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Abstract 
 

Health authorities in numerous countries and even the World Health Organization (WHO) 

are concerned with low levels of physical activity and increasing sedentary behaviour amongst the 

general population. In fact, emerging evidences identify sedentary behaviour as a ubiquitous char-

acteristic of contemporary lifestyles. This has major implications for the general health of people 

worldwide particularly for the prevalence of non-communicable conditions (NCDs) such as cardi-

ovascular disease, diabetes and cancer and their risk factors such as raised blood pressure, raised 

blood sugar and overweight. Moreover, sedentary time appears to be uniquely associated with 

health risks independent of physical activity intensity levels. However, habitual sedentary behav-

iour may prove complex to be accurately measured as it occurs across different domains, including 

work, transport, domestic duties and even leisure. Since sedentary behaviour is mostly reflect as 

too much sitting, one of the main concerns is being able to distinguish among different activities, 

such as sitting and standing. Widely used devices such as accelerometer-based activity monitors 

have a limited ability to detect sedentary activities accurately. Thus, there is a need of a viable 

large-scale method to efficiently monitor sedentary behaviour.  

This thesis proposes and demonstrates how a plantar pressure based wearable device and 

machine learning classification techniques have significant capability to monitor daily life seden-

tary behaviour. Firstly, an in-depth review of research and market ready plantar pressure and force 

technologies is performed to assess their measurement capabilities and limitations to measure sed-

entary behaviour. Afterwards, a novel methodology for measuring daily life sedentary behaviour 

using plantar pressure data and a machine learning predictive model is developed. The proposed 

model and its algorithm are constructed using a dataset of 20 participants collected at both 
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laboratory-based and free-living conditions. Sitting and standing variations are included in the 

analysis as well as the addition of a potential novel activities, such as leaning. Video footage is 

continuously collected using of a wearable camera as an equivalent of direct observation to allow 

the labelling of the training data for the machine learning model. The optimal parameters of the 

model such as feature set, epoch length, type of classifier is determined by experimenting with 

multiple iterations.  Different number and location of plantar pressure sensors are explored to de-

termine the optimal trade-off between low computational cost and accurate performance. The 

model’s performance is calculated using both subject dependent and subject independent valida-

tion by performing 10-fold stratified cross-validation and leave-one-user-out validation respec-

tively. Furthermore, the proposed model activity performance for daily life monitoring is validated 

against the current criterion (i.e. direct observation) and against the de facto standard, the ac-

tivPAL.  

The results show that the proposed machine learning classification model exhibits excellent 

recall rates of 98.83% with subject dependent training and 95.93% with independent training. This 

work sets the groundwork for developing a future plantar pressure wearable device for daily life 

sedentary behaviour monitoring in free-living conditions that uses the proposed machine leaning 

classification model. Moreover, this research also considers important design characteristics of 

wearable devices such as low computational cost and improved performance, addressing the cur-

rent gap in the physical activity and sedentary behaviour wearable market.  
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Chapter 1: Introduction 
 

1.1 Background 

 

Physical inactivity has been identified as the fourth leading risk factor for global mortality 

(6% of deaths globally). It ranks just behind high blood pressure (13%), tobacco use (9%) and high 

blood glucose (6%). It is also believe to be the principal cause for approximately 21–25% of breast 

and colon cancers, 27% of diabetes and 30% of ischemic heart disease as well being a risk factor 

for overweight and obesity which are responsible for 5% of global mortality [1]. Advances in 

transportation and the time spent working with technology at the workplace or place of study have 

also contributed to the reduction of everyday physical activity and encouraging sedentary behav-

iours. Common examples of sedentary behaviour are usually expressed in terms of posture and 

lack of movement such as job-related sitting [2]. Furthermore, many leisure activities such as 

sports and outdoor activities have been increasingly replaced by sedentary behaviours such as tel-

evision viewing and internet browsing [3, 4]. As such, measurements of physical activity and sed-

entary behaviour have been shown to be a predictor to large public non-communicable diseases 

like diabetes, hypertension, stroke, cancer, and metabolic syndrome [5, 6]. While physical activity 

and sedentary behaviour are related, they have been recently classified as two distinct behaviours 

[7]. An increasing body of evidence has shown that time spent in sedentary behaviour is an im-

portant determinant of health status independent of physical activity levels [8]. Thus, measuring 

sedentary behaviour specifically along with physical activity is becoming useful, not only to assess 

the effectiveness of interventions programs, but to understand the association between health and 

sedentary behaviour. Given the widespread difficulties and challenges, various subjective and ob-

jective methods have been developed in order to better measure physical activity and identify daily 
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activities in everyday life [9]. Accelerometer-based activity monitors are currently one of the most 

widely used devices for objectively monitoring physical activity in clinical and free-living settings 

[10]. Unfortunately, accelerometer-based activity monitors have shown a limited ability to detect 

sedentary behaviour accurately [11, 12]. Driving in a car, standing and sitting activities such as 

computer use, are sometimes classified as sedentary behaviour when using a simple accelerometer 

[13]. Moreover, it is important to note the distinction caused by sitting and standing, despite the 

narrow range and potentially overlapping Metabolic Energy Equivalents (MET) values of these 

behaviours. For example, too much sitting time in adults (which can span from 6-10 hours a day), 

has been reported to be related to risk for type 2 diabetes, cardiovascular disease, breast and colon 

cancer and poor mental health outcomes [14-16]. On the other hand, accumulating epidemiological 

and clinical trial evidences suggest that non-seated behaviours such as standing could contribute 

to better health. For instance, a recent study revealed that muscle activation was almost 2.5 times 

higher when standing as compared to sitting [17]. For example, the de facto standard for measuring 

sedentary behaviour in the research sector is the ActivPAL. This device measures sedentary time 

though an accelerometer and detecting with gravitational components depending based on the in-

clination of the device. Unfortunately, it is still primarily used in scientific studies and has the 

limitations described above. In the commercial sector, examples of accelerometer-based wearable 

technologies include devices such as the Lumo Back, but unfortunate none of these devices were 

specifically designed to measure sitting. On the other hand, devices such as the Darma cushion 

uses optical sensors to assess sitting posture but it has clear limitations due to its size and its im-

practicality of having to be placed in the chair being sit on. [18] Thus, there is a general agreement 

in the literature that there is a need of a viable large-scale method to efficiently monitor sedentary 

behaviour. Such method will help researchers further understand how small changes in the user’s 
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sedentary behaviour could positively impact their health.  Unfortunately, current commercial de-

vices are unable to provide reliable and continuous measure of sedentary behaviour and body pos-

ture [19]. A method that shows significant potential for improved sedentary behaviour monitoring 

is the tracking of plantar pressure. Data from such pressure or ground reaction forces measure-

ments has been commonly used in posture and gait studies for diagnosing lower limb problems, 

footwear design, sport biomechanics, injury prevention and several other applications [20]. In this 

particular application, the ability to correlate plantar pressure and weight bearing creates a poten-

tial opportunity to monitor some body postures and sedentary behaviour. Moreover, the estimation 

of body weight bearing across daily activities would be an important contribution to sedentary 

behaviour daily monitoring since it allows the prediction of postures such as sitting or standing. 

Partial body weight bearing changes are directly related to posture such as standing or sitting, 

which correspondingly correlates to changes in leg muscle activation [17]. This monitoring tech-

nology would focus in achieving accurate daily life sedentary behaviour measurements during 

free-living conditions. In summary, there is a need for an alternative low burden wearable tech-

nology that is viable in free-living conditions, inexpensive, easy to use and unobtrusive so that 

people are willing to use it continuously and has the ability to close the gap in daily life sedentary 

behaviour monitoring. 

1.2 Motivation 

 

As the popularity of wearable technology such as wristbands, watches, and smart garments 

increases and their cost decreases, opportunities for novel healthcare applications arise. Since 

wearable devices can be often carried with people nearly everywhere they go as long as the user 

keeps wearing them and charged [21], data can be collected over long periods of time during “real-

life” conditions. Given the current health problems relating to cardiovascular diseases in 
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overweight populations, an increased interest has arisen in physical activity monitoring, and in the 

last few years, also extended to sedentary behaviour due to its independent influence on our health. 

Hence, the focus of this thesis is to study the use of wearable technology to reliably measure long-

term sedentary behaviour, since available commercial devices are currently unable to provide re-

liable and continuous measure of sedentary behaviour. Specific monitoring of sedentary behaviour 

would enable the collection of large data sets, which would help to improve the understanding of 

the relationship between sitting behaviour and health as well as proposing solutions to mitigate 

this health effects. Moreover, private or public health organizations could use this data to better 

measure sitting behaviour and create better suited strategies to solve or mitigate the problem and 

improve the overall population’s health. Another significant contribution of such wearable tech-

nology is accurately identifying postures such as sitting and standing during daily life activities in 

free-living conditions. Furthermore, being able to discern variations in sitting or standing, as well 

as unexplored activities such as leaning where body weight is partially supported, would lead to a 

better and clearer definition of sedentary behaviour. Recent results suggest that the cumulative 

effect of small movements and posture variations throughout the day may be a significant contrib-

utor to our total energy expenditure [22]. Moreover, research-based devices high price, bulkiness, 

or lack of consumer appeal limit their ability to be effectively used for the general population. At 

the same time, current commercial devices do not meet the technical requirements for free living 

sedentary behaviour monitoring due to their trade-off between accurate measurements and robust 

technical specification in exchange for increased wearability, marketability and consumer appeal. 

Thus, the proposed plantar pressure-based device specifically designed for sedentary behaviour 

monitoring which reliably measures sitting time and meets the crucial technical specifications such 

as unobtrusiveness, low cost, and low computational requirement may prove to be a key addition 
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to the current wearable technology field. In addition, it is important to highlight the advantage that 

the development of such a technology would represent given the numerous number of new start-

ups, fitness companies (e.g. Fitbit) and multinational companies (e.g., Apple, Samsung) have 

shown in the field [23, 24].   

1.3 Research Objectives and Scope  

 

The main purpose of the work presented in this thesis is to demonstrate the viability of tech-

nology that can reliably monitor sedentary behaviour in real time via detecting posture and other 

related activities using a wearable plantar pressure-based device. Current methods for sedentary 

behaviour monitoring have proved inaccurate when measuring sedentary behaviour: question-

naires are time consuming and suffer from bias due to their reliance on the user’s ability to recall 

his or her activities, indirect calorimetry is ineffective for activities of daily life in free-living con-

ditions due to its cost and size and the equipment involved, while accelerometer-based devices 

such as the activPAL are only used in research-based studies, have difficulty discerning static 

activities such as sitting and standing and may prove uncomfortable to use in the long-term since 

it has to be attached to the person’s thigh. Therefore, the main research objectives of this work are:  

1) To collect daily life data in both laboratory and free-living conditions along with continuous 

video footage of the individual with two main purposes:  

a. To allow the collection and labelling of the daily life training data for the ma-

chine learning model. 

b. To enable the validation of the predictive model against the current criterion 

(i.e. direct observation) of sedentary behaviour monitoring  
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2) To develop a novel methodology able to accurately measure total daily sedentary time by 

using plantar pressure and supervised machine learning techniques 

3) To find the optimal parameters of the machine learning model that allow the best trade-off 

between computational cost and performance to ensure the viability of a potential future mar-

ketable device 

In order to achieve this, this work is divided into the following stages: 

• Identification of an optimal wearable device thorough a scoping review of current plantar 

pressure technologies both in the market and in the literature.  Identified technologies are 

listed and reviewed in regard of their number of features such as battery power and storage 

and their ability to continuously collect daily pressure data during free-living conditions.  

• Design a both laboratory-based and a free-living study protocol and recruit participants to 

collect their plantar pressure and accelerometer data during different tasks and correspond-

ing postures variations. Continuous video footage of the individual via a wearable camera 

was captured during the free-living component.  Data is processed, synchronized and vis-

ually labelled following to the proposed method to create the supervised training data set 

for the proposed model.   

• Proposition, design and implementation of a sensor-based methodology for sedentary be-

haviour monitoring that utilizes a set of plantar pressure sensors and continuous recording 

of real-world daily life activities as training input.  

• Perform several experiments to determine what combination of parameters such as slid-

ing, window length, type of classifier and feature set, accomplish the best trade-off in 

terms of sedentary behaviour monitoring performance and computational requirements. 
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An analysis of the number and location of pressure sensors is also performed to further 

lower the computational cost.  

• Validation of the proposed method in sedentary behaviour monitoring against the accel-

erometer-based de facto standard, the activPAL, and the current criterion, direct observa-

tion.  

