
Performance-preserving clustering of elastic controllers

Josep Carmona, Jorge Júlvez, Jordi Cortadella
Universitat Politècnica de Catalunya

Barcelona, Spain

Michael Kishinevsky
Intel Corporation
Hillsboro, USA

ABSTRACT
Asynchronous and latency-insensitive circuits offer a similar form
of elasticity that tolerates variations in the delays or the laten-
cies of the computation and communication resources of a system.
This flexibility comes at the expense of including a control layer
that synchronizes the flow of information. This paper proposes a
method for reducing the complexity of the control layer by clus-
tering controllers with similar functionality. The approach reduces
the control layer and the number of elastic buffers to a significantly
smaller elastic skeleton that preserves the performance of the sys-
tem. The method also takes into account layout information, thus
avoiding optimizations that can be physically unfeasible. The ex-
perimental results indicate that drastic reductions in the complexity
of the control can be obtained.

1. INTRODUCTION
Asynchronous systems operate without global clock and rely on

local handshakes between components for coordination of the com-
putation. They are typically constructed for correct operation un-
der delay changes in their components. Therefore asynchronous
systems are often called “elastic” (e.g., “elastic pipelines” [18]) in
reference to their flexibility in changing component delays.

Latency insensitive (or synchronous elastic) systems have been
suggested by a few research groups as a form of discretized asyn-
chronous systems (see, e.g., [3, 6, 8]). Such systems are elastic in
the sense that they can tolerate dynamic and static changes in la-
tencies of computation and communication components as counted
in the number of clock cycles. Their implementation relies on syn-
chronous handshakes optimized for use in coordination with the
clock.

The behavior of elastic systems (regardless of synchronous or
asynchronous implementation details) and their controllers can be
formally described using different concurrent models. Most often
Petri Nets and their subclasses are used for this purpose. In par-
ticular, if a system has no choice in selecting different branches
of behavior (a typical case in elastic systems) its behavior can be
described using a Marked Graph (MG).

Fig. 1(a) shows an example of an MG describing the behav-

e-mail addresses: jcarmona@lsi.upc.edu, julvez@lsi.upc.edu,
jordicf@lsi.upc.edu, michael.kishinevsky@intel.com
.

ior of an elastic system. The transitions of the graph (drawn as
boxes) represent events in the system (e.g., computation within the
blocks of the data-path ending in latching the results into sequen-
tial elements). For convenience, transitions are labeled with names
a,b, . . . ,h. Every pair of two adjacent transitions, e.g., a and b, is
connected with two complementary arcs going in the opposite di-
rection: a forward arc, ab, and a backward arc, ba. For ease of
distinguishing within the paper, we draw forward arcs with solid
lines, while backward arcs with dotted lines. The pair of comple-
mentary arcs is needed to capture handshakes in pipelined behav-
ior: the forward arcs represent the flow of valid information in the
system (requests or valid bits), while the backward arcs represent
the flow of back-pressure (acknowledgement by the receiver or stop
bits). The arcs of an MG are marked with tokens (drawn as black
dots) that represent the state of the system. Every transition that
has tokens on all input arcs is enabled and can fire by removing one
token per input arc and adding one token per output arc. Different
enabled transitions can fire concurrently. Each transition has asso-
ciated the time delay it requires for firing. In asynchronous systems
the delay is a real number (or a [min,max] interval of delays). In
synchronous systems the delay is a natural number representing the
latency of the computation (one unit if operations are single cycle).

Semantically, a pair of complementary arcs between two adja-
cent transitions, e.g., ab and ba, represent the state of an elastic
FIFO placed in the implementation between the two events a and
b. The total number of tokens on this pair of arcs is an invariant
that corresponds to the capacity of the FIFO. In this paper the ca-
pacity is assumed to be always equal to two that corresponds to a
case of a 2-slot FIFO (such a FIFO can be implemented using a
standard master-slave structure [6]). However cases with different
capacity can be treated exactly in the same way. The two tokens on
the complementary arcs can be distributed in three possible ways:
(0,2), (1,1), and (2,0). The (0,2) (see f ,g pair) corresponds to an
empty FIFO - we say that there is a bubble in the system; the (1,1)
(see a,b pair) corresponds to a half-full FIFO that has one token
of information, an info-token for short; and the (2,0) (see g,h pair)
corresponds to a full FIFO that keeps two info-tokens.

The implementation of an elastic system maps a Marked Graph
(like the one in Fig. 1) to an asynchronous or a synchronous con-
trol circuit. The complexity of the circuit (as measured for example
in number of gates) is typically linear in the size of the MG (e.g.,
[6]). Therefore reducing the size of an MG contributes directly to
the size reduction of the control circuit. Based on this fact, we fo-
cus on reducing the number of arcs in an MG modeling an elastic
system as this reduces the number of elastic FIFOs and the num-
ber of channels in the fork and join controllers (that corresponds
to transitions with multiple fan-out and fan-in, respectively). For
example, Fig. 2 corresponds to sharing of transitions b and f into

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a single transition. As a result of this sharing the implementation
is simplified by removing one controller, one channel (a pair of
handshake wires), and one elastic FIFO, F3, in the data-path that is
shared with F2.

Many reductions of the modeling MG lead to a functionally
equivalent system, but not all of them preserve the performance
of the system. The goal of this paper is to identify a class of trans-
formations that reduce the number of controllers while preserving
the performance of the system.

