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Gait analysis using smart sensor technology is an important medical diagnostic process and 

has many applications in rehabilitation, therapy and exercise training. In this thesis, we 

present a low power wireless smart-shoe system (LPcomS) to analyze different functional 

postures and characteristics of gait while walking. We have designed and implemented a 

smart-shoe with a Bluetooth communication module to unobtrusively collect data using 

smartphone in any environment. With the design of a shoe insole equipped with four 

pressure sensors, the foot pressure is been collected, and those data are used to obtain 

accurate gait pattern of a patient. With our proposed portable sensing system and effective 

low power communication algorithm, the smart-shoe system enables detailed gait analysis. 

Experimentation and verification is conducted on multiple subjects with different gait 

including free gait. The sensor outputs, with gait analysis acquired from the experiment, 

are presented in this thesis. 
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CHAPTER 1 INTRODUCTION 

Gait analysis is the process by which quantitative information is collected to 

understand the cause of gait abnormalities and to aid in treatment decision-making. This 

process is facilitated through the use of technology such as specialized, computer-

interfaced video cameras to measure patient motion, electrodes placed on the surface of the 

skin to improve muscle activity, and force platforms fixed in a walkway to monitor the 

forces and torques produced between the ambulatory patient and the ground. Methodical 

gait analysis is the exploration of sensor patterns while walking, and its results have many 

applications in medical programs [1], physical therapy [2], and sports training [3]. For 

example, with detailed gait feature analysis, therapists can quantify the rehabilitation 

improvement of the users after surgery, and the corresponding treatment and training can 

be tailored according to an individual's status [4]. Gait analysis is primarily carried out in 

one of two ways: in a motion laboratory, with full analysis of the motion of body segments 

using highly accurate computer based force and optical tracking sensors, or in an office 

with the clinician making visual observations. The first method is expensive while the 

second method is inexpensive but requires substantial time and clinical expertise.  

Shoe-based gait analysis systems are replacing the standard technique of 

monitoring gait abnormality and collecting the quantitative information. Now shoe-

mounted wearable sensors can be used in applications, such as activity monitoring, gait 

analysis, and post-stroke rehabilitation. Smart-shoe with smartphone based gait monitoring 

systems are gaining widespread popularity in research, as well as in the commercial market 

place. A number of publications describe the use of shoe-based sensor systems for 
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biofeedback in rehabilitation applications. These techniques are being used in applications 

ranging from studies of obesity to post-stroke rehabilitation.  

The significant concerns in smart-shoe and smartphone-based systems are the 

organization of low-power operation and wireless transmission of the sensor data. 

Generally, to use smart-shoe for one day of wear (12 h), a battery with a capacity of more 

than 480 mAh is needed to power up the sensors in the shoe [5]. Shoe systems designed 

for the long-term monitoring of gait or other factors should present insignificant burden in 

terms of charging the shoe sensor batteries. The physical architecture of the sensor data 

transmission system is also challenging in terms of subject mobility, as the shoe data is 

typically delivered to a base station and the individuals cannot always be expected to be in 

the vicinity of the base station. Finally, the monitoring system has to be robust enough for 

extended wear. 

In past studies, researchers took several approaches to minimize the power loss in 

wireless communication systems. Low-power consumption enables a long operating 

lifetime for a wireless sensor network. Though this is facilitated in part by low duty cycle 

operation and local signal processing, multi hop networking among sensor nodes can also 

be introduced to reduce the communication link range for each node in the sensor network. 

Since communication path loss, in scales with respect to time is a power law exponent of 

4 or greater, in many applications, this reduction in link range results in massive reductions 

in power requirements [6-7]. 

There have been studies on low energy wearable devices for human gait analysis in 

the past. In [8], the authors presented a Force Sensing Resistive (FSR) sensor array-based 
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system for gait analysis. Recently, in [9], the authors developed a compressed-sensing-

based algorithm with a single accelerometer for precise human activity recognition. Both 

of these works are helpful to understand the human locomotion and status of walking. 

However, they cannot comprehensively and correctly address all human gait features used 

in actual medical applications. There is indeed a demand for a more portable approach, 

such as smartphone based systems with low power consumption for efficient gait analysis. 

The cost of smartphones has decreased and their computational competences have 

rapidly increased with advances in mobile technology. A smartphone-based gait 

monitoring system can function almost everywhere, since mobile phones are highly 

portable. Currently, most smartphones have sensors to observe acceleration, location, 

orientation, ambient lighting, sound, imagery, etc. [10]. These integrated sensors along 

with the pressure sensor shoe strengthen the capabilities of the smart-shoe. The smart-shoe 

system can monitor all types of activities without troubling the normal life of the subject, 

but there is still a need of a low energy communication system for longitudinal study of 

gait analysis using smartphone.   

In recent years, there has been increased interest in Smartphone-based monitoring 

of elderly people with gait abnormalities and people in rehabilitation. The activity 

recognition systems have increased in both number and quality. For this, it is enormously 

important to ensure that the intrusion level caused by the system is the lowest possible. 

Some of the works attempt to solve this problem by using a variety of sensors, such as 

accelerometers, gyroscopes, GPS and even radio-frequency identification sensors [11-13]. 

The communication between different sensors of the proposed system should have a low 
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energy consumption rate. Obviously, using a smartphone is a benefit for users, since the 

cost of such devices and the risk of loss or of leaving the hardware behind is decreased 

since objects, like users’ smartphones, have already been integrated into the users’ daily 

lives. However, smartphones are used for other purposes, such as making phone calls, 

surfing the Internet, and listening to music. For this reason, the physical activity recognition 

system on a smartphone must be executed in the background mode so as to cause the least 

possible impact on the user. However, complexity and energy consumption must be 

addressed. 

Another concern found in previous related studies was the number of sensors 

required. In [14], it can be seen that the accelerometer sensor is placed in a glove, which 

the user must wear, and it can recognize a large number of activities depending on the 

movement of the hand. In contrast, certain studies use various sensors all over the body to 

recognize these activities [15-16]. Obviously, with the increase of number of sensors used, 

the power consumption is increased. But, according to the research based on multiple 

sensors, this type of sensor produces results of higher accuracy. Once the most comfortable 

alternative for users is determined, then the various sensors can be analyzed in terms of the 

way data is obtained to perform the activity recognition. As noted above, much work has 

made use of sensors such as GPS, accelerometers and microphones, and the most efficient 

sensor with which to obtain the highest accuracy and comparatively low power 

consumption for data collection.  

In order to determine the method that is most energy efficient, in a previous study, 

most of the researchers made a comparison between the energy consumption of the most 
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frequently used sensors. Those comparison studies are critical in choosing the best sensor 

method since, together with performance; these constitute the two main issues upon which 

the final decision is based. The eight most used sensors (Microphone, GPS, Wi-Fi, 

accelerometer, NFC, Bluetooth, electrocardiograph connected by Bluetooth and 

gyroscope) from the literature in the field of activitiy recognition were analyzed. The result 

of most of this comparison showed that, the lowest power consumption is given by the 

microphone, after that accelerometer sensor comes in that list [17]. However the studies 

did not consider the energy consumption of the smartphone battery while connecting to the 

external devices. Also, they generate an energy cost trend line to avoid battery capacity 

and the energy expenditure of the smartphone without performing any action and with no 

user interaction. In the case of Bluetooth, advances in these sensors have reduced the 

energy consumption, but this technology still suffers from serious problems when being 

used in the field of activities recognition. The infrastructure must be installed in each 

location where it will be used. Furthermore, dynamic activities, such as walking, running 

or cycling, can hardly be recognized by only Bluetooth, unless additional devices 

associated with these activities are installed. It must be noted that nowadays, the 

smartphone is the only device (together with certain wearables, such as smart-shoe) carried 

continuously for most users. Therefore, the use of low energy Bluetooth devices for gait 

recognition systems must force the use of these devices, which would not be suitable for 

user acceptance of gait analysis systems. Also, Bluetooth access point networks are more 

expensive than embedding all of the necessary technology in the smartphone itself. 

