-to-peak values over 

a period, real values are called back for the points just before and after the 

imaginary zero-crossing, and the real value exactly at the zero-crossing is 

approximated by first determining a real value between the preceding and 

following one as proportional to their time difference. It is then assumed, 

somewhat simplistically of course, that the real maximum value would 

exceed the higher of the two bordering values by as much, as the calculated 

midpoint lies below them. It is considered that even if this procedure would 

yield unintuitive results in some specific scenarios, such as for a midpoint 

exactly equidistant between two identically valued bordering points, the 

approximation should prove useful overall, with any errors being minimized 

by opting for a high time resolution. Of course the same procedure as 

described above can also easily be applied to calculating minima and their 

respective real values, one of the main differences being that the imaginary 

data component is scanned for positive values crossing over to negative 

values. The amplitude, in the sense of a trough-to-peak difference, can then 

easily be found by considering the difference between maxima and minima 

real values. It can be noted, that the procedure purposefully does not specify 

whether the reference period would start with a maximum or a minimum; it is 

proposed that such a prescription would not only be arbitrary, but also better 

controlled by selecting appropriate recording and experimental stimulation 



121 
 

and simulation timings. Moreover, a segment is included to determine 

relative phases of different graphs, by first determining the maxima timing 

relative to the underlying period, and then the time differences in between 

the maxima of different traces. This values is further adjusted to safeguard it 

not exceeding half a period. Finally, a set of optional, automated graphical 

outputs is defined, including a plot of the maxima and minima on the complex 

HT, the instantaneous phase values over the last period, or a histogram of 

the period distribution.  

 

2.3.2 Period Calculations 
 
Initial runs using simulated data point to accurate summary statistic 

aggregation using the procedure described above. However, given the 

importance of estimating period timings from time-course data for inferring 

the underlying properties of the cyclical biological functions they are collected 

from, such as the circadian signal, and further factoring in the asymmetric 

and noisy scenarios frequently encountered in organisms, it is not surprising 

that an entire range of very sophisticated techniques has been developed in 

this field. For instance, periodic gene expression profiles in circadian clock 

related studies are frequently approximated using additive sine and cosine 

functions within a Fourier approximation context (Levine et al. 2002), such as 

the widely used Fast Fourier Transform Non-linear Least Squares (FFT-

NLLS) method put forward by Plautz in 1997 (Plautz et al. 1997). Upon 

noting that circadian time series robustly produce a clear dominant spectral 

peak over a wide set of common conditions, various methodologies based on 

spectrum respampling (SR) techniques have also been developed, which 

have been shown as more robust to non-sinusoidal and noisy cycles than 

commonly used Fourier approximations, while also allowing the treatment of 

period estimates with different variances (Costa et al. 2013). Here, the use of 

bootstrap can play a pivotal role in shaping the spectral analysis, generating 

information on the distribution of an estimator through repeated resampling 

steps drawing from the original sample of values. As the desired estimate is 

calculated each time, the procedure gives rise to a set of estimates, which 

can be utilized as the basis of a point estimate and of corresponding 
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confidence intervals. Specifically, it has been described how a consistent 

estimator can be obtained based on a smoothing parameter built into a 

kernel spectrum estimate. Further processing including a regression step on 

a set of residuals, and the generation of periodogram values through the use 

of yet another kernel estimate and specific smoothing parameter. The 

bootstrap periodogram can ultimately employed to arrive at the final 

bootstrap estimate, with all smoothing parameters acting in concert to control 

the bias and variance at this step. Accordingly, there values are generally 

chosen to minimize an appropriately defined mean square error estimator. 

This particular SR methodology would require a minimum of two completely 

recorded cycles to work on, but the improved estimator for the period has 

been shown to outperform the popular FFT-NLLS routine, while also allowing 

for a simple oscillation fit through the use of linear least squares.  

 

Hilbert-Huang Transform 
 
Yet another spectral analysis method that has seen much interest was first 

proposed by Huang and colleagues in 1998, and designated by NASA as the 

Hilbert–Huang transform (HHT). Here, a signal is decomposed by empirical 

mode decomposition (EMD) into so-called intrinsic mode functions (IMF) with 

a trend, and importantly HHT works not only well for data exhibiting 

nonstationary and nonlinear properties, but moreover preserves many 

important characteristics of the original signal, and specifically its varying 

frequency. This latter property stems from a decomposition in the time 

domain, with the length of the original signal and IMF being identical, and 

constitutes a marked advantage when dealing with signals containing causes 

in different time intervals. In many ways, the core of HHT consists of the 

EMD, a highly efficient and adaptive approach to break the signal down 

according to local characteristic time scales of the data. While the concept of 

decomposition is shared with more theoretical approaches, such as Fourier 

transform, the EMD is, unsurprisingly, more empirical in nature, and 

complicated data sets can be readily separated into a complete and nearly 

orthogonal basis of a finite, and often even small, number of components. 

These are the IMFs, which are characterized by the local maxima and 
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minima defined envelopes being symmetrical, and the mean of those 

envelopes consequently reducing to zero. Furthermore, the number of zero-

crossings and extrema must be the same, or at the very least not differ by 

more than one, and the IMF thus represents a simple oscillatory mode as a 

counterpart to a simple harmonic function. Having obtained the IMFs, Hilbert 

spectral analysis can be applied to each of them, revealing its instantaneous 

frequency as a function of time, ultimately resulting in a Hilbert spectrum, that 

is frequency-time distribution of signal amplitude (Cong et al. 2009). In 

addition to defining frequency as a function of time by differentiation rather 

than convolution analysis, HHT also stands out by not imposing a priori 

assumption on the data. Notably, subjecting the IMFs to the Hilbert transform 

also enables sharp identification of imbedded structures, and so the HHT has 

been applied in disciplines ranging from correction of satellite data, over 

speech analysis and speaker identification, to machine health monitoring. 

 

2.3.3 Wavelet Transform 
 
One other family of analysis techniques that acts by decomposition, but is 

distinct from the group of Hilbert transforms, relies on wavelets. A wavelet is 

usually defined as a brief oscillation originating and ending at zero, and 

based on the ability to purposefully craft various wavelets, they have found 

widespread adoption in signal processing. Notably, wavelets can be 

combined through the technique of convolution with portions of a signal in 

order to extract information. A well-known subtype is the Morlet wavelet, 

traced back to the Hungarian-British electrical engineer and physicist, Dennis 

Gabor, further famous for inventing holography, who pioneered in 1946 the 

use of Gaussian-windowed sinusoids for time-frequency decomposition as 

part of the Gabor transform, essentially a type of short-time Fourier 

transform. Specifically, the wavelet consists of a complex exponential as the 

carrier, which is multiplied by a Gaussian window as the envelope. The 

concept rose to renewed prominence when, in 1984, the French geophysicist 

Jean Morlet introduced Gabor's concepts to the field of seismology, 

developing with others a format of maintaining the same wavelet shape over 

equal octave intervals, now better known as the continuous wavelet 
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transform. It has since been found that the Morlet wave holds special 

relevance for the field of human perception, but also for music transcription 

surpassing the Fourier transform, or for electrocardiogram (ECG) analysis to 

discriminate abnormal heartbeats. However, it should be noted that the 

wavelet exists not only as purely real-valued, but also as a complex version, 

sometimes referred to as "Morlet wavelet" and "Gabor wavelet", respectively, 

but more commonly known simply as real and complex Morlet. Following on 

from this distinction, the complex wavelet transform (CWT) was derived as a 

complex-valued extension to the initial discrete wavelet transform (DWT). 

The popular use of complex wavelet transforms dates back to 1995, when 

they were introduced to image processing by J.M. Lina and L. Gagnon, and 

the two-dimensional CWT is noted for its sparse representation, multi-

resolution, and structural image characterization. While a drawback includes 

significantly increased, dimension dependant redundancy when compared to 

the DWT, its many advantages have earned it a prominent role in, for 

instance, computer vision, where the CWT is noted for the ability to elucidate 

precise features of candidate regions, facilitating accurate recognition of 

smaller target objects. However, the underlying techniques are of course 

useful in a multitude of other settings, including prominently data sets 

displaying suggestively periodic behaviour, especially when combined with a 

period, amplitude, or mean that are varying over time. This sort of variation 

can introduce significant inaccuracies to standard Fourier analysis 

techniques, considering that signal stationary and an unbounded basis 

function are generally assumed here, but are handled much more confidently 

by wavelets, which are themselves localized in time and frequency. This 

property permits, in turn, to localize the analysis and thus follow changing 

signal properties over time, and wavelets have consequently employed for 

not only studying sunspot cycles (Krivova & Solanki 2002), ecological time 

series (Cazelles et al. 2008), blood-flow dynamics and ECG readings 

(Addison 2005), but also in studying circadian systems (Meeker et al. 2011). 

Notably, circadian contexts are prone to a variety of attributes, such as 

variable period length, sharp transients, and phase shifts (Herzog et al. 

2004), in addition to experimental artefacts including loss of amplitude, 

shifting means, and noise introduced by bioluminescence, all of which can 
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complicate traditional signal analysis. It has been described before, how 

extensive pre-processing and detrending are widely employed to combat 

these hurdles (Levine et al. 2002), but the inherent properties of wavelet 

analysis, and namely their treatment of nonstationary oscillators that can 

bypass many of the problems inherent to techniques assuming stationarity, 

would also appear to hold great potential for the analysis of circadian data.  

 

Continuous vs Discrete Transforms 
 
Indeed, both CWT and DWT present themselves for interesting, albeit 

differing depending on their respective qualities, uses in this setting. While 

the DWT is sometimes criticized for its coarse time-frequency decomposition, 

it has been proven competent of reconstructing a signal and of permitting 

statistical testing, earning it a role in a range of signal-processing tasks, 

including denoising, detrending, decomposing the signal into different bands 

of wavelengths, or also discarding or shrinking the coefficients associated 

with those bands. Specifically, the discrete version, also known as 

Daubechies, of the wavelet transform allows analysing a signal on a multi-

scale level, with a sequence of compactly supported filters used to 

decompose the signal into a defined set of component frequency bands 

(Daubechies 1992). The frequency estimates are less precise than with the 

CWT method, but different frequency bands can be readily subjected to 

statistical significance testing, and strictly time-limited transients can be 

efficiently removed due to better time localization properties. As signal 

reconstruction in DWT can also preserve the mean of the signal, it can also 

be utilized easily as pre-processing step for further, non-wavelet analyses. 

The CWT, on the other hand, would struggle with many of these processing 

functions, but its roots as a modification of the windowed Fourier transform, 

which adjusts the boundaries of the window to a constant number of 

wavelengths for any analysis frequency, afford it a notable frequency 

detection across a wide spectrum of periods, and let it shine at examining 

local features (Harang et al. 2012). Specifically, it has been noted that its 

precise decomposition along the time and frequency domain permits very 

close tracking of key statistics, even if the signal cannot be efficiently 
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reassembled from the individual components. Specifically, the CWT is able 

to nonparametrically denoise, detrend, and analyze local frequency content 

of a signal within a single operation (Baggs et al. 2009), and further permits 

an array of applications, including the estimation of signal period and phase 

evolution across time, localization of peaks and troughs even under 

conditions of high levels of noise, recording the evolution of amplitude over 

time, and even the possible identification of multiple simultaneous oscillators. 

 

Existing Computational Implementations 
 
Considering practical software applications of the wavelet transform, while 

disregarding proprietary iterations specialized for commercial audio or picture 

processing such as WaveLab, a well-known example includes the 

WAVECLOCK implementation of the Morlet CWT in the R statistical 

programming environment. While it has been a component of several 

investigations (Etchegaray et al. 2010), its use naturally depends intimately 

on the R language and command-line interface. Other solutions natively 

implemented in the MATLAB environment include a dedicated Wavelet 

Toolkit, or also a program under the name of WAVOS, which was specifically 

optimized for use in circadian rhythm analysis. Ultimately, it is deemed 

worthwhile to code a wavelet analysis tool specifically for this project, thus 

allowing a seamless and potentially automated integration with other 

software components. However, there are several useful elements found in 

open license projects that can be integrated here, and while most have been 

extensively modified, optimized, or expanded, credit is given specifically to 

the WAVOS package (Harang et al. 2012), the "crazy climber" method for 

ridge detection (Carmona et al. 1999), and several smaller code fragments 

by Didier Gonze. The full code of the wavelet transform tool can be found in 

the appendix, but the most important functions are summarized as follows.  

 

Adaptation of the Algorithm 
 
Following some general definitions and other housekeeping functions, as 

well as the optional addition of zeros to "pad" the data and reduce edge 
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effect, starting and stopping scales are manually or automatically defined. 

Following on from this, the Fast Fourier Transform (FFT) is applied to each 

trace before, considering each scale separately, the FFT data is multiplied 

element-by-element to a function defining the Morlet wavelet, depending 

mainly on the current scale and adjusted index for FFT frequencies, and 

finally the Inverse FFT is applied to the resulting product. After removing 

possible zero-padding at this point and re-aligning the newly transformed 

data to norm, result arrays are populated and passed on to second sub-

function for ridge detection. After determining whether or not to exclude 

edges, a trade-off that reduces possible distortions at the edges by applying 

a mask obscuring part of the data, before passing it on to one of two 

methods for ridge detection, with one being simulated annealing based and 

the other utilizing the crazy climber methodology. Both are capable of 

handling multiple ridge selection and local maxima, and are essentially 

derived from Markov-Chain Monte-Carlo (MCMC). This methodology 

combines two important ideas in computational simulations, the first one 

being Monte Carlo methods, named after a city famous for its casinos and 

gambling, which draw on random sampling in order to obtain numerical 

results particularly for systems with high uncertainty or several degrees of 

freedom. A Markov-Chain, on the other hand, describes a movement through 

state space that is characterized by the "memory-less" Markov property, 

namely that the probability distribution of the next state depends purely on 

the current state, while disregarding the sequence of events and previous 

states leading up to it. MCMC consequently refers to a class of algorithms 

that effect sampling a probability distribution by constructing a Markov chain 

with a specific equilibrium distribution, i.e. a stationary distribution the chain 

will converge on over time irrespective of its starting point. MCMC 

applications are very useful for numerical approximation and detection of 

rare events, particularly in complex systems, and a very common 

implementation are random walks. Here, different points are consecutively 

selected by a walker and added to the integral, depending on which tentative 

next step holds a reasonably high contribution for moving forward. The 

sample is consequently shaped by the evolution of the chain's state, and not 

surprisingly, the quality tends to improve with the number of steps. 
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Obtaining Maxima and Other Properties 
 
Of the two ridge detection methods, the simulated annealing aims to 

minimize a penalty function, in this case with smoothness parameters 

constructed to remain proportional, while the crazy climber instead generates 

weighted occupation densities to draw the ridges. Specifically, a random 

walk would be initiated on the time-frequency plane, but in such a way that 

the walker is attracted to the ridges of the hills, a quality that also inspired the 

tongue-in-cheek name "crazy climber". Moreover, while the movement of the 

walker is never prematurely stopped or restricted, the affinity for approaching 

the ridges is controlled by a temperature, which is in turn modulated by a 

cooling schedule and thus permits to gradually map out a more complete 

topology and lesser ridges. It is generally observed that the crazy climber 

can be more sensitive towards detecting ridges in more complicated 

scenarios of high noise levels and multiple ridges, but in turn also requires 

significantly more computation time. In any case, as the next step under both 

methods the difference between neighbouring values is calculated, and the 

point where the sign of the differences changes is identified as a turning 

point. It is also at this step that maximum values can be specified as cut-offs, 

an option that allows for discriminating local maxima. More background 

information and a general descriptions of the different ridge detection 

algorithms is also available in book form (Carmona et al. 1998). In any case, 

once the desired maxima have been identified in the CWT, it is a trivial 

matter to read out a number of associated properties, such as a table of 

wavelengths, periods, phases, and amplitudes. Finally, an additional step is 

also implemented to read out and record various points of interest, such as 

zero crossings, from the list of phases observed. While the summarized 

characteristics may be readily inspected in a table format at this point, there 

is also an additional sub function included to support improved accessibility 

through visualization. Here, a range of properties, specifically period, peak-

to-trough, and phase, may be plotted relative to the data, while a second 

group of characteristics, including the CWT, ridges, and phases, can also be 

represented as a heat map. 
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Results of simulated runs attest high plausibility and reliability to the CWT 

function implemented here, when considered from an intuitive angle or a 

priori information, as well as when compared to the simpler HT function 

described earlier. Nevertheless, it is conceded that there is always room for 

improvement, especially in the rapidly changing field of signal analysis. For 

instance, a study on the interpretation of QRS complex characteristics in the 

context of processing ECG signals looked at R wave identification using 

Hilbert methods, wavelet transforms, and adaptive thresholding. Rather than 

seeing any one of these different approaches emerge as clearly superior, it is 

actually found that a combination of employing these techniques significantly 

outperforms other techniques quantitatively and qualitatively (Rabbani et al. 

2011).      

 

2.3.4 Oscillator Quantification 
 
Having described different approaches and implementations of analysing 

biological and simulated signals, it should be warranted to explain briefly 

some of the key characteristics thusly extracted.  

 

Amplitude 
 
In physiological and molecular studies, phase and period have traditionally 

been considered to be the most reliable indicators of pacemaker action, but 

in the modeling of circadian oscillations the importance of amplitude has 

been equally appreciated, also due its role in photoperiodic induction. 

Specifically, the amplitude of a rhythm can give an indication of oscillatory 

strength, although it is also a reflection of the output pathway characteristics, 

including transients, masking, and other amplitude effects. The amplitude 

could, for example, be the difference between the peak and trough 

bioluminescence CPS readings. However, it should be noted that differences 

in oscillatory amplitude in cell cultures can be due to a number of reasons, 

including cell lines, cell density and biological variation. Consequently, it may 

be more accurate to consider relative amplitude, for example compared to an 

LD cycle. Also, in the case of population studies the amplitude of individual 
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oscillators can still not be accurately discriminated, and even only estimated 

when reliable numbers on population counts are available. In summary, 

quantifying the amplitude of the bioluminescence rhythms as a gauge of the 

amplitude of the underlying oscillator may contribute important information 

for modeling, and serve as a useful benchmark for simulation runs, 

especially when recreating the effect of light stimulation. 

 

Dampening 
 
There has been evidence in several species that rhythms of cells in culture in 

constant conditions decay not due to a dampening of amplitudes in individual 

oscillators, but due to increasing desynchronization among these individual 

oscillators. While asynchronous individual cells still have high amplitude 

rhythms, their peaks are at different times, to the point that the average 

dampens to a flat signal. Therefore, differences in oscillatory amplitude 

elicited by different treatments would be a reflection of the phase-shifting and 

coordinating efficacy of these various treatments, and capturing this dynamic 

should be an important feature of at least any circadian model investigating 

synchronization effects. Beyond the basic occurrence of dampening, relative 

levels might also serve as valuable indicative pointers, even if absolute levels 

may be difficult to pinpoint accurately, also in light of their possible 

entanglement with experimental artefacts and other trends. 

 

Period and Frequency 
 
Period and frequency are intimately related by the equation T=1/f, and it has 

been noted how the instantaneous frequency, and thus period, can be 

determined using the HT, CWT, or a host of related techniques. Not 

surprisingly, the period is often considered the most integral part of an 

oscillating or otherwise periodic system, and the one most frequently cited as 

a reference point. Indeed, in the simulation environment checking for a 

regular period within plausible parameters can often be a decisive first step 

in establishing the occurrence of stable oscillation for a given equation or set 

of parameters. In the case of comparing simulated with biological periods, it 
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should be noted that, while well entrained rhythms should have the same 

period as the entrainment signal, free-running rhythms will occur at their own 

distinct period, often subject to significantly higher levels of variability. 

 

Phase and Form of Oscillations 
 
The instantaneous phase can once again be determined using an array of 

signal transforms. Importantly, the evolution of the phase can allow 

significant and quantifiable insights into the shape of a trace, and in the case 

of a sine wave for instance, the phase changes at a constant rate. However, 

if the shape of the oscillation is not exactly sinusoidal, as is often the norm in 

practical settings and especially physiological contexts, this rate of change of 

phase will not be constant, and thus a lot more complicated to describe. 

Here, the specific shape or form of oscillations can be visualized either in a 

plot of time evolution or the phase trajectory in a phase plot. Considering the 

most important broad categories commonly used, clock components may 

oscillate with sinusoidal, spiky, or square-wave form and the rise and decline 

may furthermore not be symmetric. Moreover, the plateaus of peak and 

trough may also differ in broadness, additionally complicating matters. 

Nevertheless, these factors may hold important clues to the underlying 

regulation, and as often as subtle differences may be the result of 

stochasticity or experimental inaccuracy, they may also hold the key to 

understanding critical mechanisms. 

 

2.4 Analyzing and Capturing Underlying Dynamics   

2.4.1 Biological Findings to be Integrated into the Model 
 
As it comes to summarizing the analysis of the experimental data, an entire 

array of observations can be noted. Firstly, the molecular basis of the 

circadian clock has been described before in some detail, regarding both 

elements generally conserved over a range of species and those pathways 

that are specific to the zebrafish model organism. Without a doubt, the 

interactions, negative feedback loops, and other network motifs constituted 

by this genetic basis should serve as the foundation and cornerstone of any 
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modeling implementation developed here, as they have for the initial model 

presented earlier in this text. However, there also falls critical importance to 

filling this framework with the animating details of parameterization. 