The performance of an MG can be measured by its throughput
that is defined as the minimal ratio of the number of tokens to the
delay across all simple cycles and can be efficiently computed [7].
Assuming that the delays of all transitions in Fig. 1 are equal to 1,
the critical cycle is {a,b,c,d,e} with a throughput 2/5 (2 tokens on
the arcs of the cycle; delay of the cycle is 5 units). Since the initial
marking of arc pairs between a and b and a and f are the same, it is
possible to merge transitions b and f (as shown in Fig. 1(b)) with-
out affecting correctness of computation. The throughput of the
system is the same 2/5 and so is the critical cycle {a,{b, f},c,d,e}.
In most practical cases, it makes sense to merge b and f only if they
are close enough in the layout. This requirement will be fulfilled
by clustering only the sets of transitions that are closer than a given
physical distance.

Focusing on the new fork transition {b, f} we again determine
that the initial marking of arc pairs between {b, f} and its succes-
sors c and g is the same and therefore it is possible to merge tran-
sitions c and g (as shown in Fig. 1(c)). However, the throughput of
the system reduces to 1/3 with a new critical cycle {{c,g},d,h}.

Section 2 introduces some basics of MG theory. Section 3
presents sufficient conditions for merging pairs of transitions with-
out reducing the performance of a system. Based on such condi-
tions an efficient strategy is derived (Section 4) to obtain the arcs
that can share a controller. Section 4.2 shows how the physical
features of the circuits is handled in order to share only those con-
trollers that are closer than a given distance. Section 5 presents
results of experiments.

Related work
A few authors demonstrated controller optimization techniques for
synchronous elastic systems with static latencies. In [1,4] the tech-
nique relies on replacing the handshake controllers with an iteration
scheduler that decides when to fire transitions. In [16] it relies on
properly aligning all computation branches by a bubble insertion
such that back-pressure wires and controllers becomes redundant.

These techniques are complementary to ours and can be jointly

a

f g h

dcb

e

a

g h

dc

e

b
f

c
ga

h

d

e

b
f

(a)

(c)

(b)

Figure 1: An example of a marked graph (a), merging b and f
(b), and c and g (c).

F1 a

C1

f

b

C4

F4

F5

F1 a

C1

f

b

C2

F2

F3

C4

F4

F5

C3 C5 C5

C
2
3

(a) (b)

F
2
3

Figure 2: Sharing a controller and an elastic FIFO.

applied. In the context of such techniques our algorithm can be
viewed as simplifying the scheduler.

2. MARKED GRAPH MODEL
This section presents a model of timed marked graphs that is

used for modeling elastic systems. Although the paper is self-
contained the reader can be referred to [13] for a survey on Petri
Nets.

2.1 Timed Marked Graphs

DEFINITION 1. A Timed Marked Graph (TMG) is a tuple
G = (T,A,M0,δ), where T is a set of transitions (also called
nodes), A is a set of directed arcs, M0 : A → N is a marking that
assigns an initial number of tokens to each arc, and δ : T → IR
assigns a non-negative delay to every transition.

Given a transition t ∈ T , •t and t• denote the set of incoming and
outgoing arcs of t, respectively. Given an arc a ∈ A, •a and a• refer
to the source and target transition of a respectively. A transition t is
enabled at a marking M if M(a) > 0 for every a ∈ •t. An enabled
transition t fires after δ(t) time units. The firing of t removes one
token from each input arc of t, and adds one token to each output
arc of t.

For the sake of readability it will be assumed in this paper that
every transition has unit delay, i.e., δ(t) = 1. When dealing with
non-unit delays, the obtained equations and conditions are similar
but scaled by the values of δ(t). Subsection 3.3 describes the ex-
tension for non-unit delays.

Given a subset φ ⊆ A, the total number of tokens of the arcs in φ

at a given marking M is denoted by

M(φ) = Σa∈φM(a)

Given a subset µ ⊆ T the total delay of µ is denoted by

∆(µ) = Σt∈µδ(t)

Given a cycle c the total number of tokens and the delay of a cycle
are defined as: M(c) = Σa∈cM(a) and ∆(c) = Σt∈cδ(t).

2.2 Place invariants and state equation
A few useful properties of strongly connected MGs are as fol-

lows [13]:

Token preservation and reachability. We say that the marking M
is reachable from M0 if there is a sequence of transitions that can
fire starting from M0 leading to M. Let c be a cycle of a strongly
connected MG. A marking M is reachable iff M(c) = M0(c) for
every cycle c.

In the MG shown in Fig. 1(a), there are 15 simple cycles: 9
corresponds to pairs of complementary arcs (each preserving two

tokens), while 6 are longer cycles. Two examples of longer cycles
are the critical cycle {a,b,c,d,e} that always keeps two tokens and
its complement {a,e,d,c,b} that always keeps eight tokens.

State equation. Let C be the n×m incidence matrix of the MG
with rows corresponding to n arcs and columns to m transitions.

Ci j =

 −1 if t j ∈ a•i \ •ai
+1 if t j ∈ •ai \a•i
0 otherwise

If marking M is reachable from the initial marking M0 of an MG
then the state equation

M = M0 +C ·σ (1)

is satisfied for some firing count vector σ (the j’s component of σ

corresponds to the number of times transition t j has fired).

2.3 Elastic Marked Graphs

DEFINITION 2. An Elastic Marked Graph (EMG) is a TMG
such that for any arc a ∈ A there exists a complementary arc a′ ∈ A
satisfying the following condition •a = a′• and •a′ = a•.

A labelling function L maps all arcs of an EMG as forward or
backwards L : P →{F,B} such that L(a) = F iff L(a′) = B.