1.4 Thesis organization 

 

 The report is developed in a logical order by laying out the background, motivation, objec-

tives and scope of this work in Chapter 1. Chapter 2 covers the literature review, which details the 

problems related to the increasing amount of sedentary behaviour and the current measurement 

techniques and technologies involved in measuring it. Once the literature review has provided the 

foundations of the topic, Chapter 3 discussed the use of plantar pressure in a wearable technology 

as a promising parameter to predict sedentary behaviour. Furthermore, a scoping review of plantar 

pressure technologies in the literature and in the market is performed to identify a clear gap and 

discuss their limitations. In Chapter 4, a novel methodology that uses plantar pressure and super-

vised machine learning techniques. Daily life activities’ data is collected during both laboratory-

based and free-living settings using plantar pressure insoles as well as the de facto standard device 

in sedentary behaviour studies the activPAL. A wearable camera, a GoPro HERO Session 4 is also 

used to ensure independence in the participant. Data is then processed, synchronized and visually 

labelled using the video footage and following to the proposed method to create the supervised 

training data set. In Chapter 5, the method is optimised by evaluating different model´s parameters 

such as type of classifier, feature set, window length, type and number of sensors, to accomplish 

the highest performance while keeping low computational load. The results of the aforementioned 

experiments and the final model performances along with a discussion are also covered. Further 
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improvement of the method is done in Chapter 6, by incorporating data from foot accelerometers 

to the calculations. Afterwards, validation is performed by comparing and discussing the results 

of the proposed model, the ActivPAL and the direct observation in terms of recall and total time 

recognised for each task. Finally, the overall conclusions, contributions and future work directions 

are presented in Chapter 7. 
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Chapter 2: Literature review 
 

2.1 Scope of the review 

 

Since physical activity has become a major concern in government and healthcare frame-

works, the first focus of this literature review is to clearly define physical activity and sedentary 

behaviour. More importantly, the difference between lack of physical activity and sedentary be-

haviour, as well as their independent health effects is also analysed. Once the scope of the problem 

is established, the second focus is on the use of different methods to measure physical activity and 

more specifically, sedentary behaviour. These are divided into subjective tools such as question-

naires and direct observations, energy expenditure-based methods such as indirect calorimetry, 

and different sensors such as accelerometers and Global Positioning Systems (GPS).  

2.2 Physical activity and Sedentary Behaviour 

 

Physical activity can be defined as any bodily movement produced by skeletal muscles that 

results in energy expenditure [25]. In turn, physical activity behaviour, expressed as human move-

ment, imparts physiological consequences (i.e., energy expenditure and physical fitness) that have 

effects on specific health outcomes. It is noted that physical activity behaviour can occur in differ-

ent domains of life, including leisure and recreation, occupation, household work, care giving, and 

active transport. The volume (i.e., intensity, duration, frequency) and mode or type of activity can 

vary within each domain [26]. Furthermore, many aspects of physical activity behaviour can be 

characterized as either discretionary or nondiscretionary. In general, occupational physical activity 

is not discretionary, whereas exercise is. For example, physical activity performed during domestic 

chores may be quite varied among individuals and may harder to define its duration or what 
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specific tasks were done. Exercise is a specific type of physical activity behaviour that is defined 

as planned physical activity engaged in for the purpose of enjoyment and/or improvement in some 

aspect of physical fitness or motor skill [27]. Because exercise and the more general domain of 

leisure-time physical activity are considered to be almost always discretionary, they have been a 

primary focus of physical activity interventions [2]. A comprehensive representation of the multi-

ple dimensions that physical activity comprehends developed by Troiano et al. [2] is shown in 

Figure 2-1.  

 

Figure 2-1. A conceptual framework for physical activity as a complex and multidimensional be-

haviour [2]. 

As shown in Figure 2-1, the different classifications of physical activity as well as its health 

enhancing effects are clearly identified. These effects are relatively easy to measure due to their 

short-term effect on the human body. On the other hand, classification of sedentary behaviour is 
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less understood which in consequence affects the ability to draw a correlation to its compromising 

health effects further complicated by their long-term nature. Consequentially, the focus will be on 

sedentary behaviour. In fact, in the context of the major ‘diseases of inactivity’ [28], sedentary 

behaviour has emerged as a significant additional element of the chronic disease prevention agenda 

[29]. According to the Sedentary Behaviour Research Network, sedentary behaviour is defined as 

“any waking behaviour characterized with levels of energy expenditure less or equal than 1.5 Met-

abolic Equivalents of Tasks (METs) while in a sitting or reclining posture” [30]. One of the most 

common methods to measure physical activity is by using a Metabolic Equivalent of Tasks. One 

metabolic equivalent (MET) is defined as the amount of oxygen consumed while sitting at rest and 

is equal to 3.5 ml of oxygen per kilogram of body weight per minute. The energy cost of an activity 

can be determined by dividing the relative oxygen cost of the activity (ml O2/kg/min) and multiply 

it by 3.5. Since physical activities are frequently classified by their intensity, MET is also used to 

define sedentary behaviour [31]. However, this definition seems to focus on the absence of other 

activities instead of the number of activities that may fall within the equal or lower than 1.5 METs. 

For instance, non-purposeful exercise, measured as ‘energy expenditure of spontaneous physical 

activity’ or non-exercise activity thermogenesis (NEAT) would fall within the definition of sed-

entary behaviour in contrast with volitional exercise, commonly measured as leisure-time physical 

activity (LTPA), which would be categorised as physical activity. NEAT accounts for the remain-

der of the total daily energy expenditure for most individuals with sedentary lifestyles, encompass-

ing the combined energy costs of the light physical activities of daily living, fidgeting, spontaneous 

muscle contraction and maintaining posture when not recumbent. In the case of individuals who 

do not partake in any purposeful sporting exercise, most of their activities related activity energy 

expenditure are reflected in various levels of NEAT. These activities may go unnoticed by standard 
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monitoring technologies since they are classified as NEAT and, in some cases, sedentary behav-

iour. Although the energy expended in every individual movement may be small, the cumulative 

effect of the many activities falling into this category generally make it a significant contributor to 

total energy expenditure, with significant variations across individuals [22]. Unfortunately, these 

variations are most commonly ignored by current monitoring technologies. 

Sedentary behaviour is often represented in the lower end of the physical activity contin-

uum and as a lack of physical activity. Increasing evidence suggests that sedentary behaviour 

should be targeted separately as it has independent effects on human metabolism and health out-

comes [7]. Sedentary behaviour is distinct from lack of physical activity; put simply, it is too much 

sitting, as distinct from too little exercise [15]. Other studies [32] have further concluded that sed-

entary behaviour may be independent of physical activity both behaviourally and biologically. For 

example, an individual can be sufficiently active according to the physical activity guidelines but 

still can spend prolonged time sitting in front of TV.  The generic term sedentary behaviour iden-

tifies a class of behaviours associated with low levels of metabolic energy expenditure character-

ized primarily by sitting [33].  Table 2-1 illustrates the terms used found in literature and their 

definitions. Lastly, similar to the aforementioned description of physical activity, sedentary be-

haviour, expressed in terms of posture and lack of movement, may be discretionary, such as tele-

vision viewing, or nondiscretionary, such as job-related sitting, and may also have distinct effects 

on health outcomes [2]. 
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Table 2-1. Important terms used in the field of physical activity and sedentary behaviour [7] 

 

 

It is important to further highlight that sedentary behaviour differs from a lack of physical 

activity due to the distinct physiological effects of sedentary behaviour and the methodology used 

to measure it [34-36]. In fact, studies have illustrated how reductions in sedentary behaviour may 

be achieved through almost limitless micro intervention opportunities designed to promote energy 

expenditure, whereas physical activity or exercise interventions have more constraints (e.g., time, 

location, equipment, logistics) [37]. Sedentary behaviour can also be reduced with less financial 

or time requirements. Furthermore, the physiological effects and changes to sedentary behaviours 

are not necessarily the opposite of exercise and may differ amongst individuals. Monitoring of 

sedentary behaviour may also require distinct measurement parameters than those usually used to 

measure physical activity and exercise [22]. However, initial reviews of levels of physical activity 

did not consider them as independent factors. Many studies have recently discussed the severity 

and prevalence of the problem [14, 36, 38-40]. In fact, recent international policy frameworks 

acknowledged the importance of physical activity and time spent in sedentary behaviour inde-

pendently [41]. Since the adoption of the Global Strategy on Diet, Physical Activity and Health by 

Term Definition 

Sedentary 
A distinct class of behaviours (e.g., sitting, watching TV, driving) characterized 

by little physical movement and low energy expenditure (<1.5 METs) 

Sedentarism 
Extended engagement in behaviours characterized by minimal movement, low 

energy expenditure, and rest 

Physically 

active 

Meeting established guidelines for physical activity (usually reflected in 

achieving a threshold number of minutes of moderate to vigorous physical 

activity per day) 

Physically 

inactivity 

The absence of physical activity; usually reflected as the amount or proportion 

of time not engaged in physical activity of some predetermined intensity 
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the World Health Assembly in 2004 [42], a lack of physical activity has become the fourth-leading 

risk factor in Western Europe and other high-income regions and among the top 10 globally, being 

associated with about 3 million deaths per year [43] and 6–10% of the major noncommunicable 

diseases (NCDs) such as coronary heart disease, type 2 diabetes, and breast and colon cancers [28]. 

Sedentary time accumulates each day while commuting, at school, in the workplace, at home and 

in leisure contexts. Figure 2-2 illustrates how long children and adults spend their time in sedentary 

behaviour and physical activity as reported in the United States National Health and Nutrition 

Examination Survey data of 2013 [44]. 

 

Figure 2-2. How adults and children typically allocate their time spent sedentary, in light-inten-

sity physical activity and MVPA. [44] 
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Out of the several possible sedentary behaviours, prolonged sitting time, being a common 

feature of contemporary society, is ubiquitously present and therefore received more attention [36].  

A recent rapidly developing body of evidence has identified prolonged sitting time in specific as a 

population-wide, ubiquitous health risk [45]. There are deleterious metabolic consequences of the 

6–10 hours of sitting to which a population can be exposed to each day [14, 16, 29]. In adults, too 

much sitting is related to risk for type 2 diabetes, cardiovascular disease, breast and colon cancer 

and poor mental health outcomes [15]. Sitting has become the most common sedentary behaviour 

of adults; people can sit for many hours at a time every day of the year. This sitting time, together 

with reduced requirements for physical activity [46, 47], has increased significantly over the past 

several decades, due to a range of economic, social, environmental and technological changes [29]. 

Children are also not exempt from the problem that excess of sedentary behaviour represents. On 

average, children spend 5 or 6 hours per day engaging in some form of sedentary activity such as 

playing video games, watching television, and using the internet [48]. Approximately 25% of chil-

dren in the United States spending 4 or more hours a day watching television [49]. Additionally, 

children who watch more than 3 hours of television a day are 50% more likely to be obese as 

compared to children who watch fewer than 2 hours per day [50-52]. For children, sedentary time 

is related to overweight and obesity, some cardiovascular risk factors (e.g., elevated systolic blood 

pressure) and poor cognitive development (e.g., language delay) [53]. The increasing rates of chil-

dren who are overweight and obese suggest that they are experiencing a chronic positive energy 

balance, with energy intake exceeding energy expenditure. A study carried out on a global scale 

compiled overweight and obesity rates from 1980 to 2005 for school-age children in 25 countries 

and preschool-age children in 42 countries [54]. Similar studies show that physical activity partic-

ipation drops precipitously between 15-21 years of age [55]. Although Asia is the largest and most 
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populous continent in the world, most of the information about physical activity prevalence in 

youth comes from Western countries [56]. A review of physical activity prevalence by Sallis et al. 

[57] in 2000 was largely based on Western in scope, with more than 80% of the articles published 

in the United States. A more recent review by Horst et al. [58] in 2007 also revealed only a few 

are studies from Asia. The lack of studies focused on PA rates of Asian school-age children and 

adolescents and the absence of any assessment of those studies is problematic because data are 

underused and their value unrealized [55]. In fact, many countries in the Asia-Pacific region show 

the highest levels and the fastest increase of obesity in the world [59]. For example, in Vietnam 

9.6% of the adolescent population is obese and 10.9% are overweight [60]. Furthermore, 18.3% 

of school-age children and adolescents are overweight or obese in Malaysia [61], 20% of children 

are overweight or obese in China [62], and 11.7% of male adolescents and 14.7% of female ado-

lescents in Saudi Arabia are also overweight or obese [55, 63]. The situation is similar in many 

East Asian countries, where young adults are in average less physically active than their Western 

counterparts [64, 65]. Moreover, these studies usually treat lack of physical activity as sedentary 

behaviour, and as discussed before, this limits the ability to fully understand the health conse-

quences due to their independent physiological effects. Reducing and regularly breaking up sed-

entary time may also be an important adjunct health message, alongside the well-established rec-

ommendation for regular participation in exercise. Moreover, the current health problem is tightly 

related not only to the low levels of energy expenditure due to sedentary behaviours but also to 

energy intake as well. Energy intake should be balanced with energy output in order to maintain a 

stable body weight [66]. Furthermore, the total energy requirement decreases as age increases due 

to the related loss of muscle mass and replacement of muscle with adipose tissue, which has a 

lower rate of metabolism [67]. In the case of industrialized countries where food supplies are 
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plentiful, such as the United States, about 45 per cent of daily energy intake is derived from car-

bohydrates, 40 per cent from fats, and 15 per cent from proteins [68]. If caloric intake tends to 

periodically exceed energy, the body weight increases, and most of the excess energy would be 

stored as fat, eventually causing excessive adiposity (obesity) [69]. Once a person obtains a stable 

weight after becoming obese, energy intake once again equals energy output. For a person to lose 

weight, energy intake must be less than energy expenditure. This highlights the relevance of main-

taining an adequate level of physical activity and low levels of sedentary behaviour to prevent 

excess fat stores. This energy imbalance brings about the issue of low–energy consumption life-

styles caused by insufficient physical activity and sedentary behaviour. In fact, the continuous rise 

of health issues related to sedentary behaviour caused that sedentary behaviour physiology began 

to be specifically studied as a related but independent field from inactivity [7].  Moreover, recent 

evidence suggests that sedentary behaviour has a direct influence on metabolism, bone mineral 

content, and vascular health [7].  For instance, it has been suggested that prolonged times of sed-

entary behaviour can cause metabolic dysfunction, which is characterized by increased plasma 

triglyceride levels, decreased levels of high-density lipoprotein (HDL) cholesterol, and decreased 

insulin sensitivity [70]. In addition, some studies report that sedentary behaviour affects carbohy-

drate metabolism through changes in muscle glucose transporter (GLUT) protein content, which 

are critical to basal, insulin, and exercise stimulated glucose uptake [71]. Another well-docu-

mented negative health effect of sedentary behaviour is a reduction in bone mineral density and 

increased risk of osteoporosis due to changes in the equilibrium between osseous tissue resorption 

and deposition  [72-74]. Furthermore, evidences shown that exercise alone may not be sufficient 

to prevent these changes in osseous metabolism, but a reduction in sedentary behaviour may also 

be necessary [75-78].  
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Given all the evidences, it can be seen that global health is being influenced the ageing of 

the population and by unhealthy behaviours due to the rapid unplanned urbanization and globali-

zation. Moreover, the constant and rapid evolving of innovations in communications, transporta-

tion, and workplace technologies prolonged sedentary time is further contributing to the problem 

[38]. It is in fact quite possible that the world has not yet reached its full prolonged sitting prob-

lematic nor realized the potential for dire future consequences, despite the ubiquity of the problems  

[33-35].  

