706 research outputs found

    LPcomS: Towards a Low Power Wireless Smart-Shoe System for Gait Analysis in People with Disabilities

    Get PDF
    Gait analysis using smart sensor technology is an important medical diagnostic process and has many applications in rehabilitation, therapy and exercise training. In this thesis, we present a low power wireless smart-shoe system (LPcomS) to analyze different functional postures and characteristics of gait while walking. We have designed and implemented a smart-shoe with a Bluetooth communication module to unobtrusively collect data using smartphone in any environment. With the design of a shoe insole equipped with four pressure sensors, the foot pressure is been collected, and those data are used to obtain accurate gait pattern of a patient. With our proposed portable sensing system and effective low power communication algorithm, the smart-shoe system enables detailed gait analysis. Experimentation and verification is conducted on multiple subjects with different gait including free gait. The sensor outputs, with gait analysis acquired from the experiment, are presented in this thesis

    Application of Smart Insoles for Recognition of Activities of Daily Living: A Systematic Review

    Get PDF
    Recent years have witnessed the increasing literature on using smart insoles in health and well-being, and yet, their capability of daily living activity recognition has not been reviewed. This paper addressed this need and provided a systematic review of smart insole-based systems in the recognition of Activities of Daily Living (ADLs). The review followed the PRISMA guidelines, assessing the sensing elements used, the participants involved, the activities recognised, and the algorithms employed. The findings demonstrate the feasibility of using smart insoles for recognising ADLs, showing their high performance in recognising ambulation and physical activities involving the lower body, ranging from 70% to 99.8% of Accuracy, with 13 studies over 95%. The preferred solutions have been those including machine learning. A lack of existing publicly available datasets has been identified, and the majority of the studies were conducted in controlled environments. Furthermore, no studies assessed the impact of different sampling frequencies during data collection, and a trade-off between comfort and performance has been identified between the solutions. In conclusion, real-life applications were investigated showing the benefits of smart insoles over other solutions and placing more emphasis on the capabilities of smart insoles

    A Truly In-shoe Force Measurement System

    Get PDF
    abstract: In this work, the development of a novel and a truly in-shoe force measurement system is reported. The device consists of a shoe insole with six thin film piezoresistive sensors and the main circuit board. The piezoresistive sensors are used for the measurement of plantar pressure during daily human activities. The motion sensor mounted on the main circuit board captures kinematic data. In addition, the main circuit board is responsible for the wireless transmission of the data from all the sensors in real-time using BLE protocol. It is housed within the midsole of the shoe, under the medial arch of the foot. The real-time quantitative data and its analyses, enables athletic performance evaluation, biomedical ailment detection, and everyday fitness tracking. A test subject walked 20 steps on a flat surface at a comfortable speed wearing a shoe fitted with the insole and the main circuit board. Measurements were captured using a BLE enabled laptop and the test results were validated for accuracy. From the real-time data captured, the number of steps walked, the speed and the plantar pressure applied can be clearly established. Moreover, additional kinematic data from the motion sensor was captured. Further processing of kinematic data using techniques such as machine learning is essential to get meaningful inferences.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    Development of a Wireless Mobile Computing Platform for Fall Risk Prediction

    Get PDF
    Falls are a major health risk with which the elderly and disabled must contend. Scientific research on smartphone-based gait detection systems using the Internet of Things (IoT) has recently become an important component in monitoring injuries due to these falls. Analysis of human gait for detecting falls is the subject of many research projects. Progress in these systems, the capabilities of smartphones, and the IoT are enabling the advancement of sophisticated mobile computing applications that detect falls after they have occurred. This detection has been the focus of most fall-related research; however, ensuring preventive measures that predict a fall is the goal of this health monitoring system. By performing a thorough investigation of existing systems and using predictive analytics, we built a novel mobile application/system that uses smartphone and smart-shoe sensors to predict and alert the user of a fall before it happens. The major focus of this dissertation has been to develop and implement this unique system to help predict the risk of falls. We used built-in sensors --accelerometer and gyroscope-- in smartphones and a sensor embedded smart-shoe. The smart-shoe contains four pressure sensors with a Wi-Fi communication module to unobtrusively collect data. The interactions between these sensors and the user resulted in distinct challenges for this research while also creating new performance goals based on the unique characteristics of this system. In addition to providing an exciting new tool for fall prediction, this work makes several contributions to current and future generation mobile computing research