Specifically, the experimental data reported here and elsewhere can provide 

insights on minute behaviour to either integrate directly into the model 

architecture, or alternatively to benchmark simulated results against. The first 

number habitually considered in such an array of summary statistics would 

be the period. The value extracted via the different signal transform functions 

from the data measured in the light pulse experiments is 24.6h, close to the 

25h commonly cited in literature for oscillations in DD, especially when 

considering that the strong dampening observed due to the experimental 

framework may also lead to a growing instability in period timings. Regarding 

the amplitude, it has been noted that is remains difficult due to a host of 

factors to work with absolute numbers here, and so it is merely considered 

useful at this time to potentially include minimum cut-off numbers with the 

purpose of discriminating strong and viable oscillating patterns. More 

interesting appear the phase relationships between the different molecular 

species, i.e. the exact time points and relative temporal differences observed 

for their maximum and minimum concentrations. The values measured here 

are consistently close to ZT0, with any small differences likely attributed to 

the practical setup, involving cells in constant condition suddenly exposed to 

light pulses, which could inherently introduce deviations. Alternatively, 

possible light contaminations during experimental setup might already be 

sufficient to cause small shifts in relative phase. In any case, it is likely 

advisable to consider different characteristics in a somewhat hierarchical 

fashion. Of course a perfect model might be expected to perfectly mirror all 

aspects observed in vivo, but both the simplification necessarily inherent to 

most workable models, as well as the challenge of shaping model evolution 

and parameter selection step by step may signify easily, that accounting of a 

narrowed set of key statistics may be preferable at this point.  

 
 
 
 



133 
 

How Light Stimulation Modulates the Circadian Clock's Oscillations 
 
One of the points that stands out strongly with regard to basic model 

features, however, is the strong stimulation exerted by even the shortest and 

least intense light pulses triggered in the experiments. While this observation 

may straightforwardly point to the relatively strong effect of light stimulation, it 

is more confusing to note how biological response appeared only 

proportional to light intensity across either one of the durations, but not total 

light exposure across different light pulse durations. The effect is too 

pronounced, with the response being nearly three times stronger than 

expected by comparison, to be simply attributed to differences in relative 

amplitude, and so a first impulse may be to suggest that the cell populations 

may be limited in the amount of light they can process per second. As such, 

they would be able to make better use of the same total amount of photon 

exposure spread out over a longer duration. However, this explanation falls 

short of explaining, why no plateau is observed in the response to even 

much higher intensities, by orders of magnitude, of light stimulation. A 

second possible explanation may come in the form of the phase response 

curve, meaning that the responsiveness to light changes over the course of 

the circadian cycle. Following on from this, the stronger oscillations resulting 

from longer, but less intense light cues may signify, that the cell populations 

become increasingly more sensitive to light as the period proceeds. Of 

course, implementing experiments with an even greater variation in light 

pulse duration may provide valuable insights in this regard. 

There is a host of other information conveyed in other experimental reports, 

the circadian clock being of course an area of intense interest, however two 

observations stand out in particular as regards the basic behaviour of the 

model. The first refers to the characteristic shape of the oscillations under a 

LD cycle, and namely the fact that particular reactant concentrations appear 

to change already before the onset of light. A likely explanation would be that 

these trends are owed to the momentum arising from the previous cycle, 

which would also see oscillations continue, although dampening, for 

considerable time in constant darkness. However, once the light input is 

activated, the gradient of the molecular oscillation increases markedly, 
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resulting in a very characteristic transition at the onset of the cycle. It is 

further estimated from data, that oscillations in the presence of an 

appropriate light source reach more than twice the amplitude observed in the 

first few cycles of constant darkness.  The second fundamental observation, 

which was also previously mentioned, lies in the insight from single cell data 

that individual oscillations continue under constant conditions without the 

amplitude being significantly decaying, but with much increased variability in 

the periods recorded. Clearly, this finding points strongly to both signal 

dampening and entrainment as potentially driven by de- and 

resynchronization effects of an inherently stochastic cell population. It is 

considered a central objective of the modeling efforts going forward to 

replicate these possible dynamics. 

 

2.4.2 Analyzing Underlying Model Dynamics 

Sensitivity Analysis 
 
The two different signal transforms discussed above, namely the Hilbert 

Transform and Morlet Continuous Wavelet Transform, are not only suitable 

for extracting key metrics from the experimental data, but can also be readily 

employed to automatically analyze simulation outputs, thus also 

safeguarding that both kinds of data can be subjected to the same 

methodology for comparing their summary statistics. In order to smoothly 

integrate this capability, the clock model previously implemented in the 

Mathematica software environment was transferred to MATLAB. Here, the 

same set of differential equations described earlier is defined as a local 

function, and passed to the command ode45. Although MATLAB boasts an 

array of different numerical solvers, the medium order method ode45 is one 

of the most widely used iterations in the context of nonstiff differential 

equations, and was constructed as a variable-step solver based on an 

explicit Runge-Kutta formula referred to as the Dormand-Prince pair 

(Dormand & Prince 1980). Its general syntax, ode45(odefun, tspan, y0), 

involves primarily the function handle odefun of the system to be integrated, 

the integration time span tspan usually defined by its starting and end time, 

and finally the set of initial condition y0. However, here an alternative syntax 
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is employed where the differential system is passed indirectly as an 

anonymous function, which not only permits routing through an intermediary 

nested function that defines the time sensitive light input, but moreover also 

allows for the passing of a multitude of additional function parameters. 

Moreover, additional analysis functions are implemented to easily, and 

relatively quickly, visualize and explore further phenotypic aspects and 

behavioural dynamics of the model iterations run in the simulation 

environment. It should be noted, however, that unlike the previous tools, this 

set is restricted to pure in silico application and unsuitable for analyzing 

biological data, as the functions work by directly manipulating inputs. In that 

sense, they are not analyzing existing data, but rather generating novel, 

complementary output through a series of pre-scripted virtual experimental 

runs. Firstly, a simple tool for sensitivity analysis is coded, which is a 

technique linking uncertainty in the output of a mathematical model to 

uncertainty contained in its inputs, and which can be utilized to test the 

system's robustness, to weigh relationships between input and output 

variables, or to generally scan the model for aspects featuring uncertainty, 

needless complexity, or downright errors. Using an example from the 

economic sphere, where sensitivity analysis is widely employed, it could be 

investigated which one of a list of potentially changing factors, such as 

production costs, taxes, or pricing of logistic partners, would have the biggest 

impact on overall profitability. In simple cases these deductions may appear 

rather intuitive, but more complex model systems, featuring different layers 

and multiple variables, can often act like a "black box", that is they generate 

output that is only opaquely related to the inputs. In the specific context of 

this project, the method of sensitivity analysis is considered valuable for 

delineating which parameters have an especially prominent effect on the 

model system, as observed from summary statistics. 

Moving on to the practical implementation, the basic differential equation 

system was first enriched with the capacity to accept an override for any of 

its parameter values from outside the function. As the appropriate command 

for the sensitivity analysis is triggered, a first simulation is carried out with the 

parameters as given, and summary statistics are retrieved through an 

externally linked HT function. In the next step, a regime for varying every 
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parameter individually by a certain percentage increase or decrease is 

defined, either manually or automatically, and applied to one parameter at a 

time. Importantly, each time a parameter is updated in this fashion, a new 

test simulation is initiated and summary statistics are once again extracted 

by the HT and stored in a central array, before the parameter under 

investigation is reset, and the procedure moves on to the next one. Once the 

function has calculated results for all parameters and all entries in the 

variation table, results may either be inspected in table format, but are also 

output to a bar graph, plotting relative change in amplitude and period 

relative to the percentage change in each parameter. A sample output can 

be seen in Figure 16. One of the strong points of this procedure lies in the 

capacity to easily compare the robustness of the different parameters, 

picking out in particular the ones, the changes of which have either very 

drastic or almost no effects on the selected summary statistics. Finally, it 

should be mentioned, that for ease of use and visualization all relative 

changes are calculated for a single molecular species, by default the first one 

in the list, over a standard time window of 240 units, but both these values 

can be easily adjusted over the function parameters. 

 

Bifurcation Analysis 
 
A second tool closely related to the sensitivity analysis, and one moreover 

relatively easy to implement once the necessary modification for the former 

are introduced to the code, is a bifurcation analysis function. It has been 

described in a previous chapter in some detail how topological changes in a 

group of vector fields, integral curves, or solutions to differential equation can 

be studied by bifurcation theory, allowing insights specifically into the often 

seemingly erratic behaviour of dynamical system. The underlying principle of 

its practical implementation bears much resemblance to the sensitivity 

function discussed above, but a pivotal difference lies in the fact that here 

only one parameter is investigated at a time, but in return at a much greater 

resolution. After all, the objective is not so much to determine and compare 

the respective system relevance of the various parameters, but rather to 

scan for small changes in the bifurcation parameter leading to sudden leaps 
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in the system's behaviour. In order to facilitate this objective practically, a 

range of values is either manually defined or by default set to run from 0 to 2 

in increments of 0.01, to be cycled for the parameter to be investigated, 

which can itself be selected when calling the function. Subsequently, each 

value in the test range is in turn passed to the system of differential 

equations to fill in for the bifurcation parameter, and each time a test 

simulation is carried out at the length and time resolution specified. Once the 

simulation data is generated and stored in a temporary array for processing, 

one of the variable traces, which can once again be freely selected, is sorted 

for simple, that is including those of the local variety, maxima and minima. 

The entire range of values specified is cycled through, and subsequently 

both minimum values and maximum values are plotted against the tested 

range of the bifurcation parameter, as illustrated in Figure 17. Specifically the 

relationship of the maxima to the minima lines is noteworthy here, namely if 

the lines coincide it can be assumed that there is only stationary value for the 

reactant concentration, which would indicate an inactive system. On the 

other hand, if distinct maximum and minimum concentration are recorded 

within the same simulation run, these can usually be taken as strong 

indicators of oscillating behaviour, especially as the function includes a sub 

function for initial value normalization. In this manner, the bifurcation analysis 

can provide an accessible representation of the minimum parameter value at 

which oscillating behaviour is initiated, the maximum value at which it cedes, 

and the point where maximum amplitude is realized, all embedded into a 

visualization of the overall, for practical purposes nearly continuous dynamic 

behaviour. Therefore, the information gleaned here can be a valuable 

contribution to the effort of parameter selection, even if it should be 

remembered that considering only one parameter at a time will inherently 

constitute a great simplification of the underlying inter-parameter dynamics. 
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FIGURE 16 SAMPLE SENSITIVITY ANALYSIS OUTPUT 

 

FIGURE 17 SAMPLE BIFURCATION ANALYSIS OUTPUT 
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Phase Response Curve 
 
The next function to be introduced to the simulation environment is a phase 

response curve generator, which can induce perturbations at different 

phases of an oscillation period and illustrate the transient variation in 

subsequent cycles resulting from this. It has been described before how 

PRCs are popularly constructed for biological settings, including heartbeats, 

neuronal firing, but also and especially circadian rhythms, and they usually 

take the form of a plot of the subject's endogenous day along one axis 

versus the phase shift evoked by a stimulus on the other. In this manner they 

may for example be used to display how exposing subjects to light therapy or 

doses of the hormone melatonin may shift sleeping patterns, notably pointing 

to different effects depending on the precise time of administration. Staying 

with the example introduced above, exposing a test subject to light close to 

the personal regular bedtime would lead to a phase delay, with the delaying 

effect increasing in strength relative to light intensity, but also over the 

progression of the evening. However, as the body temperature nadir is 

observed after around five hours of sleep, the effect of light stimulation 

suddenly switches from phase delay to a strong phase advance. In the 

context of this project, an automated PRC function can be used to easily 

examine the response of the model system to light stimuli over the course of 

a circadian cycle, thus allowing insights into its inherent light response 

behaviour as relating in particular to a possibly synchronizing mode of action. 

Turning to the practical coding steps, once again a simulation under standard 

conditions if first run as a benchmark, recording in particular the last two 

maxima and the time difference between them. Now, a series of additional 

simulations is performed featuring freely adjustable light pulse exposure at 

different points, specifically by default fifty individual points distributed equally 

over the course of one period, as established in the initial benchmarking run. 

In each case the maximum is detected and the time difference, or phase 

shift, to the reference maximum is calculated, and once all specified points 

have been run these shift values are plotted over the course of a period. In 

addition, it is also possible to plot any selection of the individual curves 

following light stimulation, so as to compare and contrast the different effects 
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from a different, and more complete angle. It should also be noted here that 

in order to faithfully pick up the differences in the system's reaction between 

the finely scaled individual points, the time intervals should not be set too 

coarsely, and without manual override they default to 0.1 of a time unit. A 

sample plot produced by the PRC function can be seen in Figure 18, where it 

can be noted how the phase shifts fluctuate, and indeed change direction, 

over the course of the period. This result demonstrates that an important 

quality of the circadian clock is already contained within the model, but of 

course even relatively small shifts to this behaviour may still have the 

potential to decidedly vary the system's behaviour in relation to light 

stimulation. 

FIGURE 18 SAMPLE PRC OUTPUT 

 

Visual Feedback Functions 
 
Finally, a range of less conspicuous visualization options was added to the 

modeling environment, each of which, while not producing dramatic new 

insights in their own right, can help clarify and bring to attention the output 

already generated. For instance, a bar is added on the x-axis to display the 

presence of light and dark periods over the simulation time, marking the 

former with a light and the latter with a black box, which serves the obvious 

benefit of providing a reference frame to view the model output against, 
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especially as it replicated various light regimes. Subsequently, a second, 

separate function was added to plot light input next to the other equation 

variables, adding additional value in a number of ways. Firstly, the inherent 

redundancy of displaying the light input in two only marginally related ways 

helped to uncover several discrepancies with the light input function during 

early test runs, secondly the light plot has the capacity to represent different 

relative light intensity levels, while the light/dark bar is easier to read on a 

larger scale, and finally both methods of representing light cues could also 

be appropriated differently, for example showing single light pulses affecting 

a population entrained, and marked, to a 24 hour light/dark background 

rhythm. Another visualization aid that was carefully implemented is a "zoom" 

function, allowing to close in on a specific section of the graphical output, the 

precise start and size of which can be freely specified. This functionality can 

help to combine a macro overview of a long simulation run with a more 

detailed window, showing for instance with much greater resolution phase 

relationships at a specific point in time, or permitting to compare shapes of 

the oscillator curve near the beginning and end of the run. Several more 

functions are included, helping for example to display individual and 

aggregated stochastic simulation runs, and all of these can be found in the 

annotated code. 

 

2.4.3 Further Extensions to the Model 
 
A range of further noteworthy additions is implemented for the model and the 

wider simulation environment, including an initial value correction regime, 

and more notably, a parameter generation algorithm based on the sequential 

Monte Carlo concept described in recent literature (Toni et al. 2009). Another 

important addition consists of the integration of an SDE solver, allowing to 

transform the deterministic system into a stochastic one. Subsequently, 

multiple simulation runs are aggregated to replicate a population level view, 

with the results found to introduce a remarkable instance of emergent 

behaviour, or in other words with the combined result showing unexpected 

dynamics when compared to the individual traces. 
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3. Materials and Methods 
 

As part of the light pulse experiments carried out as part of this study, a 

period1-luciferase zebrafish cell line was used to monitor gene expression of 

per1, and hence progression of the circadian oscillator. In short, cells from 

the zebrafish embryonic cell line PAC-2 were transfected with a construct 

consisting of part of the zebrafish Per1 (zfper4) regulatory region cloned into 

a luciferase reporter construct. Now the enzyme luciferase is synthesized 

when transcription is activated by the promoter of per1, and this enzyme 

subsequently interacts with the substrate luciferin, which can be added to the 

medium, to release light by the process of bioluminescence. This 

bioluminescence can then be systematically detected and measured as 

counts per seconds (CPS).  

 

3.1 Experimental Conditions 

 
25x103 per1-luciferase cells per well were plated in quadruplicate wells of a 

96-well plate in media containing 0.5 mM beetle luciferin. For each light 

intensity duration (either 15 minutes or 1 hour), test were carried out over a 

range of light intensities, and for each light intensity one separate plate with 

quadruplicate wells was used, with all plates being kept in a dark incubator 

for 5 days before data recording to create a desynchronized population. Light 

pulses were performed either after 24 hours of continuous readings for a 

duration of 15 mins, or after 48 hours of continuous readings for a duration of 

60 mins, and each timing format was repeated with intensities of 0.1, 1, 10, 

and 1000 μW cm-², where a short duration and low intensities were chosen to 

determine what amount of light may be sufficient to cause an effect. The 

wavelength spectrum was 400-700nm, and assuming a mean wavelength of 

520nm, this range of irradiance can be calculated to correspond to a photon 

flux ranging from 0.0043 to 43μmol m-² s-1.  

 
Bioluminescence was monitored on a Packard TopCount NXT scintillation 

counter, and for the administration of light pulses, the plates were taken out 
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of the Packard scintillation counter and kept in a dark chamber until light 

pulsed at the desired intensity. Following the light pulse, the plates were 

returned to the scintillation counter and left in constant darkness for an 

extended period, namely 11 to 12 days, before being exposed to two 

consecutive regular light/dark photoperiods. A control sample was also 

exposed to the same constant darkness, handling (taking out and returning 

to the Packard TopCount NXT scintillation counter for light pulsing) and 

ultimate light/dark cycles, but not subjected to any light pulses.  

 

3.2 Data Processing and Model Simulation 

 
Experimental data were imported into Microsoft Excel 2007 and were further 

analyzed on a MacBook Pro "Core 2 Duo" purchased 2009, featuring a 2.4 

GHz Intel processor with two independent processor cores on a single silicon 

chip, a 3 MB shared on chip level 2 cache, a 1066 MHz frontside bus, 2 GB 

of 1066 MHz DDR3 SDRAM, and a 250 GB Serial ATA (5400 RPM) hard 

drive. 

Wolfram Mathematica 7, consecutively upgraded to Version 10, was utilized 

to create early Oscillator models and Sequential Monte Carlo Algorithms, 

and the precise code can be found in the Appendix. Later versions of the 

Oscillator Model and the SMC Algorithm were implemented in MathWorks 

MatLab R2011b, consecutively upgraded to Version R2014a, and once again 

the code can be found in the Appendix. The same is true for the Hilbert and 

Wavelet Transform functions utilized, with the latter being based on the 

"WAVOS" toolkit for MatLab, quoted in the bibliography. SDEs were solved 

using the "SDETools" plug-in by Andrew D. Horchler. In addition, early 

iterations of the Hilbert transform and other analysis tools were run in C and 

R, but were mostly superseded in the course of the project by the 

corresponding MatLab implementations. 
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4. Summary of Findings 

4.1 Parameter Estimation via Sequential Monte Carlo 

 
Having developed the simulation environment described in detail over the 

last two chapters, the following section will present and summarize the 

results obtained by using these tools to analyze the model and to contrast 

various potential extensions to it. As a first step, the SMC parameter 

estimation procedure is used to find a range of values capable of producing 

oscillations of the appropriate periods, namely 24 hours under regular and 

symmetric L/D cycles of that same duration, around 25 hours under constant 

darkness, and a suppression of rhythmic behaviour under conditions of 

constant light. The mean results obtained from the procedure are listed in 

Table 2. Interestingly, when contrasting a plot of the SMC results in Figure 

19, it is apparent how some parameters, such as k2, will facilitate viable 

results over a very significant range, at least in combination with the variation 

of other parameters, while others, including v1 or k4, are much more tightly 

constrained. This pattern provides a valuable insight into the hierarchical 

importance of the various parameters, even if a careful analysis cannot stop 

with simply pointing to simple standard deviations, seeing how intrinsic 

system relevance is mingled with effects due to variable connectedness and 

degrees of freedom among parameters. In other words, less critical 

parameters would generally show a viability over a greater range of values, 

but even parameters of comparable relevance could differ significantly in this 

regard if, for instance, one of them is much more directly affected by 

changes in other parameters. It should also be noted in this context that 

values are not separately generated for the corresponding stochastic model. 

While the SMC algorithm was specifically implemented in a way to also 

handle stochastic validation simulations, scheduling for instance multiple 

runs and weighing the differing results obtained in this way, it is noted that 

initial results for stochastic runs, consisting after all of random shifts applied 

to the same underlying model, show a somewhat wider distribution, but 

comparable mean values. As such, a comprehensive parameter estimation 

for this model extension is not explicitly carried out at this point, also with a 
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view to the time constraints of concluding this project, but could be easily 

implemented in the future on the basis of the existing simulation functions. It 

is deemed more pressing, however, to obtain a parameter value distribution 

for potential extensions to the system of differential equations, and so the 

procedure is repeated for an expanded model including the Rora stabilizing 

loop. As a final, but nevertheless very significant point, SMC runs checking 

the fit of intermediate populations not only against periods, but also the 

phases, represented by the timing of the maxima, of individual molecular 

species proved unable to approximate these reference values, even when 

repeated over a wide range of sample sizes, number of intermediate 

populations, and other specifications.   