2.3 Current Measurement Techniques 

 

2.3.1 Subjective methods 

 

Indirect methods of measurements are used most frequently to assess physical activity and 

sedentary behaviour levels in clinical and research settings to identify a subject’s physical activity 

and to evaluate the types of activity performed. They can generally be divided into 3 main different 

categories: Records or log books, Questionnaires and Direct observations. 

Physical activity records provide detailed accounts of activity types and patterns that are writ-

ten into a record or diary format. These can identify the type (e.g., chores, exercise), purpose (e.g., 

work-related activities, commuting), duration, intensity and body posture such as sitting or stand-

ing for activities completed within a defined observation period [79]. However, the main disad-

vantage is that evaluating each record can be a long and laborious task for the subjects and the 

researchers. 

Self-report questionnaires are one of the most frequently used methods to classify physical 

activity levels. They may be sent by electronic mail, self-administered, or collected online. Alt-

hough most questionnaires are self-administered, interviews are sometimes used instead in the case 
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of some population groups, such as the elderly, those with low literacy, or children with limited 

ability to recall details about past physical activity [40]. According to the Sedentary Behaviour 

Research Network, there are 13 different widely used questionnaires for measuring sedentary be-

haviour depending on the needs of the study [80].  Some questionnaires briefly survey about one’s 

general physical activity level, they are easy to complete and score, take less than a minute, and 

are best suited to obtain simple classifications such as rating of inactive or active [81]. However, 

most questionnaires seek more detailed information and ask the participants to list the amount of 

time they spend sitting in different scenarios. These questionnaires are usually longer and identify 

details about the frequency, duration and types of activity performed over the previous day, week, 

or month. Scores may include ordinal scales or continuous data expressed as kilocalories per day 

or MET-minutes per day [82]. The questions vary in terms of the type of sedentary behaviour they 

aim to measure (total sedentary time, occupational sedentary behaviours, home-based sedentary 

behaviours, TV viewing, driving time, etc) and their target population (kids, adults, older adults, 

and hospitalized populations, etc). They also rely on the participant ability to recall their activities 

and use activity scoring scale. For example, the Bouchard Physical Activity Questionnaire [83] is 

a 3-day activity diary, with each day divided into 96 periods of minute each. Participants then must 

code the activity performed using a scale from 1 to 9. In the case of the IPAQ questionnaire [84], 

participants are asked to list the amount of time that they spend sitting at work, at home, while 

doing course work, during leisure time (including watching television), as well as time spent in a 

motor vehicle [85]. Other Questionnaires such as the Occupational Sitting and Physical Activity 

Questionnaire OSPAQ [86] focus on workplace sitting and physical activity.  These recall ques-

tionnaires are often used to determine whether a patient has met public health activity guidelines. 

Although used frequently, they have several limitations associated with measurement error: 
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subjects may be subject to recall bias with time spent in vigorous-intensity activities being over-

estimated [87]; habitual activities such as walking, are difficult to recall and may be difficult to 

report accurately [88] and answers may be biased based on the age, gender or other characteristics 

of the respondents [89].   

Finally, there is direct observation. Despite being the current criterion and satisfactory in-

ter-observer agreement (84–99%) among simultaneous observations, direct observation is labour-

intensive, time consuming and therefore costly. Events studied must be observable and classifia-

ble, while observers or video cameras need to be in the same environment as the subject. The 

extent to which even well trained observers affect subject behaviour (subject reactivity) is prob-

lematic [90]. Furthermore, it may be impossible to follow the subject for a full day [91], making 

reliance solely on direct observation impractical. However, recent improvements in wearable cam-

eras may be able solve some the associated issues (e.g. cost, amount of personnel required) of 

personal direct observation.  

2.3.2 Objective methods based on energy expenditure 

 

Direct calorimetry, Indirect calorimetry and Double labelled water are three main objective 

methods to detect sedentary behaviour and physical activity by measuring oxygen consumption 

and estimating energy expenditure. Application of direct calorimetry is in the domain of highly 

specialized laboratories where direct heat loss measurements are of specific value. Unfortunately, 

the instruments used are both expensive to build and operate, requiring at least one full-time trained 

technician. They require enormous expertise to establish and maintain and offer little to most in-

vestigators beyond less expensive and complex indirect calorimeters [92]. Indirect calorimetry, or 

the measurement of metabolic free energy conversion, is the method by which metabolic rate is 

estimated from measurements of gas exchange measurements of oxygen (O2) consumption and 
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carbon dioxide (CO2) production [93, 94]. Finally, double labelled water (DLW), estimates energy 

expenditure by extrapolation from variables that relate to energy expenditure. The DLW technique 

is considered a 'gold standard' and can be easily used for daily life) participants. It has low reac-

tivity and is accurate to within 3 to 4% of calorimeter values in adults [95]. Unfortunately, all these 

3 methods have several major limitations. The equipment involved is bulky, difficult to obtain and 

relatively expensive, limiting its usefulness for wide scale population-based research. The physical 

characteristics and obtrusiveness of the equipment also hampers the subject’s ability to carry out 

his daily activities [96].  Moreover only overall energy expenditure can be obtained, offering little 

or no information regarding hourly patterns, duration, frequency, or type of sedentary behaviour 

[91]. 

2.3.3 Accelerometers 

 

Accelerometers are one of the most important technologies that have been used by re-

searchers to more accurately measure daily life sedentary to very vigorous activity over several 

days. Moreover, accelerometers have allowed researchers to overcome the limitations of subjec-

tive methods such as recall questionnaires and to conduct studies on public health to examine the 

causes and health consequences of increased to sedentary time. Large-scale studies such as the 

United States National Health and Nutrition Examination Survey (NHANES) have reported there 

is a high prevalence of sedentary time in modern society [97], remarkably low levels of moderate 

to vigorous physical activity (MVPA) time [98], and a more typical focus on physical activity and 

exercise physiology. Furthermore, some studies involving accelerometers have allowed the por-

trayal of variations between individuals sedentary time and the amount of time they spend on 

physical activity. For example, as shown in Figure 2-3 from Dunstan et al. 2010a [99], the typical 

behaviour pattern of the two subjects is compared. The first subject labelled as Active couch potato 
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spends most of his day with 3-hour break doing physical activity.  In comparison, the other subject 

labelled as Active non-couch potato spends most of his day performing light-intensity activity 

(>1.5 to <3.0 METs). According to public health guidelines both subjects would be classified as 

physically active as they spend a similar amount of time performing moderate to vigorous activates 

(more than 3 METs), even though their energy expenditure may be significantly different.  

 

Figure 2-3. Illustration of accelerometer data portraying two subjects with similar MVPA but dif-

ferent levels of sedentary behaviour. [99] 

 

Furthermore, accelerometers are not only able to measure total sedentary behaviour, but 

they also can detect patterns in sedentary behaviour [36]. For instance, individuals with similar 

amount of total sedentary time may still have quite different behavioural patterns. Some evidence 

suggests that the number and duration of sedentary behaviour interruptions such as standing up or 

taking a brief walk regardless of total sedentary time, are significantly associated with health issues 

and physiological parameters such as blood glucose levels [100, 101]. Unfortunately, most studies 

using accelerometer-based data have mostly studied variables such as time spent in moderate- to 

vigorous-intensity physical activity (MVPA), with sedentary behaviour occasionally been  
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erroneously equalled to a lack of physical activity [102], limiting the researcher ability to detect 

the independent health risk of sedentary behaviour regardless of physical activity levels [103, 104]. 

Furthermore, accelerometers have several limitations.  A couple of serious ones are their inability 

to provide context regarding the type of sedentary behaviour and their inability to distinguish 

among potential variations within sedentary behaviour [11, 12].  A recent validity study among 40 

participants found that daily life sitting behaviours such as television viewing, computer use and 

administrative activities, along with riding in a car or standing, would be sometimes classified as 

sedentary behaviour when using a simple accelerometer [13]. Most postures are usually encom-

passed as sedentary behaviour despite having distinct cardio metabolic and public health implica-

tions. In fact, an accurate identification of sitting behaviour specifically (the most prevalent type 

of sedentary behaviour)  may lead to a better prediction of certain cardio-metabolic and inflamma-

tory outcomes than physical activity alone [105]. Furthermore, proprietary reasons on commercial 

accelerometer-based devices limit the disclosure of information about the inner configuration and 

algorithms implemented. Although understandable, this significantly limits the ability of research-

ers to make reasonable comparisons among all different devices and research protocols compare 

across devices. This lack of standardization across study protocols would increase the difficulty of 

making comprehensive comparisons across the literature. Despite accelerometer-based measure-

ments of physical activity and sedentary behaviour playing an increasingly important role, there 

are still several challenges to overcome such as the lack of understanding about on to classify 

variations in sedentary behaviour, how to select the most appropriate instrument and which proto-

cols of monitor wear to use.  Overcoming these limitations would be useful for the development 

of intervention targets and public health messaging on how to classify sedentary activities and to 

reduce overall sedentary time.  
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2.3.4 GPS and RFID 

 

Sedentary time spent on activities such as eating, working at the computer or watching 

television tend to occur indoors at work, school or home [106]. In fact, adults spend approximately 

90% of time indoors [107]  and approximately 60% of their time in sedentary behaviour [108]. 

This large proportion of sedentary time spent indoors suggests that contextual information such as 

where behaviour occurs indoors would be useful for physical activity and sedentary behaviour 

monitoring [109]. Moreover, the location of a behaviour may influence the correlating factors that 

cause it as well as the intervention strategies needed to change it.  

Although several technologies are currently used to monitor the location of physical activ-

ity or sedentary behaviour, the most popular two are global positioning system (GPS) and radio-

frequency identification (RFID) [110]. Recent technological improvements have resulted in port-

able GPS units with adequate memory to store positional data over time, thus offering opportuni-

ties for obtaining location information at low cost. Researchers have begun to integrate GPS tech-

nology into physical activity related studies, however the implementation of this technology on 

this field is still relatively new, only a handful of such research studies is currently reported. The 

first real applications of GPS technology appeared in the sports industry when it was found that 

human locomotion could be assessed [111]. Following these initial studies, GPS has been used to 

assed a variety of sports such as hockey [112], rugby [113], orienteering[114], and others [115]. 

So far these studies have found GPS to be a promising technology to measure parameters in sport, 

such as walking speed or cycling speed under controlled conditions [116]. Nevertheless, no studies 

have shown that GPS by itself is a sufficiently reliable and valid measurement technique, due to 

issues such as signal dropout and limited battery power [117]. Furthermore, since GPS devices 

need to have a line of sight to at least three orbiting satellites, GPS are usually unable to determine 
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precise indoor location [118]. This is of great importance considering that, as has been previously 

mentioned that up to 90% of our time is spent indoors [107]. A second issue arises due to the fact 

that GPS units usually require a period of initialization when they are first powered on, which is 

when it acquires the signal from the satellites to obtain positional data. This initialization period 

varies depending on the model, ranging from 15 seconds to 5 minutes. These different periods are 

important because GPS data may not be logged even when the device is moving, which has impli-

cations when interpreting and cleaning the data [119]. The third limitation is not related directly 

to the technology per se, but to the research field. To date, there are no established approaches or 

guidelines to the analysis and interpretation of GPS data [117].  