Considering the importance of smart-shoe and smartphone-based low energy 

communication system for gait monitoring, in this study, we designed and developed a low 
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energy communication system, named LPcomS. This communication system is used to 

collect the insole pressure data from the smart-shoe using smartphone. A low cost pressure 

sensing embedded smart-shoe system with Bluetooth communication module is also 

developed for this study.      

1.1 Contributions of Thesis 

The contribution of this thesis is to concentrate on the development of a low energy 

wireless smart-shoe for user gait abnormality identification. Foot pressure signals can 

identify the behavior of human gait and posture as reflected in foot pressure distribution. 

Many studies describe foot pressure as a detection system, but few have used smartphone 

and a smart-shoe for the analysis. We report on a new smartphone and smart-shoe used for 

gait analysis. Our major contributions are as follows: 

 Developed of a low energy wireless smart-shoe 

 Proposed a smartphone and smart-shoe-based system (LPcomS) to analyze gait in 

common environment  

 Designed and developed of a Low Energy Bluetooth communication generic 

framework between smartphone and smart-shoe 

 Developed an Android-based application for single subject, which can record 

quantitative data about a patient’s walking pattern and shows graphical representation. 

 Provide users, health care professionals and caregivers with highly personalized 

health feedback.  

Our system, LPcomS, targets gait detection among people with impairments that affect 

balance, predisposing individuals to falling. These include common rehabilitation 
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diagnostic groups and elderly populations, but also may eventually help identify gait 

disorders among children, behavior analysis, and be helpful in environment monitoring. 

1.2 Organization of Thesis 

The rest of this thesis will be organized as follows: Chapter 2 will discuss the 

motivation of this work. Chapter 3 will investigate existing work in the fields of low energy 

consumption system in gait recognition. Chapter 4 will provide an in depth look at 

background and how the generic Low Energy (LE) gait monitoring system was developed. 

Chapter 5 will discuss the details of our proposed system (LPcomS). In chapter 6 will 

describe the algorithm and validation of our proposed system. Chapter 7 will conclude this 

thesis with a summary and suggestions for future work. 
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CHAPTER 2 MOTIVATION 

It is hard to realize the importance of a LE system for predicting the gait 

abnormality if someone does not have the experience of a gait related injury. It is essential 

to monitor a person with gait abnormality for a longer period of time. The goal of clinical 

gait analysis is to assist in treatment decision-making for the person with complex and not 

easily understood walking problems. 

People aged 65 and older are a growing segment of our population. Between 2012 

and 2050, the United States will experience considerable growth in its elderly population. 

In 2050, the population aged 65 and over is projected to be 83.7 million, almost double its 

estimated population of 43.1 million in 2012 as shown in figure 1. The projected growth 

of the elderly population in the United States will present challenges to policy makers and 

programs, like Social Security and Medicare. It will also affect families, businesses and 

health care providers. 

Among the multiple chronic diseases many people experience, a decline in mobility 

often occurs with aging. Falls are the major cause of mobility problems in the elderly. 

Almost all incidences of fall due to gait abnormality. Falls are the fifth most common cause 

of death in the elderly. In [19], Lilley and collaborators showed that falls are the leading 

cause of accidental death for people aged over 75 in their review of injuries involving older 

adults. Retrospective studies showed that about one third of the elderly above 65 years are 

fall-prone elderly and will experience at least one fall per year [20-22] while for the elderly 

over 80 years, the proportion increases to one half [23] for gait related problems. The 

impact of falls range from a reduced mobility and independence to various injuries and 
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sometimes to death [19, 20, 24]. Because it can take only one bad fall to severely 

incapacitate or even kill an individual. The risk increases even more if he/she is age 50 and 

over. This situation can be understood with the help of following scenario1 and scenario 2. 

Scenario 1: Jennifer, a 65-year-old living in her house alone, has been suffering from leg 

length discrepancy problems since her birth. One night she was walking to the bathroom 

at around 10 P.M. and she fell due to unbalanced walking. This caused a severe hip fracture. 

Her housekeeper arrived at her home the next day at around 10 A.M. and saw her lying in 

the bathroom. She called 911 and took her to the hospital. Jennifer was in intensive care 

for 48 hours. If Jennifer had a simple, automatic, and non-invasive technology that could 

warn her during her unbalanced walking, she could have taken proper steps to avoid the 

fall and the consequences.  
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Figure 1. Population aged 65 and over for the United States: 2012 to 2050    [18] 

Gait information is rarely used as an input in current medical diagnosis. This is because 

even though a human can intuitively watch a person walk and perform a diagnosis on users’ 

gait pattern, actually quantifying user’s gait is difficult. There are limitations with any form 

of optical system. The major one is that it takes a considerable amount of time to obtain 

quantifiable gait information from the optical images and this results in a high cost for a 

gait laboratory tests. Other limitations are that the field of view is restricted to 
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approximately one to two strides and the person being investigated may behave differently 

when they know they are being monitored, which is known as “white coat syndrome.”  

One of the most important aspect of LPcomS is to develop our application for 

human gait analysis after recognizing the need for “out of the gait lab” systems, which 

enable a person to be monitored anywhere.  To do so we choose to depend on the 

transformative power of smartphones that comes from their size and connectivity. They 

have become the fastest-selling devices in history, outstripping the growth of the simple 

mobile phones that preceded them. Today about half the adult population owns a 

smartphone as shown in figure 2. By 2020, it is projected that 80% of elderly population 

will have their own smartphone. [25] Smartphones have also penetrated every aspect of 

daily life. Portability and the size of the smartphone make them the first truly personal 

computers.  

Recently, the smartphone with smart-shoe technology is increasingly used for gait 

analysis research.  So the future research should intend to develop new energy efficient 

systems with extended battery life. Smartphones are widely used for navigating numerous 

important life activities, from researching a health condition to accessing educational 

resources. Nearly two-thirds of Americans now own a smartphone, and many of these 

devices are a key way to access the online world. About 62% of smartphone owners have 

used their phone in the past year to look up information about a health condition. More 

than half of smartphone users have used their phone to get the health information as shown 

in figure 3.  
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Figure 2. Increasing number of Smartphone users in USA [25] 

The enormous increase of the use of mobile technologies as well as advancements 

in their innovative application to address health priorities has evolved into a new field of 

eHealth. This is known as mHealth (mobile health). The mobile healthcare market is 

comprised of connected medical devices, healthcare application, and with related mobile 

technology. The global mobile healthcare market is estimated at $6.3 billion in 2013 and 

is poised to reach $20.7 billion by 2018 at a compound annual growth rate (CAGR) of 

26.7% [26]. 
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Figure 3. Smartphone users are getting health information [26] 

Scenario 2: Alex is a 70-year-old who has been suffering from one of the most typical gait 

pattern abnormalities, which is called the "spastic gait abnormality.” A stiff, foot-dragging 

walk caused by a long muscle contraction on one side causes this. He has suffered three 

major accidents over the last year due to his extreme unbalanced walking. His physician 

asked him to visit a gait lab for the assessment in every other week. In the lab he needs to 

place lots of marker in different places in his body and then walk in a long force plate for 

several times. Alex is psychologically so traumatized by the consequences of these 

accidents and the process of his treatment that he prefers to sit at home. Our system, 
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LPcomS, can identify the unbalanced gait of Alex for a long period of time due to his 

abnormality and it can allow Alex to live a more independent and normal life. 

To address the challenges posed by the above-mentioned scenarios, we propose a 

smartphone-based low energy gait analysis system using smart-shoe, which can prevent 

this type of unforeseen risky gait related injuries.  To analyze gait, we need a dedicated 

long lasting connection among the mobile device, healthcare application and other 

technologies, such as smart-shoe system. First, we used the popular wireless networking 

technology that uses radio waves to provide wireless high-speed Internet and 

network connections, Wi-Fi module. But during the data collection process we faced a 

research challenge. The battery consumption was high and we failed to collect data for the 

expected period of time. To solve this problem, after evaluating all possible solutions we 

selected the LE Bluetooth device. Just like Wi-Fi Direct, LE Bluetooth is promising speedy 

device-to-device transfers over long distances but consuming less power than Wi-Fi 

devices.  