 

TABLE 2 PARAMETER VALUES GENERATED BY THE SMC PROCEDURE FOR THE BASE MODEL 

V1 V2 kdm kdeg kd K1 K2 K3 K4 ka kp Kcl1 Kcl2 LI n 

0.46 0.46 0.60 0.61 0.35 0.52 0.53 0.40 0.49 0.74 0.69 0.45 0.60 0.70 0.18 

 

FIGURE 19 MEAN AND STD OF SMC RESULTS FOR BASE MODEL COMPARED TO EXPECTED VALUES 
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FIGURE 20 DISTRIBUTION OF SMC RESULTS FOR BASE MODEL  

 

4.2 Sensitivity to Parameter Changes Across Different Models  

 
In any case, the next step consists of entering the mean parameter values 

presented above into the two model system, i.e. the equations with and 

without the Rora stabilizing loop, and of forwarding to the additional analysis 

functions. Firstly, the results of the sensitivity analysis for the base model are 

presented in Figure 21, showing significant variation between the system's 

reaction to increases and decreases in certain parameters. Specifically, 

decreasing v1 by 10% appear sufficient to cause a drastic change in period, 

while the same is true for increasing v2 by 10%. Other parameters, on the 

other hand, appear to exert far less influence on the period duration, at least 

when being varied by only 10%. It is also interesting to note the relative 

effects on period versus amplitude, showing only very partial overlap and 

generally much great variation in amplitude. A comparison may be drawn to 

Figure 22, showing the results obtained by the same analysis on the basis of 

the extended model. Here, it can be seen that results differ significantly, with 

the extended model showing a generally more balance reaction across 

parameters for period, but very strong spikes in amplitude in a few cases. It 

is furthermore interesting to note the relationship to the results of the SMC 

procedure, seeing that the results for the former appeared much more in line 
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with each other. Moving to a closer inspection of individual parameters, 

bifurcation analysis results for the base model can be found in Figure 23 and 

Figure 24, the latter comparing a bifurcation plot for the same parameter, but 

different molecular species, demonstrating that maximum and minimum 

concentration may vary depending on the selected variable, but that the 

typical shape in the bifurcation diagram is conserved, showing an onset of 

oscillation beyond 0.8 in each case. Notably, the bifurcation perspective 

provides a unique view into more precise dynamics contained with the range 

of generally viable parameter values, for instance when considering 

parameter kd, where oscillations appear to occur over a significant range, 

whereas v1 appears much more restrained. Following on from the contrast 

provided by the extended model in the preceding steps, it can be seen from 

the phase response curves generated for each iteration in Figure 25 and 

Figure 26, that there exist also difference in the reaction to light input. Once 

again no separate runs are carried out for stochastic varieties, seeing how 

not only random shifts would have necessitated averaging across a number 

of repeated runs, but also more significantly that these stochastic simulations 

are still based on the same underlying equations and parameters. However, 

when considering the overlap between the base and extended iterations of 

the model, it is certainly interesting to note what changes in behaviour can be 

linked to the inclusion of the stabilizing loop. 
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FIGURE 21 SENSITIVITY ANALYSIS FOR BASE MODEL 

 

FIGURE 22 SENSITIVITY ANALYSIS FOR EXTENDED MODEL 
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FIGURE 23 BIFURCATION FOR DIFFERENT PARAMETERS 
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FIGURE 24 BIFURCATION FOR THE SAME PARAMETER, BUT MEASURED USING DIFFERENT 
VARIABLES 
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FIGURE 25 PHASE RESPONSE CURVE FOR BASE MODEL 

 

FIGURE 26 PHASE RESPONSE CURVE FOR EXTENDED MODEL 

 

4.3 Deterministic and Stochastic Behaviour 

 
Having considered the dynamics of the underlying parametric basis of the 

model, attention now shifts to the phenotypic behaviour displayed by base 

and extended models under different light regimes. It is also in this context 
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that stochastic effects can be well appreciated, the noise element shifts 

results not only away from the deterministic bases, but also leads to 

considerable variation between individual stochastic runs. Consequently, in 

order to obtain a representative curve as the basis of an analysis the 

stochastic simulations are repeated a number of times and the mean of 

individual outputs is calculated, whereby a greater number of simulations will 

naturally lead to a smoother. The next visualization, Figure 27, puts the base 

model next to both the stochastic model. The most interesting revelations is 

reached, however, when comparing and contrasting the results under DD, 

that is conditions of constant darkness, as also shown in this figure. Here, a 

very significant deviation is observed between the stochastic and 

deterministic plots, as only the simulations containing a noise term exhibits a 

clear signal decay under these conditions. Plotting not only the mean curve, 

but also five random, individual stochastic, it is apparent that the individual 

amplitudes do not decrease, but rather the decay in overall amplitude 

appears to originate from the gradual shifting of the individual phases. In this 

way the stochastic model mirrors observations made in singe cells oscillation 

experiments, and thus demonstrates that deterministic and stochastic 

iterations may produce similar or even identical results under some 

experimental or, more generally, environmental conditions, but very 

disparate results under a different set of conditions. Moving on from this 

essential observation, the next objectives is to replicate the light pulse 

scenario investigated in the course of laboratory experiments as part of this 

project, thereby providing a direct comparison of biological and simulated 

data. Figure 28 display 15-min light pulse runs at different light intensities 

acting on oscillators previously, and subsequently, subjected to DD, and it 

can be seen that the stochastic model largely succeeds in replicating 

experimental results. Following on from this, it would appear that the addition 

of noise constitutes a critical element in this context of faithfully replicating 

the experimental setting in silico. In conclusion it has been demonstrated that 

this circadian clock model, constructed on the basis of the core molecular 

clock components reported for the zebrafish model organism, succeeds in 

replicating a range of important behaviours under various light conditions, 

including stable oscillations under LD cycles and arrest under LL conditions. 
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However, it is interesting to note that many finer points, as well as the 

predicted behaviour of signal decay under DD and following light pulse 

stimulation is only captured in a stochastic extension of the model. The 

inclusion of the stabilizing loop centered on Rora, on the other hand, was 

shown to significantly affect underlying dynamics, but with a more diffuse 

effect on behaviour under light regimes. 

 

FIGURE 27 DETERMINISTIC VERSUS STOCHASTIC CURVES 
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FIGURE 28 STOCHASTIC SIMULATION EXPOSED TO LIGHT PULSES 
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5. Discussion 
 
Considering the overview of results provided, it first appears worth noting 

that the integrated model environment evidently succeeds in computing, with 

minimal manual input, simulation runs encompassing a range of light 

condition, passing outputs automatically on to a range of functions for further 

analysis, and finally generating plausible results. Moreover, the integration of 

a SMC parameter generator assists decidedly in adjusting the underlying 

parameters to changes in model specification, a task that has traditionally 

been characterized by significant trial and error, and this functionality 

therefore is not only capable of saving time and effort, but arguably also of 

introducing more rigor to this step. In fact, it has been noted in the literature 

that the highly nonlinear behaviour of complex models with numerous state 

variables and parameters makes it difficult to discern the relationship 

between these factors, and to distinguish essential from irrelevant or 

accidental features, and that there consequently exists a great need for 

optimization functions and analytical tools to facilitate fitting (Domijan & Rand 

2015).  

 

5.1 An Integrating Workflow Can Provide Novel Insights 

 
Integrating parameter estimation and analysis tools into a single automated 

workflow to scan the entire parameter space for covariance with model 

outputs allows fresh insights into the dynamics of the model, firstly by 

identifying numeric values that much more precisely match the targets set for 

behavior under a range of light regimes, but secondly and just as importantly 

by pointing with near certainty to underlying limitations, such as the inability 

for the entire parameter space to replicate in vivo phase relationships.  

 

Viewed as a whole, it can be confidently said that, following changes to the 

underlying equations in the form of e.g. additionally included reaction steps, 

altered interaction dynamics, or shifted external input terms, the simulation 

environment can be utilized to quasi-automatically prepare a comprehensive 
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analysis;  essentially a single mouse click can instruct the system to 

independently detect appropriate parameter values, insert these values into 

the model solver, run preliminary tests including sensitivity and bifurcation 

analysis, subject the new model to a range of simulated light regimes, and 

screen the results through several signal transform functions, generating 

finally not only a multitude of data arrays, but also a selection of visual 

outputs. This utility should significantly speed up the otherwise arduous 

process of evaluating changes to the underlying model, although it should be 

noted that on top of the minimal requirement for entering specifications, 

actual computation will require additional time ranging from mere seconds for 

short simulations, and minutes for analysis functions, to 48 hours or more for 

a thorough SMC parameter generation. On the other hand, especially this 

last step is generally only required following major model changes and can 

be skipped otherwise, and simulations were furthermore carried out mostly 

on a personal computer, having by now reached an age of over six years, so 

that actual time requirements on a modern, dedicated workstation would 

likely only measure a fraction of the values reported here. Moreover, 

considering that the author, coming from a background in the biological 

sciences, was new to programming as well as to many underlying 

mathematical techniques at the outset of this project, the successful 

implementation in code should go to show how much more accessible 

dedicated mathematical software has become over the years, requiring little 

prior knowledge to take on even relatively complex programming projects. As 

such, it would appear that this lowering of barriers to entry may contribute to 

a bright future of interdisciplinary research generally, and modeling 

specifically. Just as no architect would commence building on any sizeable 

project, or a professional investor would not commit capital, without both 

having carried out extensive modeling, it is imaginable that it might become 

equally uncommon in the future to conduct biological experiments, without 

first studying a corresponding in silico replication. In fact, certain key areas, 

such as pharmacological research, can already be observed very actively 

embracing the concept of integrating laboratory with computational work.  
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5.2 Basic Model Structure Replicates A Limited Set Responses  

 
The basic set of circadian clock pathways incorporated in the model is found 

to replicate biological observations under a range of light regimes, such as 

DD, LL, and LD, but exhibits unexpected properties in other regards, such as 

a dilemma between a lack of stability in constant darkness on one hand, and 

the assumption of an overly strong reaction to short light pulses on the other. 

 

More specifically to this project, it has been documented, as in numerous 

comparable research undertakings, that knowledge of molecular components 

and their broad interactions can be sufficient for constructing a functional 

mathematical model. However, it was noted that exposing this model to a 

range of conditions, especially including those likely more challenging to the 

underlying biological system, can help to distinguish the relative level of 

faithfulness and functionality. In particular, it was shown that the replication 

of basic oscillation behaviour was relatively easy to achieve, assuming 

perfectly regular light/dark cycles, whereas the introduction of external 

stimuli, in the form of light input, required significant modifications in order to 

match model output to the expected biological behaviour. In fact, it has been 

noted that even in its current state the model has proven unable to replicate 

certain key characteristics, such as the timing of peak phases, pointing to a 

need of further refinement, but maybe also the inherent limitations of 

representing highly complex interactions as a simplified model. In fact, one 

very noteworthy result lies in the fact that a critical behavioural adaption of 

the model system was achieved not through changes in parameter values, or 

the addition of extra equations, even if it has been found that the stabilizing 

Rora loop can significantly affect system dynamics, but rather by introducing 

a noise term and thereby changing the mathematical system from ODEs to 

SDEs.  

5.3 Stochastic Behaviour as an Essential Circadian Feature 

 
After evaluating different extensions to the model, including different entry 

points for light stimulation and the stabilizing Rora loop described above, a 
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marked difference was achieved by considering populations of thousands of 

individual stochastic oscillators, thereby combining stability under base 

conditions with the ability to quickly adapt to even low levels of light 

stimulation on the basis of different points on the phase response curve. 

  

Stochastic behaviour, which may otherwise be seen as a mere nuisance as 

indicated by the term "noise" and frequently assumed negligible in, for 

example, many likelihood function for parameter estimation (Domijan & Rand 

2015), is in this way revealed as a vital feature of the circadian clock, and 

specifically as regards the interaction dynamics with different modes of light 

input. Indeed, these findings clearly support the notion of entrainment to an 

external stimulus, such as light in this case, acting through desynchronization 

and resynchronization effects between individual constituents, a mechanism 

that can only be made sense of in the presence of stochastic fluctuations. 

Indeed, recent studies of single cell levels of messenger RNA and proteins 

have revealed the presence of considerable heterogeneity, pointing to highly 

dynamic fluctuations over time. Specifically, the measurement of prolactin 

transcription via a reporter gene construct revealed clear cycles of 

transcriptional activity with an average period of approximately 11 h, which 

were furthermore shown to originate not from environmental effects, but 

intrinsic expression processes (Harper et al. 2011). In this case, as in others, 

heterogeneous expression patterns have been linked to the capacity for a 

flexible and differentiated cellular response, showing that stochastic 

behaviour may actually be a cornerstone of many key biological processes. 

While it may be argued at this point that the largely predictable behaviour of 

sufficiently sizeable stochastic populations could surely also be represented 

as a deterministic system, it is important to differentiate between the single 

oscillator and population level. Misleadingly equating one with the other and 

incorporating, if at all possible, population level effects, such as amplitude 

dampening in DD, into a framework based on singe cell molecular 

components through parametric distortions would, after all, lead to inherently 

flawed assumptions about the underlying reaction rates, likely to lead to 

clearly abnormal behaviour in at least some circumstances. Rather, the way 

forward may consist in more readily accepting, and embracing, the basic 
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stochastic quality of many GRNs, as this aspect may also be relevant for 

putting other components, such as the stabilizing loop specifically evaluated 

as part of this project, into their proper perspective. After all, with random 

shifts emerging as such a pivotal driver of adaptation processes, it would  

only be consequential to suspect that physiological processes must be 

adapted to this circumstance on multiple levels. 

 

5.4 Feeding Stochastic Predictions Into Parameter Estimation 

 
One additional level of complexity that was programmatically implemented, 

but could not be successfully run at a statistically significant scale due to 

immense computational requirements, focuses on filtering the parameter 

space on the basis of groups of stochastic oscillators, rather than using the 

binary cutoff points of deterministic runs to supply parameters for the 

stochastic simulation.  

 

Surely this area will constitute a field of much future research activity, and 

even as an extension of this project it may well prove worthwhile to re-

evaluate the role of non-critical clock components in the context of stochastic 

fluctuations. Furthermore, while it was judged reasonable under the existing 

practical constraints to exclude noisy behaviour from the SMC parameter 

generation up to this point, future work may seek to integrate stochastic 

behaviour into the selection of the underlying parametric basis. While it is 

speculated that the result would mostly consist of a slight scattering of the 

deterministic distribution, it has to be accepted that the model is sufficiently 

complex to hinder exact predictions, especially when considering emergent 

behaviour only apparent at the population level. In this context it can be 

noted firstly that ongoing computational advancements may well have 

brought time requirements for a thorough SMC procedure using a stochastic 

validation function, which based on the deterministic runs may be 

extrapolated to last weeks, down into much more manageable magnitudes. 

Secondly, there have also been a number of analytical tools developed that 

may permit to probe the relationship, possibly using a constraint based 
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approach, between passing stochastic versus deterministic equations to the 

SMC. A distinct shortcoming of the model likewise calling for further 

investigation consists of the unexpected peak phases currently obtained 

under the different light regimes. In the absence of light input as a factor and 

reference point, peak timings could evidently be assigned arbitrarily, and so it 

appears to follow that the source of the aberrant phases should be 

suspected in the light input pathway. Indeed, the light term is currently 

included in a very simple way, and so the key to resolving the phases in 

question may lie in formulating a more differentiated mechanism for altering 

the reactant concentrations in relation to the light input. Thankfully, in this 

case the simulation environment should really begin to shine, given enough 

computation time, allowing to easily evaluate the merit of a range of 

alternative light input terms. In detail, it might be especially interesting to 

investigate the use of intermediate steps or of self-limiting qualities. Finally, it 

should be noted that the existing functions could be used to simulate a wide 

range of light regimes, the results of which, whether they appear plausible or 

not, may inform the basis of future laboratory investigations, either probing 

an interesting biological prediction or trying to elucidate the source of 

unexpected model behaviour, thereby helping to further cement our 

theoretical understanding of circadian clock dynamics.     

 

5.5 Future Outlook - Embracing Stochasticity 

 
The scientific method, for all the immense advances in knowledge and 

understanding it has allowed us to claim, may have tempted some 

researches through an overzealous focus on clear statistical cutoff points 

and binary outcomes into a type of linear thinking, that does not pay 

sufficient respect to the inherent variability and stochasticity of our world. 

 

Taking a step back, it can of course be safely predicted that the future will 

hold exciting new progress not only regarding our insights into the 

functioning of biological rhythms or modes of external stimulus propagation, 

but that also the computational tools utilized to investigate these settings are 
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set to see a continuing fast-paced evolution. After all, this text already 

includes in the relevant sections several references to alternative, potentially 

even more sophisticated and powerful techniques than the ones employed 

here, even if significant hurdles persist to seeing these tools applied in a truly 

widespread way "on the ground", that is across biological research 

institutions. It is also before this background that this project, having started 

out with the use of numerous disparate functions across various 

programming environments before slowly moving towards the integrated 

setting achieved towards its culmination, may hope to contribute to the 

understanding that just as the algorithmic "engine block" of a function 

deserves focused attention, so should the implementation of streamlined 

data-handling and intuitive interface design, factors that could ultimately 

decide the practical use provided to those biological researchers without 

extensive programming knowledge. Another burning point to be addressed 

by the scientific community, as is felt by the author in the wake of this project, 

might lie in the widespread unease confronting the concept of uncertainty. 

This phenomenon in biomedical research has previously been termed, in a 

tongue-in-cheek manner of course, the "Human Linearity Virus", describing 

the tendency of scientists to try and press complex nonlinear systems into 

linear moulds (Cong et al. 2009). Having intensely ingrained the aim for 

precision, quantification, and reproducibility, it may indeed initially seem 

counterintuitive to pay heed to underlying noise and randomness, but as 

more and more findings of the pivotal role of these dimensions in many 

regulatory processes are reported, rather than assuming these factors 

negligible or simplifying them away, science may be better served by 

ultimately embracing the inherent stochasticity and non-linearity of biological 

existence. In this context the study of the circadian clock may play an 

important role in promoting the importance of stochastic variation, all the 

more as the circadian clock is not only an abstract research concept, but also 

holds special relevance for a host of medical applications. It has been 

reported, for instance, that circadian timing systems can directly affect 

tumour development, and very recently robust coupling between the 

circadian clock and cell cycle oscillators has been described (Feillet et al. 

2015). It has been suggested on this basis that the circadian clock may 
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directly synchronize or otherwise modulate the progression of the cell cycle, 

in turn having far reaching effects for not only tumour growth, but also a host 

of other pathological states. Consequently, it would appear that unlocking the 

secrets of the circadian clock might ultimately represent a key piece in 

making sense of our most essential and vital physiological processes at 

large.  
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Appendix 

Code for the Zebrafish Model in Mathematica 
ClearAll[v1,v2,v3,v4,kdm,kdeg,kd,k1,k2,k3,k4,k6,k7,k8,k9,ka,kp,kcl1,kcl2,kcl3,kcl4,kr,ke,lightresponse,n,end]; 
Needs["PlotLegends`"] 
(*--------------------------------parameters--------------------------------*) 
v1=0.35;v2=0.45; 
kdm=0.45;kdeg=0.45;kd=0.45; 
k1=0.35;k2=0.7;k3=0.45;k4=0.25; 
ka=0.25;kp=0.35;kcl1=0.45;kcl2=0.45; 
 
v3=0.35;v4=0.3;k9=0.3;k8=0.3;k7=0.1;kcl3=0.5;k6=0.3;kcl4=0.5;kr=0.5;ke=0.5; 
lightresponse=0.08;n=5;end=200; 
(*equations*) 
(*--------------------------------without light--------------------------------*) 
sol=NDSolve[{ 
    c1am'[t]==v1(ClockBmal[t]/(ka+ClockBmal[t]))-kdm*(c1am[t]/(kdeg+c1am[t])), 
    cry1a'[t]==k1*c1am[t]-kd*(cry1a[t]/(kdeg+cry1a[t])), 
    
ClockBmal'[t]==k2(kcl1n/(kcl1n+cry1a[t]n))+k3(kcl2n/(kcl2n+per1cry3[t]n))+k7(kcl3n/(kcl3n+RevErb[t]n))+k6(Ro
ra[t]n/(kcl4n+Rora[t]n))-kd*(ClockBmal[t]/(kdeg+ClockBmal[t])), 
    p1c3m'[t]==v2(ClockBmal[t]/(kp+ClockBmal[t]))-kdm*(p1c3m[t]/(kdeg+p1c3m[t])), 
    per1cry3'[t]==k4*p1c3m[t]-kd*(per1cry3[t]/(kdeg+per1cry3[t])), 
    reverbm'[t]==v3(ClockBmal[t]/(ke+ClockBmal[t]))-kdm*(reverbm[t]/(kdeg+reverbm[t])), 
    RevErb'[t]==k9*reverbm[t]-kd*(RevErb[t]/(kdeg+RevErb[t])), 
    roram'[t]==v4(ClockBmal[t]/(kr+ClockBmal[t]))-kdm*(roram[t]/(kdeg+roram[t])), 
    Rora'[t]==k8*roram[t]-kd*(Rora[t]/(kdeg+Rora[t])), 
    
c1am[0]==1,cry1a[0]==1.1,ClockBmal[0]==0.5,p1c3m[0]==1,per1cry3[0]==1.2,reverbm[0]==0.3,RevErb[0]==
0.3,roram[0]==0.2,Rora[0]==0.2}, 
   {c1am,cry1a,ClockBmal,p1c3m,per1cry3,reverbm,RevErb,roram,Rora},{t,0,end}]; 
(*graphs*) 
Plot[{c1am[t]/.sol,cry1a[t]/.sol,ClockBmal[t]/.sol,p1c3m[t]/.sol,per1cry3[t]/.sol,reverbm[t]/.sol,RevErb[t]/.sol,ror
am[t]/.sol,Rora[t]/.sol},{t,0,end},PlotRange->{{0,end},{0,25}},PlotStyle-
>{{Red,Thick},{Purple,Thick},{Yellow,Thick},{Green,Thick},{Blue,Thick},{Cyan,Thick},{Brown,Thick},{M
agenta,Thick},{Gray,Thick}},AxesLabel->{"time", "conc" }, 
  PlotLabel->"Model 1 extension without light", PlotLegend->{"c1am", 
"cry1a","ClockBmal","p1c3m","per1cry3","reverbm","RevErb","rora","Rora"},LegendPosition->{1.1,-
0.4},ImageSize->Medium]; 
 