Due to the existence of complementary arcs, an EMG is strongly
connected iff it is connected. Since a non-connected EMG can be
seen as a set of separated strongly connected EMGs, all the EMGs
considered here are assumed to be strongly connected. Each pair
of complementary arcs a and a′ correspond to a cycle with two arcs
and therefore the number of tokens on them is preserved. As ex-
plained in the introduction, in this paper we assume that for any
complementary a and a′ M({a,a′}) = 2. Therefore, all EMGs in
this paper are 2-bounded (an arc cannot have more than two to-
kens).

Without loss of generality, we model elastic systems with
strongly connected EMGs. For open systems interacting with an
environment, it is possible to incorporate an abstraction of the en-
vironment into the model by a transition that connects the outputs
with the inputs.

2.4 Throughput of an EMG
The performance of an EMG can be measured by the through-

put of its transitions. Given that we are considering strongly con-
nected EMGs, in the steady state all transitions have exactly the
same throughput, Θ. The throughput intuitively corresponds to the
number of times each operation is performed on average per unit of
time during the infinitely long execution of the system.

If C is the set of simple directed cycles in an EMG, its throughput
can be determined as:

Θ = minc∈C
M0(c)
∆(c)

(2)

where M0(c) and ∆(c) are the number of tokens and the delay of
cycle c, respectively [14, 15].

DEFINITION 3 (CRITICAL CYCLE AND ARC). A cycle c sat-
isfying the equality Θ = M0(c)

∆(c) is called critical. An arc is called
critical if it belongs to a critical cycle.

Many efficient algorithms for computing the throughput of an
EMG exist that do not require an exhaustive enumeration of all
cycles [7, 9].

2.5 Average marking
The average marking of an arc a, denoted as M(a), represents

the average occupancy of the arc during the steady state execution.

(b)

(c)

b c d

e

a b c d

e

a

0.50

0.25

0.25

0.25 0.25

0.25

b c d

e

a b c d

e

a

(a)

(d)

Figure 3: A marked graph and its time evolution.

The system in Fig. 3 (a) has two cycles: {a,b,c,d} and {a,e,d}.
Both have one token. When a fires the token is removed from da
and two tokens are produced: one at arc ae, and the other at ab
(see Fig. 3 (b)). From this new marking transitions b and e are
enabled and fire in one time unit yielding the marking in Fig. 3 (c).
Now c is enabled, its firing results in the marking in Fig. 3 (d). At
this point d is enabled. After it fires the initial marking is reached
again. Since the system remains one time unit at each step, it can
be deduced that arcs ab, bc, cd, da and ae keep a token during one
fourth of the overall time, thus, their average marking is M(ab) =
M(bc) = M(cd) = M(da) = M(ae) = 0.25. The arc ed however
contains a token during two of the four mentioned steps, therefore
M(ed) = 0.5.

Formally the average marking vector for all arcs is defined as:

M = limτ→∞

1
τ

Z
τ

0
M(t)dt

where τ is the time variable.
Each pair {a,a•} of the EMG can be seen as a simple queuing

system for which Little’s formula [10] can be directly applied and
therefore the following formula holds:

M(a) = Θ ·R(a)

where R(a) is the average residence time at arc a, i.e., the average
time spent by a token on the arc a [2]. The average residence time
is the sum of the average waiting time due to a possible synchro-
nization (for instance in Fig. 3, the token in ed has to wait one time
unit for the token in cd) and the average service time which in the
case of EMGs is δ(a•). Therefore the service time δ(a•) is a lower
bound for the average residence time. This leads to the inequality:

M(a)≥ Θ ·δ(a•) for every arc a (3)

Due to the above token preservation property of EMG cycles it
can be proven that the token preservation property holds not only
for any reachable marking, but also for an average marking. That
is for any cycle c the sum of tokens in the initial marking M0(c)
and in the average marking M(c) is the same. E.g., for the two
cycles in Fig. 3: M0(a,b,c,d) = M(a,b,c,d) = 1 and M0(a,e,d) =
M(a,e,d) = 1. In particular, this statement holds for any critical
cycle, c: M0(c) = M(c). Then, equation (2) can be rewritten for a
critical cycle as follows:

Θ =
M(c)
∆(c)

(4)

Combining expressions (3) and (4) yields the following equation
for every critical arc a:

M(a) = Θ ·δ(a•) (5)

For unit delay transitions, equation (5) states that the average
marking of every critical arc is equal to the throughput.

Similarly, the state equation (1) can be expanded to real domain
for markings M and firing vectors σ and is, in particular, satisfied
by the average marking M.

M = M0 +C ·σ,where M ∈ R|A| and σ ∈ R|T | (6)

3. EMG REDUCTION
Let us consider the system depicted in Fig. 3(a) and its time evo-

lution (b), (c) and (d). The arcs ab and ae have the same input
transition a, thus, a token will always appear at both arcs simul-
taneously. Moreover, since their output transitions have the same
delay b and e always fire simultaneously. Hence, arcs ab and ae
always have the same marking, and as a consequence also have the
same average marking, M(ab) = M(ae). Therefore transitions b
and e can be merged into a single transition without decreasing the
throughput of the system. In the elastic implementation this implies
that one controller suffices to control both ab and ae.

Based on the above intuition let us present the sufficient condi-
tions for merging transitions and arcs of EMGs preserving system
performance.

3.1 Tight marking
Fork transitions (like a in Fig. 3(a)) are potential sources of arcs

with same average markings, ab and ae, since fork transitions serve
as synchronization points. This section describes a polynomial al-
gorithm for calculating a special marking (called a tight marking)
that, if possible, assigns the same marking value to the output arcs
of the fork transitions.

DEFINITION 4. A marking M̃ such that M̃ ∈ R|A| is called a
tight marking of an EMG if it satisfies the inequality (3) and the
state equation (6) and for every transition t there exists an arc a∈ •t
such that M̃(a) = Θ, where Θ is the throughput of the EMG. An
arc a satisfying condition M̃(a) = Θ is called tight.