We want to make our application to be workable for both android and iPhone 

devices. With the iOS SDK, Apple introduced the Core Bluetooth framework. Core 

Bluetooth allows developers to write applications that talk directly to hardware gadgets or 

other iOS devices but using the Bluetooth Low Energy (LE), also called Bluetooth-Smart 

standard. Things work differently for Bluetooth devices that do not use Bluetooth LE. But 

in our research for the proposed system we have used the Android device. 

As a result, our model not only replaces the cost of heavy experimental equipment 

of laboratory set up and dedicated staff expense but also it would be an application that 

http://www.webopedia.com/TERM/W/wireless.html
http://www.webopedia.com/TERM/I/Internet.html
http://www.webopedia.com/TERM/N/network.html
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would assure that elderly people get their flexibility and freedom to do daily activities, even 

during the time we can monitor their gaits and walking patterns. It releases people from the 

discomfort of having markers on their body. We are assuring a low power communication 

module, which will be a generic model. That means it can be used to establish connection 

between two or more devices/ modules with minimum power consumption.  Longer battery 

life of smartphone devices helps us to increase the sampling rate from the longitudinal gait 

monitoring opportunities. Moreover this application will work with both Android and 

iPhone devices.    
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CHAPTER 3 RELATED WORKS 

Most of the smartphone-based gait-related research is based on adaptive system. 

The best way to prevent an injury of a patient with gait abnormality is continuous 

monitoring of a user’s walking pattern. Earlier, a great number of researchers have talked 

about accurate gait detection systems using smartphone. But they did not talk about energy 

efficient gait monitoring systems. Moreover, they do not take into account the cost 

effectiveness of the system. Important limitations for wider acceptance of the existing 

systems for continuous monitoring are: a) cumbersome wires between sensors and a 

processing unit, b) lack of system integration of multiple sensors, c) interference on a 

wireless communication channel shared by multiple devices, and d) nonexistent support 

for massive data collection and knowledge discovery.  

In [27], the authors designed a type of wearable force sensor based on a photo 

elastic triaxial force transducer to measure Ground Reaction Force (GRF) in gait analysis. 

Force sensors based on the optical fiber matrix were developed to detect the shear and 

compressive force during human walking [28-29].  In [30], R.C. Luo, et al. explained that 

the methodology of information reasoning from multiple sensors was regarded not only 

efficient but also reliable. Mathie et al., in  [31-32] reviewed the use of accelerometer-

based systems in human movement, such as monitoring a range of different movements, 

measuring physical activity levels and identifying and classifing movements performed by 

subjects, and discussed a real-time human movement classifier using a triaxial 

accelerometer for ambulatory monitoring. In [33], Morley et al. and in [34], Maluf et al. 

developed an insole-based system to quantify the conditions inside the shoe. Pappas et al. 



  17 

 

 

[35] used a pattern recognition algorithm to define the changes during the gait cycle using 

their device comprising of three force-sensitive resistors (FSR) located on an insole (one 

under the heel, and two at the first and fourth metatarsal heads) and a gyroscope. The 

system was tested on two subjects with incomplete spinal injury and was used to trigger 

functional electrical stimulation (FES), which demonstrated benefit for both subjects. All 

of the above mentioned works have talked about the different sensors used in their research. 

But, they did not talk about the power consumption of their systems.  

Several works those are close to social computing use microphones [36-40] and 

electrocardiogram (ECG) sensors [41-43] for daily activity detection. The former type, 

which consists of microphone and Bluetooth devices, helps to obtain contextual 

information about the user’s environments and would be appropriate to perform a deeper 

analysis of the activity. However, high-level activity recognition, like, walking, playing, 

running or standing up, is done using other sensors. ECG can help in determining high-

level activities by means of heart rate processing. In this case, some activities (walking or 

running) could be distinguished based on the effort needed to perform them. The problem 

here is that ECG sensors are expensive and uncomfortable for the user. 

In all previous studies, personal medical monitoring systems have been used only 

to collect data for off-line processing [44]. Systems with multiple sensors for physical 

rehabilitation feature unwieldy wires between electrodes and the monitoring system. These 

wires may limit the patient's activity and level of comfort and thus negatively influence the 

measured results. A wearable health-monitoring device using a Personal Area Network 

(PAN) or Body Area Network (BAN) can be integrated into a user's clothing [45]. This 
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system organization is unsuitable for lengthy, continuous monitoring, particularly during 

normal activity [46], intensive training or computer-assisted rehabilitation [47]. Recent 

technology advances in wireless networking [48], and integration of physical sensors, 

embedded single chip, promises a new generation of wireless sensors suitable for many 

applications [49]. However, the existing telemetric devices either use wireless 

communication channels exclusively to transfer raw data from sensors to the monitoring 

station, like smartphone. The use of standard high-level wireless protocols such as 

Bluetooth that are too complex, power demanding, and prone to interference by other 

devices operating in the same frequency range. These characteristics limit their use for 

extended wearable monitoring. Simple, accurate means of monitoring daily activities 

outside of the laboratory are not available [50]. Finally, individual monitoring sessions 

record are rarely integrated into research databases that would provide support for data 

mining and knowledge discovery relevant to specific conditions and patient categories. 

In the world of wireless communication, energy consumption to sustain network 

connectivity and accomplish data transfer is a big concern. Mobile industries have the great 

challenge on managing energy consumption while running and introducing various 

applications. The energy cost to transfer a certain amount of data depends on the wireless 

technology, network condition and the type of application it is executing on.  

In other works [51], it is described that the data for activity recognition are acquired 

through any kind of mobile device (not only mobile phones). Although, these data are sent 

to a server where the information is successively processed. Thus, the computational cost 

is not a handicap, as learning and/or recognition are performed in the server and more 
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complex processing can be applied. Also, this might decrease the energy efficiency of the 

mobile device. In distinction, efficiency becomes a vital issue when processing is carried 

out in the mobile device itself [52]. In this manner, in order to apply a solution based on 

distributed computing, the device must always be connected to a data network. This does 

not currently represent a major drawback, since most devices have this kind of 

connectivity. Even though, there are still users whose devices have not been related with a 

continuous data connection outside the range of Wi-Fi networks. Finally, reduction of the 

energy cost conflicts with the need to send the data collected in a continuous way between 

the external device and the server or mobile devices. This means that current approaches 

of sensor cannot be applied and devices must be repeatedly wake up from sleep mode. 

Furthermore, the rigorous use of the data network has a deep impact on the energy use. 

In [53] the authors showed the increase in energy consumption when 3G and Wi-

Fi are used. In [54], it can also be observed that about 44% of battery usage in smartphones 

occurs by the use of GSM (3G or 2G). There are systems that use precise hardware [55-

57] and others use general purpose hardware [58-59]. Now a days, the use of generic 

hardware as smartphones is a benefit to users as the cost of such devices and their versatility 

are assets in their favor. The risk of loss, forgetting and neglect is decreased because users’ 

smartphones have already been integrated into the users’ daily life. However, general-

purpose devices are used for other purposes too, making phone calls, surfing the Internet 

and listening to music. Because of this, the gait analysis system must be implemented in 

background mode and should cause the least influence as possible on the system in terms 

of complexity and energy consumption. 
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To reduce the power consumption, the device discovery performance of classical 

Bluetooth protocols has been intensively inspected through real time experiments, 

simulations, and proper modeling methods [60]. The authors of this paper talked about the 

probabilistic model checking technique to compute the performance constraints of device 

discovery in terms of the mean time and the mean power consumption. Different types of 

experiments were performed to show that even though it required a long period of time for 

each node to become aware of all its neighbors. The Bluetooth topologies can be obtained 

in about six second after the connection setup through those discovered devices [60]. This 

is very high for applications where a fast topology construction is important. They 

discovered that improper parameter settings could significantly deteriorate the device 

discovery potential and increase meaningless energy consumption. They consequently 

proposed a solution to adaptively reduce the discovery latency when encountering an 

exceptionally long delay to be discovered by any scanner. Based on that, some researchers 

developed different strategies, which significantly enhanced the latency performance 

regarding the parameter settings.  