Another technology that is currently used in health care [120] and warehouse environments 

is wireless localization technology (commercially referred as RFID, real-time locating systems) 

due to its ability to assess the location of people or goods within an indoor environment via the 

known location of fixed components. Some manufacturers utilize existing Wi-Fi points within 

buildings as fixed reference while others require the installation of proprietary fixed reference 

points. Sometimes infrared (IR) location beacons may also be provided for increased location ac-

curacy in areas of poor signal strength [121, 122]. A floor plan of the environment being monitored 

is required to visualize the location of the mobile component on a cartesian plane. According to 

the most manufacturers, the Real Time Location Systems (RTLS) are generally accurate to within 

2 to 3 meters [123]. It is important to note that many RTLS systems are designed for a specific 

application and may have to be significantly modified to work in other applications. Unfortunately, 

these physical requirements and these technical characteristics greatly limit their wide-spread use. 

Moreover, the feasibility of incorporating RTLS data with other data such as accelerometery is 
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still in the early stages, as they have been just recently started to be used in physical activity or 

sedentary behaviour research [124-126]. 

Despite this, RTLS show potential to be used in physical activity and sedentary behaviour 

research to provide information related to specific indoor locations.  Instead of asking participants 

to record how much time they spend at a determined area (e.g. kitchen, their desks) though a ques-

tionnaire, RTLS systems can be used to objectively quantify how much time participants spend at 

a certain location and estimate sedentary behaviour with greater certainty [110].  

2.4 Machine learning in Activity Detection 
 

Identifying types of human activity using machine learning in combination with sensors 

has been performed previously [127]. Furthermore, it has been demonstrated that the use of ma-

chine learning techniques for activity classifications in physical activity applications is more ef-

fective than biomechanical methods or conventional statistics [128, 129]. However, most studies 

attempt to recognize human daily activities from an accelerometer signal by using an ensemble of 

classifiers for accelerometer-based activity recognition [130, 131]. This work builds on existing 

research and presents a novel methodology for measuring sedentary behaviour by classifying sit-

ting amongst other types of activities. Since developing a machine learning methodology for ac-

tivity detection involves feature selection and choosing an optimal classifier, both stages are de-

scribed in Sections 2.4.1 and 2.4.2. Moreover, confusion matrices are discussed in Section 2.4.3 

as they are commonly used in machine learning to better visualize different measurements of per-

formance such as Recall and Precision [132]. 
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2.4.1 Feature Computation 

 

Features are an individual measurable property that serve as input for the machine learning 

model’s training data to discriminate different activities [133]. Features are usually numeric vari-

ables obtained through statistical techniques that characterize windows of the raw sensor data. 

Thus, feature selection is a crucial step for effective algorithms in pattern recognition, and classi-

fication. Time domain features and Frequency domain are the two most commonly used types of 

features in physical activity studies [127, 134]. Time-domain features are normally computed us-

ing statistical measurements such as mean, standard deviation, correlation, etc. of each window of 

pressure or acceleration data and are commonly used in accelerometer-based activity recognition 

models [135, 136]. On the other hand, Frequency domain features are computed from the coeffi-

cients of time-frequency transforms after applying Fast Fourier Transform to the set of data [137]. 

Features over the frequency domain such as the spectrum spread, spectral entropy, signal energy, 

distribution of signal energy, and bandpass filter coefficients are popular choices [135, 138-140]. 

Nevertheless, Frequency-domain features have a higher computational cost since they imply the 

computation of a Fourier transform [141]. As stated in Section 1.3, one of the design objectives is 

a low computational cost to ensure the viability of a future wearable device. Consequently, time 

domain features are preferred in this work due to their lower computational cost.   

2.4.2 Machine Learning and Classification 

 

Machine learning generally uses two main types of techniques: supervised learning and 

unsupervised learning [142, 143]. While unsupervised learning finds hidden patterns or intrinsic 

structures in data by drawing inferences from a dataset without labelled responses, supervised 

learning builds a model that makes predictions by taking a known set of labelled data and generate 
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reasonable predictions for a new set of unidentified data. Once the model is trained, the classifier 

will be able to classify an unknown set of data (segmented by windows) and assign a value which 

corresponds to a specific type of activity. In this work, supervised learning is chosen for activity 

selection due to its ease of use and higher accuracy in defining specific type of activities (aided by 

the precise labelling done with direct video observation) [144]. 

Furthermore, classifiers can be grouped into generative and discriminative, each with dif-

ferent computational requirements and performance. Generative classifiers first model how the 

data was generated by learning the joint probability of the inputs (pressured data) and the label 

(type of activity) and then make their prediction by applying Bayes rule to calculate the conditional 

probability. On the other hand, Discriminate classifiers directly compute the conditional probabil-

ity from the data. Examples of both popular generative and discriminate classifiers in activity de-

tection monitoring are: simple Kernel-Estimation classifiers such as Nearest Neighbour [145], 

Bayesian classifiers such as Naïve Bayes [146], Decision Tables, Decision Tree based classifiers 

such as J48 (commonly known as C4.5) [147], and more complex algorithms such as Support 

Vector Machines (SVM) [148] or Artificial Neural Networks (ANN) [149]. A comparison by Ko-

tsiantis et al. (2007) is shown in Table 2-2. 
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Table 2-2. Comparison of different classifiers (**** stars represent the best and * star the worst 

performance) [150] 

 

As can be seen in Table 2-2, complex classifiers such as Support Vector Machines or Ar-

tificial Neural Networks have the best performance among the reviewed classifiers. However, they 

are also known to be too computationally expensive for wearable applications [151]. The remain-

ing classifiers appear to have a reasonable range of performance and computational cost according 

to the design goals of this work. Consequently, the classifiers to be used in this work are Nearest 

Neighbour, Decision Trees, Naïve Bayes. Furthermore, ensemble methods such as Random Forest 

[152], Bagging[153] or Logit Boost [154], will be included as well due to their popularity, rela-

tively low computational cost and reported increase in activity recognition performance [154].  
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2.4.3 Confusion Matrix 

 

In the field of machine learning, a confusion matrix is a specific table layout that allows 

visualization of the performance of an algorithm [132]. Each row of the matrix represents the in-

stances in a predicted class while each column represents the instances in an actual class (or vice 

versa). The overall performance of a classifier, including recall (true positive rate), false positive 

rate (probability of false alarm), precision and F-Score is calculated based on the confusion matrix. 

An example of a confusion matrix and the necessary calculations to obtain the aforementioned 

performance measurements are shown in Table 2-3. 

Table 2-3. Two-class classifier Confusion Matrix and different performance measurements  
  True condition  

  True positive True negative  

 Total  

Population 
Condition Positive Condition Negative 

Accuracy = 

(Σ True positive +  

Σ True negative)/ 

Σ Total population 

Predicted 

condition 

Predicted 

positive 
True positive False positive 

Precision =  

Σ True positive/ 

Σ Predicted positive 

Predicted 

negative 
False negative True negative  

  
Recall =  

Σ True positive/ 

Σ Condition positive 

False positive rate (FPR) =  

Σ False positive/ 

Σ Condition negative 

F1 score =  

2/1/Recall + 

 1/Precision 

 

However, it is important to note that even when improving the accuracy of overall activity 

classification is important, improvements represented by specific performance measures can be 

misleading. For instance, while overall performance may increase, the performance on some indi-

vidual activities may in fact decrease. Thus, the classification results that are obtained by the pro-

posed model algorithms developed in this work will be mainly shown using Recall, as it measures 
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the proportion of actual positives that are correctly identified as such. Furthermore, results for 

every activity will be discussed to highlight specific improvements and their relevance over the 

final performance. Although every activity is important, a special attention will be given to sitting 

since one of the design objectives of this work is measuring time spent in sedentary behaviour. 

2.5 Summary 

 

In summary, one of the major limitations constantly mentioned in physical activity and 

sedentary behaviour research to date has been the lack of objective, practical and inexpensive tools 

to measure them on a large scale and consistently. Subjective methods described previously such 

as questionnaires are time consuming and suffer from bias due to their reliance on the user’s ability 

to recall his or her activities. Objective methods such as indirect calorimetry need expensive equip-

ment that is difficult to operate without training, limiting its use for wide-scale monitoring. More-

over, the size and bulkiness of the equipment often impedes the user to move freely and conduct 

his daily activities. Secondary measures such accelerometers which provide an indication of user 

motion, provide objective assessment of physical activity, but have been shown inaccurate when 

measuring sedentary behaviour such as sitting time. Moreover, they have difficulty noting the im-

portant distinction caused by posture such as sitting and standing, despite the narrow but signifi-

cantly different MET values of these behaviours. Previous studies have found that two of the most 

well-known acceleration-based activity monitors, the activPAL and the ActiGraph, tend to under-

estimated sitting time [11]. Other available tools such as GPS and RFID have shown limitations 

due to data loss, limited battery power, poor protocol adherence and signal dropout. Consequently, 

a clear gap exists in effective sedentary behaviour monitoring. Furthermore, although using ma-

chine learning techniques in accelerometer data for activity classification has been reported to be 

relatively successful, the aforementioned limitations of accelerometers still apply. Thus, a clear 
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need exists for devices with technical characteristics specifically developed for sedentary behav-

iour monitoring. In the case of research-based devices, factors such as prohibitive high cost to the 

average consumer, device bulkiness, or lack of consumer appeal of research-based devices limit 

their ability to be used for widespread large-scale general population monitoring. Although a few 

available commercial devices seem to trade off accuracy and robust technical specifications in 

exchange for some of the requirements for daily life monitoring such as wearability and consumer 

appeal, they do not meet all the technical requirements or processing methods required to effi-

ciently provide reliable measurements of sedentary behaviour. Thus, current limitations of weara-

ble technology indicate a need for the development of a new sedentary behaviour monitoring tech-

nology. This gap fuels the search for less sophisticated sedentary behaviour devices, which pro-

vides a unique opportunity for researchers to explore an alternative wearable technology that meets 

the appropriate criteria such as unobtrusiveness, low cost, low computational requirement to ex-

tend battery life, minimum storage, long-term monitoring capability and acceptable performance 

for daily life sedentary behaviour. 
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Chapter 3: In-Depth scoping analysis of market ready and research-

based Plantar Pressure and Force monitoring technologies 
 

3.1 Preliminary Work: Rationale for choosing Plantar Pressure 

 

As mentioned in the Section 2.3, accelerometers are one of the most common approaches 

to physical activity and sedentary behaviour monitoring. Initial approaches involve the use of mul-

tiple sensors at multiple locations, limiting their practicality into everyday use. Popular technolo-

gies such as the activPAL address this limitation in wearability by using a single sensor. However, 

single accelerometers devices occasionally struggle in daily life conditions when attempting to 

differentiate between sitting and standing and recognizing activities such as cycling and descend-

ing or ascending stairs [138, 155]. Furthermore, new challenges in terms of long-term use or ac-

curacy arise depending on the location of the accelerometer. For example, in the case of the Ac-

tivPAL, the device must be attached to the skin of the participant’s thigh making it impractical and 

unappealing for commercial use, creating a need to find a viable alternative in cases where typical 

accelerometer-based devices may prove inadequate. Plantar pressure and ground reaction forces 

have been commonly used in posture and gait studies for diagnosing lower limb problems, foot-

wear design, sport biomechanics, injury prevention, diabetic ulcers, elderly fall and several other 

applications [20]. Given the increased interest in physical activity monitoring, researchers have an 

increased interest in using plantar pressure for activity detection and recent studies have shown 

promising results [156] [157]. In fact, plantar pressure systems have significant potential to mon-

itor sedentary behaviour since different user activities generate different plantar pressures meas-

urements. In this particular application, the ability to correlate plantar pressure and daily weight 

bearing across daily activities would be an important contribution, since they are directly related 
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to postures such as standing or sitting, which in turn correlates to changes in leg muscle activation 

[17]. By measuring the amount of pressure that acts over the foot and the supporting surface during 

everyday activities, stationary activities such as sitting, limited mobile activities such as standing 

or high mobile activities like running or cycling can be detected and differentiated [158]. Another 

important advantage of using plantar pressure relies in the computational cost of the processing 

techniques involved. Existing accelerometer-based methods not only compute a large number of 

time and frequency domain features but also require a relatively high sampling frequency in order 

to achieve acceptable activity recognition[135]. The processing of a high number of frequency-

domain features and the increased sampling frequency demand higher processing capabilities and 

power consumption, potentially increasing the cost of the processing unit and the sensors. Finally, 

another advantage of using plantar pressure to monitor sedentary behaviour is that it allows future 

studies to explore additional beneficial applications of the same plantar pressure data in specific 

populations. For example, in the case of individuals with lower limb amputations or knee replace-

ment, tracking sedentary time as well as body weight bearing distribution over each foot through-

out the day would provide physicians valuable information to assess the patient’s rehabilitation 

progress. Furthermore, basic gait parameters such as balance or cadence can be easily computed 

from the same plantar pressure data without adding significant computational cost, offering inter-

esting applications on individuals with pathological gait. For example, monitoring a patient’s sed-

entary behaviour together with these basic gait parameters could provide physicians a more com-

prehensive profile regarding how daily sedentary time may influence rehabilitation progress. 