Since a tight marking satisfies (3) and (6), each critical arc a is
necessarily tight, i.e., M̃(a) = Θ. On the other hand, non critical
arcs have some slack to verify (3) and (6). The tight marking ex-
ploits this flexibility by adjusting the marking value for some arcs,
at least one per transition, to the systen throughput. This tight mak-
ing eases the formulation of sufficient conditions to merge transi-
tions.

a

f

e

ihg

1.33 [1.5]

1.5 0.67 [0.5] 0.5

0.50.5

1.5

1.5

1.51.5

0.67 [0.5]

1.33 [1.5]

1.5

0.50.5

0.5

0.5
1.5

1.5

dcb

0.5

Figure 4: An EMG illustrating a tight marking.

Let us consider the EMG in Fig. 4. It has a single critical cycle
{a,b,c,d,e, f} with a throughput 0.5. Each arc in Fig. 4 is labeled
with one number if its average and tight markings coincide. In
cases when they are different the average marking is listed first and
the tight marking is shown in square brackets. It can be seen that
the tight marking satisfies all the conditions of Definition 4.

LEMMA 1. For any EMG there exists a tight marking M̃.

Proof: See Appendix.

PROPOSITION 2. A tight marking of a unit-delay EMG can be
computed by solving the following Linear Programming (LP) prob-
lem that includes the constraints from (3) and (6) :

Maximize Σσ :

Θ ≤ M̃(a) for every a ∈ A

M̃ = M0 +C ·σ
σ(t)≤ k for every t ∈ T

(7)

where k ∈ R is any real number.

Proof: See Appendix.
The last constraint guarantees that the firing sequence σ is

bounded. The first two constraints of (7) can be transformed into a
single one:

Θ ·1−M0 ≤ C ·σ (8)

Since we are dealing with MGs, each row of the incidence matrix
C contains a single positive (1) and a single negative (−1) value,
while all other values are zeros. Therefore, equation (8) is a system
of difference constraints and hence the LP (7) can be efficiently
solved by the Bellman-Ford algorithm with the time complexity of
O(|T ||A|) [5].

3.2 Merging transitions
The basic transformation in reduction of an EMG is merging a

pair of transitions. Merging two transitions ti and t j in an EMG
G = (T,A,M0,δ) leads to a new EMG G < ti, t j >= (T ′,A′,M′

0,δ
′)

in which two transitions ti and t j are replaced with a new one ti j.
All input and output arcs of ti and t j are replaced with input and
output arcs of ti j such that a ∈ •ti j iff (a ∈ •ti∨a ∈ •t j) and a ∈ t•i j
iff (a ∈ t•i ∨ a ∈ t•j). The initial marking for a new arc is equal to
the initial marking of the corresponding replaced arc. The delay of
the merged transition is the maximum of delays of the merged tran-
sitions, δ(ti j) = max{δ(ti),δ(t j)}. After merging two transitions a
multi-graph is obtained since two transitions can be connected by
more than one arc. If the new EMG G < ti, t j > has two identi-
cal arcs v and w, i.e., M′

0(v) = M′
0(w), L(v) = L(w), •v = •w and

v• = w•, then v and w can be merged into a single arc.
Fig. 1 gives an example of reducing an original EMG by merging

transitions b and f . After merging this pair of transitions, identical
arcs have also been merged into one arc, see Fig. 1(b).

For convenience our algorithm reduces an EMG in two steps:
first some transitions are merged, then identical arcs are merged.

DEFINITION 5. Transitions ti and t j are called mergeable if an
EMG G < ti, t j > obtained by merging transitions ti and t j in an
EMG G has the same throughput as G.

The following theorem forms a basis for the algorithm of reduc-
ing EMGs.

THEOREM 3. Transitions ti and t j in an EMG are mergeable
if there exist arcs ai ∈ •ti that contains only the tight arcs of the
system.and a j ∈ •t j such that:

• L(ai) = L(a j),

• M̃(ai) = M̃(a j) = Θ,

• (•ai = •a j) or (•ai and •a j are mergeable).

Proof: See Appendix.

The first two conditions of Theorem 3 narrow the search space to
tight arcs with the same label (forward or backward). The third con-
dition condition defines iterative merging. These three conditions
ensure the existence of an initialization, i.e., firing sequence of tran-
sitions, that produces a marking M in which M(ai) = M(a j) (see
the proof of the Theorem 3 in the Appendix). After such initial-
ization, transitions ti and t j can effectively be merged. This merg-
ing will make arcs ai and a j be identical, since M(ai) = M(a j),
L(ai) = L(a j), •ai = •a j and a•i = a•j , and hence they will be
merged into a single arc.

Fig. 5 shows the tight arcs of the EMG in Fig. 4. The only re-
maining cycle is the critical one. Transitions b and g in Fig. 4 do
fulfill the conditions of Theorem 3 and therefore they are merge-
able. Moreover, since M0(ab) = M0(ag) transitions b and g can be
merged without any initialization. Transitions c and h also fulfill
the conditions. Given that M0(bc) 6= M0(gh), an initialization is
required before merging c and h. In this case, firing h is enough to
initialize the system: such firing removes one token from gh and ih,
and adds one token in hg and hi. This way, a marking M is obtained
in which M(bc) = M(gh). Now transitions c and h can effectively
be merged.