A comprehensive experiment on real devices, discovering the parameter space to 

determine the relationship between parameter settings and mean discovery latency or 

power consumption values have been proposed in [61]. An algorithm is proposed to 

adaptively determine parameter settings, depending on a mobility context to reduce the 

mean power consumption for Bluetooth devices. The compromise between different 

parameters is not clearly explained. Thus the work proposed in this study cannot be applied 

to the next generation networks.  
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In [62], the authors implemented an end-to-end Bluetooth-based mobile service 

framework. To detect surrounding mobile services, the framework depends on machine-

readable visual tags for out-of-band device and service selection rather than using the 

standard Bluetooth device discovery model. This work verified that a tag-based connection 

establishment procedure could offer substantial improvements over the standard Bluetooth 

device discovery model. Although, there have been rigorous studies presented for classical 

Bluetooth device discovery. But, these studies cannot be applied to Bluetooth low energy 

(BLE), since the Bluetooth standard made a fundamental change in the device discovery 

mechanism of BLE. Very few research work related to the performance evaluation of the 

BLE discovery process has been published.  

In [63], the authors introduced an analytical model.  They studied the performance 

of BLE device discovery, particularly with multiple devices. In this work, the average 

latency of device discovery is given by: 

𝐷𝐶𝑆 =  (
1

𝑃𝐶𝑆
− 1) 𝑅 + 𝑇𝑆 + 𝑇𝐼𝐹𝑆 + 𝑇𝐶𝑅                      (1) 

Where, TS, TCR, and TIFS denote the sending time of ADV_IND and CONN_REQ packets, 

and inter frame space, respectively. These have been derived from the length over bit rate 

of R bps (44 octets over 1 Mbps), and PCS means the successful probability of the 

connection setup. This modeling result as well as the methodology of this research may 

provide a potential guide to better enhance the performance of the BLE advertising process.  

In addition, the author proposed an algorithm using the connection report for BLE 

scanner to observe the network conflict degree and adaptively adjust its scanning 
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parameters. As a result the shorter latency could be achieved.  The complexity of this 

proposed system is very high and it requires high energy for the scanning process. Energy 

consumption is an important limitation in the case of BLE implementation for short-range 

communications and hence it should be considered carefully.  

 

 

Table 1. Comparison of existing work based on different features 

Approach Mobility Generic 

System 

Low Energy 

System 

Higher 

Sampling 

Rate 

Cost 

Effective 

Smart-Step 

[80] 

Yes No Yes No No 

K Ylli [81] No No No No No 

Keuchul Cho [82] No No Yes No No 

W. Donkrajang 

[83] 

No No Yes No No 

Musolesi [17] Yes No No No No 

Liu [60] No No Yes Yes No 

Drula [61] No No Yes Yes No 

Duflot  [65] Yes No No Yes No 

Luis [84] Yes No No Yes No 

Wahab [85] Yes No Yes Yes No 

Renato [86] Yes No No Yes No 

Our Approach Yes Yes Yes Yes Yes 

 

The previous studies on Bluetooth Low Energy discovery (BLE) are still far from 

thorough. It is important to know to what extent parameter settings would influence the 

discovery process as recurrent device discovery is commonplace in BLE networks [60, 64-

65]. In fact, wide-range settings of the parameters provide new features for BLE devices 

to customize their performance in explicit applications [66-68]. In other words, an 

advertiser should be capable of choosing appropriate parameters that meet the requirements 
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for practical BLE networks. Thus, it is necessary to develop a new and accurate discovery 

model for existing BLE architectures. This motivates our study of modeling the application 

to establish the communication between two modules, smartphone and smart-shoe.  

As we said, there were several approaches for gait monitoring system. The 

taxonomy for wireless system for gait analysis is presented below. The green marked boxes 

are the methods we used to build our system [Figure 4]. 

 

 

 

Figure 4. Taxonomy for wireless gait analysis systems 

Wireless system for gait analysis 

[Edgar'10, Xu'12, Lane'10, Liang'13] 

Bluetooth 

Wi-Fi 

SP for 

communication only  

SP for analysis and 

communication 

SP for sensing only 

SP- based system 

Body sensors 

Smart shoe 

SP with other 

systems 

Outside lab-based 

system 

Monitoring device  

Force plate system  

Camera with marker 

system 

Camera system 

 

Lab-based system  

staff 

Bluetooth 

LE 

Bluetooth 

Classic 
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Encouraged from these examples and to address the drawbacks of the above-

mentioned systems, we developed a smartphone- and smart-shoe-based LE Bluetooth 

communication system for human gait analysis to predict fall related injuries. Moreover 

our design is highly secure and inexpensive because it requires only a smartphone with low 

cost smart-shoes. We illustrate the difference between our system and the other related 

works in table 1.  
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CHAPTER 4 BACKGROUND 

4.1 Normal Gait  

To determine the abnormal gait patterns, we must first establish the criteria for 

normal walking. Normal walking is harmonization of balanced muscle contraction, joint 

movement, and sensory perception. Limbs, trunk, nerve-conditioning system and systemic 

diseases will affect a person's gait. Disproportion of these body parts often causes 

impairment which leads to risk of fall. Gait assessment is important to help identify areas 

of impairment for planning treatment. Generally clinical medicine is only concerned about 

the patient's gait analysis while normal gait is often ignored exploration. Healthy people 

walk on two legs, generally able to automatically adjust the position to achieve balance and 

stability. The pelvis is affected by the arm swing, resulting in periodic rotation and incline. 

Also ankle, knee and hip angle changes in the process of motion for coordination. So the 

normal gait is periodic, with coordination and balance about the characteristics [69]. The 

walking speed decreased with the increasing age, and the increasing age decreased the 

greatest walking speed more significantly than the decline of comfortable walking speed. 

Gait assessment is used to evaluate the patient's ability to maintain proper posture 

during walking. This is a hope to have a way to judge more precisely whether a person's 

gait is normal or not. Quantitative analysis of gait stability and gait symmetry has obtained 

a series of parameters results. Disorders of balance and gait are particularly important in 

the elderly because they compromise independence and contribute to the risk of falls and 

injury.  
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Research on the human gait comprises the qualitative and quantitative evaluation 

of the various factors that characterize it. Depending on the field of research, the factors of 

interest vary. For instance, for security purposes, interest may center on distinguishing and 

identifying persons based on a general characterization of their silhouette and the 

movements between the subject’s different body segments when walking [70]. From the 

clinical point of view, the importance of human gait analysis lies in the fact that gait 

disorders affect a high percentage of the world’s population and are key problems in 

neurodegenerative diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis 

or Parkinson’s disease. Study of human gait characteristics may be useful for clinical 

applications; it has been the subject of numerous studies such as Mummolo et al.’s recent 

work [71] and may benefit the various groups suffering from gait-related disorders. There 

are studies on the elderly which link changes in various gait characteristics to gait 

deficiency [72]. The first symptoms of some neurological diseases are poor balance, a 

significantly slower pace, with a stage showing support on both feet [73]. Multiple sclerosis 

users also show several gait alterations such as a shorter steps, lower free speed when 

walking and higher cadence than subjects without MS. In these cases, the knee and ankle 

joint rotation are distinctive for lower than normal excursion with less vertical ascent from 

the center of gravity and more than normal bending of the trunk [74]. Another condition 

related to gait and balance deficiencies is osteoporosis [75], a systemic disease 

characterized by lower bone mass and deteriorated bone microarchitecture, which means 

more fragile bones and greater risk of fractures. In the elderly, physical exercise has a major 

impact on osteoporosis because it significantly helps to prevent falls, which are the biggest 

risk factor for this age group [76]. This condition is asymptomatic and may not be noticed 
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for many years until it is detected following a fracture. Therefore, evaluation of gait quality 

using smart-shoe may be valuable for early diagnosis. Smartphone and smart-shoe-based 

gait detection system need a LE communication system to collect longitudinal data for 

monitoring the patient for longer period of time.  