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    Master of Science

    Get PDF
    thesisComputing and data acquisition have become an integral part of everyday life. From reading emails on cell phones to kids playing with motion sensing game consoles, we are surrounded with sensors and mobile computing devices. As the availability of powerful computing devices increases, applications in previously limited environments become possible. Training devices in rehabilitation are becoming increasingly common and more mobile. Community based rehabilitative devices are emerging that embrace these mobile advances. To further the flexibility of devices used in rehabilitation, research has explored the use of smartphones as a means to process data and provide feedback to the user. In combination with sensor embedded insoles, smartphones provide a powerful tool for the clinician in gathering data and as a standalone training tool in rehabilitation. This thesis presents the continuing research of sensor based insoles, feedback systems and increasing the capabilities of the Adaptive Real-Time Instrumentation System for Tread Imbalance Correction, or ARTISTIC, with the introduction of ARTISTIC 2.0. To increase the capabilities of the ARTISTIC an Inertial Measurement Unit (IMU) was added, which gave the system the ability to quantify the motion of the gait cycle and, more specifically, determine stride length. The number of sensors in the insole was increased from two to ten, as well as placing the microprocessor and a vibratory motor in the insole. The transmission box weight was reduced by over 50 percent and the volume by over 60 percent. Stride length was validated against a motion capture system and found the average stride length to be within 2.7 ± 6.9 percent. To continue the improvement of the ARTISTIC 2.0, future work will include implementing real-time stride length feedback

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Using plantar pressure for free-living posture recognition and sedentary behaviour monitoring

    Get PDF
    Health authorities in numerous countries and even the World Health Organization (WHO) are concerned with low levels of physical activity and increasing sedentary behaviour amongst the general population. In fact, emerging evidences identify sedentary behaviour as a ubiquitous characteristic of contemporary lifestyles. This has major implications for the general health of people worldwide particularly for the prevalence of non-communicable conditions (NCDs) such as cardiovascular disease, diabetes and cancer and their risk factors such as raised blood pressure, raised blood sugar and overweight. Moreover, sedentary time appears to be uniquely associated with health risks independent of physical activity intensity levels. However, habitual sedentary behaviour may prove complex to be accurately measured as it occurs across different domains, including work, transport, domestic duties and even lei¬sure. Since sedentary behaviour is mostly reflect as too much sitting, one of the main concerns is being able to distinguish among different activities, such as sitting and standing. Widely used devices such as accelerometer-based activity monitors have a limited ability to detect sedentary activities accurately. Thus, there is a need of a viable large-scale method to efficiently monitor sedentary behaviour. This thesis proposes and demonstrates how a plantar pressure based wearable device and machine learning classification techniques have significant capability to monitor daily life sedentary behaviour. Firstly, an in-depth review of research and market ready plantar pressure and force technologies is performed to assess their measurement capabilities and limitations to measure sedentary behaviour. Afterwards, a novel methodology for measuring daily life sedentary behaviour using plantar pressure data and a machine learning predictive model is developed. The proposed model and its algorithm are constructed using a dataset of 20 participants collected at both laboratory-based and free-living conditions. Sitting and standing variations are included in the analysis as well as the addition of a potential novel activities, such as leaning. Video footage is continuously collected using of a wearable camera as an equivalent of direct observation to allow the labelling of the training data for the machine learning model. The optimal parameters of the model such as feature set, epoch length, type of classifier is determined by experimenting with multiple iterations. Different number and location of plantar pressure sensors are explored to determine the optimal trade-off between low computational cost and accurate performance. The model s performance is calculated using both subject dependent and subject independent validation by performing 10-fold stratified cross-validation and leave-one-user-out validation respectively. Furthermore, the proposed model activity performance for daily life monitoring is validated against the current criterion (i.e. direct observation) and against the de facto standard, the activPAL. The results show that the proposed machine learning classification model exhibits excel-lent recall rates of 98.83% with subject dependent training and 95.93% with independent training. This work sets the groundwork for developing a future plantar pressure wearable device for daily life sedentary behaviour monitoring in free-living conditions that uses the proposed ma-chine leaning classification model. Moreover, this research also considers important design characteristics of wearable devices such as low computational cost and improved performance, addressing the current gap in the physical activity and sedentary behaviour wearable market
    • …
    corecore