The system in Fig. 4 shows why the tight marking captures bet-
ter the flexibility for merging transitions than the average marking.
The arc gh is tight since M̃(gh) = 0.5. However it is not critical
since M(gh) = 0.67. Therefore, transitions c and h could not get
merged if the average marking is used in place of the tight marking
in Theorem 3.

a

f

e

ihg

dcb

Figure 5: Tight subgraph of the system from Fig. 4.

One can also consider the scenario in which the initial marking is
fixed, that is, no initialization is allowed. In such case, in addition
to the conditions in Theorem 3, the condition M0(ai) = M0(a j)
must hold to merge transitions ti and t j. As might be expected,
this new constraint reduces the number of transitions that can be
merged with respect to the previous scenario (see Section 5).

3.3 Non-unit delays
The reduction method based on merging transitions and arcs de-

scribed in the previous subsection apply to EMGs with unit delay
transitions, δ(t) = 1. It is easy to extend these results for arbitrary
delays: the value of δ(t) becomes a scaling factor of the throughput
(as derived from (3)). In particular, the last condition of Defini-
tion 4 must be changed to M̃(a) = δ(t) ·Θ, the constraint Θ≤ M̃(a)

of LP (7) must be changed to δ(•a) ·Θ ≤ M̃(a) and inequality (8)
should change to δ ·Θ−M0 ≤ C ·σ.

An easy way to make Theorem 3 still applicable is by adding the
new condition δ(ti) = δ(t j). This condition however does not al-
ways hold. Nonetheless, it is still possible to merge two transitions
ti, t j with δ(ti) > δ(t j) simply by adding an extra delay δ(ti)−δ(t j)
to t j. Notice that in some cases it is not possible to increase a transi-
tion delay without violating inequality (3), i.e., without decreasing
the throughput. Thus, if the throughput must remain the same, one
have to search for the pairs of transitions that satisfy (3) even after
the delay increase.

4. HEURISTICS FOR REDUCING AN EMG
The overall strategy for reducing an EMG involves the following

steps:

1. Computation of the throughput of the system.

2. Computation of a tight marking (Subsection 3.1).

3. Determine sets of mergeable transitions (Theorem 3) by
traversing the tight subgraph and merge them. A good
heuristics is selecting critical fork transitions and exploring
tight arcs at the output of these transitions. Every set of
mergeable transitions then becomes a new starting point for
the search of the next set and the method iterates until the
fixed point.

4. Fire transitions to obtain the same marking in the input arcs
of the mergeable transitions.

5. Merge mergeable transitions and identical arcs.

We further illustrate the above steps by an example.

4.1 Example
Fig. 6 depicts the associated marked graph of the largest strongly

connected component obtained for a logic circuit s27 of the MCNC
benchmark suite. For the sake of clarity only forward arcs
(L(a) = F) are shown. There is one backward arc a′ per every for-
ward arc a such that M0(a)+M0(a′) = 2 that are not drawn in the
figure. The initial marking is randomly defined.

t1t13

t8

t10

t11

t14

t7

t9

t2

t5

t4

t3

t6

t12

Figure 6: Forward arcs of an EMG corresponding to circuit
s27.

Let us assume the flexible marking scenario.
Throughput computation. The throughput of the system is 0.25.
There exists only one critical cycle: {t1, t7, t3, t13}.
Tight marking computation. Once a tight marking M̃ is com-
puted, the proposed strategy visits tight arcs (i.e. arcs a with tight
marking equal to the throughput M̃(a) = Θ). The tight subgraph is

t1t13

t8

t10

t11

t14

t7

t9

t2

t5

t4

t3

t6

t12

Figure 7: Tight arcs of s27.

iteration trans. merged trans. fired
1 t7, t8, t9, t10, t14 none
2 t2, t3, t5 t5
3 t4, t13 t4
4 t1, t6, t11, t12 2 · t6, 2 · t11, 2 · t12

Table 1: Transitions merged in each iteration and fired for
changing the initial marking.

shown in Fig. 7. Notice that the tight arcs can include both forward
and backward arcs, e.g., arcs t3t4 and t13t11 are backward.
Merging transitions. Each transition of the critical cycle is a fork
in the subgraph of Fig. 7, thus, any of them can be selected to start
the search. Let us pick-up t1. Transition t1 has five outgoing arcs
t1t7, t1t8, t1t9, t1t10 and t1t14 all with the tight marking equal to
the throughput and all labelled with the same label. These tran-
sitions fulfill the conditions of Theorem 3. Given that all those
arcs have the same initial marking, transitions t7, t8, t9, t10 and
t14 can be merged into a single transition without decreasing the
system throughput. Next, the algorithm takes the tight successor
arcs of the merged transitions: t14t2, t7t3 and t7t5. However, their
initial markings are not the same: M0(t14t2) = M0(t7t3) = 0, while
M0(t7t5) = 1. Transition t5 can fire yielding a modified initial mark-
ing such that M0(t14t2) = M0(t7t3) = M0(t7t5). Now, transitions t2,
t3 and t5 can be merged.

During the next iteration, the tight arcs output to merged transi-
tions are: t2t4, t3t13 and t3t4. One of these arcs is backward (t3t4),
hence, there is no possibility of merging its output transition t4 with
other transitions. By firing t4 the initial markings of t2t4, t3t13 are
made equal and therefore transitions t4 and t13 can be merged. Fi-
nally, the output tight arcs of t4 and t13 are t4t6, t4t11, t4t12, t13t1,
t13t11. The backward arc t13t11 is discarded. In order to have the
same marking on the remaining forwarded arcs transitions t6, t11
and t12 are fired twice each. Now, transitions t1, t6, t11 and t12
can be merged. Since all transitions have been visited no further
transitions should be examined and the algorithm converges.