 

4.2 Communication Topology Selection 

In LPcomS, we have developed a smartphone and smart-shoe-based gait 

monitoring application. Which can perform a single-subject design tailoring data collection 

to the specific needs of each patient. Initially, we tried to collect walking data by only using 

the smartphone sensors. To overcome the constrains of using smartphone sensors only, we 

have developed pressure sensor embedded low cost smart-shoe. This consist of four 

pressure sensors which we will describe details later in this section. For data collection 

from the smart-shoe, the biggest challenge is to establish a low power dedicated 

communication framework. Selecting the right device for the communication was another 

crucial decision. While choosing the device we study about the popular data transmission 

technologies.  

Table 2 shows the comparison study of three most popular wireless technologies, 

Bluetooth, ZigBee, and Wi-Fi protocol. They correspond to the IEEE 802.15.1, 802.15.4 

and 802.11a/b/g standards, respectively. For each protocol, separate associations of 

companies worked to develop specifications covering the network, security and application 

profile layers so that the commercial potential of the standards could be realized. 
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Table 2. A comparison study of Bluetooth, ZigBee, and Wi-Fi protocol 

 

From the study, we can see that the Bluetooth communication has covered a relatively short 

range. It was never intended to be a Wi-Fi replacement. Other frustrations stemmed from 

its tendency for interference from other devices in the 2.4GHz range, and the rage-inducing 

incompatibility issues faced when it comes to pairing some Bluetooth-enabled devices. 

Bluetooth has solved its “teething” problems and found its way into low-power 

applications where power-hungry and CPU-hungry Wi-Fi can’t compete. Bluetooth LE 

Standard Bluetooth Zigbee Wi-Fi 

IEEE 

specification 

802.15.1 802.15.4 802.11a/b/g 

Frequency band 2.4GHz 868/915 MHz; 2.4 GHz 

 

2.4 GHz; 5 GHz 

 

Max signal rate 

 

1 Mb/s 

 

250kb/s 

 

54Mb/s 

 

Nominal range 

 

10 m 10-100 m 

 

100 m 

 

Channel 

bandwidth 

1MHZ 0.3/0.6 MHz; 2 MHz 

 

22MHz 

 

Topology 

 

Star 

 

Mesh, star, tree 

 

Star 

 

Power 

consumption 

 

Low 

 

Very low High 

 

Battery life 

 

Days -weeks 

 

Months-years 

 

Hours 

 

Application 

focus 

Cable 

replacement 

 

Monitoring and control 

 

Web, email, video 

 

Key verticals 

 

Health and 

fitness 

 

Building, Automation, 

Commercial and  Industrial 

 

Residential and 

commercial 
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includes a power-saving feature called "low-energy technology." Bluetooth LE not only 

uses the new low-energy technology, but also relies on high-speed data transfers. Table 3 

shows the improvement of Bluetooth LE over classic Bluetooth.  

 

 

Table 3. The improvement of Bluetooth LE over classic Bluetooth. 

 Classic Bluetooth Bluetooth LE 

Network standard  IEEE 802.15.1 IEEE 802.15.1 

Range  100 m  >100 m  

Frequency 2.4 – 2.5 GHz  2.4 – 2.5 GHz 

Over the air data rate 2.1 Mbps 1 Mbps 

Application throughput 0.7 – 2.1 Mbps 0.27 Mbps 

Latency 100 ms 6 ms 

Peak current consumption <30mA (Varies) <15mA (read and transmit) 

 

 

 

Apart from an improvement in connectivity, LE Bluetooth features a number of 

additional benefits. Now the only competitor of Bluetooth LE is Wi-Fi Direct. Both 

specifications are promising to make it easier for user to quickly transfer pictures, files and 

other data between two wireless devices such as smartphone and smart-shoe without the 

need for a Wi-Fi network or USB cable. So before selecting the device we made another 

comparison study (Table 4) between Bluetooth and Wi-Fi Direct.  
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Table 4. Comparison between LE Bluetooth and Wi-Fi Direct 

 Bluetooth LE Wi-Fi Direct Winner 

Speed 25Mbps 250Mbps Wi-Fi Direct 

Range >200 feet 600 feet Tie (home) 

Security 
AES 128-bit 

encryption 

AES 256-bit 

encryption. 

Adequate in terms of 

security. 

Backwards 

Compatibility 
Yes Yes Tie 

Battery life Weeks Months to year Bluetooth LE 

Relative Power 

Consumption 
Very low High Bluetooth LE 

 

Key technology and simple topology reduces implementation complexity 

significantly. Bluetooth is made of very small silicon footprint and thereby very low cost. 

It is very robust through frequency hopping compared to other wireless technologies. Also 

it is very secure through optional 128-bit AES encryption. It consumes very low power – 

designed to be asleep. The low energy and 24Mbit/s transfer rate make Bluetooth an ideal 

solution for seemingly stalled technologies. Bluetooth LE is very easy to use; there is no 

need of any experience of Bluetooth protocol stack application. It is full-duplex bi-

directional communication, and supports the minimum baud rate of 4800 bps, bridge mode 

(USART transparent transmission), and direct-drive mode. It is able to communicate with 

the remote reset of module by APP in mobile devices, and the setting of transmission 

power. 
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CHAPTER 5 SYSTEM DESCRIPTION 

In this chapter, we describe the various components of our prototype LPcomS 

(figure 4) and present in detail the hardware design for low power communication. 

5.1 Smart-shoe Hardware 

The hardware devices we used to build a shoe are four sensors included arduino, 

class 2 bluetooth, and a power supply unit.   

5.1.1 Sensor Selection and Measurement Position 

The sensors used in the smartshoe were selected with the goal of creating a system 

capable of sensing many parameters that characterize gait. For the analysis of the kinematic 

motion of the foot, four piezoresistive pressure sensors were placed at the bottom of the 

shoe to assess the timing parameter and pressure distribution. Most of the body pressure is 

measured from the rear foot and the fore foot. Considering these issues we have placed two 

of our sensors in the fore foot region and two of them are in the rear foot region as described 

in table 5.  

We have used piezoresistive force sensors for measuring the pressure while walking 

[77]. The resistance of this sensor changes with the change in pressure.  The harder you 

press, the lower the sensor’s resistance. Resistance changes only when pressure is applied 

to the round area at the end of the sensor, but the resistance does not change while being 

flexed. 
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Table 5. Insole Sensing Position  

Position Number Name Sensor placement 

Sensor 1 

 

Posterior Metatarsal 

 

Sensor 2 

 

Heel (Hind foot ) 

Sensor 3 

 

Great Ball (Forefoot) 

Sensor 4 Little Ball (Forefoot) 

 

 

 

 

5.1.2 Arduino  

An Arduino is used as an analog to digital converter (ADC).  Arduino is an open-

source physical computing platform based on a simple I/O board and a development 

environment that implements the processing/wiring language. 

5.1.3 Class 2 Bluetooth module: RN42  

The Class 2 module is a small form factor, low power, highly economic Bluetooth 

radio that adds wireless capability to products [78]. The class 2 module supports multiple 

interface protocols, is simple to design in and fully certified, making it a complete 

embedded Bluetooth solution. The module is functionally compatible with other Bluetooth 

modules. With its high performance on chip antenna and support for Bluetooth® Enhanced 
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Data Rate (EDR), the class 2 module delivers up to 3 Mbps data rate for distances up to 70 

feet. It also comes in a package with no antenna. The device is shorter in length and has 

RF pads to route the antenna signal, which can be useful when the application requires an 

external antenna. It is fully compatible with the Bluetooth 4.0 transmission method. 