Hence, a preliminary data collection is performed to review the plantar pressure data col-

lected using the available technology and to assess if the data patterns and characteristics can be 

used to recognise typical activities such as sitting, standing, walking, leaning, cycling and climbing 
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or descending stairs. An office chair with a rigid back is used for sitting while standing is done 

without any specialized equipment. Walking is performed on a treadmill and cycling is performed 

in a stationary bike. Finally, the stairs activity is performed by climbing and descending stairs 

between the ground the fourth floor with a railing available if necessary. Data is collected using a 

pair of pressure insoles (Novel Pedar model W, Germany) [159] inserted in the shoes for the meas-

urement of plantar pressure at 100 Hz. There are 99 sensors in each insole, covering the whole 

plantar pressure. Afterwards, the OpenGo (Moti-con) wireless insole pressure measurement sys-

tem [160] is used to measure plantar pressure at 10Hz and with 13 sensors in each insole. The 

Pedar system (Novel USA, Inc.) is chosen as a reference due to its reliability and validated accurate 

measurements while the OpenGo is selected due to its wearability and unobtrusiveness. Further 

information of the equipment is shown in Section 4.3.1. Each activity is performed for 10 minutes 

except in the case of climbing and descending stairs in which it is performed it for 5 minutes. One-

minute excerpts of plantar pressure data collected are shown in Figure 3-1 while statistical com-

putations are shown in Table 3-1. Since sitting is the primordial sedentary activity of interest as it 

is the most prevalent sedentary activity, it is important to accurately discriminate it from all other 

type of activities. In fact, sitting can be visually identified by detecting the lower pressure observed 

in the data pattern in comparison to the rest, since the body weight would be mainly supported by 

the surface on which the user may be sitting on (usually a chair).  
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Figure 3-1. Experimental overall plantar pressure patterns during each activity. Force on the left 

foot is shown in red while the force on the right foot is shown in blue. 
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Table 3-1. Statistical parameters (in Newtons) of foot force during different activities 
 Sitting Standing Leaning 
 Left Right Left Right Left Right 

Force 121 ± 3.4 159.8 ± 3.7 267.7 ± 11.7 349.5 ± 13.9 370.1 ± 4.3 71.66 ± 5.2 

Min - Max 108.4 - 130.2 149.6-171.3 239.1-304.4 298.6-377.6 357.9-378.8 58.05-86.3 

Range 21.79 21.67 65.31 79.07 20.92 28.31 

Correlation -.1845 -.3153 -.6725 

 Walking Cycling Stairs 
 Left Right Left Right Left Right 

Force 276.7 ± 140.9 348.6 ± 216.6 52.02 ± 9.3 115.7 ± 21.1 216.6 ± 104.9 339 ± 176.2 

Min - Max 39.1-558.4 18.93-827.8 30.7-79.1 73.4-173 0-491 0-831.8 

Range 519.3 808.8 48.4 99.5 491 831.8 

Correlation -.6653 .4899 -.2615 

 

On the other hand, while standing, the user’s total body weight is transferred onto both feet 

at all time with a relative distinctive pattern between each foot due to the natural leaning left to 

right to ensure balance. This loading difference can be also identified by comparing the mean and 

maximum force values of both activities and the typical balancing movement that occurs between 

the two feet. Leaning was defined as one the activities to detect since it not uncommon for users 

to partially support their body weight against a wall or a prop while prolonged standing. Like 

standing, sitting and leaning differ in the fact that the entire body weight being supported by the 

feet. Unlike standing though, the whole-body weight is mainly supported by one foot at the time. 

When the person leans on his left side, most of the body weight is supported by the left leg, and if 

the user leans on his right side, the opposite occurs. This change in body weight support can be 

detected by inferring the user total body weight while standing. Although a higher pressure may 

be observed on one side, overall pressure remains lower when compared to standing. Moreover, 

pressure data shows less variation as observed in the lower standard deviation of both activities 

since the person does not need to keep in balance by alternating his body weight on both legs.  

Given the fact that both sitting, standing and leaning are stationary or very limited mobile 

activities, it is hard to detect any period waveforms in data patterns. However, in the case of 
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walking or running, both activities generate easy to identify periodic waveforms with a much 

higher standard deviation value, since they have far more peaks and troughs. This can be further 

detected by comparing the correlation values of both feet of the aforementioned static activities 

and walking. Furthermore, the apparent body weight changes due to the acceleration of the legs 

can be observed by the significant increase in maximum force and range. 

Some similarities can be found between walking and cycling. However, cycling generates 

a considerably smoother waveform with much smaller amplitudes since only pressure on the ped-

als is detected as body weight is not fully supported (most of the weight is supported by the bike’s 

seat). Thus, the higher correlation compared to the static activities and the low force values hint 

some form of periodic movement while sitting, which matched the cycling activities. Finally, 

climbing or descending stairs also generates a similar waveform to walking, due to the similarity 

of both activities. Nevertheless, a different pattern can be easily appreciated in the waveform 

caused a small dip or incisure in the wave due to the pressure loading sequence. This can be also 

identified by the significantly higher standard deviation.  

In summary, the use of plantar pressure shows great potential to improve the range of ac-

tivity recognition. In fact, plantar pressure is not only able to distinguish activities such as sitting, 

standing or walking as traditional long-term monitors but it may be able to recognise different 

locomotion activities often misclassified such as stairs climbing and cycling due to their distinctive 

pressure patterns. Perhaps more importantly, it would allow the recognition of currently undetected 

activities by accelerometers such as leaning, which would in turn may possibly broaden our defi-

nition of sedentary behaviour and increase the understanding of its health effects. Furthermore, 

plantar pressure allows unobtrusive long-term recognition of these activities offering a novel ad-

vantage when monitoring large populations. Thus, prior to further explore the capabilities of 
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plantar pressure, an in-depth scoping review of the measurement capabilities and limitations of all 

currently available plantar pressure devices and their potential to measure sedentary time was per-

formed. 

3.2 Methodology 

 

After a critical analysis of the advantages and disadvantages of each technology, the most 

promising method will be selected as the focus of this review. Hence, an exhaustive scoping review 

of current plantar pressure technologies is done to fully identify the issues existing devices possess. 

Moreover, an analysis of technical specifications of current technology as well as the optimal re-

quirements of a sedentary behaviour monitoring technology are discussed. Scientific databases, 

internet search engines and grey literature are used to ensure both research-based and commer-

cially oriented technologies are included. Prototypes found in the literature are also included. The 

full list of identified devices with references can be found in Appendix A.  

3.2.1 Devices scoring and classification 

 

Several studies have amply discussed many of the characteristics and technical specifica-

tions that physical activity or sedentary behaviour monitoring devices must have to successfully 

work in free-living conditions [161, 162]. After reviewing these characteristics or attributes, a list 

of the most common attributes is shown in Table 3-2.  
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Table 3-2. List and brief description of selected attributes. 

Attribute Description 
IMU An accelerometer, gyroscope and/or magnetometer are incorporated into the de-

vice 

Add-on Sensor The system integrates another type of sensor besides pressure sensors or IMU. 

(E.g. GPS or bend sensors) 

User interface Any kind of interface has been developed either on a PC or a smartphone. (e.g. 

LabVIEW) 

Bluetooth: Bluetooth 2.0 or 4.0 (BLE) capabilities. 

Smartphone app An app (Android or iOS) has been developed as interface 

Battery A battery incorporated into the system. (e.g. Lithium battery)  

Full-day power The system’s battery is able to support the system for at least 12 hours continu-

ously. 

Storage Incorporates memory to enable “offline” functionality. (e.g. an SD card) 

Full-day storage Able to store data for at least 12 hours to enable offline measurements. 

Integrated data 

analysis 

Provides a calculable measurement after some data internal data analysis (i.e. 

calories, activity detection, etc.) 

Publications Any publication regarding the system’s validity or reliability. 

Cost Costs less than 500 USD. 

Access to raw 

data 

Raw data from the sensors can be directly extracted. 

Feedback Provides visual, auditory or haptic feedback to the user in relation to the param-

eters calculated. 

 

Characteristics related to the practical implementation of the final device such as weight, 

wearability, size, cost are often second to achieving certain recognition rate or overall performance 

in research-based devices. In the case of commercial devices, the opposite tends to occur when 

performance may be sacrificed to a certain degree to favour the viability of the final product and 

ultimately create profit. Most requirements are related to the necessity for a long-term monitoring 

protocol to monitor daily activities occurring across different settings such as work, school, home 

and when driving or commuting.  
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Although the importance of each attribute in reality may vary according to the application, 

the scoring systems presented here is designed in an attempt to reflect the device’s overall potential 

and suitability for daily life sedentary behaviour monitoring, instead of solely focusing in specific 

attributes. For example, in the case of research-based devices, performance is often the main con-

cern of the researchers, while devices in the market may sacrifice performance to prioritise other 

attributes such as aesthetics, smart-phone integration, internet-based applications or cost [161, 

163]. Since a viable daily life wearable device should have most of the listed attribute and  this 

review aims to identify a device that may reduce the gap between market and research-based de-

vice, all attributes are given the same weight. Furthermore, it simplifies the comparison and selec-

tion of an optimal device that ensure viability for sedentary behaviour daily life monitoring by 

maximising all the necessary attributes. Thus, each device is designated a score based on the total 

number of attributes it has. If one of the attributes (e.g. battery) is not explicitly mentioned by the 

article or website and could not be confirmed, it will not be reflected in the attributes count. At-

tributes such as low-cost are considered only if the systems specifically declared a total cost of less 

than 500 USD. Similarly, due to the relevance of the system ability for full day monitoring, inde-

pendent scores are also given if the device’s battery is able to continuously power the system for 

at least 12 hours or the storage is able to store at least 12 hours of data.  

3.3 Results 

3.3.1 Review Statistics 

 

As seen in Figure 3-2, database searches found a total of 26,158 articles. Afterwards, arti-

cles are removed if they are found duplicate and based on title and abstract eligibility. A total of 

287 articles were found to be potentially relevant and retrieved for full text review. Papers were 

further excluded for the following reasons: 
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1) Non-wearable devices: Studies such as platform based, or movement analysis labs are 

excluded to their inability to meet the inclusion criteria of non-laboratory based continuous moni-

toring capability. 

2) Proof of concept: studies where only proof of concept information is available, and no 

system or technology has been developed. 

3) Independent Sensors: studies in which a single sensor characteristics or material is dis-

cussed. 

4) Health Outcome: articles are excluded if the device is not the main focus of the paper 

and they only examine the relationship between pressure and a disease (e.g. diabetes) or a partic-

ular health outcome (e.g. foot ulcers). 

5) Data analysis: articles are excluded if the sole objective of the study is only to analyse a 

new data processing procedure or algorithm.  

Afterwards, 176 papers were further excluded if they do not meet inclusion criteria, result-

ing in a total of 111 papers from which 87 devices were identified for a more detailed analysis 

[156, 164-273]. Of these, 13 articles reported fully developed systems and 74 of them reported 

systems at the prototype stage.  
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Figure 3-2. Flow diagram showing the articles filtering and final devices selection 

 

3.3.2 Plantar Pressure Monitoring Systems 

 

To offer a better comparison among technologies, Figure 3-3 and Figure 3-4 present plantar 

pressure devices in the prototype stage while Figures 3-5 and 3-6 present commercially available 

devices. It is worth noting that commercial devices and prototypes tend to change continuously 

meaning that attributes may be constantly added or removed. Since most of the prototypes do not 

have a name yet, the names of the authors are used instead to identify each technology. An excerpt 

of the full table with the identified devices and their attributes is shown in Appendix A. 

Duplicates (n=7842) 

 

Articles retrieved for eligibility (n=2809) 

Removed based on abstract (n=2522) 

 

Grey literature unique 

devices (n=14) 

 

Removed based on title eligibility (n=15507) 

 

Articles in scoping review (n=287) 

 

Total papers/websites included in the scoping review (n=111) 

 

Results: 87 unique devices 

Records screened (n=18316) 

 

Second removal based on inclusion criteria (n=176) 

 

Database searches yielded articles (n=26,158) 

Medline = 5806 

Scopus = 11562 

Web of Science = 7925 

IEEE = 865 
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Figure 3-3. Technologies found at a prototype stage ordered by number of selected attributes 

(technologies with 1 attribute are not plotted). 
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Figure 3-4. Percentage of prototypical devices found that possess each selected attribute. 

 

 

Figure 3-5. Current available technologies found ordered by number of selected attributes [160, 

274-285]  

92%

42%
36% 34%

24% 22% 19% 18% 15% 14%
7% 4% 4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge
 o

f 
P

ro
to

ty
p

ic
al

 d
e

vi
ce

s

List of Attributes

0 2 4 6 8 10 12 14

Opengo Science [282]

Sensoria fitness socks [283]

Digitsole [284]

Orpyx LogR [285]

Surrosense rx System [286]

Stridalyzer [274]

Tune [275]

Pedar-x [276]

ParoLogg [277]

ParoTec [278]

F-scan Datalogger [279]

F-scan Wireless [280]

Medilogic [281]

Number of Attributes

C
u

rr
e

n
t 

C
o

m
e

rc
ia

lly
 A

va
ila

b
le

 D
e

vi
ce

s



46 

 

 

Figure 3-6. Percentage of commercial devices found that possess each selected attribute. 