Plot[{c1am[t]/.sol,cry1a[t]/.sol,ClockBmal[t]/.sol,p1c3m[t]/.sol,per1cry3[t]/.sol,reverbm[t]/.sol,RevErb[t]/.sol,ror
am[t]/.sol,Rora[t]/.sol},{t,0,end},PlotRange->{{0,end},{0,2.5}},PlotStyle-
>{{Red,Thick},{Purple,Thick},{Yellow,Thick},{Green,Thick},{Blue,Thick},{Cyan,Thick},{Brown,Thick},{M
agenta,Thick},{Gray,Thick}},AxesLabel->{"time", "conc" }, 
 PlotLabel->"Model 1 extension without light zoom", PlotLegend->{"c1am", 
"cry1a","ClockBmal","p1c3m","per1cry3","reverbm","RevErb","rora","Rora"},LegendPosition->{1.1,-
0.4},ImageSize->Large] 
 
 
 
(*--------------------------------with light--------------------------------*) 
light[t_]:=Piecewise[{{lightresponse,Sin[t/4]>0}},0]; 
Plot[light[t],{t,-2,100},ImageSize->Tiny]; 
sol=NDSolve[{ 
    { 
     {c1am'[t]==v1(ClockBmal[t]/(ka+ClockBmal[t]))-kdm*(c1am[t]/(kdeg+c1am[t]))+light[t], 
      cry1a'[t]==k1*c1am[t]-kd*(cry1a[t]/(kdeg+cry1a[t])), 
      
ClockBmal'[t]==k2(kcl1n/(kcl1n+cry1a[t]n))+k3(kcl2n/(kcl2n+per1cry3[t]n))+k7(kcl3n/(kcl3n+RevErb[t]n))+k6(Ro
ra[t]n/(kcl4n+Rora[t]n))-kd*(ClockBmal[t]/(kdeg+ClockBmal[t])), 
      p1c3m'[t]==v2(ClockBmal[t]/(kp+ClockBmal[t]))-kdm*(p1c3m[t]/(kdeg+p1c3m[t])), 
      per1cry3'[t]==k4*p1c3m[t]-kd*(per1cry3[t]/(kdeg+per1cry3[t])), 
      reverbm'[t]==v3(ClockBmal[t]/(ke+ClockBmal[t]))-kdm*(reverbm[t]/(kdeg+reverbm[t])), 
      RevErb'[t]==k9*reverbm[t]-kd*(RevErb[t]/(kdeg+RevErb[t])), 
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      roram'[t]==v4(ClockBmal[t]/(kr+ClockBmal[t]))-kdm*(roram[t]/(kdeg+roram[t])), 
      Rora'[t]==k8*roram[t]-kd*(Rora[t]/(kdeg+Rora[t])), 
      
c1am[0]==1,cry1a[0]==1.1,ClockBmal[0]==0.5,p1c3m[0]==1,per1cry3[0]==1.2,reverbm[0]==0.3,RevErb[0]==
0.3,roram[0]==0.2,Rora[0]==0.2}, 
     {} 
    }}, 
   {c1am,cry1a,ClockBmal,p1c3m,per1cry3,reverbm,RevErb,roram,Rora},{t,0,end}]; 
(*graphs*) 
Plot[{c1am[t]/.sol,cry1a[t]/.sol,ClockBmal[t]/.sol,p1c3m[t]/.sol,per1cry3[t]/.sol,reverbm[t]/.sol,RevErb[t]/.sol,ror
am[t]/.sol,Rora[t]/.sol},{t,0,end},PlotRange->{{0,end},{0,25}},PlotStyle-
>{{Red,Thick},{Purple,Thick},{Yellow,Thick},{Green,Thick},{Blue,Thick},{Cyan,Thick},{Brown,Thick},{M
agenta,Thick},{Gray,Thick}},AxesLabel->{"time", "conc" }, 
  PlotLabel->"Model 1 extension with light (LD)", PlotLegend->{"c1am", 
"cry1a","ClockBmal","p1c3m","per1cry3","reverbm","RevErb","rora","Rora"},LegendPosition->{1.1,-
0.4},ImageSize->Medium]; 
 
Plot[{c1am[t]/.sol,cry1a[t]/.sol,ClockBmal[t]/.sol,p1c3m[t]/.sol,per1cry3[t]/.sol,reverbm[t]/.sol,RevErb[t]/.sol,ror
am[t]/.sol,Rora[t]/.sol,light[t]},{t,0,end},PlotRange->{{0,end},{0,2.5}},PlotStyle-
>{{Red,Thick},{Purple,Thick},{Yellow,Thick},{Green,Thick},{Blue,Thick},{Cyan,Thick},{Brown,Thick},{M
agenta,Thick},{Gray,Thick},{Black,Thick}},AxesLabel->{"time", "conc" }, 
 PlotLabel->"Model 1 extension with light (LD) zoom", PlotLegend->{"c1am", 
"cry1a","ClockBmal","p1c3m","per1cry3","reverbm","RevErb","rora","Rora","light"},LegendPosition->{1.1,-
0.4},ImageSize->Large] 

 

Code for the Hilbert Transform 
function [HilbertResults] = PHD_OOAA_HilbertAnalysis(Data, Time, Traces, 
Plotless) 
  
% PHD_OOAA_HilbertAnalysis(Data, Time, Traces) 
% specify input data and seperate timeline, columns to analyse, and format 
of output 
  
% setting plotless to 1 surpresses graph output and reports abridged output 
data 
  
VarNames = {'c1am','cry1a','ClockBmal','p1c3m','per1cry3'}; 
  
TrMar = 0; 
  
if Plotless == 1 
     
    HilbertResults = zeros(length(Traces),4); 
     
else 
     
    HilbertResults = zeros(length(Traces),7); 
     
end 
  
for j = Traces 
     
    TrMar = TrMar+1;      %marker for cycling through traces   
    DataCol = Data(:,j); 
     
    % Hilbert Transform and Instantaneous Phase 
    % ------------------------------------------------------------ 
  
    HilData = hilbert(DataCol); 
    ImagData = imag(HilData);       %imaginary component 
    RealData = real(HilData);       %real component 
  
    InstPhase = angle(HilData);     %instantaneous phase 
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    % Period by taking time between Maxima  
    % ------------------------------------------------------------ 
  
    %finding the points just before and after the imaginary component 
increases  
    %beyond 0, then calculating the estimated time at maxima and resulting 
periods 
  
    PtsAfMax = [0; (ImagData(2:end)>0).*(ImagData(1:end-1)<0) ]; 
    PtsBfMax = [PtsAfMax(2:end); 0];    %logic array of points before and 
after 0'up'  
  
    TmAfMax = PtsAfMax.*Time;              %corresponding time at points  
    TmBfMax = PtsBfMax.*Time; 
  
    ImagAfMax = PtsAfMax.*ImagData;     %imaginary value at points 
    ImagBfMax = PtsBfMax.*ImagData; 
  
    % calculate time at the maxima, weighing time at points before and 
after using 
    % relative imaginary values, then taking time between maxima for period 
  
    TimesMaxRaw = (TmAfMax(2:end).*ImagAfMax(2:end)-TmBfMax(1:end-
1).*ImagBfMax(1:end-1))./(ImagAfMax(2:end)-ImagBfMax(1:end-
1)+(0==(ImagAfMax(2:end)-ImagBfMax(1:end-1)))); 
    TMax = TimesMaxRaw(TimesMaxRaw ~= 0);      %only keeping non-zero 
values 
    TMax = TMax(2:(end-1));           %discarding the first and last value 
     
    PeriodList = []; 
     
    for k = 1:(length(TMax)-1)             %taking time difference between 
maxima 
         
        PeriodList(k) = TMax(k+1)-TMax(k); 
        k=k+1; 
         
    end 
    clear k; 
  
    if (isempty(PeriodList) == 1)          %prevents empty array from 
causing reference errors 
     
        PeriodList = 0; 
                
    end 
         
    PeriodMean = mean(PeriodList); 
    PeriodStd = std(PeriodList); 
  
    % Trough to Peak Difference (Amplitude)  
    % ------------------------------------------------------------ 
  
    %calculating trough to peak difference based on real values at maxima 
and minima 
  
    RealAfMax = PtsAfMax.*RealData;       %real values before and after 
maxima 
    RealBfMax = PtsBfMax.*RealData; 
  
    % calculate real value at maxima, weighing points before and after by 
time 
  
    RealMax = (((TmAfMax(2:end)-TimesMaxRaw).*RealBfMax(1:end-
1))+((TimesMaxRaw-TmBfMax(1:end-1)).*RealAfMax(2:end)))./(TmAfMax(2:end)-
TmBfMax(1:end-1)+(0==(TmAfMax(2:end)-TmBfMax(1:end-1)))); 
    RealMax = RealMax(RealMax ~= 0);     %only keeping non-zero values 
    RealMax = RealMax(2:(end-1));      %discarding the first and last value 
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    %finding the points just before and after the imaginary component 
decreases  
    %beneath 0, then calculating the estimated time at minima 
  
    PtsAfMin = [0; (ImagData(2:end)<0).*(ImagData(1:end-1)>0) ]; 
    PtsBfMin = [PtsAfMin(2:end); 0];    %logic array of points before and 
after 0'down' 
  
    TmAfMin = PtsAfMin.*Time;              %corresponding time at points 
    TmBfMin = PtsBfMin.*Time; 
  
    ImagAfMin = PtsAfMin.*ImagData;     %imaginary value at points 
    ImagBfMin = PtsBfMin.*ImagData; 
  
    % calculate time at the minima, weighing time at points before and 
after using 
    % relative imaginary values 
  
    TimesMinRaw = (TmAfMin(2:end).*ImagAfMin(2:end)-TmBfMin(1:end-
1).*ImagBfMin(1:end-1))./(ImagAfMin(2:end)-ImagBfMin(1:end-
1)+(0==(ImagAfMin(2:end)-ImagBfMin(1:end-1)))); 
    TMin = TimesMinRaw(TimesMinRaw ~= 0);      %only keeping non-zero 
values 
    TMin = TMin(2:(end-1));           %discarding the first and last value 
     
    RealAfMin = PtsAfMin.*RealData;     %real values before and after 
minima 
    RealBfMin = PtsBfMin.*RealData; 
  
    % calculate real value at minima, weighing points before and after by 
time 
  
    RealMin = (((TmAfMin(2:end)-TimesMinRaw).*RealBfMin(1:end-
1))+((TimesMinRaw-TmBfMin(1:end-1)).*RealAfMin(2:end)))./(TmAfMin(2:end)-
TmBfMin(1:end-1)+(0==(TmAfMin(2:end)-TmBfMin(1:end-1)))); 
    RealMin = RealMin(RealMin ~= 0);   %only keeping non-zero values 
    RealMin = RealMin(2:(end-1));      %discarding the first and last value 
     
    % check number of cycles TtP, then their value 
  
    FullTtP = min(length(RealMax), length(RealMin)); 
    PtTList = []; 
     
    for l = 1:FullTtP       % PtT could also be used, depending on section 
of data    
         
        PtTList(l) = (RealMax(l)-RealMin(l)); 
     
    end                     %difference between successive trougs and peaks 
    clear l; 
  
    if (isempty(PtTList) == 1)      %prevents empty array from causing 
reference errors 
     
        PtTList = 0; 
                 
    end 
         
    AmplitudeMean = mean(PtTList); 
    AmplitudeStd = std(PtTList); 
  
    % Relative Phases for Last Period  
    % ------------------------------------------------------------ 
     
    if (isempty(TMax) == 1) || (isempty(TMin) == 1) 
                                    %prevents empty array from causing 
reference errors 
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        TMax = 0; 
        TMin = 0; 
                 
    end 
     
    if Plotless == 1 
         
        HilbertResults(j,:) = [PeriodMean, AmplitudeMean, TMax(end), 
TMin(end)]; 
         
    else 
             
        LastPeak = mod(TMax(end),PeriodMean); 
        LastRelPeak = mod(TMax(end),PeriodMean)*100/PeriodMean; 
        LastRelTrough = mod(TMin(end),PeriodMean)*100/PeriodMean; 
  
        if TrMar == 1 
  
            RefPhase = LastPeak; 
  
        end 
  
        VarShift = LastPeak-RefPhase; 
  
        if VarShift > PeriodMean/2                   %adjust relative to 
period 
  
            VarShift = VarShift-PeriodMean; 
  
        elseif VarShift < -PeriodMean/2 
  
            VarShift = VarShift+PeriodMean; 
  
        end 
  
        RelVarShift = VarShift*100/PeriodMean; 
  
        HilbertResults(TrMar,:) = [PeriodMean, PeriodStd, AmplitudeMean, 
AmplitudeStd, LastRelTrough, LastRelPeak, RelVarShift];  
  
        % Figures 
        % ------------------------------------------------------------ 
  
        figure('Name',['Hilbert Transform Summary for ', VarNames{j}]) 
  
        subplot(2,3,1) 
        plot(HilData, 'g') 
        hold on 
        plot(RealData.*PtsAfMax, ImagData.*PtsAfMax, '.k','markersize',15) 
        plot(RealData.*PtsAfMin, ImagData.*PtsAfMin, '.r','markersize',15) 
        hold off 
        title('Hilbert Transform: Maxima, Minima','fontsize',14)  
         xlabel('Real Component') 
         ylabel('Imaginary Component') 
         legend('Complex Transform', 'Maxima', 'Minima') 
  
        subplot(2,3,2) 
        plot(Time, InstPhase,'r','LineWidth',2.5) 
        xlim([(TMax(end-1)) TMax(end)]) 
        title('Instantaneous Phase Last Period','fontsize',14)  
        set(gca,'XTick',[linspace((TMax(end-1)), TMax(end),5)]) 
        
set(gca,'XTickLabel',[0;round(PeriodList(end))/4;round(PeriodList(end))/2;r
ound(PeriodList(end))*3/4;round(PeriodList(end))]) 
         xlabel('Time') 
         ylabel('Radians') 
         legend('Phase Angle') 
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        subplot(2,3,3) 
        plot(Time,[RealData, ImagData, PtsAfMax, -PtsAfMin]) 
        title('Real and Imaginary Components','fontsize',14)  
         xlabel('Time') 
         ylabel('Real or Imaginary Values') 
         legend('Real Component', 'Imaginary Component', 'At Maxima', 'At 
Minima') 
  
        subplot(2,3,4) 
        plot(TMax,PtTList,'Marker','*','color','m','LineWidth',2) 
        title('Amplitude over Time','fontsize',14)  
         xlabel('Time') 
         ylabel('Amplitude of Oscillation') 
         legend('Trough to Peak at Maxima') 
  
        subplot(2,3,5) 
        bins = [0:2:40]; 
        hist(PeriodList,bins) 
        xlim([0 40]) 
        title('Histogram of Period Distribution','fontsize',14)  
         xlabel('Period Length in Hours') 
         ylabel('Number observed') 
         legend('Periods') 
  
        subplot(2,3,6) 
        plot(TMax(2:end),PeriodList,'LineWidth',2) 
        title('Periods over Time','fontsize',14)  
         xlabel('Time') 
         ylabel('Period Lenght in Hours') 
         legend('Periods at Maxima') 
  
    end 
     
end 
clear j 
  
if Plotless ~= 1 
  
    disp('   Period     +/-       Amplitude +/-     Min%Phase Max%Phase 
Max%Shift') 
    disp(HilbertResults) 
     
end 
  
end 
 

Code for the  Wavelet Transform 
function [RidgeData] = PHD_OOAA_CWTStarter(Data,SampleRate,Traces,varargin) 
  
%PHD_OOAA_CWTStarter(Data,SampleRate,Traces,[options]) 
% specify input data, the sampling rate (e.g. 1), and the specific columns 
to analyze 
% 
%Optional arguments: 
%       ScalesPerOctave - scales within each doubling of period (defaults 
to 32) 
%       Eta - CWT tuning parameter (defaults to 2*pi) 
%       MinPeriod - The minimum period to analyze (defaults to 
2/SampleRate) 
%       MaxPeriod - The maximum period to analyze (defaults to smaller of 
N/(2*sqrt(2)*SampleRate) or 48) 
%           where N is the common length of the data       
%       ZeroPadding - zeros prepended/appended to reduce edge effects 
(defaults to N) 
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%       Method - selects method by which the CWT ridge is located (defaults 
to 'Proportional') 
%       Cutoff - proportion of maximum amplitude a local maximum must have 
to be considered  
%           a ridge under the 'Proportional' method (defaults to 1) 
%       ForceSingleRidge - when set to 1, permits only a single ridge per 
timepoint. If multiple  
%           ridges are present, the highest-magnitude one is selected 
(defaults to 0) 
%       ExcludeEdges - removes any points potentially subject to edge 
effects (defaults to 0) 
  
  
%Required and Optional Inputs 
% ------------------------------------------------------------ 
  
p = inputParser; 
  
p.addRequired('Data', @isnumeric); 
p.addRequired('SampleRate', @(x)isnumeric(x)&(x>0)); 
p.addRequired('Traces', @isnumeric); 
p.addOptional('ScalesPerOctave', 32, @(x)isnumeric(x)&(x>0)); 
p.addOptional('Eta', 2*pi, @(x)isnumeric(x)&(x>0)); 
p.addOptional('MinPeriod', -1, @(x)isnumeric(x)&(x>0)); 
p.addOptional('MaxPeriod', -1, @(x)isnumeric(x)&(x>0)); 
p.addOptional('ZeroPadding', -1, @(x)isnumeric(x)&(x>=0)); 
p.addOptional('Method', 'Proportional', @(x)max(strcmpi(x, 
{'Proportional','Crazy_climber'})) ); 
p.addOptional('Cutoff', 1, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
p.addOptional('ForceSingleRidge', 0, @(x)(x==0)||(x==1)); 
p.addOptional('ExcludeEdges', 0, @(x)(x==0)||(x==1)); 
  
p.parse(Data, SampleRate, Traces, varargin{:}); 
WavTran = p.Results; 
WavTran.SampleRate = (1/SampleRate); 
WavTran.Data = WavTran.Data(:,Traces); 
  
WT1 = WavTran.ScalesPerOctave; 
WT2 = WavTran.Eta; 
WT3 = WavTran.MinPeriod; 
WT4 = WavTran.MaxPeriod; 
WT5 = WavTran.ZeroPadding; 
  
RF1 = WavTran.Method; 
RF2 = WavTran.Cutoff; 
RF3 = WavTran.ForceSingleRidge; 
RF4 = WavTran.ExcludeEdges; 
  
% ------------------------------------------------------------ 
%I. PHD_CWTransform(Data, SampleRate, [options]) 
%   specify columns of data and the sampling rate (e.g. 1) 
% ------------------------------------------------------------ 
%   Optional arguments:       (N = common length of data)  
%   'ScalesPerOctave' - number >0, defaults to 32 
%   'Eta'(CWT tuning parameter) - number >0, defaults to 2*pi 
%   'MinPeriod' - number >= 2/SampleRate, defaults to 2/SampleRate 
%   'MaxPeriod' - number >0 and <= N/(2*sqrt(2)*SampleRate), defaults to 
smaller of N/(2*sqrt(2)*SampleRate) or 48      
%   'ZeroPadding' - number >=0, defaults to N 
  
TransformedData = 
PHD_OOAA_CWTransform(WavTran.Data,WavTran.SampleRate,'ScalesPerOctave',WT1,
'Eta',WT2,'MinPeriod',WT3,'MaxPeriod',WT4,'ZeroPadding',WT5); 
  
  
% ------------------------------------------------------------ 
%II. PHD_CWTRidges(CWT_obj,[options])  
%    enter a CWTransform to find ridge points using the selected method 
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% ------------------------------------------------------------ 
%   Optional arguments: 
%   'Method' - 'Proportional' or 'Crazy_climber', defaults to 
'Proportional' 
%   'Cutoff' - number >0 and <=1, defaults to 1 
%   'ForceSingleRidge' - 0 or 1, defaults to 0 
%   'ExcludeEdges' - 0 or 1, defaults to 0 
  
RidgeData = 
PHD_OOAA_CWTRidges(TransformedData,'Method',RF1,'Cutoff',RF2,'ForceSingleRi
dge',RF3,'ExcludeEdges',RF4); 
  
  
% ------------------------------------------------------------ 
%III. PHD_CWTPlots(Data, [options]) 
%     forward transformed or ridge data to construct a heatmap or other 
plot 
% ------------------------------------------------------------ 
%   Optional arguments: 
%   'Dataset' - number >0, defaults to 1 
%   'PlotType' - 
'CWT','Phase','Ridge','CWT+Ridge','Data+Period','Data+Peak/Trough','Data+Ph
ase', defaults to CWT 
%   'ExcludeEdges' - 0 or 1, defaults to 0 (or value in input object) 
  