5.2 Smart-shoe: prototype 

Primary features of the foot pressure sensing shoes are their unobtrusiveness and 

portability. The wearable nature of shoes allows them to collect user’s motion signal freely. 

The schematic of the pressure sensing system is presented in Figure 5.  

With of four pressure sensors the smart-shoe is comprised one Arduino and one 

class 2 Bluetooth module with a battery power supply. We use an Arduino, a low power 

class 2 Bluetooth device as a wireless Bluetooth communication module on the shoe. This 

module receives the signal and transfers to the Smartphone through a Bluetooth 

communication network.  
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Figure 5. Overview of LPcomS  

In order to process the pressure data, the communication module has two different 

software tasks. One is for the Arduino and another is for the Android [79]. In the Arduino, 

we programmed to read an analog signal from the shoe sensors and buffered the signal that 

is sent to the smartphone through a serial port as a string. Pressure data was collected for 

the users over a period of time and every time a subject was tested with different types of 

walking.  An early prototype of Hardware Mountain of the shoe is shown in figure 6.  

As we mentioned before, we have used four piezoresistance sensors in the sole 

embedded with an Arduino, a class 2 Bluetooth module, a power supply unit, and a 

smartphone with the results of a system assessment. The sensors used in the smart-shoe 

were selected with the goal of creating a module which is capable of sensing many motions 

and pressure values. Those would help us to characterize the gait.  
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Figure 6. Early prototype of the LPcomS 

By using all of the electronics (including the sensors located at the bottom of the 

shoe), a class 2 module for the wireless transmission, and the power supply, we were able 

to engineer a smart-shoe.  Figure 7 demonstrates the block diagram of the smart-shoe, along 

with the wireless components, and sensor encapsulated insole, in correspondence with the 

smartphone application. 
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Figure 7. Components of a wireless shoe, and attachment sensors to the shoe with 

anatomical locations 
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CHAPTER 6 ALGORITHM DESIGN AND EVALUATION 

6.1   Methods of Data Communication  

A low-power, integrated shoe monitor system (LPcomS) was designed and 

developed in this study. This insole monitoring system was designed with pressure sensors, 

Bluetooth connectivity along with a power supply, which was integrated in the shoe. By 

using this technique to reduce the power consumption of the smart-shoe system we 

engineered various hardware devices in order to determine which low power scheme was 

viable. 

6.1.1 Low-Power Schemes 

This section describes the system design aspects utilized in LPcomS, which help in 

achieving low-power functionality in the system: 

 When a Bluetooth device requires a service, it begins a discovery process by 

sending out a query for other Bluetooth devices and the information needed to 

establish a connection with them. 

 Bluetooth class 2 device can optionally implement adaptive power control. This 

mechanism allows a Bluetooth radio to reduce power to the minimum level required 

to maintain its link, thus saving power and reducing the potential for interfering 

with other nearby networks.  

 One of the obvious reasons to achieve the low power consumption is the ability to 

advertise and broadcast data without the need of establishing a complete 
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connection. Establishing a complete connection would require a higher radio duty 

cycle consume more power.  

 Low duty cycle modes, which potentially lower the power consumption with two 

modes; sniff and hold (stand by). Each of these modes has duty cycle affecting 

parameters, which in turn influence power consumption.  

 Comparing with slave, a master takes the same time but the sniff mode consumes 

about 40% more power. With the same settings for a slave sending 250 bytes the 

opposite occurs when comparing power consumption. However for a slave in idle 

state with the same settings compared above there is a vast difference in power 

consumption; whereas the slave in sniff mode only consumes around 25% of what 

a slave with the default setting consumes. Lower power consumption is achieved if 

the latency in sniff mode for the connection is higher. A faster and more power 

efficient connection is achieved when allowing a shorter interval between scan and 

longer time window. 

 Enabling/disabling of sensor data collection was carried out in two steps. In the first 

step, the application finds the desire address, before enabling data communication 

between shoe and the phone. As a second step, the data collection process was 

turned on. 

 For pairing mode, the module attempts to connect with the remote device matching 

the store remote address. Once it finds this device, it stores the address into the 

remote address field and auto-connects to the remote device. 

 The event timers were running and the sensors were in the measurement mode as 

long as the system was in the walking mode. Before turning off the data collection 
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of the sensors, a message will show up, after which the whole system was put in a 

lower power mode. 

 Bluetooth class 2 module allows up to 1.5Mbps sustained, 3.0Mbps of user data to 

be transmitted in each connection. Hence, System’s connection interval is defined 

as 4-times that of the message set events, that System has one connection event, 

saving the radio power consumption. 

The idea behind Bluetooth LE is to conserve battery life while maintaining an always-

on environment by remaining sleeping unless data is being shared. Once a device is paired, 

the connection remains active only while in use. A feature that was not available in previous 

generations of Bluetooth technology due to difficulty in pairing and connecting some 

Bluetooth-ready devices. In the table 6 we explained the advantages and disadvantages of 

Bluetooth states when they execute the particular method. The state when Bluetooth 

remains in idle or standby, not connected state for discovery and connection method it may 

experience additional latency when pairing and connecting. We tried to focus on that point. 

Through our algorithm where the Bluetooth device has to discover only a target device 

without considering any other available signals, would reduce this possible additional 

latency. Hence that would show up a positive impact on power consumption.   
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Table 6. Advantages and disadvantages of Bluetooth states using methods 

Method Bluetooth 

State 

Advantages Disadvantages 

Optimize Inquiry 

(Discovery) and 

Page 

(Connection) 

Window 

Idle (Not 

Connected) 

or Active 

Connection 

 

The current can be 

reduced from more 

than 20 mA to less 

than 5 mA 

(combining this 

method with Sniff 

mode uses less than 3 

mA). 

Causes additional latency 

when pairing or 

connecting. 

 

Sniff/ Discovery  

Mode 

Transmit 

Active 

Connection 

 

This mode can be 

combined with the 

Optimize Inquiry 

(Discovery) and Page 

(Connection) 

Window or Enable 

Deep Sleep methods 

for lower power 

consumption. 

 

Enable Deep 

Sleep 

Idle (Not 

Connected) 

 

With this method, 

current is reduced to 

about 300 μA. 

 

This method can cause 

latency issues and may 

drop the first byte if the 

device wakes on RX data. 

It also causes a loss of 

performance/power when 

the device wakes 

frequently. 

Disable Output 

Drivers 

Idle (Not 

Connected) 

or Active 

Connection 

 

This method is 

simple to use. 

However, it depends 

on the load: if the 

device is not 

connected there are 

no power savings. 

This method is 

required for Roving 

Networks evaluation 

boards to measure 

power accurately. 

 

Lower Transmit 

Power 

Idle or 

Connected 

 

This method lowers 

power consumption 

during transmit  

The device has a shorter 

effective range. 
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6.2 Android Implementation 

The current implementation of the Android application (App) is based on Google’s 

Nexus Android. We integrate this application with smart-shoe through the Bluetooth 

communication. This app can add patient with their personal information. From the 

existing patient list it can collect data tailored to individual patient. During the data 

collection, the sensor data notified by the application through Bluetooth communication 

can be displayed on the screen in real time. There is a graphical representation of those 

sensor values. So observer can identify the patient’s walking pattern. The sensor values 

also can be written to a comma separated value (csv) file on the smart phone’s storage for 

future analysis. Because of the low power communication, longitudinal data collection is 

possible. The sample rate of walking data is high that leads us to more correct pattern 

recognition.  During the data logging session, if there is an accidental connection loss, the 

application immediately gets connected back in the same mode as it was operating. 