Table 1 summarizes the sets of transitions merged by the algo-
rithm during each iteration. The algorithm has merged all transi-
tions in four new transitions: a = {t7, t8, t9, t10, t14}, b = {t2, t3, t5},
c = {t4, t13} and d = {t1, t6, t11, t12}. As a result every original tran-
sition got mapped to a transition on the critical cycle. It can be
checked that the result is the same if the first visited transition is
other than t1.
Merging arcs. The sets of forward arcs that can
be merged after merging transitions are as follows:
Aa = {t1t10, t1t14, t1t8, t1t9, t1t7}, Ab = {t4t12, t4t11, t4t6, t13t1},
Ac = {t14t2, t7t3, t7t5}, Ad = {t2t4, t3t13}, Ae = {t10t13, t9t13},

A f = {t12t2, t6t5}, Ag = {t8t13}, Ah = {t4t10}, Ai = {t4t3},
A j = {t11t13}, Ak = {t6t9}, and Al = {t5t13}. The sets of com-
plementary arcs, A′a, . . . ,A

′
l , corresponding to the backward arcs

and their controllers can also be merged. The net resulting of
merging the mergeable transitions and merging identical arcs is
shown in Fig. 8. In such figure only the forward arcs are depicted,
the marking is the one obtained after initialization. Notice that
in Fig. 8 there are some redundant arcs, e.g., TdTa arc with two
tokens, that can be removed without decreasing the throughput.
Nevertheless, not all redundant arcs have the same initial marking
as the arcs with the same input and output transition. For this
reason they explicitly need a different controller.

Tc

Td Ta

Tb

Figure 8: Net after merging transitions and arcs.

4.2 Layout-aware optimization
The clustering method previously presented merges transitions

and arcs ignoring layout information about the circuit implemen-
tation of the corresponding elastic circuit. It can result in merging
elastic controllers that are separated by large physical distances in
the layout, thus creating long handshake wires that can have a nega-
tive impact on the performance of the system. It is desirable that the
optimization of controllers is performed according to the physical
placement of the circuit components.

Incorporating layout information in the clustering approach can
be done in two different ways.

1. The layout information can be used to restrict the merging of
controllers when they are far apart, or

2. The layout unaware clustering can first be performed fol-
lowed by a split of large clusters into smaller ones according
to the proximity of the controllers.

By experimentation we found the latter approach more effective
since it has a lower dependency on the merging order of the con-
trollers. The method used for splitting each cluster into a set of
sub-clusters is based on the well-known k-means clustering algo-
rithm [11].

Given the longest allowed distance d, the k-means clustering al-
gorithm produces clusters whose smallest enclosing circle has ra-
dius d. Checking this condition can be done in linear time [12].

The algorithm for splitting clusters is as follows:

If radius of cluster is <= d then exit.
c := 2;
repeat forever
Split cluster into c sub-clusters

using the k-means algorithm;
If radius of each sub-cluster

is <= d then exit.
c := c+1;

end repeat

5. EXPERIMENTAL RESULTS
Elasticity and clustering are concepts that must be applied at a

coarse level of granularity in which, for example, each computa-
tional block can have several hundreds or thousands of gates and
each register can be 32- or 64-bit wide. Under the absence of a rep-
resentative set of benchmarks with elastic controllers and physical
information, we decided to create an experimental setup based on
existing graphs in the literature.

5.1 Experimental setup
The underlying graphs of the sequential ISCAS benchmarks

were interpreted as coarse-level netlists. Each gate was interpreted
as a computational block with unit delay (transition in the EMG),
whereas each edge was interpreted as a communication channel
(arc in the EMG). Moreover, each channel was supposed to have a
half-full FIFO with capacity 2.

To generate physical information for an n-block netlist, a unit
square grid with s×s cells, s = d

√
ne, was generated. All the blocks

were assumed to have unit size and were placed on the layout using
Capo [17].

After placement, wire pipelining was applied to those channels
longer than d units (d is a parameter of the experiments). Empty
FIFOs with capacity 2 were inserted in such a way that the length
of each channel did not exceed d (see Fig. 9). It is important to
realize that the insertion of empty FIFOs reduces the throughput of
the system when the channel is in one of the critical loops of the
system.

d dd

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

TMG

t1 b1 b2 t2

TMG’

t1 t2>d

Figure 9: Wire pipelining to reduce the length of long channels.

5.2 Results
The elastic netlists obtained with the previous approach were op-

timized using the algorithm presented in Section 4. The results are
reported in Table 2. Different optimization scenarios were consid-
ered:

(a) Opt. (d = ∞): no constraints are imposed on the size of each
cluster. The initial state is not allowed to change.

(b) Opt. & Init (d = ∞): no constraints are imposed on the
size of each cluster. The initial state is allowed to be moved
(retimed) in case it is convenient for optimization.

(c) Placement & Opt. & Init (d < ∞): each cluster is con-
strained to be enclosed in a circle of radius d. The initial
state is allowed to change. The algorithm presented in Sec-
tion 4.2 is used for cluster splitting. The value d = 10 was
used for all benchmarks, except for the last two (s38417 and
s38584) in which the value d = 20 was used to avoid an ex-
cessive degradation of the throughput.

The columns nodes/arcs report the size of the examples be-
fore and after optimization. The column Θ reports the throughput
of each example after having inserted the empty FIFOs for wire
pipelining. The column n.size indicates the normalized size of

the graph (nodes+arcs) after optimization with regard to the orig-
inal graph (size=1). The runtime is only reported for the last sce-
nario, which is the most CPU consuming. It is important to em-
phasize that most of the runtime is spent on the execution of the
k-means clustering algorithm for partitioning large clusters.