 

The commercially available device with the highest number of attributes was the OpenGo 

Science with 10 of 14 relevant attributes. The most common attributes found in commercial de-

vices were the design of a user interface and internal data analysis to provide useful output to 

researchers and user alike. The least common attribute was the incorporation of a sensor which 

seems to indicate that other parameters besides pressure and motion are still mostly present at the 

prototype stage. Likewise, most devices do not have a storage capacity of more than 12 hours 

except for the OpenGo. In the case of devices at the prototypical stage, the device with the highest 

number of attributes was the WIISEL (Wireless Insole for Independent and Safe Elderly Living) 

[286] with 11 of 14 relevant attributes followed by the Smart Insole [287] with 10 of 14 attributes.  

The most common attributes found in all prototype devices are available publications. This is to 
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having a battery with 31 of 74 devices incorporating one. Considering power source is one of the 

key challenges when designing a daily life wearable device, the low incidence reveals that most 

prototypes are at the early stages of development. Moreover only 14 of these 24 devices have a 

battery able to support the device for longer than 12 hours. Another interesting attribute is Blue-

tooth connectivity with 31 of 74 devices supporting it. This reinforces the idea that recent devel-

opments are increasingly concerned in being able to connect to other devices and take advantage 

of the user’s smartphone. 

3.4 Discussion 

 

There has been an increased interest over the years in developing less obtrusive plantar 

pressure devices. In fact, 74% of the selected articles were published since 2010. Out of 87 iden-

tified devices found, 13 were commercially available while the others are at various stages of being 

prototyped, meaning that most of the technologies found are on their early stages and they are 

likely to be continuously being modified or in some cases abandoned. Available devices can be 

further divided into research-oriented and consumer-oriented categories. Research oriented de-

vices include well-known systems such as the F-scan system (Tekscan, Inc., South Boston, USA) 

[288], the Pedar system (Novel USA, Inc.) [159] or the ParoLogg (Paromed GmbH & Co. KG, 

Germany) [289]. Despite the excellent reliability and accuracy of these systems measurements, 

their cost, relative bulkiness and limited ability for lengthy and continuous non-laboratory meas-

urements greatly limit their ability to be used for large-scale monitoring. It is also not easy for a 

consumer to obtain them. Recent studies have placed an increased emphasis on portability and 

long-term wear, to allow constant monitoring of gait parameters, activities of daily living, diabetic 

ulcers or elderly falls depending on the application. For example, the OpenGo (Moticon) [290], a 

recently developed device, has most of the desired attributes such as being fully wireless, 
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unobtrusive and having long-term storage and battery. However, the high cost in the order of thou-

sands of Euros, its scope is still limited to scientific studies instead of being useful the general 

population. This gap fuels the search for less sophisticated, user oriented and fully wearable de-

vices. The Orpyx LogR (Orpyx Medical Technologies) may be another example of a device that 

attempts to cater to the needs of researchers and the general consumers by providing a simple 

interface with useful feedback to the user in the form of a Smartwatch [291]. Unfortunately, its 

cost of thousands of US dollars greatly limits the accessibility of the device to the public. Finally, 

there are devices priced available for less than 500 USD such as the Sensoria (Sensoria Inc) [282]. 

Commercial companies aim to sell their technology to specific populations such as runners who 

are interested in real-time feedback and information regarding useful parameters such as impact 

force or force applied on each limb. However, some of these devices such as the Stridalyzer (Re-

TiSense Inc) [274]or Tune (Kinematix, SA.) [275] tend to limit the access to the raw data to protect 

their intellectual property. Moreover, despite their improvements in wearability and consumer-

oriented design, they still lack supporting publications or independent reviews for their validity 

and reliability [292]. 

Although many of these technologies measure physical activity, very few of them are spe-

cifically designed to measure sedentary behaviour despite the current need for such technologies. 

While some characteristics such as unobtrusiveness, wireless, and long-term monitoring capability 

are both key attributes for both physical activity and sedentary behaviour, further research is 

needed to determine the trade-offs to be made to improve overall wearability, battery and storage. 

In terms of technical characteristics, the main differences among the devices are found in the type 

of sensor technologies used, the number of sensors, the data analysis methodology, their depend-

ence on external computing unit and how they communicate with the user. Most of the 
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technologies share the basic configurations, with the main variations being on the technology of 

the pressure sensors themselves or in the method of analysing the raw data. Most of the design 

choices and technical specifications are mostly adjusted for biomechanics studies or gait analysis, 

the field of diabetes and its health consequences and fall detection of elderly population. Conse-

quently, current devices do not meet all the technical requirements or data processing methods that 

sedentary behaviour monitoring would require. However, over the last few years there has been a 

clear increase in interest in plantar pressure devices with the capability of monitoring all day ac-

tivities. For example, most recent developments incorporate wireless capabilities via Radio Fre-

quency or Bluetooth communication, since the functionality of being able to connect to a 

smartphone is highly valued due to the ubiquity of these devices. The addition of longer battery 

life, larger storage capacity and seamless smartphone communication seem to be the target to en-

able these devices to be worn unobtrusively and monitor the user throughout the entire day. This 

is highly valuable in the case of sedentary behaviour monitoring, as continuous technology devel-

opments seem to have reached the stage where wide-spread day-to-day monitoring is becoming 

possible, thus opening the opportunity to measure sedentary behaviour.  

In summary, using a plantar pressure measuring device for daily life monitoring sedentary 

behaviour is a promising technology that has shown the reliability needed in free-living conditions 

and high acceptability for participants due to its wearability. A critical and in-depth review of 

plantar pressure technologies has been carried to evaluate an extensive range of technologies found 

in the literature, other media and in the commercial market. Most pressure-based devices are fo-

cused in pressure ulcers detection due to diabetes and gait analysis and the ones targeting physical 

activity are mostly at various prototyping stages. Although a few available commercial devices 

meet some of the requirements for daily life monitoring such as portability and long-term battery 
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life, current devices are able to provide reliable measurements of sedentary behaviour. In the case 

of devices specifically designed for scientific study, factors such as prohibitive high cost for wide-

distribution to the average consumer, device bulkiness, or lack of consumer appeal limit their abil-

ity to be used for widespread large-scale general population monitoring. In contrast, commercial 

devices seem to trade off accuracy and robust technical specifications in exchange for wearability. 

Thus, current limitations of wearable technology indicate a need for the development of a new 

wearable sedentary behaviour monitoring technology that meets key attributes such as accurate 

measurements, affordability, unobtrusiveness, wearability, and long-term monitoring capability. 

Moreover, further research is needed to determine the trade-offs necessary to reduce the device 

technical requirements or computational cost and still meet the accuracy and reliability levels nec-

essary to successfully monitor sedentary behaviour.  

 

 

 

 

 

 

 

 



51 

 

  Chapter 4: A novel machine learning model for sedentary be-

haviour monitoring and data collection 
 

4.1 Design considerations 

 

Before discussing the development of the proposed sedentary behaviour monitoring model 

in this thesis, the design considerations of developing a wearable daily life monitoring system must 

be discussed. Based on literature in Chapter 2 and the in-depth scoping review in Chapter 3, the 

design objectives proposed in decreasing order of importance are:  

1) Accurate daily life activity recognition. Currently, long term monitoring devices focus 

on recognising mobile activities such as walking, running or cycling to reasonable levels of accu-

racy. In the case of the lower activity spectrum (i.e. sedentary behaviour), monitoring devices en-

compass all postures such as sitting and standing without offering any other meaningful differen-

tiation into other possible classifications. Accelerometers are also not able to correctly differentiate 

sitting behaviour with different weight bearing levels and avoid misclassification due to the con-

founding factors such as sitting on a bike or partially sitting on a tall stool. Training and test data 

collected in laboratory settings tends to be more accurate and easier to classify compared to data 

collected in free-living conditions, since real-world sitting behaviour varies considerably and is 

dependent upon several factors such as age, location, gender and occupation. Individuals tends to 

behave differently and during formal and constrained laboratory settings.  Thus, this work utilised 

both constrained laboratory-based data by giving the participant’s a specific set of instructions and 

free-living data by letting the participant’s take the sensors while continuing with their routine. 

Direct observation done during the entire data collection by using GoPro HERO Session 4 (GoPro, 

Inc.) cameras to create the labels of the activities performed and validate the final prediction.  
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2) Improved accuracy over the de facto standard currently used for sedentary behav-

iour monitoring.  The trade-off between the use of plantar pressure and the activPAL (PAL Tech-

nologies Ltd) will be evaluated. The activPAL is an accelerometer-based device located on the 

thigh frequently used on long-term daily life sedentary behaviour monitoring studies [103]. The 

advantages of the location and improved number of types and number of recognized activities will 

also be validated. Nevertheless, comparing the performance of different devices or models may 

prove difficult due to the different validation techniques, the type of activities targeted by each 

device, the trade-offs considered by each model or device, the type of populations involved and 

the condition in which the data was collected (laboratory versus free-living). Consequentially, it is 

hard to establish the degree of overall improvement over other prediction models when targeting 

only a specific attribute such as wearability, accuracy or long-term life.  

3) Minimization of number of sensors and improved wearability. Using pressure sen-

sors may be easier and more comfortable to use in comparison to accelerometer since these usually 

require probes to be stuck on the body such as the activPAL located at the subject’s thigh. Due to 

the popularity of wearable technology, users are gradually more used to wearing extra sensors in 

the form of a watch or in this case, pressure sensors inside the shoe. Wearing the sensors inside 

the shoes is more unobtrusive and less visually unappealing allowing the user to wear it for longer 

periods of time. Besides unobtrusiveness, small sensors offer other advantages in free-living ap-

plications such as higher participant compliance and location versatility. Fewer sensors would have 

lower energy and computational requirements since the amount of data processing can be reduced. 

The final device may also be easier to wear if fewer sensors are needed. Furthermore, the afford-

ability of the technology can also be improved by reducing overall cost. 
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4) Minimization of computational requirements. To be able to have a long battery life, 

portability and other wearability requirements, light data computation is optimal. Furthermore, 

since this is meant to be worn by the final user independently, additional applications in terms of 

communication such as Bluetooth and haptic or visual feedback must be considered when distrib-

uting computing resources [293]. As mentioned in Chapter 2, current wearable technologies strug-

gle to balance the wearability features of monitoring devices and the desired accuracy.  Thus, the 

proposed methodology considered the optimal trade-off amongst the minimization of computa-

tional requirements in term of data processing, number of features, amount and complexity of 

numerical calculations and sedentary behaviour recognition.  

5) Subject independent performance with minimal or no individual-specific training. 

Current work on activity detection models suggests that subject independent recognition of activ-

ities is hard to accomplish due to the high variability of each individual sedentary behaviour. In-

creasing the number of activities to be identified, the type of sensors used and factors such as 

gender, age and body types further complicate the challenge of an accurate activity recognition. In 

an ideal scenario, a prediction model trained with a sample population would be able to recognize 

activities on the general population without the need for further training data from each user. Most 

current models train their algorithms with training data specific to each participant. Some of this 

data is easy to collect individually such as weight, height, age or gender (assuming the final device 

has a user interface). However, in some cases training data involves some standard activities to 

calibrate the device. For example, the device may require the user to sit, stand or walk for one 

minute to incorporate this information to the model, perform the necessary computations and fi-

nally improve the recognition. Ideally this training should be avoided to reduce the computational 

requirements of the final device, but if the improvement is significant, its duration and complexity 
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should be kept to the minimum. Thus, this thesis will also evaluate the performance of the model 

using both independent and dependent subject training and will attempt to entirely avoid individ-

ual-specific training or at least keep it to the minimum. 

6) Wider range of sedentary or low-energy expenditure activities classification. To 

better discern sedentary behaviour during daily life, richer activity recognition is needed by ex-

panding the detection ability to distinguish different types of low energy expenditure activities. 