When there is inconsistent network strength, reconnecting to the server is prone to 

constant disconnections, which may cause additional data loss in application. To avoid this 

from occurring, the application checks the signal strength during scanning and an automatic 

reconnection takes place only when the signal strength reach in a desire level, which is an 

empirically established threshold we got during experiment.   
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6.3 Data Collection System 

Here we used a plantar pressure system for pressure data collection from shoe. Four 

pressure sensors are placed on the shoe. Two sensors are place on the heel and two sensors 

are place on the toe of the foot to collect the insole pressure data. The collected data is 

transmitted over Bluetooth in a smartphone. Volunteers were recruited for the validation 

of the smart-shoe system. The testing involved placing the smart-shoe instrumentation on 

the subjects’ own walking shoe. Each subject was asked to perform a series of walking 

tasks, while systems simultaneously collect data and measure the power consumption of 

the smartphone battery.  

 

Table 7. Summary of Subject Characteristics. 

  Healthy Subject Testing Scenarios  

Gender 3 males, 3 female  Free Gait 

 

 Propulsive 

Gait  

 

 Spastic 

Gait 

Age [years] 27.3 (25-35 ) 

Height [m] 1.65(1.5-1.8) 

Weight [kg] 73.4(58.2-94) 
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A total of 10 subjects were recruited. Characteristics for each group are summarized 

with means (and standard deviations) in table 7. Each subject first walked at his or her own 

self-selected natural pace for 2 to 4 trials, termed “free gait.” A sample pressure variation 

of insole sensors are shown in figure 8.    

 

 

Figure 8. Insole Pressure Variation of an user while walking 
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6.4 Principles of the LPcomS  

In our proposed system, the smart-shoe is used to collect the foot pressure values 

while the subject would be asked to perform different types of walking. The application on 

smartphone is another module to integrate with the smart-shoe. Low power communication 

assures longer and accurate data collection of patients. Saved data will be used to train the 

application for an individual. The higher sampling rate can assure, more accurate pattern 

recognition. The long-term plan is after receiving the data through Bluetooth 

communication, we will have processed it inside the mobile phone to identify the 

abnormality in walking pattern. At that moment, the system will detect a high-risk of gait 

pattern and enable a warning to the subject through an audio message and vibration to alert 

them about the imminent fall related injuries. The best way to help patients with gait 

abnormality is to prevent them from an injury. Our system will compare the real data with 

training set to identify individual normal and abnormal gait pattern. It will generate an alert 

to the user if it finds any abnormality in gait pattern. Moreover if it detects a fall then it 

will inform the caregiver though a text message. Another big idea is to establish a home 

monitoring system for the subject. Smart-shoe will be connected with smartphone, laptop, 

smartwatch, smartTV and smartlight to identify the patient’s activity and measure walking 

pattern [figure 9].  
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Figure 9. Proposed home monitoring system 

Our target customers are elderly people as we discussed before. To accomplish the 

vision of home monitoring system we need to have a dedicated trusted communication 

among those devices that consumes low power, thereby will have a longer battery life. Our 

target is to make the communication model generic and will work with both iPhone and 

Android. Android 4.3 and higher supports BLE and Apple iOS has supported BLE since 

the iPhone 4S. 

In our system the Bluetooth LE class-2 device operate in four different modes as 

shown in figure 10, depending on required functionality: advertising, scanning, initiating 

and connection.  A device in advertising mode, named advertiser, periodically transmits 

advertising information. On the other hand, a BLE device in scanning mode, named 

scanner, periodically scans the advertising channels and listens to advertising information. 
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Figure 10. Different States of Bluetooth connection  

In Bluetooth low energy, servers announce their presence using a procedure known 

as "advertising". Client devices listen for these announcements to create a list of interested 

partners. Once a client has located a server of interest, it initiate the process of creating a 

connection. After establishing a successful connection they start communicating with each 

other in master and slave role. The state specifications of the Bluetooth connection 

explained in table 8. 
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Table 8. State specification of Bluetooth connection 

State State Description 

Standby Does not transmit or receive packets 

Advertising Broadcasts advertisements in advertising 

channels 

Scanning Looks for advertisers 

Initiating Initiates connection to advertiser 

Connection 

Master 

Role 

Communicates with device in the Slave role, 

defines timings of transmissions 

 

 

 

6.5 Algorithm design and evaluation of the LPcomS 

In order to develop the application we have used the algorithm shown in figure 11 

to establish the Bluetooth connection between smart-shoe and the smartphone. At first the 

algorithm searches for the device that supports our proposed communication features. The 

application will move forward to execute the next operations after accurately detecting the 

correct device. Enabling the Bluetooth device we initiated an action button to discover the 

available Bluetooth devices around the smartphone. Among the available devices, the 

algorithm looked for our target device (smart-shoe Bluetooth device) by its name. 

Subsequently getting the target device name and address, we are checking for whether the 

device is bonded or not. When two Bluetooth devices are ready to share data with each 

other, they can be bonded together. Bonded devices automatically establish a connection. 

Bonds are created through one-time a process called pairing. When devices pair up, they 
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share their addresses, names, and profiles, and usually store them in memory. Also they 

share a common secret key, which allows them to bond whenever they’re together in the 

future. If the device is not bonded or paired the application will do that with a pairing code.  

Then we began a thread to receive and transmit the sensor data through a class 2 Bluetooth 

module embedded in smart-shoe. Here the connections are master-slave communication. 

We used the Bluetooth Socket to plug in the connectivity. We also have created a thread 

for the server to listen always from the connected device. Thenceforth the socket is fully 

ready for receiving and transmitting the input and output stream.   

On the other part we have programmed the Arduino with four sensors. We read the 

analog input data and send it serially to the Bluetooth device of smart-shoe. Smartphone 

Bluetooth receives these data as string. Then we displayed the data on the Android device 

with corresponding sensors.  

As we have described earlier the application starts with saving individual patient 

information. We record the sensor data with respect to the individual patient. We save the 

data in order to train our system for the individual patient. Later on by analyzing this 

information of the individual patient, we could identify their walking pattern or classify 

between normal and abnormal gait pattern.  

Raw data on foot pressure distributions were collected with the developed foot 

pressure-sensing shoe (smart-shoe). The pressure level represents the output value of 

analog information which is converted into voltage. The experiment was conducted to 

develop an automatic measuring system for revealing the relations between human motions 

and collective foot pressure characteristics. With the power supply unit, foot pressure 
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signal were gathered by piezoresistive flexi force sensors in a time span and transmitted to 

the smartphone through a Bluetooth communication network.   

 

Figure 11. Algorithm on Smartphone for Bluetooth communication 

In our application we were saving each patient’s personal information in the 

Android database SQLite. The patient name would automatically show up in the patient 

list. Then we can select individual patient to collect the smart-shoe sensor data.   

As an example, in figure 12, first save Bob’s information in our SQLite database 

and then collect pressure sensor data from smart-shoe. When the user interface is started, 

a toast would show up to notify “Bluetooth is on.” Afterward we press the “Find Device” 

button to get the target device. If the application cannot find the desired device a text 

message shows up that says, “Target device found and bonded.” If the desired device is 

not bonded, we have to bond that manually by pairing the code. Now the application is 

ready to receive sensor data from smart-shoe. To get those data we press the “Start” 

Enable the Bluetooth of the 
smartphone  

Discover surrounding available 
devices  

Search for a desire device 

Bond with that desire device 

Create a thread to read and 
write  

Get connected by using a 
socket 

Establish data 
communication  
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button and sensor data starts showing up continuously. The corresponding graph shows 

up below the sensor data.  We saved those data for each patient for further experiments.  

 

  

(a) Patient Activity (b) Sensors Data 

 Figure 12. Screenshots of android based data collection  

Same as in figure 13, first we save Robert’s personal information in our SQLite 

database and then collect pressure sensor data from smart-shoe. To get the insole sensor 

data we need to press the “Start” button and the sensor data shows up continuously. The 

corresponding graphical representation of the four sensors would show up. The session 
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ended up with saving those values in a CSV file. Afterward we will use those data to train 

our system to identify Robert’s normal walking pattern, hence detecting abnormal gait.   