5.3 Discussion
In general, the results indicate that the control layer of elastic

systems, either synchronous or asynchronous, can be highly op-
timized by loosing some elasticity but still maintaining the same
performance. By looking at the first scenario (Opt. with d = ∞),
we can observe a wide range of optimizations, from a drastic re-
duction (s298) to more moderate reductions (about half size for
s9234).

The reductions are even more remarkable when allowing to
change the initial state by initially firing some transitions (Opt. &
Init.), where in most cases the size of the graph is less than 10%
of the size of the original graph. The effectiveness of this approach
relies on the possibility of changing the initial state, which is a sim-
ilar problem of calculating the initial state after retiming [19]. This
scenario gives an estimation of the maximum controller reduction
that can be achieved when no physical constraints are imposed.

Finally, the last scenario shows the impact of incorporating phys-
ical constraints on the clustering of controllers. We observe that
the reductions are a little bit smaller, but still important. The ma-
jor impact of the physical constraints are observed on the largest
examples.

We have to bear in mind, that our graphs intend to represent
systems with large computational blocks. In real-life examples,
we should expect graphs with dozens or few hundreds of blocks.
Therefore, the type of optimizations that we can expect would cor-
respond to the smallest examples in the table.

6. CONCLUSIONS
This paper has shown that elasticity can be incorporated in con-

ventional circuits at the expense of a small control cost. While still
having distributed controllers along the system, the network can be
significantly reduced by clustering controllers.

Even though the approach presented in the paper has been evalu-
ated for synchronous circuits, it can be easily extended and applied
to asynchronous circuits, thus bringing similar advantages.

7. REFERENCES
[1] J. Boucaron, J. Millo, and R. de Simone. Latency-insensitive

design and central repetitive scheduling. In IEEE-ACM
International Conference MEMOCODE’06, pages 175–183,
2006.

[2] J. Campos and M. Silva. Structural Techniques and
Performance Bounds of Stochastic Petri Net Models. In
G. Rozenberg, editor, Advances in Petri Nets 1992, volume
609 of Lecture Notes in Computer Science, pages 352–391.
Springer, 1992.

[3] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design, 20(9):1059–1076, Sept. 2001.

[4] M. Casu and L. Macchiarulo. A new approach to latency
insensitive design. In Proc. Digital Automation Conference
(DAC), pages 576–581, June 2004.

[5] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2001.

Opt. (d = ∞) Opt. & Init. (d = ∞) Place & Opt. & Init. (d < ∞)
example nodes arcs Θ nodes arcs n.size nodes arcs n.size nodes arcs n.size CPU
s208 159 458 0.50 33 120 0.247 12 32 0.071 12 32 0.071 < 1 s.
s298 9640 40592 0.33 21 92 0.002 9 58 0.001 29 230 0.005 34 m.
s344 296 838 0.50 64 236 0.264 6 22 0.024 8 56 0.056 1 s.
s349 274 774 0.50 63 222 0.271 22 102 0.118 32 214 0.234 1 s.
s382 278 876 0.50 32 104 0.117 9 28 0.032 10 40 0.043 2 s.
s386 131 792 0.50 19 52 0.076 11 34 0.048 11 34 0.048 < 1 s.
s400 264 840 0.50 39 134 0.156 35 112 0.133 38 148 0.168 1 s.
s420 321 954 0.50 102 334 0.341 37 114 0.118 43 194 0.185 2 s.
s444 338 1060 0.50 36 132 0.120 6 22 0.020 10 106 0.082 4 s.
s510 446 1990 0.50 26 86 0.045 10 30 0.016 13 54 0.027 13 s.
s526 315 1128 0.50 30 96 0.087 7 20 0.018 10 74 0.058 5 s.
s641 493 1276 0.50 232 588 0.463 88 224 0.176 101 372 0.267 11 s.
s713 545 1452 0.33 255 692 0.474 159 472 0.315 200 722 0.461 12 s.
s820 325 2220 0.50 31 98 0.057 15 60 0.029 21 124 0.056 13 s.
s832 381 2470 0.50 12 42 0.018 6 18 0.008 10 102 0.039 11 s.
s838 743 2198 0.33 172 704 0.297 47 182 0.077 60 444 0.171 28 s.
s953 921 2686 0.33 345 1274 0.448 78 308 0.107 100 666 0.212 35 s.
s1423 1073 3244 0.33 231 964 0.276 26 106 0.003 43 526 0.019 58 s.
s1488 1127 5718 0.50 13 40 0.007 8 24 0.004 14 106 0.017 3 m.
s1494 1239 6220 0.50 9 28 0.004 6 20 0.003 14 132 0.019 1 m.
s5378 4328 12162 0.14 1871 5774 0.463 1110 4214 0.322 1678 6154 0.474 1 m.
s9234 4219 11200 0.14 2094 5904 0.518 1388 4444 0.378 1858 6198 0.522 58 s.
s38417 32106 87242 0.12 4730 16310 0.176 1154 4884 0.050 3139 26394 0.247 15 h.
s38584 30647 93142 0.12 3991 13978 0.145 759 2688 0.027 1751 19644 0.172 16 h.

Table 2: Results for the MCNC benchmarks.

[6] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis
of synchronous elastic architectures. In Proc. ACM/IEEE
Design Automation Conference, pages 657–662, July 2006.

[7] A. Dasdan and R. K. Gupta. Faster maximum and minimum
mean cycle algorithms for system performance analysis.
IEEE Transactions on Computer-Aided Design,
17(10):889–899, 1998.

[8] A. Edman and C. Svensson. Timing closure through a
globally synchronous, timing partitioned design
methodology. In DAC, pages 71–74, 2004.