Furthermore, people may show different behaviour depending on the activity, setting or even the 

type of furniture. For instance, various level of activity can be seen depending on the activity 

performed such as small arm movements in the case of light manual labour while sitting, arm and 

leg movements while driving or fidgeting while typing or using a Personal Computer (PC). Dif-

ferent sitting activities such as slouching or leaning may also be more common during leisure 

activities such as watching television (TV), reading or watching a movie in the cinema while sitting 

straight maybe more common at work or in school. Furthermore, sitting behaviour can also dra-

matically change depending among demographics. For example, children can be more active and 

keep fidgeting or change postures while sitting. Females may also exhibit different sitting postures 

due to anatomical differences, deportment or even due to the clothes or shoes they may be wearing 

(heels for example). To expand the sedentary behaviour monitoring capability, the algorithm per-

formance is evaluated when attempting to identify both common sedentary activities such as sit-

ting, low energy activities such as standing or leaning and moderate physical activities such as 

cycling or walking. 
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4.2 Overview and Research Approach 

 

This section provides an overview of the research approach and design of the machine learning 

model presented in this thesis. The proposed model is developed using plantar pressure sensors in 

combination with constant direct observation via a GoPro camera to improve sedentary behaviour 

recognition in free-living settings. Not only traditional postures such as sitting and standing will 

be inferred but also commonly disregarded or not previously identified activities such as leaning 

will be attempted to be recognised to obtain a more comprehensive information of sedentary be-

haviour. As evaluated previously, plantar pressure sensors may be more capable to identify the 

aforementioned motion-less activities than accelerometers. Although the focus is in sedentary be-

haviour and sitting, other activities such as cycling, and stairs will be included.  Thus, the following 

model architecture is designed to evaluate how well does plantar pressure sensors perform for a 

more detailed and accurate sedentary behaviour in comparison with the facto standard (i.e. Ac-

tivPAL) and the current criterion (direct observation).  
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Six main phases can be identified in the model presented in Figure 3-7: Raw data collection, the 

Processing of the data, the Training of the machine learning model with the corresponding optimi-

sations of window, features and classifier, the Improvement of the model with the addition of the 

foot accelerometers, the Results in terms of recall performance and sedentary time and the Final 

validation of the proposed model against the activPAL and the direct observation. First, data was 

collected from 20 participants in the laboratory followed by another data collection in a free-living 

setting. In the laboratory, data was collected under relatively controlled conditions since each par-

ticipant was asked to perform specific tasks with a specific posture, as well as modifying said 

posture or activity according to the laboratory instructor requests. During the free-living settings, 

the participants were entirely free to continue with their normal daily activities. Once the data was 

obtained, it had to be filtered, synchronized, and labelled using the GoPro footage to train the 

supervised machine learning algorithm. At the same time, recognition of activities from direct 

observation of the video were obtained to validate the model at the Validation phase. Afterwards, 

different iterations of experiments were conducted to determine the optimal specifications that 

would ensure an optimal trade-off between the desired performance and the model’s prediction 

accuracy. Some of these specifications include, the sliding window length, features, classifier and 

the optimal location and number of sensors. Grouping data in an appropriate window length is 

particularly important since features later used in the machine learning model are not computed 

over single data points but over these windows. For example, if a relatively long window of 30 

seconds is chosen, an activity such as briefly standing up, taking a few steps, grabbing an object 

and sitting down again, will affect any feature computed due to the averaging of these three dif-

ferent activities. Having a short epoch instead will ensure these activities overlaps are minimized 

proving particularly relevant if the user changes type of activity continuously, which is a common 
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case in younger populations. A potential drawback is that a short window may create statistically 

weak features by only covering a small data segment. Nevertheless, this is partially remedied by 

the fact that the model specifically concentrates on sedentary behaviour and only a small set of 

activities should be identified. It is also important to note technical requirements such as reduced 

battery duration and limited memory capacity were considered in choosing the size of the window 

[294]. After segmenting the data in an optimal window size, features are extracted to detect any 

relevant patterns. Thus, the type of features selected and how are they computed can greatly influ-

ence the model’s overall performance. Time domain and frequency domain are the two main types 

of features commonly used when classifying activities.  Time domain parameters such as mean, 

standard deviation, median, maximum values, and correlation are used in this work as they are to 

provide valuable information on different activity patterns. Since one of the major objectives is to 

be able to classify activities such as sitting or standing during free-living and for longer periods of 

time, time domain features were preferred as they satisfy the model accuracy criteria and demand 

lower computational requirements [141]. Once all the features have been selected and computed, 

it is necessary to choose an appropriate machine learning model according to the objectives of this 

thesis.  

As mentioned in Section 2.4.2, the following classifiers were considered when creating the ma-

chine learning model: nearest neighbour [145], the naïve Bayes classifier [146], Decision Tables 

[295], J48 classifier [147] (commonly known as C4.5), Bagging methods [153], Logit Boost clas-

sifier [154], and the Random Forest classifier [152]. These classifiers were chosen due to their 

various degrees of simplicity in comparison to other complex widely-used classifiers such Hidden 

Markov Models. Furthermore, these classifiers have been widely used and validated in studies 

involving activity recognition and sedentary behaviour. For example, the Naïve Bayes was applied 
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to detect activities from wearable accelerometers [296-298]. Similarly, the original implementa-

tion of the J48 classifier, the C4.5, is one of most commonly used classifiers in activity recognition 

[138] [299] . For example, Bao and Intille [136] used the C4.5 decision tree classifier to explore 

the activity recognition algorithms proposed on data from 20 participants in non-laboratory set-

tings during semi-naturalistic conditions with performance rates ranging from 85-95% for ambu-

latory activities and postures. Similarly, Lester et al. [135] explored the overall performance of the 

Adaboost classifier in comparison to other more complex classifiers such the Hidden Markov 

Model.  Furthermore, studies such as the one performed by Ravi et al. [300] and H. Martin et al. 

[141] evaluated the performance of different classifiers in recognizing activities such as Decision 

Tables, Decision Trees, Support Vector Machines, Nearest-Neighbour, and naïve Bayes classifiers 

individually. Despite the relatively common usage of these classifiers, several limitations exist 

when evaluating their performance. Thus, several performance measures such as true positive rate 

and false positive rate are incorporated into this work as discussed in Section 5. Besides validation 

found in the literature, performance measures and technical characteristics such as good perfor-

mance in relation to computational cost were considered when choosing which classifiers to in-

corporate into this work. For example, The Nearest Neighbour classifier is selected because it is 

not only one of the most commonly used algorithms in machine learning, it is also one of the 

simplest ones to implement. The Naïve Bayes classifier is chosen because it is easy to implement, 

its overall simplicity, and great performance. The Decision tables classifier is selected because 

their similar characteristics and advantages as Decision Trees. The J48 decision tree classifier is 

also chosen because it is also well-known for its fast classification, great performance, and low 

computational costs. The Bagging method is implemented with a REPtree classifier which is fast 

decision tree learner that builds a decision tree using Information Gain and prunes it. Bagging 
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methods also create separate samples of the training dataset and creates a classifier for each sam-

ple, giving each classifier that is trained, a subtly different focus and perspective on the problem. 

Boosting classifiers are also considered because they have been shown to occasionally provide 

improvements in performance by its approach of taking a weighted majority vote of the sequence 

of classifiers by sequentially applying the algorithm to reweighted versions of the training data. 

The LogitBoost is chosen since it has been shown to outperform Adaptative Boosting (Ada-

BoostM1), a similar machine learning algorithm in activity classification problems, as it uses lo-

gistic regression techniques. Random forest is also considered because its usual performance im-

provement over simple decision tree due to their multiple randomization of the algorithm, which 

helps to limit overfitting as well as error due to bias. The number and location of pressure sensors 

is also analysed to further lower the computational cost. Once the optimal parameters (i.e. window, 

classifier and feature set) and sensor configuration is identified, the proposed model will be trained 

and discussed. Afterwards, a possible addition of raw accelerometer data from the foot and the 

thigh will be evaluated to determine if any significant improved in performance is obtained. Fi-

nally, the proposed model recall performance will be validated against the de facto standard, the 

activPAL, and the current criterion, direct observation using confusion charts and recall tables. 

Total recognised sedentary time will also be evaluated since it is the ultimate output in most de-

vices that measure sedentary behaviour. 

4.3 Protocol Design 

 

All study procedures were approved by the Ethics Approvals Sub-Committee at Lough-

borough University and the Institutional Review Board at Nanyang Technological University. A 

total of 20 male participants between an age range from 21 to 32 were recruited via word of mouth, 

posters and a global email. Written informed consent was obtained from all participants and they 
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were also made aware that if they choose to withdraw, no reason needs to be provided, and the 

anonymised data collected to date can be erased and not used in the final analysis. Participants 

were also screened using a Health Screen Questionnaire. Data collection was performed over a 9-

month period. The study consisted first in a laboratory-based phase followed by a free-living one. 

The laboratory-based data was collected in a controlled environment where the participants were 

asked to undertake a series of structured activities (i.e. sitting, standing, walking etc.). In the case 

of the free-living component the participants were free to do any activities in their daily routine.  

Inclusion Criteria for both Studies 

• Participant uses a shoe size of EU 40 -43 or UK 7 - 8 ½  

• Participant is willing and able to comply with the study testing protocol 

• Participant is physically able to sit and stand freely or without assistance.  

• Participant is able to provide informed consent and assent (read and understand English) 

Exclusion Criteria for both Studies 

• Participant does not use a shoe size of EU 40 -43 or UK 7 - 8 ½  

• Participant has an injury or other health condition that precludes their ability to sit and 

stand freely or they need assistance to do so. 

• Participant has insufficient proficiency in English to comply with the study protocol  

Although the data of 20 participants was collected, the data of 5 of the participants was not included 

due to a combination of human error, equipment mishandle, non-compliance by the participant 

and technical issues. One of the participants failed to appropriately record his daily activities using  

the Go-Pro after erroneously taking intermittent photos instead of video. Thus, data could not be 

labelled nor validated against direct observation. A second participant had issues with the place-

ment of the sensors during the free-living component of the data collection. A total of 3 pressure 
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insoles were used in this work: an initial 2 insole sets of 40-41 EU size and 42-43 EU size, and a 

replacement of the original 42-43 EU insole pair. Finally, in the middle of the study, some of the 

pressure sensors of the 42-43 EU size insole became faulty. Possible causes might be suboptimal 

initial conditions due to previous studies or mechanical damage due to inappropriate usage during 

the insertion into the shoes or during the free-living data collection. It is worth noting that although 

participants were encouraged not to remove the insoles from their shoes to avoid damaging them 

during reinsertion, some did not comply. Once the faulty insoles were detected, there were replaced 

by a second pair of insoles of the same size which performed without issues for the remaining 

trials. Thus, the data of only 15 participants was included in the rest of this work. The characteris-

tics of the 15 subjects finally included in the sedentary behaviour data collection protocol are pre-

sented in Table 4-1. It is worth noting that since female rarely use the aforementioned shoe sizes 

all of the participants were male. Sections 4.3 and 4.4 will discuss the laboratory-based and free-

living data collection respectively, while computations, experiment iterations and results are pre-

sented in Chapter 5. Lastly, accelerometer integration and the proposed model’s validation is fur-

ther discussed in Chapter 6. 

Table 4-1. Characteristics of all the participants included in the study. 

Characteristics Participants (n=20), 5 excluded 

Age 25.16 ± 2.97 

Height 1.74 ± 0.06 

Weight 64.32 ± 15.53 

Fat percentage 18.31 ± 4.53 

Body Mass Index (BMI) 22.36 ± 2.02 

Visceral Fat 4.79 ± 2.07 

 

Furthermore, the number of participants and length of each participant’s laboratory and 

free-living data is similar or greater than similar studies in the field of plantar pressure analysis 
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and activity detection analysis (e.g. 9 participants by Sazonov at al. or 16 participants by Morris 

et al.) [156, 287, 301, 302]  . Unlike these studies where annotated data is limited, all pressure and 

accelerometer data collected in this work is annotated using the video captured simultaneously. As 

a result, a complete annotated large dataset is obtained, ensuring that enough training points are 

available for an optimal performance using supervised machine leaning approach while also en-

suring a sufficiently large independent sample remains for validation purposes. Sample size is also 

preliminarily checked by creating a classifier’s learning curve using data collected to inverse 

power law models, as previous studies have shown that learning classifier curves generally follow 

inverse power law [303]. Additionally, both the participant’s individual data duration and all the 

participants aggregated data is reviewed since both subject dependent and independent evaluation 

validation methods are used in this work (as discussed in Section 4.7.2). Thus, it would be reason-

able to expect good recognition performance with even a sample size if a reasonable performance 

is obtained during dependent validation in which a much smaller set of training instances (one 

participant) is available compared to the much large set available (14 participants) during inde-

pendent training.  

4.3.1 Equipment  

 

The OpenGo system (Moticon, Inc) consists in a pair of fully integrated sensor shoe insoles 

and a data analysis software. It measures the plantar pressure distribution, total loads and dynamics 

of the human foot. The sensor insole is completely wireless. The ActivPAL (PAL Technologies 

Ltd, Glasgow, UK) is a small lightweight motion sensor. The ActivPAL uses information from 

static acceleration (due to gravity) and angle of the thigh to classify static activities (lying/sitting 

vs upright) and dynamic acceleration (due to body movement) to determine mobile activities. Both 

devices sampling rate is 10Hz and can be summarised in epochs (see Section 5.1.2) or by events. 
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All the predicted activities were compared against the ActivPAL since it is considered the current 

criterion used by most researchers for daily life activity monitoring. The GoPro HERO Session 

(GoPro, Inc) is a well-known High Definition quality, waterproof, video recording cubic shaped 

device. Due to its reduced size, features and wearability it can be used in any type of environment 

or conditions. This device will provide the ground truth for the labelling and validation phases. A 

portable battery pack RAV power of 12000mAh was provided with the purpose of charging the 

GoPro. Pictures of all the devices are shown below in Figure 4-1. A treadmill and stationary bike 

were used during the walking and cycling activities for the laboratory-based component of the data 

collection. 

 

Figure 4-1. Photos of the sensors used for data collection. A) OpenGo insoles, B) Raw Power, 

12000 mAh Power Bank, C) GoPro HERO Session 4 and D) activPAL.  

 

Since wearable sensors are used in this work, it is important to note that all the sensors are 

initially configured using the PC and their respective software. Moreover, as most of the data col-

lection occurs outside the laboratory, both calibration and the selection of sampling frequency must 

be carried out before the study. The purpose of unit calibration is to reduce inter-instrument 

A) 

B) 

C) D) 
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variability and to ensure that each device is measuring correctly the acceleration to which they are 

being submitted. The OpenGo insoles have to be calibrated in a static condition during standing 

by resetting them to zero while the subject wore them inside the shoes supporting the subject’s 

whole-body weight. Similar to most contemporary accelerometers, the activPAL initial calibration 

was performed at the factory and it should remain calibrated for the lifespan of the device [304]. 