VarNames = {'c1am','cry1a','ClockBmal','p1c3m','per1cry3'}; 
DataCol = 0; 
  
for Tr = Traces 
                               
    DataCol = DataCol+1;    %counter to cycle through different traces 
     
    figure('Name',['Wavelet Transform Summary for ', VarNames{Tr}]) 
    %generate subplot combining different graphs 
    subplot(2,2,1)                                  %only exclude edges on 
heatmaps (subplots 1 and 2) 
    
PHD_OOAA_CWTPlots(RidgeData,'PlotType','CWT+Ridge','ExcludeEdges',0,'Datase
t',DataCol); 
    title('Ridges on Heatmap of Wavelets','fontsize',14) 
  
    subplot(2,2,2) 
    
PHD_OOAA_CWTPlots(RidgeData,'PlotType','Phase','ExcludeEdges',0,'Dataset',D
ataCol);        
    title('Heatmap of Wavelet Phases','fontsize',14) 
  
    subplot(2,2,3) 
    
PHD_OOAA_CWTPlots(RidgeData,'PlotType','Data+Peak/Trough','Dataset',DataCol
); 
    title('Peaks and Troughs relative to Data','fontsize',14) 
  
    subplot(2,2,4) 
    PHD_OOAA_CWTPlots(RidgeData,'PlotType','Data+Phase','Dataset',DataCol); 
    title('Phases relative to Data','fontsize',14) 
     
end 
clear Tr 
  
end 
 

 

function [CWT_obj] = PHD_OOAA_CWTransform(Data, SampleRate, varargin) 
  
%PHD_OOAA_CWTransform(Data, SampleRate, [options]) 
%specify columns of data and the sampling rate (e.g. 1)   
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%    
%Optional arguments: 
%       ScalesPerOctave - scales within each doubling of period (defaults 
to 32) 
%       Eta - CWT tuning parameter (defaults to 2*pi) 
%       MinPeriod - The minimum period to analyze (defaults to 
2/SampleRate) 
%       MaxPeriod - The maximum period to analyze (defaults to smaller of 
N/(2*sqrt(2)*SampleRate) or 48) 
%           where N is the common length of the data       
%       ZeroPadding - zeros prepended/appended to reduce edge effects 
(defaults to N) 
  
  
%Required and Optional Inputs 
% ------------------------------------------------------------ 
  
p = inputParser; 
  
p.addRequired('Data', @isnumeric); 
p.addRequired('SampleRate', @(x)isnumeric(x)&(x>0)); 
p.addOptional('ScalesPerOctave', 32, @(x)isnumeric(x)&(x>0)); 
p.addOptional('Eta', 2*pi, @(x)isnumeric(x)&(x>0)); 
p.addOptional('MinPeriod', -1, @isnumeric); 
p.addOptional('MaxPeriod', -1, @isnumeric); 
p.addOptional('ZeroPadding', -1, @isnumeric); 
  
p.parse(Data, SampleRate, varargin{:}); 
CWT_obj = p.Results; 
  
% Housekeeping 
% ------------------------------------------------------------ 
  
CWT_obj.Header = 'CWTransform Results'; 
  
CWT_obj.RescalingFactor = (2*pi)/(CWT_obj.Eta);     %defining rescaling 
factor 
  
[NumDataPts, Traces] = size(CWT_obj.Data);  %obtaining number of traces and 
data points 
  
% Zeropadding 
% ------------------------------------------------------------ 
  
if (CWT_obj.ZeroPadding == -1) 
     
    CWT_obj.ZeroPadding = NumDataPts;    % setting zeropadding default 
length 
  
end 
  
if (CWT_obj.ZeroPadding > 0)             %Zero-pad the data 
     
    CWT_obj.Data = [zeros(CWT_obj.ZeroPadding, Traces); CWT_obj.Data; 
zeros(CWT_obj.ZeroPadding, Traces)]; 
  
end 
  
N = NumDataPts + 2*CWT_obj.ZeroPadding;  %take zeropadding into account for 
data length 
  
% Maximum and Minimum Periods 
% ------------------------------------------------------------ 
  
MinPdForRate = 2/CWT_obj.SampleRate;        %default minimum period 
MaxPdForRate = NumDataPts/(2*sqrt(2)*CWT_obj.SampleRate); %default maximum 
period 
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if (CWT_obj.MinPeriod == -1) || (CWT_obj.MinPeriod < MinPdForRate) 
     
    CWT_obj.MinPeriod = MinPdForRate;       %apply default also where 
entered value implausible 
  
end 
  
if (CWT_obj.MaxPeriod == -1) || (CWT_obj.MaxPeriod > MaxPdForRate) 
     
    CWT_obj.MaxPeriod = min(MaxPdForRate, 48);       %apply default (or 48) 
also where entered value implausible 
  
end 
  
% Starting and Stopping Scales 
% ------------------------------------------------------------ 
  
MinScale = CWT_obj.MinPeriod * CWT_obj.SampleRate / 
CWT_obj.RescalingFactor;    %convert periods to scales 
MaxScale = CWT_obj.MaxPeriod * CWT_obj.SampleRate / 
CWT_obj.RescalingFactor; 
  
CWT_start = floor(log2(MinScale)*CWT_obj.ScalesPerOctave);   %log base 2 of 
our starting and stopping scales 
CWT_stop = floor(log2(MaxScale)*CWT_obj.ScalesPerOctave); 
  
CWT_obj.ScaleList = 2.^( (CWT_start:1:CWT_stop) ./ 
CWT_obj.ScalesPerOctave);     %list of scales and corresponding periods 
CWT_obj.Periods = 
CWT_obj.ScaleList*CWT_obj.RescalingFactor/CWT_obj.SampleRate; 
  
% Fourier Transform of Morlet Wavelet 
% ------------------------------------------------------------ 
  
morlwaveft = @(s,m,w) sqrt(s/(2*pi)).* pi^(-1/4) .* exp(-0.5.*(s.*w - 
m).^2)- sqrt(s/(2*pi)).* pi^(-1/4) .* exp(-0.5.*((s.*w).^2+m.^2)); 
  
wk = ((2*pi)/(N)).*[(0:1:floor(N/2)), -((ceil(N/2)-1):-1:1)];    %adjusted 
index for FFT frequencies 
  
% Continuous Wavelet Transform 
% ------------------------------------------------------------ 
  
CWT_obj.Data = CWT_obj.Data'; 
  
for lc = 1:Traces 
     
    fx = fft(CWT_obj.Data(lc,:));         % Take the FFT of the current 
trace 
             
    CWT = zeros(CWT_stop-CWT_start+1, N); 
     
    %get the FT for current scale, multiply element-by-element by the FFT 
of data, and take the IFFT 
      
    Current_ScaleID=1; 
     
    for j = CWT_start:1:CWT_stop 
         
        aj = 2^(j/CWT_obj.ScalesPerOctave);          %current scale 
        CWT(Current_ScaleID, :) = ifft(fx.*morlwaveft(aj, CWT_obj.Eta, 
wk)); 
        Current_ScaleID = Current_ScaleID+1; 
     
    end 
    clear j 
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    if CWT_obj.ZeroPadding > 0          %remove zero padding if any was 
applied 
         
        CWT = CWT(:, (CWT_obj.ZeroPadding+1):(CWT_obj.ZeroPadding + 
NumDataPts)); 
     
    end 
     
    ScaleNorm = repmat(CWT_obj.ScaleList', 1, NumDataPts);  %norm to 
compare magnitudes across scales 
    cwtNormed = (pi^0.25).*CWT./sqrt(ScaleNorm); 
     
    %rescale amplitude terms associated with the CWT to peak-to-trough 
measure 
     
    amps = 2*(CWT.*conj(CWT)).*(pi / 
((4*pi)^.25)).*((2*CWT_obj.Eta)./ScaleNorm); 
  
    %store results 
     
    CWT_obj.CWT{lc} = CWT; 
    CWT_obj.CWTnormed{lc} = cwtNormed; 
    CWT_obj.phases{lc} = atan2(imag(CWT_obj.CWT{lc}), 
real(CWT_obj.CWT{lc})); 
    CWT_obj.amplitudes{lc} = amps; 
  
end 
clear lc 
  
CWT_obj.Data = CWT_obj.Data'; 
CWT_obj.Data = 
CWT_obj.Data((CWT_obj.ZeroPadding+1):(CWT_obj.ZeroPadding+NumDataPts),:);  
%remove zeropadding from original data 
CWT_obj.Times = (1:NumDataPts)./CWT_obj.SampleRate; 
  
end 
 
 

 

function [ridge_object] = PHD_OOAA_CWTRidges(CWT_obj, varargin) 
  
%PHD_OOAA_CWTRidges(CWT_obj,[options])  
%enter a CWTransform to find ridge points using the selected method 
% 
%Optional arguments: 
%       Method - selects method by which the CWT ridge is located (defaults 
to 'Proportional') 
%       Cutoff - proportion of maximum amplitude a local maximum must have 
to be considered  
%           a ridge under the 'Proportional' method (defaults to 1) 
%       ForceSingleRidge - when set to 1, permits only a single ridge per 
timepoint. If multiple  
%           ridges are present, the highest-magnitude one is selected 
(defaults to 0) 
%       ExcludeEdges - removes any points potentially subject to edge 
effects (defaults to 0) 
  
  
%Required and Optional Inputs 
% ------------------------------------------------------------ 
  
p = inputParser; 
  
p.addRequired('CWT_obj', @(x)strcmpi(x.Header, 'CWTransform Results')); 
p.addOptional('Method', 'Proportional', @(x)max(strcmpi(x, 
{'Proportional','Crazy_climber'})) ); 
p.addOptional('Cutoff', 1, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
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p.addOptional('ForceSingleRidge', 0, @(x)(x==0)||(x==1)); 
p.addOptional('ExcludeEdges', 0, @(x)(x==0)||(x==1)); 
  
p.parse(CWT_obj, varargin{:}); 
opts = p.Results; 
  
%Housekeeping 
% ------------------------------------------------------------ 
  
NumberOfTraces = length(CWT_obj.CWT);  
  
CutOff = opts.Cutoff;                  %use desired cutoff 
  
CWT_obj.Method = opts.Method; 
CWT_obj.Cutoff = opts.Cutoff; 
CWT_obj.ForceSingleRidge = opts.ForceSingleRidge; 
CWT_obj.ExcludeEdges = opts.ExcludeEdges; 
  
%Excluding Edges 
% ------------------------------------------------------------ 
  
if opts.ExcludeEdges         %remove edge-influenced points 
     
    Drops = floor(sqrt(2) .* CWT_obj.Periods); 
    [r, c] = size(CWT_obj.CWTnormed{1});    %determine size of data/for 
mask 
    EdgeMask = zeros(r,c); 
     
    for mc = 1:r        %creats mask of NaNs and zeros relative to periods 
         
        EdgeMask(mc,:) = [NaN(1, Drops(mc)), zeros(1, c - 2*Drops(mc)), 
NaN(1, Drops(mc))]; 
     
    end 
    clear mc 
     
end 
  
%CWT Ridge Finder 
% ------------------------------------------------------------ 
  
for lc = 1:NumberOfTraces 
     
    CWTABS = abs(CWT_obj.CWTnormed{lc});       %absolute value of complex 
data 
    [rows, cols] = size(CWTABS); 
    RidgeTable = zeros(rows, cols); 
     
    %Crazy Climber 
    % ------------------------------------------------------------ 
     
    %performs a simulated-annealing ridge location to generate mean 
residence  
    %times of all particles at each scale/translation pair 
     
    if strcmpi(opts.Method, 'Crazy_climber') 
         
        Nparticles = cols*4;           %number of particles for crazy 
climber 
        its_per_stage = rows*4; 
                                       %cooling schedule 
        CoolSched = [ones(1, its_per_stage)*1, ones(1, its_per_stage)*.1, 
ones(1, its_per_stage)*.01, ones(1, its_per_stage)*.001]; 
         
        CrClW = abs(CWTABS);     
        [CrClRow, CrClCol] = size(CrClW); 
        MC = zeros(CrClRow,CrClCol);                    %empty storage 
array 
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        P.sc = floor(rand(1, Nparticles)*CrClRow)+1;    %random particles 
between 0 and 1 times number of rows etc. 
        P.tr = floor(rand(1, Nparticles)*CrClCol)+1; 
  
        Niter = length(CoolSched);                %number of iterations 
  
        for crc = 1:Niter 
  
            dx = randi([0,1],1, Nparticles)*2-1;  %random list of 1 and -1 
            dy = randi([0,1],1, Nparticles)*2-1; 
  
            dy(P.sc == 1) = 1;          %sets dy to 1 at all positions 
where P.Sc equals 1 
            dy(P.sc == CrClRow) = -1;   %sets dy to -1 at all positions 
where P.Sc equals no of rows 
            proposedA = P.sc+dy; 
  
            P.tr = mod(P.tr + dx, CrClCol) + 1; 
  
            Wstart = CrClW( ( (P.tr-1).*CrClRow) + (P.sc));     %select 
values from CrClW/CWTABS 
            Wend = CrClW( ( (P.tr-1).*CrClRow) + (proposedA)); 
            DM = Wend-Wstart; 
  
            switchers = (rand(1, 
Nparticles)<exp(DM/CoolSched(crc)))|(DM>0); 
            stayers = 1-switchers; 
  
            P.sc = sum([switchers; stayers].*[proposedA; P.sc]); 
     
            MC( ((P.tr-1).*CrClRow) + (P.sc) ) = MC( ((P.tr-1).*CrClRow) + 
(P.sc)) + CrClW( ((P.tr-1).*CrClRow) + (P.sc)); 
         
        end 
        clear crc 
         
        CWTABS = MC./Niter; 
                         
        if opts.ForceSingleRidge == 0 
             
            RidgeTable = 1-CWTABS; 
         
        end 
         
    end 
     
    %Detecting Maxima 
    % ------------------------------------------------------------ 
     
    if strcmpi(opts.Method, 'Proportional') || (strcmpi(opts.Method, 
'Crazy_climber') && opts.ForceSingleRidge == 1) 
         
        for k = 1:cols          %determine if local maximum is above cutoff 
-> it is a ridge 
             
            xx = abs(CWTABS(:,k))'; 
            SignChgIdx  = [0, diff(sign(diff(xx))), 0]; %check the 
difference between neighbouring values 
                                                        %then check where 
the sign of the difference changes 
            col_CutOff = max(xx.*(SignChgIdx<0)).*CutOff;      %calculate 
cutoff for column using greatest maximum 
  
            RidgeTable(:,k) = (SignChgIdx<0) & (xx >col_CutOff); %find 
maxima above cutoff 
             
            if (CutOff==1) 
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                RidgeTable(find(xx == max(xx), 1, 'Last'),k ) = 1; 
                                    %select only the last iteration of the 
maximum value 
            end 
             
        end 
        clear k 
     
    end 
     
    %Properties of Ridges 
    % ------------------------------------------------------------ 
     
    if opts.ExcludeEdges 
                 
        RidgeTable = RidgeTable+EdgeMask; 
                %add mask with NaNs to RidgeTable to block edge-influenced 
points 
    end 
  
    TempIndex = repmat(1:cols, rows, 1);    %generate a table of indices to 
the data  
  
    WaveLengthIndex = repmat(CWT_obj.Periods', 1, cols);  
    WlTable = (RidgeTable>0).*WaveLengthIndex;          %gives period 
wherever there is a ridge 
  
    CWT_obj.RidgeTable{lc} = RidgeTable; 
    CWT_obj.RidgePeriods{lc} = CWT_obj.Periods * (RidgeTable>0);    %gives 
periods at ridges 
    CWT_obj.RidgePeriods{lc}(CWT_obj.RidgePeriods{lc}==0) = NaN;    %add 
back NaN for zero periods 
  
    CWT_obj.RidgePhases{lc} = NaN(1,cols);      %phases at the ridge 
points, and NaN elsewhere 
    CWT_obj.RidgePhases{lc}(TempIndex(RidgeTable==1)') = 
CWT_obj.phases{lc}(RidgeTable==1)'; 
  
    CWT_obj.RidgeAmplitudes{lc} = NaN(1,cols);  %amplitudes at the ridge 
points, and NaN elsewhere 
    CWT_obj.RidgeAmplitudes{lc}(TempIndex(RidgeTable==1)') = 
CWT_obj.amplitudes{lc}(RidgeTable==1)'; 
  
    %Zero-crossings (for a List of Phases) 
    % ------------------------------------------------------------ 
     
    %all pairwise points where either the later point is >0 and the earlier 
point is <0 or vice versa; 
    %the sign of the later point indicates whether it's an "upcrossing" or 
a "downcrossing" 
     
    Timelist = CWT_obj.Times; 
    px = CWT_obj.RidgePhases{lc}; 
    PhaCrossings = [(((px(2:end)>0) & (px(1:(end-1))<0)) | ((px(2:end)<0) & 
(px(1:(end-1))>0)) ) .* sign(px(2:end)), 0]; 
    CWT_obj.PhaseCrossingIndex{lc} = PhaCrossings;            % This holds 
a +1 for upcrossing, -1 for downcrossing. 
     
    if ~isempty(PhaCrossings) 
         
        CWT_obj.ZPtimes{lc} = Timelist(PhaCrossings==1); 
        CWT_obj.MPtimes{lc} = Timelist(PhaCrossings==-1); 
        CWT_obj.COtimes{lc} = Timelist((PhaCrossings~=0) & 
~isnan(PhaCrossings)); 
        CWT_obj.PhaCrossings{lc} = PhaCrossings; 
     
    else 
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        CWT_obj.ZPtimes{lc} = []; 
        CWT_obj.MPtimes{lc} = []; 
        CWT_obj.COtimes{lc} = []; 
     
    end 
  
end 
clear lc 
  
CWT_obj.PeriodTable = WlTable; 
  
CWT_obj.SynchIndex = abs(sum(exp(1i*cell2mat(CWT_obj.RidgePhases')), 
1))./NumberOfTraces; 
  
ridge_object = CWT_obj;              %defining output of function 
  
end 
 
 

 

function [h] = PHD_OOAA_CWTPlots(Data, varargin) 
  
%PHD_OOAA_CWTPlots(Data, [options]) 
%forward e.g. a ridge object to construct a heatmap or other plot 
%   
%Optional arguments: 
%       Dataset - indicating which dataset should be plotted (defaults to 
1) 
%       PlotType - either 'CWT', 'Phase', 'Ridge', 'CWT+Ridge', 
'Data+Period', 
%           'Data+Peak/Trough',or 'Data+Phase' (defaults to CWT) 
%       ExcludeEdges - either 1 or 0 (defaults to value of input object) 
     
  
%Required and Optional Inputs 
% ------------------------------------------------------------ 
  
p = inputParser; 
p.addRequired('Data', @(x)strcmpi(x.Header, 'CWTransform Results')); 
p.addOptional('Dataset', 1, @(x)isnumeric(x)&(x>0)); 
p.addOptional('PlotType', 'CWT', @(x)max(strcmpi(x, 
{'CWT','Phase','Ridge','CWT+Ridge','Data+Period','Data+Peak/Trough','Data+P
hase'}))); 
p.addOptional('ExcludeEdges', 0, @(x)(x==0)||(x==1)); 
  
p.parse(Data, varargin{:}); 
opts = p.Results; 
  
%Housekeeping 
% ------------------------------------------------------------ 
  
[rows, cols] = size(Data.CWTnormed{1}); 
Mask = zeros(rows,cols);                    %updated for edge exclusion or 
left empty 
Hotmap = hot;                               %colour option for heatmap 
  
%Excluding Edges 
% ------------------------------------------------------------ 
  
if (Data.ExcludeEdges == 1) || (opts.ExcludeEdges ==1) 
     
    Drops = floor(sqrt(2) .* Data.Periods); 
         
    for mc = 1:rows 
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        Mask(mc,:) = [NaN(1, Drops(mc)), zeros(1, cols - 2*Drops(mc)), 
NaN(1, Drops(mc))]; 
         
    end 
    clear mc 
     
end 
  
%Selecting Data by PlotType 
% ------------------------------------------------------------ 
  
if strcmpi(opts.PlotType,'Ridge') || strcmpi(opts.PlotType,'CWT') || 
strcmpi(opts.PlotType,'Phase') || strcmpi(opts.PlotType,'CWT+Ridge')  
     
    if strcmpi(opts.PlotType, 'Ridge')          %set to plot graph of 
periods at ridges 
         
        ColourmapTable = Data.RidgeTable{opts.Dataset}.*-1 +1;   %invert 
zeros and ones 
     
    elseif strcmpi(opts.PlotType, 'CWT')        %set to plot heatmap of 
wavelets by periods 
         
        ColourmapTable = Data.CWTnormed{opts.Dataset}; 
     
    elseif strcmpi(opts.PlotType, 'Phase')      %set to plot heatmap of 
phases by periods 
         
        ColourmapTable = Data.phases{opts.Dataset}; 
     
    elseif strcmpi(opts.PlotType, 'CWT+Ridge')  %set to combine heatmap of 
wavelets and graph of ridges 
           
        RidgePart = Data.RidgeTable{opts.Dataset}.*1.1;   %ridge as series 
of points of value 1.1 
         