 

  

(a) Sensors Data (b) Graphical Representation 

Figure 13. Screenshots of android based data collection 

We also have a patient log system as shown in figure 14(a). Each user needs to 

enter their biographical information before start collecting data from the shoe. Figure 14(b) 

shows a corresponding graph of four insole sensors for a test subject.  
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(a) Users Log (b) Graphical Representation 

Figure 14. Screenshots of android based data collection 

Our target is to save those data for individual patient to train our system to identify 

each patient’s normal and abnormal gait pattern. We also observed the smartphone battery 

usages during our data collection process.  It is noticed that the smartphone battery life 

using our Bluetooth communication algorithm with class 2 Bluetooth device is improved 

than that of general Wi-Fi or other communication system.  The system has a power 
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consumption of less than 26µA at sleep mode, 3mA at connected situation and 30mA 

during data collection.   

To test the power consumption of smartphone battery during data collection, we 

monitor the power states continuously for two hours for the following two scenarios: (1) 

the phone runs with Bluetooth communication for data collections (2) the iPhone runs with 

Wi-Fi communication and continuously collects insole data for abnormal gait pattern 

identification. Figure 15 presents the two curves of battery level states versus time during 

the time period of two hours or 120 minutes. It is observed that the battery usage while 

using Wi-Fi communication is much higher than that of our proposed Bluetooth 

communication.  

Low energy consumption is expected to be in Bluetooth wireless technology 

systems. With this technology our algorithm of selecting the target device assures minimal 

consumption of power. It provides a unique solution for portable, battery-powered products 

that demand a part of the power use of existing Bluetooth solutions. This is especially 

important in the medical product industry, where patients are encouraged to be mobile but 

need constant monitoring in real time. 
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Figure 15. Blue curve presents the battery levels when the data collected using Wi-Fi 

communication and red curve presents the battery levels when data collected using 

Bluetooth communication 
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CHAPTER 7 CONCLUSION 

7.1 Summary of Thesis 

In this thesis we presented a smartphone- and smart-shoe-based human gait 

recognition system with low energy Bluetooth communication. This design was used to 

collect different gait data. Our approach, LPcomS, presents how our application can 

establish a low power communication between smart-shoe and smartphone for continuous 

data collection. These records that have been tailored for individual patient can make a 

positive impact in treatment procedure and help caregivers to identify abnormal gait pattern 

quickly and efficiently. This work, however provides a solid conceptual and demonstrable 

result for a low energy gait analysis system. 

7.2 Contributions of Thesis 

First and foremost, it has developed and validated a low cost smart-shoe with insole 

pressure sensors for automatic gait monitoring. Also, it has developed a Wi-Fi 

communication network between smartphone and smart-shoe for collecting shoe sensor 

data using smartphone. But the battery consumption is high while using Wi-Fi 

communication for data collection. Then we have developed a low energy Bluetooth 

communication system for collecting insole pressure from shoe sensors. This thesis has 

also gathered personalized biographic information (age, weight and gender) upon 

automatic gait monitoring. An SQLite database has been created to save the user’s personal 

information. Finally, a generic frame work for low energy communication between 

smartphone and smart-shoe has been proposed for further study.  
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7.3 Impacts of Work 

This work’s most obvious impact will be on the quality of life for users able to 

utilize this low energy communication system for smart monitoring. As LPcomS was 

designed with a remote monitoring context in mind, users will be able to ensure they are 

receiving adequate care from their doctors while maintaining their daily lives. It will also 

allow doctors to receive daily, or more frequent, gait data on their users, allowing them to 

more accurately predict incident at home. Furthermore, as this is a system designed with 

mobile health in mind, it is a system that could easily be adapted to a world where the 

majority of people have access to a cell phone. Not all of these phones are capable of 

communicating with IoT, but it is obvious that cellphone ownership is a growing, global 

trend, so it is not unreasonable to assume that access to phones with that capability is also 

growing. Thus, LPcomS could potentially improve the smartphone battery life and will 

provide gait information to the caregiver for a long period of time. Long term, this method 

will hopefully be able to be adapted to a real time gait monitoring system that could 

potentially be put into hospitals and intensive care units to give doctors real time gait 

updates, which again would allow for even more responsive care. 

7.4 Future Work 

In continuation of this work, several aspects could be investigated. The most 

important are the inclusion of a generic frame work for the communication with Android 
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and iPhone platform. Also, the inclusion of biographic information within the algorithm 

could improve the efficient battery usage during data collections. Finally, any way of taking 

this method and putting it in the hands of medical personnel should be looked at, whether 

it be simple remote monitoring, which could easily be done with the current mechanism, 

or as a possible real time gait monitor. Anything that could possibly aid medical personnel 

in reducing the fall of their patients should be investigated in order to help improve the 

quality of life of everyone in having some kind of gait abnormality. 
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Appendix A: Definitions 

Internet of Things (IoT)  Internet of Things (IoT) is a proposed 

advance of the Internet in which everyday 

objects have network connectivity and 

permitting them to send and receive data. 

Bluetooth® Smart Bluetooth® Smart is the intelligent and 

power-friendly version of Bluetooth 

wireless technology. Bluetooth smart 

makes it perfect for the devices needing to 

run off a tiny battery for long periods 

Bluetooth Core 

 

 

Bluetooth® wireless technology is a global 

wireless standard which enables simple, 

secure connectivity for an increasing range 

of devices and serves as the backbone for 

the Internet of Things (IoT). 

Energy Harvesting 

 

Energy Harvesting is the process by 

which energy is derived from external 

sources captured, and stored for small, 

wireless autonomous devices.  
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Appendix B: Hardware Components 

 

B .1 Bluetooth Module and Battery Holder 

B. 1.1 Flexiforce Pressure Sensor  

Sparkfun Part # SEN-08712 ROHS 

https://www.sparkfun.com/products/8712 

The overall length is about 8.5". Sensor 

comes with 0.1" spaced, reinforced, 

breadboard friendly connector. This sensor 

ranges from 0 to 25lbs of pressure 

 
 

B. 1.2 Class 2 Module  

Sparkfun Part # WRL-10938 ROHS 

https:/ /www.sparkfun.com/products/1093

8 

 Small radio - 0.15x0.6x1.9" 

 Very robust link both in integrity and 

transmission distance (18m) 

 

https://www.sparkfun.com/static/rohs/
https://www.sparkfun.com/static/rohs/
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 Hardy frequency hopping scheme - 

operates in harsh RF environments like 

WiFi, 802.11g, and Zigbee 

 Encrypted connection 

 Frequency: 2.402~2.480 GHz 

 Operating Voltage: 3.3V-6V 

 Operating Temperature: -40 ~ +70C 

 Built-in antenna 

 

 

 

B. 1.3 Arduino Uno  

Sparkfun Part # DEV-11224 ROHS 

https:/ /www.sparkfun.com/products/1122

4 

Arduino/Genuino Uno is a microcontroller board 

based on the ATmega328P . It has 14 digital I/O 

pins (of which 6 can be used as PWM outputs), 6 

analog inputs, a 16 MHz quartz crystal, a USB 

connection, a power jack, an ICSP header and a 

reset button.  

 

 

https://www.sparkfun.com/static/rohs/
http://www.atmel.com/Images/doc8161.pdf
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 B.1.4 Battery Holder 

Sparkfun Part #: PRT-00552 ROHS 

https://www.sparkfun.com/products/552 

Battery Type, Function: Cylindrical, Holder with 

Switch 

Style: Holder (Covered) 

Battery Cell Size: AA 

Number of Cells: 4 

Mounting Type: Custom 

Termination Style: Wire Leads - 6" (152.4mm) 

 

 

 

 

https://www.sparkfun.com/static/rohs/

	Marquette University
	e-Publications@Marquette
	LPcomS: Towards a Low Power Wireless Smart-Shoe System for Gait Analysis in People with Disabilities
	Ishmat Zerin
	Recommended Citation


	tmp.1450294562.pdf.30npa