[9] R. Karp. A characterization of the minimum cycle mean in a
digraph. Discrete Mathematics, 23:309–311, 1978.

[10] J. D. C. Little. A proof of the queueing formula L= λ W.
Operations Research, 9:383–387, 1961.

[11] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proc. of 5th
Berkeley Symp. on Mathematical Statistics and Probability,
volume 1, pages 281–297, Berkeley, 1967. University of
California Press.

[12] N. Megiddo. Linear-time algorithms for linear programming
in R3 and related problems. SIAM J. Comput.,
12(4):759–776, 1983.

[13] T. Murata. Petri Nets: Properties, analysis and applications.
Proceedings of the IEEE, pages 541–580, Apr. 1989.

[14] C. V. Ramamoorthy and G. S. Ho. Performance evaluation of
asynchronous concurrent systems using petri nets. IEEE
Trans. Software Eng., 6(5):440–449, 1980.

[15] C. Ramchandani. Analysis of asynchronous concurrent
systems by timed Petri nets. Technical Report Project MAC
Tech. Rep. 120, Massachusetts Inst. of Tech., Feb. 1974.

[16] T. Raudvere, I. Sander, and A. Jantsch. A synchronization
algorithm for local temporal refinements in perfectly
synchronous models with nested feedback loops. In
Proceedings of GLSVLSI’07, March 2007.

[17] J. A. Roy, D. A. Papa, S. N. Adya, H. H. C. an, A. N. Ng,

J. F. Lu, and I. L. Markov. Capo: robust and scalable
open-source min-cut floorplacer. In ISPD ’05: Proceedings
of the 2005 international symposium on Physi cal design,
pages 224–226, New York, NY, USA, 2005. ACM Press.

[18] I. E. Sutherland. Micropipelines. Communications of the
ACM, 32(6):720–738, June 1989.

[19] H. Touati and R. Brayton. Computing the initial states of
retimed circuits. IEEE Trans. on CAD of Integrated Circuits
and Systems, 12(1):157–162, 1993.

APPENDIX
Proof of Lemma 1:
Proof: Let M̂ be a marking that fulfills M̂(a) ≥ Θ · δ(a•)
for every arc a (see (3)). Clearly at least one M̂ ex-
ists that is the average marking. In particular it holds
M̂(a) = Θ · δ(a•) for every arc a in a critical cycle (see (5)).
Let T ′ = {t| for every a ∈ •t M̂(a) > Θ ·δ(t)} (note that the transi-
tion in the critical cycles are not in T ′). Let us fire every transition
t ∈ T ′ in a quantity g(t,M̂) = min{a∈•t{M̂(a)−Θ ·δ(t)} obtaining

M̂′. If the procedure of computing T ′ and M̂′, then T ′′ and M̂′′

cannot be repeated indefinitely then the result is proved. If it can
be repeated indefinitely, there exists a set of transitions W such
that for every t ∈W the sequence g(t,M̂), g(t,M̂′), g(t,M̂′′) is not
tending to 0. Since W ⊂ T , this would mean that there is a repeti-
tive sequence that does not include all transitions. Contradiction. 2

Proof of Proposition 2:
Proof: Since EMG s are repetitive systems, a marking M can
be reached with any firing sequence σ + j · 1 where j is any real
number. A constraint like σ(ta) = k ensures boundedness of the
solution. Since ta is in a critical cycle, there exists an arc a ∈ •ta
such that a is also in the same critical cycle. Hence, the solution of
the LP will necessarily verify M̂(a) = Θ ·δ(a•) (see equation (5)).
Given that the objective function Σσ is maximized, for every
transition t there will exist a ∈ •t such that M̃(a) = Θ ·δ(t). Hence,

the obtained marking M̃ is a tight marking. 2

Proof of Theorem 3:
Proof: Let us assume that there exist ti, t j that verify the conditions
of the theorem. Since •ai, •a j are joinable (or •ai = •a j) we can
reason on the graph obtained after merging •ai and •a j into a sin-
gle transition tx. Assume without loss of generality that M0(ai) ≥
M0(a j). Let us fire transition ti as many times as M0(ai)−M0(a j)
producing marking M (notice that the EMGs consider in this pa-
per are 2-bounded, and hence, it holds M0(ai)−M0(a j) ≤ 2). At
M it holds M(ai) = M(a j). Since ai and a j have the same input
transition tx, if ti and t j are merged arcs ai and a j will have the
same input transition and the same output transition. Thus, ai and
a j will be identical, i.e., they will always have the same marking.
In addition, the fact that M̃(ai) = M̃(a j) = Θ · δ ensures that in
the steady state every arc is allowed to verify (3) after merging ti
and t j. Therefore, after merging ti and t j the system throughput
is preserved. It must be taken into account that the firing of ti may
produce a marking with negative values in some of its input arcs •ti.
Since such marking is not a valid initialization, the input transitions
of the arcs with negative values must also be fired. These new fir-
ings may produce a new set of arcs with negative values, and then,
more firings have to be carried out. Given that M̃(ai) = M̃(a j) and
M̃(a′i) = 2− M̃(ai), where a′i is the complementary arc of ai, any
of the cycles containing a′i and a j will have at least 2 tokens. This
implies that the firing process to avoid negative markings (the low-
est possible value is −2 since M0(ai)−M0(a j) ≤ 2) will not fire
transition t j . Moreover, since each cycle has a positive number of
tokens that is preserved by any firing sequence, it will not fire any
cycle of transitions. Hence, such firing process will eventually fin-
ish, and will yield a marking M′ in which all arcs have non-negative
values and M′(ai) = M′(a j). 2