        RidgeMask = Data.RidgeTable{opts.Dataset}.*-1 +1;   %divide CWT 
table by single max absolute value to normalize 
        CWTPart = 
(Data.CWTnormed{opts.Dataset})/max(max(abs(Data.CWTnormed{opts.Dataset}))); 
                                     
        ColourmapTable = CWTPart .* RidgeMask + RidgePart;  %combine ridge 
and CWT parts 
        Hotmap = [Hotmap(1:62,:); [0 1 1]];                 %colour of 
ridge plot 
    
    end 
     
    %Plotting HeatMaps 
    % ------------------------------------------------------------ 
         
    h = imagesc(flipud(abs(ColourmapTable) + Mask));    %plotting data 
    colormap(Hotmap);                                   %setting heatmap 
colour 
     
    xlabel('Time') 
    ylabel('Period') 
    [TabRow, TabCol] = size(ColourmapTable); 
    g = gca; 
     
    yindex = floor(linspace(1, TabRow-1, 7));           %y-axis ticks and 
numbering  
    set(g, 'YTick', yindex); 
    ylabs = floor(Data.Periods(yindex).*10^2)./(10^2); 
    ylabs = fliplr(ylabs); 
    set(g, 'YTickLabel', ylabs); 
  



192 
 

    xindex = floor(linspace(1, TabCol-1, 7));           %x-axis ticks and 
numbering 
    set(g, 'Xtick', xindex) 
    Timelist = (1:TabCol)./Data.SampleRate; 
    xlabs = floor(Timelist(xindex).*10^2)./(10^2); 
    set(g, 'Xticklabel', xlabs) 
  
else 
     
    PlotData = Data.Data(:,opts.Dataset)'; 
     
    if strcmpi(opts.PlotType, 'Data+Period') 
         
        Boost = 20;        %oscillations boosted for visualization 
        plot(Data.Times, PlotData.*Boost, Data.Times, 
Data.RidgePeriods{opts.Dataset}); 
        xlabel('Time') 
        xlim([Data.Times(1),Data.Times(end)]); 
        ylabel('Hours(/arbitrary for Data)') 
        legend('Oscillation Data','Period at Ridges') 
     
    elseif strcmpi(opts.PlotType, 'Data+Peak/Trough') 
                            %oscillations centred on zero 
        plot(Data.Times, PlotData-mean(PlotData), Data.Times, 
Data.PhaCrossings{opts.Dataset}*(max(PlotData)/2)); 
        xlabel('Time') 
        xlim([Data.Times(1),Data.Times(end)]); 
        ylabel('Arbitrary') 
        legend('Oscillation Data','Peaks and Troughs') 
     
    elseif strcmpi(opts.PlotType, 'Data+Phase') 
                            %oscillations centred on zero 
        plot(Data.Times, PlotData-mean(PlotData), Data.Times, 
Data.RidgePhases{opts.Dataset}*(max(PlotData)/6)); 
        xlabel('Time') 
        xlim([Data.Times(1),Data.Times(end)]); 
        ylabel('Arbitrary') 
        legend('Oscillation Data','Phase at Ridges') 
       
    end 
     
end 
  

Code for the Integrated Simulation Environment 
 

function [ClockResults] = PHD_OOAA_ClockModel(EndTime,TimeStep,varargin) 
  
%PHD_OOAA_ClockModel(EndTime,TimeStep,[options]) 
% solve the system of differential equation in local function at the bottom 
in the time interval 
% and resolution specified, using the parameters and visualization options 
below) 
% 
%Optional arguments Initial Values and Plotting: 
%   'IVCalibration', defaults to 0, 0 = none, 1 = end values of calibration 
run in DD, 
%       2 = sorted for minimum of SynchVariable in DD, 3 = end values of 
run with LightID, 
%       4 = sorted for minimum of SynchVariable 
%   'SynchVariable', defaults to 1, used to sort for minimum above  
%   'CalibrationTime', defaults to 120, lenght of calibration run 
%   'PlotTimeRange', defaults to 1, outputs a graph of the entire time 
range 
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%   'PlotTimeZoom', defaults to 0, outputs a graph of a specified time 
frame 
%   'TimeZoom', defaults to 48, specifies length of time frame ploted 
%   'StartZoom', defaults to 0, specifies starting point of time frame 
ploted 
% 
%Optional arguments Multiple and Stochastic Oscillations: 
%   'NoOfOscillators', defaults to 1, defines number of simulations to run 
and average 
%   'StochasticMode', defaults to 0, 0 = purely deterministic, 1 = randomly 
shifted deterministic curves, 
%       2 = stochastic equations featuring a noise term 
%   'ShiftSTDPercent', defaults to 5, STD of random period shift of curves 
(for StochasticMode = 1) 
%   'TypeOfNoise', defaults to 0, 0 = no noise, 1 = constant white noise, 
%       2 = noise term relative to reactant concentration 
%   'NoiseScale', defaults to 0.01, intensity of noise 
%   'NoiseTermPlot', defaults to 0, plots a sample noise term curve  
%   'StochasticPlot', defaults to 0, plots specified number of individual 
stochastic curves 
%   'PlotNumberStochPaths', defaults to 5, specifies number of individual 
curves to plot above 
% 
%Optional arguments Phase Response Curve: 
%   'PhaseResponse', defaults to 0, 1 = analyze phase response curve over 
one period 
%   'PRCVariable', defaults to 1, which variable to use in analysis 
%   'PRCTime', defaults to 120, length of PRC simulation run 
%   'PRCTimeStep', defaults to 0.1, time resolution of PRC simulation run 
%   'PRCPoints', defaults to 50, number of points used over one period for 
phase shifts 
%   'PlotPRCPoint', defaults to 2, which points to plot: 2 = average, 
%       3:PRCPoints+2 = individual points, possible to plot any number 
% 
%Optional arguments Bifurcation Plot: 
%   'BifurcationPlot', defaults to 0, initiates bifurcation plotting 
function 
%   'BifurParameter', defaults to 1, selects parameter to investigate 
%   'BifurRefVariable', defaults to 1, selects which variable to use as a 
reference 
%   'BifurMinimum', defaults to 0, minimum parameter value for bifurcation 
run 
%   'BifurMaximum', defaults to 2, maximum parameter value for bifurcation 
run 
%   'BifurSteps', defaults to 0.01, step size from minimum to maximum value 
%   'BifurTime', defaults to 240, length of sample simulation for 
bifurcation test 
%   'BifurTimeStep', defaults to 0.1, time resolution of sample simulation 
% 
%Optional arguments Sensitivity Plot: 
%   'SensitivityPlot', defaults to 0, runs a sensitivity test by varying 
each parameter in turn as specified 
%   'SensiRefVariable', defaults to 1, selects which variable to use as a 
reference 
%   'SensiTime', defaults to 240, length of sample simulation for 
sensitivity test 
%   'SensiShift', defaults to [-10,10], regime of shifts to apply to each 
parameter 
% 
%Optional arguments Light Regime:    
%   'LightID', defaults to 0, 0 = constant darkness, 1 = constant light, 2 
= single light pulse, 
%           3 = regular light/dark cycles, 4 = customized light regime 
%   'LightResponse', defaults to 0.05, strength of light stimulus 
%   'PulseStart', defaults to 24, starting time of light pulse (for LightID 
= 2) 
%   'PulseEnd', defaults to 36, end time of light pulse (for LightID = 2) 
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%   'FotoPeriod', defaults to 24,length of light/dark cycle (for LightID = 
3) 
%   'LightToDark', defaults to 0.5, proportion of cycle that has light (for 
LightID = 3) 
  
  
%Required and Optional Inputs 
% ------------------------------------------------------------ 
  
cl = inputParser; 
        %passed for initial values and plotting 
cl.addRequired('EndTime', @(x)isnumeric(x)&(x>0)); 
cl.addRequired('TimeStep', @(x)isnumeric(x)&(x>0)); 
cl.addOptional('IVCalibration', 0, 
@(x)(x==0)||(x==1)||(x==2)||(x==3)||(x==4)); 
cl.addOptional('SynchVariable', 1, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('CalibrationTime', 120, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('PlotTimeRange', 1, @(x)(x==0)||(x==1)); 
cl.addOptional('PlotTimeZoom', 0, @(x)(x==0)||(x==1)); 
cl.addOptional('TimeZoom', 48, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('StartZoom', 0, @isnumeric); 
        %passed for multiple and stochastic oscillations 
cl.addOptional('NoOfOscillators', 1, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('StochasticMode', 0, @(x)(x==0)||(x==1)||(x==2)); 
cl.addOptional('ShiftSTDPercent', 5, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('TypeOfNoise', 0, @(x)(x==0)||(x==1)||(x==2)); 
cl.addOptional('NoiseScale', 0.01, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('NoiseTermPlot', 0, @(x)(x==0)||(x==1)); 
cl.addOptional('StochasticPlot', 0, @(x)(x==0)||(x==1)); 
cl.addOptional('PlotNumberStochPaths', 5, @(x)isnumeric(x)&(x>0)); 
        %passed for PRC function 
cl.addOptional('PhaseResponse', 0, @(x)(x==0)||(x==1)); 
cl.addOptional('PRCVariable', 1, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('PRCTime', 120, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('PRCTimeStep', 0.1, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('PRCPoints', 50, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('PlotPRCPoint', 2, @isnumeric); 
        %passed for bifurcation plot function 
cl.addOptional('BifurcationPlot', 0, @(x)(x==0)||(x==1)); 
cl.addOptional('BifurParameter', 1, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('BifurRefVariable', 1, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('BifurMinimum', 0, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('BifurMaximum', 2, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('BifurSteps', 0.01, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('BifurTime', 240, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('BifurTimeStep', 0.1, @(x)isnumeric(x)&(x>0)); 
        %passed for sensitivity plot function 
cl.addOptional('SensitivityPlot', 0, @(x)(x==0)||(x==1)); 
cl.addOptional('SensiRefVariable', 1, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('SensiTime', 240, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('SensiShift', [-10,10], @isnumeric); 
        %passed to light regime local function 
cl.addOptional('LightID', 0, @(x)(x==0)||(x==1)||(x==2)||(x==3)||(x==4)); 
cl.addOptional('LightResponse', 0.05, @isnumeric); 
cl.addOptional('PulseStart', 24, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('PulseEnd', 36, @(x)isnumeric(x)&(x>0)); 
cl.addOptional('FotoPeriod', 24, @(x)isnumeric(x)&(x>=0)); 
cl.addOptional('LightToDark', 0.5, @(x)isnumeric(x)&(x>=0)); 
        %parameter passed to system of differential equations 
cl.addOptional('Par_a', 0.9, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_v1', 0.35, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_v2', 0.45, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_kdm', 0.45, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_kdeg', 0.5, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_kd', 0.5, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_k1', 0.36, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_k2', 0.45, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_k3', 0.63, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
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cl.addOptional('Par_k4', 0.27, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_ka', 0.27, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_kp', 0.36, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_kcl1', 0.45, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_kcl2', 0.45, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
cl.addOptional('Par_n', 0.4, @(x)(isnumeric(x) & (x>0) & (x<=1))); 
  
cl.parse(EndTime, TimeStep, varargin{:}); 
ClockMod = cl.Results; 
  
% Passing Inputs to Various Local Functions 
% ------------------------------------------------------------ 
  
IVCal = ClockMod.IVCalibration; 
SynchVar = ClockMod.SynchVariable; 
CalTend = ClockMod.CalibrationTime; 
PlotAll = ClockMod.PlotTimeRange; 
PlotZoom = ClockMod.PlotTimeZoom; 
ZoomTime = ClockMod.TimeZoom; 
ZoomSt = ClockMod.StartZoom; 
ZoomMarker = 0; 
  
Osci = ClockMod.NoOfOscillators; 
StochID = ClockMod.StochasticMode; 
STDPercShift = ClockMod.ShiftSTDPercent; 
NoiseID = ClockMod.TypeOfNoise; 
NoiseScale = ClockMod.NoiseScale; 
StochPlot = ClockMod.StochasticPlot; 
StochPlotsNo = ClockMod.PlotNumberStochPaths; 
NoisePlot = ClockMod.NoiseTermPlot; 
  
PRC = ClockMod.PhaseResponse; 
PRCVar = ClockMod.PRCVariable; 
PRCTend = ClockMod.PRCTime; 
PRCRes = ClockMod.PRCTimeStep; 
PhasePoints = ClockMod.PRCPoints; 
PlotPRC = ClockMod.PlotPRCPoint; 
PRCID = 0; 
  
BifPlot = ClockMod.BifurcationPlot; 
BifParNo = ClockMod.BifurParameter; 
BifRefVar = ClockMod.BifurRefVariable; 
BifParMin = ClockMod.BifurMinimum; 
BifParStep = ClockMod.BifurSteps; 
BifParMax = ClockMod.BifurMaximum; 
BifRes = ClockMod.BifurTimeStep; 
BifTend = ClockMod.BifurTime; 
  
SensPlot = ClockMod.SensitivityPlot; 
SensVar = ClockMod.SensiRefVariable; 
SensTend = ClockMod.SensiTime; 
ParaShift = ClockMod.SensiShift; 
  
LR1 = ClockMod.LightID; 
LR2 = ClockMod.LightResponse; 
LR3 = ClockMod.PulseStart; 
LR4 = ClockMod.PulseEnd; 
LR5 = ClockMod.FotoPeriod; 
LR6 = ClockMod.LightToDark; 
  
P(1) = ClockMod.Par_a; 
P(2) = ClockMod.Par_v1;  
P(3) = ClockMod.Par_v2; 
P(4) = ClockMod.Par_kdm;  
P(5) = ClockMod.Par_kdeg;  
P(6) = ClockMod.Par_kd; 
P(7) = ClockMod.Par_k1;  
P(8) = ClockMod.Par_k2;  
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P(9) = ClockMod.Par_k3;  
P(10) = ClockMod.Par_k4; 
P(11) = ClockMod.Par_ka;  
P(12) = ClockMod.Par_kp;  
P(13) = ClockMod.Par_kcl1;  
P(14) = ClockMod.Par_kcl2; 
P(15) = ClockMod.Par_n *10;              % adjust hill coeficient to 
facilitate beta sampling 
  
ParaNames = 
{'a','v1','v2','kdm','kdeg','kd','k1','k2','k3','k4','ka','kp','kcl1','kcl2
','n'};  
VarNames = {'c1am','cry1a','ClockBmal','p1c3m','per1cry3'}; 
  
% Initial Values 
% ------------------------------------------------------------ 
  
c1am0 = 0.7;            % define initial conditions for variables 
cry1a0 = 0.4; 
ClockBmal0 = 1.5; 
p1c3m0 = 1; 
per1cry30 = 0.6; 
  
xIn = [c1am0, cry1a0, ClockBmal0, p1c3m0, per1cry30]; 
  
% Initial Value Correction 
% ------------------------------------------------------------ 
  
x0 = ivcorrection(IVCal,xIn,P,1);       % calls local IV correction 
function 
  
if StochID == 2              % if SDEs selected, call alternative local IV 
correction function 
     
    x0 = stochivcorrection(IVCal,xIn,P,0); 
     
end 
  
disp('    Adjusted Initial Conditions');             %print out the initial 
conditions forwarded for main simulation 
disp(x0); 
  
% Integration Proper 
% ------------------------------------------------------------ 
  
% apply ode/sde solver to underlying equation, specifying time, initial 
% conditions, and a range of optional parameters 
  
ShiftTable = (1+(STDPercShift/100*randn(Osci,1))); %random table for 
shifting deterministic curves if selected 
IntegrationResults = zeros((EndTime/TimeStep+1),length(x0),Osci); 
  
for os = 1:Osci 
     
    fprintf('Oscillator Number %d...\n', os); 
     
    if StochID == 0     % purely deterministic simulation 
     
        % ------------------------------------------------------------ 
        [Time,Data] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,LR1,LR2,LR3,LR4,LR5,LR6,P,1),[0:TimeStep:EndTi
me],x0); 
        % ------------------------------------------------------------ 
         
        IntegrationResults(:,:,os) = Data; 
     
    elseif StochID == 1 % deterministic simulations shifted according to 
random table generated above 
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        if IVCal == 1 || IVCal == 3 
             
            xShift = ivcorrection(IVCal,x0,P,ShiftTable(os)); 
             
        else 
             
            xShift = x0;    % only modify IV in free-running scenarios (to 
de-synchronize), as already very similar otherwise  
             
        end 
         
        % ------------------------------------------------------------ 
        [Time,Data] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,LR1,LR2,LR3,LR4,LR5,LR6,P,ShiftTable(os)),[0:T
imeStep:EndTime],xShift); 
        % ------------------------------------------------------------ 
         
        IntegrationResults(:,:,os) = Data; 
         
    elseif StochID == 2 % stochastic simulation with variable noise term 
        %!!!calls SDE Solver in external function!!!% 
         
        if IVCal == 1 || IVCal == 3 
             
            xStoch = stochivcorrection(IVCal,x0,P,NoiseID); 
             
        else 
             
            xStoch = x0;    % only modify IV in free-running scenarios (to 
de-synchronize), as still very similar otherwise 
         
        end 
         
        % ------------------------------------------------------------ 
        [Data,Noise] = sde_euler(@(Time,InitialConds) 
lightinput(Time,InitialConds,LR1,LR2,LR3,LR4,LR5,LR6,P,1),@(Time,InitialCon
ds) noiseterm(Time,InitialConds,NoiseID),[0:TimeStep:EndTime],xStoch); 
        % ------------------------------------------------------------ 
         
        IntegrationResults(:,:,os) = Data; 
        Time = [0:TimeStep:EndTime]; 
         
    end 
     
end 
clear os 
  
% Save and plot Results 
% ------------------------------------------------------------ 
  
Data = mean(IntegrationResults,3);      % mean of all simulation runs 
  
ClockResults = ClockMod; 
ClockResults.TimeData = Time;            % save model datapoints into 
struct 
ClockResults.ModelData = Data; 
  
if PlotAll == 1 
  
    figure; 
    clockplot(ClockResults);        % visualize model results 
  
end 
  
% Plotting Sample Stochastic Paths 
% ------------------------------------------------------------ 
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if StochPlot == 1 
     
    StochResults = ClockResults; 
     
    figure; 
    hold on;        % plot specified number of individual stochastic curves 
     
    for pp = 1:min(StochPlotsNo,Osci) 
         
        StochResults.ModelData = IntegrationResults(:,:,pp); 
        clockplot(StochResults); 
        title([num2str(min(StochPlotsNo,Osci)),' Individual Stochastic 
Paths for Circadian Simulation'],'fontsize',16); 
         
    end 
    clear pp 
        
    hold off; 
     
end 
  
% Plotting Sample Noiseterm 
% ------------------------------------------------------------ 
  
if NoisePlot == 1               % plot a single sample noise term 
     
    NoiseResults = ClockResults; 
     
    if NoiseID == 0     % no noise 
  
        AdjustedNoise = Noise*0; 
        AdjustedNoise(end,:) = 1;           %at least one non-zero value 
allows smooth plotting   
         
    elseif NoiseID == 1 % constant white noise 
  
        AdjustedNoise = Noise*NoiseScale; 
  
    elseif NoiseID == 2 % noise directly relative to reactant concentration 
        size(Noise) 
        size(IntegrationResults(:,:,Osci)) 
        AdjustedNoise = Noise.*IntegrationResults(:,:,Osci)*NoiseScale; 
     
    end 
     
    NoiseResults.ModelData = AdjustedNoise; 
     
    figure; 
    clockplot(NoiseResults); 
    title(['Sample Noise Term of Type ', num2str(NoiseID), ' and Intensity 
', num2str(NoiseScale)],'fontsize',16); 
     
end 
  
% Zooming in on Specific Time Window 
% ------------------------------------------------------------ 
  
if PlotZoom == 1 
     
    ZoomResults = ClockResults; 
    ZoomResults.TimeData = 
ZoomResults.TimeData((ZoomSt/TimeStep+1):(ZoomSt+ZoomTime)/TimeStep+1); 
    ZoomResults.ModelData = 
ZoomResults.ModelData((ZoomSt/TimeStep+1):(ZoomSt+ZoomTime)/TimeStep+1,:); 
    ZoomMarker = 1;             %marker to differentiate zoom from main 
plot 
     
    figure; 
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    hold on; 
     
    clockplot(ZoomResults); 
    title('Local Magnification for Oscillation System','fontsize',16); 
     
    hold off;       
    ZoomMarker = 0; 
     
end 
  
disp(ClockResults); 
  
% Phase Response Curve 
% ------------------------------------------------------------ 
  
if PRC == 1 
     
    phaseresponse(PRCVar);      %start nested function and plot 
    disp(PRCurve); 
    ColourString = 'bgrky'; 
    ColourMarker = 1; 
    PRCID = 1;                                    %marker to differentiate 
main simulation from PRC run 
     
    figure; 
    hold on; 
     
    for ppr = [PlotPRC]         %pick data to plot relative to reference 
data, where 1 = reference data, 2 = average phase shift, 3:(PhasePoints+2) 
= each individual pulse point 
     
        PlotPoint = ppr;                   
        clockplot(PRCurve); 
        ColourMarker = ColourMarker+1; 
         
    end 
    clear ppr 
     
    hold off; 
    PRCID = 0; 
     
end 
  
% Bifurcation Plot by Parameter 
% ------------------------------------------------------------ 
  
if BifPlot == 1 
     
    BifParRange = [BifParMin:BifParStep:BifParMax]; 
     
    bifurcation(BifParRange,BifParNo,BifRefVar);    %start nested function 
and plot 
     
end 
  
% Sensitivity Analysis by Parameter 
% ------------------------------------------------------------ 
%!!!calls external function for determining period and amplitude!!!% 
  
if SensPlot == 1 
    
    sensiplot;      %start nested function and plot 
     
end 
  
% ------------------------------------------------------------ 
% Nested Functions 
% ------------------------------------------------------------ 
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    % Defining Light Regime For Solver 
    % ------------------------------------------------------------ 
  
    function dL = 
lightinput(Time,InitialConds,LightID,LightResponse,PulseStart,PulseEnd,Foto
Period,LightToDark,ModelParams,Shifting) 
         
        %define light intensity and regime to be forwarded for solving the 
system of differential equations 
  
        if LightID == 0         %constant darkness 
  
            Light = 0; 
  
        elseif LightID == 1     %constant light 
  
            Light = LightResponse; 
  
        elseif LightID == 2     %single light pulse 
  
            Light = LightResponse*(Time >= PulseStart)*(Time < PulseEnd); 
  
        elseif LightID == 3     %regular light cycles 
  
        LightPeriod = FotoPeriod*LightToDark; 
        ReferencePeriod = mod(Time,FotoPeriod); 
        Light = LightResponse*(ReferencePeriod < LightPeriod); 
  
        elseif LightID == 4     %custom profile 
  
            if sin(Time*pi/12) >= 0 && Time < 96         %light/dark cycle 
for 96 hours 
  
                Light = LightResponse; 
  
            elseif (96 <= Time) && (Time < 196)          %constant light 
for next 100 hours 
  
                Light = LightResponse; 
  
            else 
  
                Light = 0;                              %no light 
afterwards 
  
            end 
  
        end 
         
        dL = clockmodel(InitialConds,Light,ModelParams,Shifting);            
%forwad conditions to differential equations 
  
    end 
  
    % Deterministic Initial Value Correction 
    % ------------------------------------------------------------ 
  
    function AdjustedIV = ivcorrection(IVCalFun,x0,P,Shift) 
       
        if IVCalFun == 1 || IVCalFun == 2       %callibration simulation to 
find suitable initial conditions 
     
            [~,CalVal] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,P,Shift),[0:CalTend],x0); 
            AdjustedIV = CalVal(end,:);                 %end values of 
calibraton simulation 
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            if IVCalFun == 2                     %set initial conditions 
for minimum levels of selected variable 
  
                [~,CalVal] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,P,Shift),[0:CalTend],AdjustedIV); 
                CalVal = CalVal(round(CalTend/2):end,:); 
                SynVal = find(CalVal(:,SynchVar) == 
min(CalVal(:,SynchVar)),1,'last');     %find minimum of selected variable 
and set all values accordingly 
                AdjustedIV = CalVal(SynVal,:);                         
%this way, the selected variable always starts from a trough 
  
            end 
  
        elseif IVCalFun == 3|| IVCalFun == 4 
  
            [~,CalVal] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,LR1,LR2,LR3,LR4,LR5,LR6,P,Shift),[0:CalTend],x
0); 
            AdjustedIV = CalVal(end,:);                 %end values of 
calibraton simulation 
             
            if IVCalFun == 4 
             
                [~,CalVal] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,LR1,LR2,LR3,LR4,LR5,LR6,P,Shift),[0:CalTend],A
djustedIV); 
                CalVal = CalVal(round(CalTend/2):end,:); 
                SynVal = find(CalVal(:,SynchVar) == 
min(CalVal(:,SynchVar)),1,'last');     %find minimum of selected variable 
and set all values accordingly 
                AdjustedIV = CalVal(SynVal,:);                         
%this way, the selected variable always starts from a trough 
         
            end 
             
        else 
             
            AdjustedIV = x0; 
             
        end 
         
    end 
  
    % Stochastic Initial Value Correction  
    % ------------------------------------------------------------ 
    %!!!calls SDE Solver in external function!!!% 
     
    function AdjustedStochIV = stochivcorrection(IVCalFun,x0,P,CalNoiseID) 
       
        if IVCalFun == 1 || IVCalFun == 2       %callibration simulation to 
find suitable initial conditions 
     
            StochCalVal = sde_euler(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,P,1),@(Time,InitialConds) 
noiseterm(Time,InitialConds,CalNoiseID),[0:TimeStep:CalTend],x0); 
            AdjustedStochIV = StochCalVal(end,:);                %end 
values of calibraton simulation 
  
            if IVCalFun == 2                     %set initial conditions 
for minimum levels of selected variable 
  
                StochCalVal = sde_euler(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,P,1),@(Time,InitialConds) 
noiseterm(Time,InitialConds,CalNoiseID),[0:TimeStep:CalTend],AdjustedStochI
V); 
                StochCalVal = StochCalVal(round(CalTend/2):end,:); 
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                StochSynVal = find(StochCalVal(:,SynchVar) == 
min(StochCalVal(:,SynchVar)),1,'last');     %find minimum of selected 
variable and set all values accordingly 
                AdjustedStochIV = StochCalVal(StochSynVal,:);                         
%this way, the selected variable always starts from a trough 
  
            end 
  
        elseif IVCalFun == 3|| IVCalFun == 4 
  
            StochCalVal = sde_euler(@(Time,InitialConds) 
lightinput(Time,InitialConds,LR1,LR2,LR3,LR4,LR5,LR6,P,1),@(Time,InitialCon
ds) noiseterm(Time,InitialConds,CalNoiseID),[0:TimeStep:CalTend],x0); 
            AdjustedStochIV = StochCalVal(end,:);                 %end 
values of calibraton simulation 
             
            if IVCalFun == 4 
             
                StochCalVal = sde_euler(@(Time,InitialConds) 
lightinput(Time,InitialConds,LR1,LR2,LR3,LR4,LR5,LR6,P,1),@(Time,InitialCon
ds) 
noiseterm(Time,InitialConds,CalNoiseID),[0:TimeStep:CalTend],AdjustedStochI
V); 
                StochCalVal = StochCalVal(round(CalTend/2):end,:); 
                StochSynVal = find(StochCalVal(:,SynchVar) == 
min(StochCalVal(:,SynchVar)),1,'last');     %find minimum of selected 
variable and set all values accordingly 
                AdjustedStochIV = StochCalVal(StochSynVal,:);                          
%this way, the selected variable always starts from a trough 
         
            end 
             
        else 
             
            AdjustedStochIV = x0; 
             
        end 
         
    end 
  
    % Lightcurve as a Function of Time 
    % ------------------------------------------------------------ 
  
    function [LightResult] = lightcurve(OptStr,VarTend,VarRes) 
         
        %copied and modified from 'lightinput' to generate seperate 
lightcurve data e.g. for plotting 
        %(due to how the solver works, reading data out from the simulation 
does not work well) 
             
        LightResult = zeros(VarTend/VarRes+1,1); 
         
        for lo = 1:VarTend/VarRes+1 
     
            if OptStr.LightID == 0         %constant darkness 
  
                LightResult(lo) = 0; 
  
            elseif OptStr.LightID == 1     %constant light 
  
                LightResult(lo) = OptStr.LightResponse; 
  
            elseif OptStr.LightID == 2     %single light pulse 
  
                LightResult(lo) = OptStr.LightResponse*(((lo-1)*VarRes) >= 
OptStr.PulseStart & ((lo-1)*VarRes) <= OptStr.PulseEnd); 
  
            elseif OptStr.LightID == 3     %regular light cycles 
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                LightPeriod = OptStr.FotoPeriod*OptStr.LightToDark; 
                ReferencePeriod = mod(((lo-1)*VarRes),OptStr.FotoPeriod); 
                LightResult(lo) = OptStr.LightResponse*(ReferencePeriod <= 
LightPeriod); 
  
            elseif OptStr.LightID == 4     %custom profile 
  
                if (sin(((lo-1)*VarRes)*pi/12) >= 0) && (((lo-1)*VarRes) < 
96)         %light/dark cycle for 96 hours 
  
                    LightResult(lo) = OptStr.LightResponse; 
  
                elseif (96 <= ((lo-1)*VarRes)) && (((lo-1)*VarRes) <= 196)          
%constant light for next 100 hours 
  
                    LightResult(lo) = OptStr.LightResponse; 
  
                else 
  
                    LightResult(lo) = 0;    %no light afterwards 
  
                end 
  
            end 
         
        end 
        clear lo 
     
    end 
  
    % Plotting Variables vs Time and Light Input 
    % ------------------------------------------------------------ 
  
    function clockplot(PlotStruct) 
         
        T = PlotStruct.TimeData; 
        D = PlotStruct.ModelData; 
        Ytop = max(max(D));             % maximum value used to put 
markings in relation to scale of plot 
         
        if PRCID == 1                   % special phase response curve plot 
             
            PlotStruct.PulseStart = PlotStruct.PulseStartList(PlotPoint-1); 
            PlotStruct.PulseEnd = PlotStruct.PulseEndList(PlotPoint-1); 
            LiCu = lightcurve(PlotStruct,T(end),T(2))*4;          %light 
strength boosted by factor of 4 for visibility 
             
            plot(T,LiCu,':c', T,D(:,1),'b','Linewidth',3); 
            
plot(T,D(:,PlotPoint),'Color',ColourString(mod(ColourMarker,5)+1),'Linewidt
h',3, 'LineStyle', '--'); 
            title(['Reference and Light-pulsed Simulations for ', 
VarNames{PRCVar},', plotting No ' num2str(PlotPRC)],'fontsize',16); 
            xlabel('Time','fontsize',16); 
            ylabel('Concentration','fontsize',16); 
            legend('Light Input', 'Reference Simulation', 'Phaseshifted 
Simulation'); 
            ylim([0, 1.5]); 
             
        else 
             
            if ZoomMarker == 1              % adjusted light calculation 
for zoom plot 
               
                LiCu = 
lightcurve(PlotStruct,ClockResults.EndTime,ClockResults.TimeStep)*2;          
%light strength boosted by factor of 2 for visibility 
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                LiCu = 
LiCu((ZoomSt/TimeStep+1):(ZoomSt+ZoomTime)/TimeStep+1,:); 
              
            else 
                 
                LiCu = lightcurve(PlotStruct,T(end),T(2))*4;          
%light strength boosted by factor of 4 for visibility 
             
            end 
             
            if length(D(end,:)) == 5 
                             
                plot(T,D(:,1),'g:', T,D(:,2),'g-', T, D(:,3),'r-', 
T,D(:,4),'b:', T,D(:,5),'b-', T,LiCu,':c', 'Linewidth',3); 
                title(['Mean of ', num2str(Osci), ' Oscillator Systems with 
5 Variables + Light'],'fontsize',16); 
                xlabel('Time','fontsize',16); 
                ylabel('Concentration','fontsize',16); 
                legend('Cry1a mRNA', 'Cry1a', 'ClockBmal','Per1 
mRNA','Per1','Light Input'); 
                 
            else                    % automated plotting for unexpected 
number of variables 
                 
                plot(T,D, T,LiCu,':c', 'Linewidth',3); 
                title('System with unexpected Number of Variables! - edit 
clockplot','fontsize',16); 
                xlabel('Time','fontsize',16); 
                ylabel('Concentration','fontsize',16); 
                 
            end 
             
        end 
         
        if ZoomMarker == 1          % add markings for dusk and dawn 
  
            DuskLine = 
round(ClockResults.FotoPeriod*ClockResults.LightToDark*10); 
     
            for zl = ZoomSt:0.1:(ZoomSt+ZoomTime) 
  
                if round(mod(zl,ClockResults.FotoPeriod)*10) == DuskLine 
  
                    plot([zl, zl], [0,Ytop],'b-.','linewidth',2); 
  
                elseif mod(zl,ClockResults.FotoPeriod) == 0 
  
                    plot([zl, zl], [0,Ytop],'m-.','linewidth',2); 
  
                end 
                 
            end 
            clear zl 
                 
        end 
         
        FoPe = PlotStruct.FotoPeriod; 
        LtD = PlotStruct.LightToDark; 
  
        if PlotStruct.LightID == 0                  %constant darkness 
  
            
rectangle('Position',[T(1),0,T(end),Ytop/20],'Curvature',[0,0],'FaceColor',
'k'); 
  
        elseif PlotStruct.LightID == 1              %constant light 
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rectangle('Position',[T(1),0,T(end),Ytop/20],'Curvature',[0,0],'FaceColor',
'w'); 
  
        elseif PlotStruct.LightID == 2              %single light pulse 
  
           
rectangle('Position',[T(1),0,T(end),Ytop/20],'Curvature',[0,0],'FaceColor',
'k'); 
           
rectangle('Position',[PlotStruct.PulseStart,0,(PlotStruct.PulseEnd-
PlotStruct.PulseStart),Ytop/20],'Curvature',[0,0],'FaceColor','w'); 
  
        elseif PlotStruct.LightID == 3              %regular light cycles 
  
           
rectangle('Position',[T(1),0,T(end),Ytop/20],'Curvature',[0,0],'FaceColor',
'w'); 
           for rc=1:(ceil(T(end)/FoPe)) 
  
               if FoPe*rc < T(end) 
  
                   rectangle('Position',[FoPe*(rc-(1-LtD)),0,FoPe*(1-
LtD),Ytop/20],'Curvature',[0,0],'FaceColor','k'); 
  
               elseif T(end)-(FoPe*(rc-(1-LtD))) > 0 
  
                   rectangle('Position',[FoPe*(rc-(1-LtD)),0,T(end)-
(FoPe*(rc-(1-LtD))),Ytop/20],'Curvature',[0,0],'FaceColor','k'); 
  
               end 
  
           end 
           clear rc 
  
        elseif PlotStruct.LightID == 4              %custom profile 
  
           
rectangle('Position',[T(1),0,T(end),Ytop/20],'Curvature',[0,0],'FaceColor',
'w'); 
           for rc=1:(ceil(96/FoPe)+1) 
  
               if FoPe*rc < 96 
  
                   rectangle('Position',[FoPe*(rc-(1-LtD)),0,FoPe*(1-
LtD),Ytop/20],'Curvature',[0,0],'FaceColor','k'); 
  
               elseif 96-(FoPe*(rc-(1-LtD))) > 0 
  
                   rectangle('Position',[FoPe*(rc-(1-LtD)),0,96-(FoPe*(rc-
(1-LtD))),Ytop/20],'Curvature',[0,0],'FaceColor','k'); 
  
               else 
  
                   rectangle('Position',[196,0,T(end)-
196,Ytop/20],'Curvature',[0,0],'FaceColor','k'); 
  
               end 
  
           end 
           clear rc 
  
        end 
  
        set(gca,'xtick',[0:FoPe:T(end)]); 
        xlim([T(1), T(end)]); 
  
    end 
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    % Phase Response Curve 
    % ------------------------------------------------------------ 
     
    function phaseresponse(Var) 
         
        xPRC = ivcorrection(2,xIn,P,1); 
         
        [RefTime,RefVal] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,P,1),[0:PRCRes:PRCTend],xPRC);  
%create constant darkness reference simulation 
        
        RefMax = 1+find(RefVal(2:end-1,Var)>RefVal(1:end-2,Var) & 
RefVal(2:end-1,Var)>RefVal(3:end,Var)); 
        LastPer = RefTime(RefMax(end))-RefTime(RefMax(end-1));   %find 
maxima and time difference between last two maxima  
                         
        PRCResults = zeros(PhasePoints,2);                       %empty 
array for storage 
        PRCInstances = zeros((PRCTend/PRCRes+1),PhasePoints); 
         
        for pr =1:PhasePoints 
             
            fprintf('Phase Point = %d...\n',pr); 
             
            PointTime = pr*LastPer/PhasePoints;         %define points for 
phase response test over the reference period 
            [PRCTime, PRCData] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,2,LR2,PointTime,PointTime+2,0,0,P,1),[0:PRCRes
:PRCTend],xPRC);  %simulation with light regime 
                                                        %run simulations 
with a light pulse at defined points  
            PRCMax = 1+find(PRCData(2:end-1,Var)>PRCData(1:end-2,Var) & 
PRCData(2:end-1,Var)>PRCData(3:end,Var)); 
            PhaseShift = PRCTime(PRCMax(end))-PRCTime(RefMax(end)); %find 
maxima of pulsed simulation, and time difference between last pulsed and 
reference maxima  
  
            if PhaseShift > LastPer/2                   %adjust relative to 
period 
                 
                PhaseShift = PhaseShift-LastPer; 
             
            elseif PhaseShift < -LastPer/2 
                 
                PhaseShift = PhaseShift+LastPer; 
             
            end 
             
            PRCResults(pr,:) = [PointTime, PhaseShift]; %save pulse times 
and resulting phase shifts 
            PRCInstances(:,pr) = PRCData(:,Var);        %save data for 
variable of interest for all pulse points 
             
        end 
        clear pr 
         
        AveragedShift = mean(PRCInstances,2);           %calculate average 
phase shift across all pulse points 
         
        PRCurve = ClockResults;                        %store all results 
in struct 
        PRCurve.LightID = 2; 
        PRCurve.TimeData = PRCTime; 
        PRCurve.PulseStartList = [mean(PRCResults(:,1));PRCResults(:,1)]; 
        PRCurve.PulseEndList = 
[mean(PRCResults(:,1)+2);(PRCResults(:,1)+2)]; 
        PRCurve.ModelData = [RefVal(:,Var),AveragedShift,PRCInstances]; 
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        PRCurve.Results = PRCResults; 
         
        figure;                                 %plot phase shifts 
        hold on; 
        plot(PRCResults(:,1),PRCResults(:,2),'b.'); 
        plot([0,LastPer],[0,0],'k--'); 
        hold off; 
        title(['Phase Shifts caused by a Light Pulse at Various Points 
throughout Period for ',VarNames{Var}],'fontsize',16); 
        xlabel('Pulse time','fontsize',16); 
        xlim([0, LastPer]); 
        ylabel('Phase shift','fontsize',16); 
     
    end 
  
    % Bifurcation Plot 
    % ------------------------------------------------------------ 
     
    function bifurcation(Range,Para,RefVar) 
         
        BifMax = [];  % data (bifurcation diagram) 
        BifMin = []; 
      
        for bf = Range 
     
                fprintf('Parameter Value = %4.2f\n',bf); 
                P(Para) = bf; 
                 
                xBif = ivcorrection(2,xIn,P,1);     % IV correction and 
proper simulation for adjusted value of parameter under investigation 
                 
                [~,x] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,P,1),[0:BifRes:BifTend],xBif); 
     
                for bm = 2:length(x(:,RefVar))-1    % finding maxima and 
minima 
                         
                    if ((x(bm,RefVar) > x(bm-1,RefVar)) && (x(bm,RefVar) > 
x(bm+1,RefVar))) 
                     
                        BifMax = [BifMax; bf, x(bm,RefVar)]; 
                     
                    elseif ((x(bm,RefVar)< x(bm-1,RefVar)) && (x(bm,RefVar) 
< x(bm+1,RefVar))) 
                         
                        BifMin = [BifMin; bf, x(bm,RefVar)]; 
                         
                    end 
                 
                end 
                clear bm 
  
        end 
        clear bf 
                    % plotting maxima versus minima to reveal oscillating 
behaviour 
        figure; 
        hold on; 
        
plot(BifMin(:,1),BifMin(:,2),'ro','MarkerEdgeColor','r','MarkerFaceColor','
r','MarkerSize',1.5) 
        
plot(BifMax(:,1),BifMax(:,2),'ro','MarkerEdgeColor','b','MarkerFaceColor','
b','MarkerSize',1.5) 
        hold off; 
        axis([Range(1), Range(end), 0, inf]); 
        title('Bifurcation Plot showing Maximum and Minimum Concentrations 
relative to varied Parameter','fontsize',16); 
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        xlabel(['Value inserted for Parameter 
',ParaNames{Para}],'fontsize',16); 
        ylabel(['Concentration at Maxima/Minima of 
',VarNames{RefVar}],'fontsize',16); 
        legend('Minimum Values', 'Maximum Values'); 
         
    end 
  
    % Sensitivity Plot 
    % ------------------------------------------------------------ 
     
    function sensiplot 
  
        figure; 
         
        xSen = ivcorrection(2,xIn,P,1); % IV correction and standard 
simulation to obtain reference values 
         
        [SensRefTime,SensRefVal] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,P,1),[0:SensTend],xSen); 
        SensReference = PHD_OOAA_HilbertAnalysis(SensRefVal, SensRefTime, 
SensVar, 1); 
         
        for sp = 1:length(ParaShift) 
  
            fprintf('Sensitivity to a Shift of %d %%\n',ParaShift(sp)); 
  
            SensResults = zeros(length(P),4); 
  
            for st = 1:length(P) 
                                    % run IV correction and simulations for 
each adjusted parameter and each shift 
                PSen = P; 
                PSen(st)=P(st)*(1+ParaShift(sp)/100); 
                 
                xSenShift = ivcorrection(2,xIn,PSen,1); 
                      
                [SensPerTime,SensPerVal] = ode45(@(Time,InitialConds) 
lightinput(Time,InitialConds,0,0,0,0,0,0,PSen,1),[0:SensTend],xSenShift); 
                SensPerturbed = PHD_OOAA_HilbertAnalysis(SensPerVal, 
SensPerTime, SensVar, 1); 
  
                SensResults(st,:) = 
[SensPerturbed(1:2),(SensPerturbed(1:2)-
SensReference(1:2))./SensReference(1:2)]; 
  
            end 
            clear st 
                        % plot the difference in period and amplitude 
resulting from shifting each parameter 
            disp(SensResults); 
  
            subplot(length(ParaShift),2,(2*sp-1)) 
            bar([1:length(P)],100*(SensResults(:,3))); 
            ylabel('% Variation of the period') 
            ylim([-100,inf]) 
            xlabel(['Parameter shifted by ',num2str(ParaShift(sp)),'%']) 
            xlim([0, length(P)+1]) 
            set(gca,'XTickLabel',ParaNames) 
  
            subplot(length(ParaShift),2,(2*sp)) 
            bar([1:length(P)],100*(SensResults(:,4))); 
            ylabel('% Variation of the amplitude') 
            ylim([-100,inf]) 
            xlabel(['Parameter shifted by ',num2str(ParaShift(sp)),'%']) 
            xlim([0, length(P)+1]) 
            set(gca,'XTickLabel',ParaNames) 
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        end 
        clear sp 
         
    end 
  
    % Noise Component for Stochastic Differential Equation 
    % ------------------------------------------------------------ 
     
    function NT = noiseterm(~,InitialConds,NoiseIDFun) 
         
        if NoiseIDFun == 0 
             
            NT = 0;         % no noise 
             
        elseif NoiseIDFun == 1 
             
            NT = NoiseScale;    % constant white noise 
             
        elseif NoiseIDFun == 2 
             
            NT = InitialConds.*NoiseScale;  % noise relative to 
concentration of reactants 
             
        end 
         
    end 
  
end 
         
function dC = clockmodel(x,Light,Par,Shift) 
  
%specify underlying system of differential equations, including parameters, 
%variables, and the equations themselves 
  
% Parameters 
% ------------------------------------------------------------ 
  
a = Par(1); 
v1 = Par(2)*a;  
v2 = Par(3)*a; 
kdm = Par(4)*a;  
kdeg = Par(5)*a;  
kd = Par(6)*a; 
k1 = Par(7)*a;  
k2 = Par(8)*a;  
k3 = Par(9)*a;  
k4 = Par(10)*a; 
ka = Par(11)*a;  
kp = Par(12)*a;  
kcl1 = Par(13)*a;  
kcl2 = Par(14)*a; 
n = Par(15);  
  
% Variables 
% ------------------------------------------------------------ 
  
c1am = x(1); 
cry1a = x(2); 
ClockBmal = x(3); 
p1c3m = x(4); 
per1cry3 = x(5); 
  
% Equations 
% ------------------------------------------------------------ 
  
dC = [ 
    Shift.*(v1*(ClockBmal/(ka + ClockBmal)) - (kdm + Light)*(c1am/(kdeg + 
c1am))),       % d(c1am)/dt 
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    Shift.*(k1*c1am - kd*(cry1a/(kdeg + cry1a))),                                        
% d(cry1a)/dt 
    Shift.*(k2*(kcl1^n/(kcl1^n + cry1a^n)) + k3*(kcl2^n/(kcl2^n + 
per1cry3^n)) - kd*(ClockBmal/(kdeg + ClockBmal))), % d(ClockBmal)/dt 
    Shift.*(v2*(ClockBmal/(kp + ClockBmal)) - kdm*(p1c3m/(kdeg + p1c3m))),               
% d(p1c3m)/dt 
    Shift.*(k4*p1c3m - kd*(per1cry3/(kdeg + per1cry3)))                                  
% d(per1cry3)/dt 
    ];                               
  
end 
 

Code for the Sequential Monte Carlo Algorithm 
 

function [FinalValues] = PHD_OOAA_SMCParamGen(ReferenceData, LastTolerance, 
ToleranceScaling, varargin) 
  
%PHD_OOAA_SMCParamGen(ReferenceData, LastTolerance, 
ToleranceScaling,[options]) 
% generates a set of plausible values for the parameter requested by 
% randomly sampling from a multivariate distribution and forwarding the 
result 
% along with reference data to a validation function; the returned 
difference to  
% reference values is accpeted if below the respective population's 
tolerance 
% this is in turn determined by scaling the last Tolerance according to 
input schedule 
  
%Required and Optional Inputs 
% ------------------------------------------------------------ 
  
smc = inputParser; 
  
smc.addRequired('ReferenceData', @isnumeric);           % compare simulated 
data to this 
smc.addRequired('LastTolerance', @isnumeric);           % tolerance at 
scale 1 
smc.addRequired('ToleranceScaling', @isnumeric);        % scales tolerance 
for different populations 
smc.addOptional('AllParameters', 1, @(x)(x==0)||(x==1));    % sets (nearly) 
all parameters to 0 
smc.addOptional('ReRunPopulation', 0, @(x)isnumeric(x)&(x>=0)); % starts 
algorith from specified intermediate population 
smc.addOptional('Particles', 100, @(x)isnumeric(x)&(x>0)); % number of 
particles obtained for each population 
smc.addOptional('StochasticSims', 20, @(x)isnumeric(x)&(x>0));  % number of 
stochastic simulations with each set of parameters 
smc.addOptional('EstimatedValues', 0.5, @isnumeric); % estimated values for 
parameters to compare to in graphical output    
        %parameters used to run test simulations 
smc.addOptional('SimulationTime', 240, @(x)isnumeric(x)&(x>0)); % duration 
of validation simulation  
smc.addOptional('SimulationTimeStep', 0.1, @(x)isnumeric(x)&(x>0)); % 
resolution of validation simulation 
smc.addOptional('SwitchOnSDE', 0, @(x)(x==0)||(x==1)); % switches from 
deterministic to stochastic validation  
smc.addOptional('NoiseLevel', 0.03, @(x)isnumeric(x)&(x>=0)); % magnitude 
of noise term for SDEs 
        %parameters passed to system of differential equations 
smc.addOptional('Par_a', 0.9, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_v1', 0.35, @(x)(isnumeric(x) & (x>=0) & (x<=1)));  
%passes specified value if not overriden by input 
smc.addOptional('Par_v2', 0.45, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
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smc.addOptional('Par_kdm', 0.45, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_kdeg', 0.5, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_kd', 0.5, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_k1', 0.36, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_k2', 0.45, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_k3', 0.63, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_k4', 0.27, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_ka', 0.27, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_kp', 0.36, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_kcl1', 0.45, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_kcl2', 0.45, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_LI', 0.5, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
smc.addOptional('Par_n', 0.4, @(x)(isnumeric(x) & (x>=0) & (x<=1))); 
  
smc.parse(ReferenceData,LastTolerance,ToleranceScaling,varargin{:}); 
SMCParam = smc.Results; 
                        % names used for labeling 
ParaNames = 
{'a','v1','v2','kdm','kdeg','kd','k1','k2','k3','k4','ka','kp','kcl1','kcl2
','LI','n'}; 
  
% Passing Inputs to Various Local Functions 
% ------------------------------------------------------------ 
  
FindAll = SMCParam.AllParameters; 
ReRun = SMCParam.ReRunPopulation; 
  
SimTi = SMCParam.SimulationTime; 
SimTiStp = SMCParam.SimulationTimeStep; 
SDEId = SMCParam.SwitchOnSDE; 
NoiseLvl = SMCParam.NoiseLevel; 
  
EstimatedValues = SMCParam.EstimatedValues; 
Particles = SMCParam.Particles;                      
StochasticSims = SMCParam.StochasticSims; 
  
if SDEId == 0       % in deterministic mode only do one simulation per 
parameter set 
  
    StochasticSims = 1; 
     
end 
  
PriorTolerance = ToleranceScaling(1)*LastTolerance; % used to reject/accept 
from prior to first intermediate 
InterTolScale = [ToleranceScaling(2:end),0];        % drop 1st for prior, 
add 0 for last step lookahead calculation 
InterTolSchedule = InterTolScale'*LastTolerance;    % determine each 
population's tolerance value 
Populations = length(InterTolScale)-1;              % from first 
intermediate to final population 
  
P(1) = SMCParam.Par_a; 
P(2) = SMCParam.Par_v1;  
P(3) = SMCParam.Par_v2; 
P(4) = SMCParam.Par_kdm;  
P(5) = SMCParam.Par_kdeg;  
P(6) = SMCParam.Par_kd; 
P(7) = SMCParam.Par_k1;  
P(8) = SMCParam.Par_k2;  
P(9) = SMCParam.Par_k3;  
P(10) = SMCParam.Par_k4; 
P(11) = SMCParam.Par_ka;  
P(12) = SMCParam.Par_kp;  
P(13) = SMCParam.Par_kcl1;  
P(14) = SMCParam.Par_kcl2; 
P(15) = SMCParam.Par_LI; 
P(16) = SMCParam.Par_n; 
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if FindAll == 0         % sets all parameters to 0 except 'a' and 'n' 
     
    P(2:15) = 0; 
     
end 
  
MissingParams = find(P == 0);               % find parameters set to 0 to 
be evaluated by this function 
NumberVars = length(MissingParams);         % number of missing parameters 
  
%% Moving from the prior to the first intermediate population 
%------------------------------------------------------------- 
  
% m particles sampled from a Beta, n expected values and corresponding 
weight 
% of values accepted within tolerance calculated 
  
if ReRun == 0  
     
    InterStart = 1;         % normally start with this intermediary 
population 
    fprintf('Prior Sampling...\n'); 
    SamplingResults = zeros(Particles,(NumberVars+2)); 
    ViableLookahead = 0; 
  
    while ViableLookahead < 2   % repeat until there are at least 2 
positive lookahead probabilities in the population 
                                % otherwise re-normalizing the weight with 
one particle in turn excluded will produce NAN 
        for m = 1:Particles 
  
            if mod(m,10) == 0 
  
                fprintf('%d',m); 
  
            else 
  
                fprintf('*'); 
  
            end 
  
            ProportionWithin = 0; 
  
            while ProportionWithin == 0   % satisfy that at least one 
simulation is within tolerance 
  
                for v = 1:NumberVars 
  
                PriorSample(v) = betarnd(2,2);  % random sample from 
Betadistribution(2,2) 
                P(MissingParams(v)) = PriorSample(v); 
  
                end 
                clear v 
  
                AcceptedArray = zeros(StochasticSims,1); 
                LookaheadArray = zeros(StochasticSims,1); 
  
                for n = 1:StochasticSims              % expected value 
simulation per particle 
                                                              % performs 
simulation and outputs difference to reference data 
                    PriorSimdata = 
PHD_OOAA_ModelSMCValidation(ReferenceData,SimTi,SimTiStp,SDEId,NoiseLvl,P); 
                    WithinTolerance = min(PriorTolerance-PriorSimdata) >= 
0;         
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                    AcceptedArray(n) = WithinTolerance;    % logic array of 
values within tolerance 
                    WithinNextTolerance = min(InterTolSchedule(1,:)-
PriorSimdata) >= 0; 
                    LookaheadArray(n) = WithinNextTolerance;     % and 
within next tolerance 
  
                end 
                clear n 
  
                ProportionWithin = sum(AcceptedArray)/StochasticSims; % 
proportion accepted 
                ProportionWithinNext = sum(LookaheadArray)/StochasticSims; 
  
            end 
  
            SamplingResults(m,:)= [PriorSample, ProportionWithin, 
ProportionWithinNext]; 
  
        end 
        clear m 
  
        ViableLookahead = sum(SamplingResults(:,end) ~= 0); % number of 
positve lookahead values 
        fprintf('\n'); 
  
    end 
    % normalize the weight and lookahead weight 
  
    WeightedPrior = SamplingResults; 
    WeightedPrior(:,(end-1)) = SamplingResults(:,(end-
1))/sum(SamplingResults(:,(end-1))); 
    WeightedPrior(:,end) = 
SamplingResults(:,end)/sum(SamplingResults(:,end)); 
  
    % generate a covariance matrix for each particle, required for 
perturbation 
    % step when sampling the next intermediate population 
  
    ListCovTotal = zeros(NumberVars,NumberVars,Particles); 
  
    for b = 1:Particles 
  
        CovParticle = WeightedPrior(b,1:NumberVars);  % select theta values 
of particle b 
        CovRest = WeightedPrior; 
        CovRest(b,:) = [];          % drop particle b from list and re-
normalize 
        CovRest(:,end) = CovRest(:,end)/sum(CovRest(:,end)); 
  
        ListCovInstance = zeros(NumberVars,NumberVars,(Particles-1)); 
  
        for c = 1:(Particles-1)   % calculate in turn covariance for 
particles b and all c 
  
            RestParticle = CovRest(c,1:NumberVars);    % select theta 
values of particle c 
            ParticleDiff = RestParticle-CovParticle;   % difference in 
theta b and c  
            CovInstance = CovRest(c,end)*(ParticleDiff'*ParticleDiff); 
            ListCovInstance(:,:,c) = CovInstance;   % weighted covariance 
matrixes 
  
        end 
        clear c      
                       % sum covariance for all c into one matrix and 
repeat for all b 
        ListCovTotal(:,:,b) = sum(ListCovInstance,3);  
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    end 
    clear b 
  
    InterWeighted = WeightedPrior;  % rename lists for intermediate loop 
below 
    InterCovTotal = ListCovTotal; 
  
    PriorFileName = ['Population Prior']; 
    save(PriorFileName,'InterWeighted','InterCovTotal','SMCParam'); 
     
else 
     
    InterStart = ReRun; 
     
    if ReRun == 1 
         
        ReRunSave = ['Population Prior']; 
         
    else 
         
        ReRunSave = ['Population ', num2str(ReRun-1)]; 
         
    end 
     
    load(ReRunSave); 
  
end 
  
%% Starting the loop through all intermediate to posterior population 
%------------------------------------------------------------- 
  
%sampling particles from the previous intermediate, calculating their 
expected 
%values, proportion within tolerance, and adjusted weights 
  
AverageParticles = zeros(Populations,NumberVars); 
AverageSTD = zeros(Populations,NumberVars); 
  
for t = InterStart:Populations 
     
    fprintf('Population %d...\n', t); 
    InterSResults = zeros(Particles,(NumberVars+2)); 
    InterViableLookahead = 0; 
     
    while InterViableLookahead < 2      % repeat until there are at least 2 
positive lookahead probabilities in the population 
                                        % otherwise re-normalizing the 
weight with one particle in turn excluded will produce NAN 
     
        for o = 1:Particles 
  
            if mod(o,10) == 0 
             
                fprintf('%d',o); 
             
            else 
                 
                fprintf('*'); 
             
            end 
             
            InterProportionWithin = 0; 
  
            while InterProportionWithin == 0     % satisfy that at least 
one simulation is within tolerance 
  
                PerturbedSample = 0; 
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                while any(PerturbedSample <= 0) || any(PerturbedSample >= 
1)  % satisfy that 0<perturbed theta<1 
  
                    [InterSample,CovIdx] = 
datasample(InterWeighted,1,'Weights',InterWeighted(:,(end-1))); 
                    InterSample = InterSample(:,1:NumberVars); % random 
sample with weights from previous population 
                    PerturbedSample = 
mvnrnd(InterSample,InterCovTotal(:,:,CovIdx)); 
                        % perturb by random sampling from multivariate 
distribution around selected particle  
                end 
  
                for v = 1:NumberVars 
  
                P(MissingParams(v)) = PerturbedSample(v); 
  
                end 
                clear v 
  
                AcceptedInterArray = zeros(StochasticSims,1); 
                LookaheadInterArray = zeros(StochasticSims,1); 
  
                for p = 1:StochasticSims              % expected value 
simulation per particle 
                                                             % performs 
simulation and outputs difference to reference data 
                    InterSimdata = 
PHD_OOAA_ModelSMCValidation(ReferenceData,SimTi,SimTiStp,SDEId,NoiseLvl,P); 
                    InterWthTolerance = min(InterTolSchedule(t,:)-
InterSimdata) >= 0; 
                    AcceptedInterArray(p) = InterWthTolerance;      % logic 
array of values within tolerance 
                    InterWthNTolerance =  min(InterTolSchedule(t+1,:)-
InterSimdata) >= 0; 
                    LookaheadInterArray(p) = InterWthNTolerance;     % and 
within next tolerance 
  
                end 
                clear p 
  
                InterProportionWithin = 
sum(AcceptedInterArray)/StochasticSims; % proportion accepted 
                InterProportionWithinNext = 
sum(LookaheadInterArray)/StochasticSims; 
  
            end 
  
            PertPDFArray = zeros(Particles,1); 
  
            for q = 1:Particles 
                       % PDF of perturbed particle relative to all 
particles of previous population 
                PertRelativePDF = mvnpdf(PerturbedSample, 
InterWeighted(q,1:NumberVars), InterCovTotal(:,:,q)); 
                PertPDFArray(q) = PertRelativePDF*InterWeighted(q,(end-1)); 
                       % adjusted by previous particle respective weights 
            end 
            clear q 
  
            PertPDFTotal = sum(PertPDFArray); 
            PriorPDF = prod(betapdf(PerturbedSample,2,2)); % PDF pf 
perturbed particle relative to prior 
            AdjustedWeight = InterProportionWithin*PriorPDF/PertPDFTotal; 
  
            InterSResults(o,:) = [PerturbedSample, AdjustedWeight, 
InterProportionWithinNext]; 
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        end 
        clear o 
     
        InterViableLookahead = sum(InterSResults(:,end) ~= 0); 
         
        if t == Populations 
             
            InterViableLookahead = 2; 
             
        end 
         
        fprintf('\n'); 
         
    end 
         
    % normalize the adjusted weight and lookahead weight 
  
    InterWeighted = InterSResults; 
    InterWeighted(:,(end-1)) = InterSResults(:,(end-
1))/sum(InterSResults(:,(end-1))); 
    InterWeighted(:,end) = InterSResults(:,end)/sum(InterSResults(:,end)); 
  
    % generate a covariance matrix for each particle, required for 
perturbation 
    % step when sampling the next intermediate population 
  
    InterCovTotal = zeros(NumberVars,NumberVars,Particles); 
  
    for d = 1:Particles 
     
        InterCovParticle = InterWeighted(d,1:NumberVars);  % select theta 
values of particle d 
        InterCovRest = InterWeighted; 
        InterCovRest(d,:) = [];          % drop particle d from list and 
re-normalize 
        InterCovRest(:,end) = InterCovRest(:,end)/sum(InterCovRest(:,end)); 
     
        InterCovInstance = zeros(NumberVars,NumberVars,(Particles-1)); 
     
        for e = 1:(Particles-1)   % calculate in turn covariance for 
particles d and all e 
         
            RestInterParticle = InterCovRest(e,1:NumberVars);    % select 
theta values of particle e 
            ParticleIntDiff = RestInterParticle-InterCovParticle;   % 
difference in theta d and e  
            CovInstance = 
InterCovRest(e,end)*(ParticleIntDiff'*ParticleIntDiff); 
            InterCovInstance(:,:,e) = CovInstance;   % weighted covariance 
matrixes 
     
        end 
        clear e      
                  % sum covariance for all e into one matrix and repeat for 
all d 
        InterCovTotal(:,:,d) = sum(InterCovInstance,3); 
                 
    end 
    clear d 
                  % weigh and sum particles to generate a mean particle  
    WeightedParticles = zeros(Particles,NumberVars); 
     
    for w = 1:Particles 
     
        WeightedParticles(w,:) = 
InterWeighted(w,1:NumberVars)*InterWeighted(w,(end-1)); 
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    end 
    clear w 
     
    AverageParticles(t,:) = sum(WeightedParticles); 
     
    ColourString = 'bgrky'; 
                % plot accepted parameter values for each population 
    for v = 1:NumberVars 
         
        AverageSTD(t,v) = std(InterWeighted(:,v));  % determine std of 
particles for next plot below 
         
        subplot(Populations,NumberVars,((NumberVars*(t-1))+v)); 
        scatter(InterWeighted(:,v),InterWeighted(:,(end-
1)),10,ColourString(mod(v,5)+1)); 
        axis([0,1,0,0.1]); 
        ylabel(['Parameter ', ParaNames{MissingParams(v)}]); 
        xlabel(['Population ', num2str(t), ' - Tolerance Scaling is ', 
num2str(InterTolScale(t))]); 
     
    end 
    clear v 
                % save accepted parameter values and corresponding 
covariance matrixes for each population 
    if t == Populations 
   
        InterFileName = ['Population Final']; 
             
    else 
         
        InterFileName = ['Population ', num2str(t)]; 
         
    end 
     
    save(InterFileName,'InterWeighted','InterCovTotal','SMCParam');  
  
end 
clear t 
  
figure 
hold on 
                % plot average values and stds for each population versus 
expected values 
for v = 1:NumberVars 
     
    
errorbar([1:Populations],AverageParticles(:,v),AverageSTD(:,v),'Color',Colo
urString(mod(v,5)+1)); 
    plot([1, Populations], [EstimatedValues(v), EstimatedValues(v)],'--
','Color',ColourString(mod(v,5)+1)); 
    title('Average of Theta Particles changing over Populations'); 
    axis([1,Populations,0,1]); 
    xlabel('Population'); 
    ylabel('Average Theta Value'); 
     
end 
clear v 
  
hold off 
  
FinalValues = AverageParticles(end,:); 
disp('    Average Theta values of each population'); 
disp(AverageParticles); 
  
end 

 