Nevertheless, during the initial data collection, the output was checked for any irregularities since 

some of these standard calibrating techniques may not always reflect daily life conditions.  

Regarding the selection of an appropriate sampling frequency for all the sensors, three main 

factors must be considered: the resulting accuracy for modelling, the battery demand and the 

amount of memory storage (particularly in the case of the OpenGo and the GoPro). According to 

the Nyquist criterion [305], the sampling frequency must be at least twice the frequency of any 

movement highest frequency. The general frequency in standard nonimpact physical activity of 

the human centre of mass is below 8 Hz (when running in the vertical direction) [306]. Although 

the upper limit could be as high as 25 Hz in some the cases of arm movements, as the accelerom-

eters are located inside the shoes, this is not a concern. Regarding the technical limitations, the 

OpenGo sampling frequency choices are 10, 25 or 50Hz while in the case of the activPAL the 

options are 10Hz and 20 Hz. Although the activPAL has enough internal storage for several days, 

the internal storage of the insoles will only allow the desired 12 hours of data if 10 Hz is the 

sampling frequency. The GoPro camera does not need any calibration [307], it is only checked 

that it works properly during setup and during the laboratory-based data collection. The GoPro 

camera video settings are 720p as video resolution and 30s frame rate per second. Both cameras 

are equipped with a 128GB SD card as each 12 minutes of footage is saved as 2.1 GB file. Finally, 

all devices are initialised and synchronized to the PC clock.  
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4.3.2 Fitting and Initialization 

 

Data collection started with the laboratory-based phase, where the participant was asked 

reported to the Institute of Sports and Research at the School of Mechanical and Aerospace Engi-

neering in Nanyang Technological University at a pre-arranged appointment time. Participants 

were previously informed to wear comfortable closed shoes (no heels) and socks to allow insertion 

for the insoles. Afterwards the participant was fitted with a wearable sensor placed on the thigh, 

and two insoles inside their shoes. Shorts were provided for the fitting of the activPAL (located at 

the thigh), being able to change back to their own clothes afterwards. For determination of sample 

characteristics, anthropometric and demographic information were collected. After participants 

were asked to remove shoes and socks, height was measured using a stadiometer, and weight and 

percentage body fat measured using a bioelectrical impedance scale (Omron, Model BF508). Body 

mass index (BMI) was be calculated by dividing weight (kg) by squared height (m2). Combining 

BMI with impedance determined fat mass will provide a robust measure of body composition. 

Regarding the demographic data, participants were asked to self-report information including date 

of birth, gender, ethnicity, and any additional diagnoses of injury or chronic medical condition that 

may diminish his ability to sit and stand freely or without assistance. A sedentary behaviour profile 

was obtained from each participant as well since it is important to understand the long-term sed-

entary behaviours of the participants. This data was collected via asking the participant to complete 

3 different questionnaires (paper-based methods). The International Physical Activity Question-

naires (IPAQ) short version form was used to provide common instruments that can be used to 

obtain internationally comparable data on health–related physical activity [84]. The second one, 

the Sedentary Behaviour Questionnaire assesses the amount of time spent doing 9 behaviours (such 

as watching television or driving) [308]. The 9 items were completed separately for weekdays and 
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weekend days.  Finally, the SIT-Q-7d questionnaire quantifies time spent sedentary in the last 7 

days during meals, transportation, occupation, leisure time and others, enabling calculation of do-

main-specific and total sedentary time [309]. To minimise the duration of the whole data collec-

tion, the filling of the questionnaires was one of the included structured activities.  

The activPAL was affixed using a piece of medical dressing (Hypafix® Transparent, BSN 

Medical) to the anterior aspect of the right thigh approximately a third of the way down from the 

hip as indicated by the activPAL manufacturer. The OpenGo insoles were inserted into the partic-

ipant shoes following the recommendations from the supplier. Afterwards, the insoles were zeroed 

following the software instructions: asking the participant to unload each insole by lifting first each 

corresponding foot from the ground. The GoPro is worn only during free-living data collection, 

either on the right or left side of the body depending on the participant’s preference. All devices 

remained attached during the laboratory collection and for the next 24 hours during the free-living 

component of the study (except during sleeping). The locations for attachment onto the body for 

all devices are shown in Figure 4-2.  

 
Figure 4-2. Anterior view of device’s location. Insoles are inserted inside the subject’s shoes. A) 

OpenGo insoles B) GoPro HERO Session 4 and C) activPAL. 

 

Free-living only 
C) 

A) 

B) 
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Prior to fitting the devices, the ActivPAL is programmed using the activPAL3 software 

provided by the manufacturer to collect data during a specific set of time (for example 9am to 

9pm). On the other hand, the OpenGo insoles must be manually started using the software and will 

collect data as soon as the data are collected as they are disconnected from the PC. Thus, the insoles 

must be inserted into the shoes immediately afterwards. To ensure data from all 4 devices is col-

lected throughout this period, the insoles are set to collect data a few minutes before the start time 

since they must be connected to the PC. The GoPro has a start button that has to be manually 

pushed. In a similar way, the OpenGo camera is turned on using the start button minutes before 

the starting time of the ActivPAL. This is because the ActivPAL can be configured to program the 

time when it will start and stop collecting data, while the OpenGo insoles and the GoPro session 

have to be manually triggered (by either using the PC in the case of the insoles and pressing the 

ON button in the case of the camera). All devices have enough battery life except for the GoPro. 

To address this issue, two identical cameras are provided to the subject as well as a portable battery. 

Both cameras are fully charged at the beginning of the trial. The participant is instructed that when 

the first camera runs out of power, it should be substituted with the second camera while connect-

ing the first one to the portable battery for charging. The process is repeated continuously until the 

end of the data collection (this process usually occurs around 6 times since battery lasts for about 

2 hours).  

Privacy concerns were expressed by the participants since continuous video recording is 

taken throughout all their activities. To address these issues, several measures are taken. First, the 

camera is located at the chest of the participant facing downwards, meaning that only his legs are 

recorded, and the video will not show the participants surroundings, their face, or anyone´s else 

around them. Secondly, the participants are informed that they are completely free to turn off the 
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camera whenever they want privacy or during any activity they may not want recorded. Moreover, 

they are informed that they can ask to delete certain sections of the video at the end of the day data 

collection. Thirdly, all audio from the files is deleted to ensure all conversations were erased from 

the recordings. Participants are also assured that if any of the recorded data are used, they will be 

fully anonymized.   

4.4 Data Collection Part 1: Laboratory-based component 

 

After the participants have been fitted with the sensors, they are informed of the activities 

they are to perform. Participants are instructed when to start and stop each activity by the re-

searcher, and the exact start time and stop time of all activities is recorded by the camera and later 

obtained manually by the researcher. Whilst these activities are undertaken the researcher is pre-

sent to observe the participants and answer any questions regarding the activities’ execution. In 

addition, all validation activities are recorded using a video camera to provide a reserve copy of 

the observation period and allow a more accurate labelling of the data (see Section 5.1.1). The full 

list of activities was completed in the specified order are shown in Table 4-2.  
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Table 4-2. Validation activities simulating some of the multiple variations on different tasks that 

occur during daily life at work and home environment 
 

Constraint 

Type of 

Activity Location Activity 

1 Free sitting Chair Questionnaire  

2 Free sitting Chair Typing 

3 Free sitting Chair light activity (UNO cards) 

4 Free sitting Couch Questionnaire  

5 Free sitting Couch watch video 

6 Free sitting Couch light activity (UNO bricks) 

7 Free sitting Floor watch video - no back support 

8 Free sitting Floor watch video - against the wall 

9 Free sitting Floor  using smartphone 

10 Free sitting Floor  using smartphone - against the wall 

11 Free Standing Standing Desk Questionnaire 

12 Free Standing Standing Desk watch video 

13 Free Standing Standing Desk write on white board 

14 Free Standing Floor talking 

15 Free leaning Back to the wall  using smartphone 

16 Free leaning Back to the wall talking 

17 Free leaning Side to the wall listening to music 

18 Free leaning Side to the wall reading 

19 Instructed sitting Chair Sitting at 90 hip and knee angles 

20 Instructed sitting Chair 90 hip and knee angles plus laptop 

21 Instructed sitting Chair 90 hip and knee angles plus backpack 

22 Instructed sitting Chair legs crossed at the knee (Right over left) 

23 Instructed sitting Chair legs crossed at the knee (Left over right) 

24 Instructed sitting Chair legs crossed ankle over opposite knee (Right over left) 

25 Instructed sitting Chair legs crossed ankle over opposite knee (Left over right) 

26 Instructed sitting Chair legs crossed at the ankle (Right over left) 

27 Instructed sitting Chair legs crossed at the ankle (Left over right) 

28 Instructed sitting Chair legs stretched forwards 

29 Instructed sitting Chair legs stretched forwards ankles crossed (Right over left) 

30 Instructed sitting Chair legs stretched forwards ankles crossed (Left over right) 

31 Instructed sitting Chair legs bent backwards 

32 Instructed sitting Chair legs bent backwards ankles crossed (Right over left) 

33 Instructed sitting Chair legs bent backwards ankles crossed (Left over right) 

34 Instructed Standing Floor natural standing 

35 Instructed Standing Floor Standing with feet 40 cm apart 

36 Instructed Standing Floor  leaning on right leg 

37 Instructed Standing Floor  leaning on left leg 

38 Instructed Standing Floor  “on one foot” crossing the legs (Right over left) 

39 Instructed Standing Floor  “on one foot” crossing the legs (Left over right) 

40 Instructed Standing Floor  carrying grocery bag (5 kg) on left hand 

41 Instructed Standing Floor  carrying grocery bag (5 kg) on right hand 

42 Instructed Standing Floor  with backpack (10 kg) 

43 Instructed Standing Floor grocery bag (5 kg) on right and (5 kg) backpack on left 

44 Instructed Walking Treadmill 1-6 m/s 

45 Instructed Cycling Bike Resistance 2 and 4 

46 Instructed Stairs Stairs 10 floors up and 10 floors down  
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Six main activities are selected: Sitting, Standing, Leaning, Walking, Cycling and Stairs. 

The activities are chosen to simulate the multiple variations that occur in daily life at work and 

home environment. To further maximise possible variations, two different levels of constrained 

are implemented: free and instructed. In the first case, the participant was given an activity during 

sitting or standing but is not instructed how they should sit or stand. Thus, different sitting or 

standing positions is taken according to the participants’ comfort. On the other hand, the instructed 

tasks are the ones where the participant is specifically instructed to sit or stand in a particular way. 

Furthermore, several locations such as a standard chair, a couch and the floor are included since 

the type of chair or surface where the person sits may considerably influence its sitting behaviour. 

Activities with different degrees of movement is also included: activities with light movements 

such as filling a questionnaire or typing, activities with a greater degree of possible movement 

such as board games, and finally relatively static activities such as watching a video.  

Participants are also asked to either stand up if they are sitting (or sitting if they were stand-

ing) between each activity to provide an easy method to identify a marker on the pressure data that 

will help discern each activity when visualizing the raw data. Illustrations of some of the activities 

are shown in Figure 4-3.  
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Activity #4

 

Activity #5

 

Activity #6

 
Activity #7

 

Activity #10

 

Activity #11

 

Activity #13

 

Activity #18

 

Activity #24

 
Figure 4-3. Examples of a participant performing some of the activities during laboratory-based 

data collection. To preserve anonymity, the participant’s face was covered. 
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4.5 Data Collection Part 2: Free-Living Component 

 

Following the completion of all the activities in the laboratory, all sensors remain fitted to 

the participant in order to monitor the ensuing free-living component of the study. A GoPro (HERO 

Session) camera attached is provided to the participant in order to accurately monitor their daily 

activities throughout the duration of the free-living component of the study. Several options are 

given to the participant to wear the GoPro: a strap, a shoulder mount, a magnetic clip and clip 

which could be attached to the bag provided (or their own bag). Despite being the most noticeable, 

most participants opt for the shoulder mount since they do not have to worry about the camera 

position. The GoPro, the ActivPAL, the ActiGraph and the OpenGo insoles within their shoes are 

worn for the next 24 hours to capture all the participants’ daily activities. No constraints are given 

to the participants regarding their activities of the day (for instance, they could go to work or stay 

at home as they preferred). The only constraint was keeping the sensors on which meant avoiding 

activities where they would need to be removed such as water-based activities, sports participation 

or sleep. One particular problem arises in the case of the OpenGo insoles, since in Singapore it 

was the prevailing culture that shoes are not customarily worn inside many homes. However, for 

the sake of this data collection, participants are asked to cover their shoes with cloth casings pro-

vided to avoid removing the shoe once inside home and avoid missing valuable information re-

garding home-based activities. This solution ensures the shoes and consequently the insoles, are 

not removed until going to sleep. Finally, to address the limited battery issue of the GoPro camera 

and ensure continuous recording, participants are also given a second GoPro camera and a portable 

battery in a pouch. This additional camera is provided to replace the first camera while it separately 

charges. All devices are returned the following day. 
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As mentioned previously, the objective of the live recording is to create the labels to both 

train the algorithm and serve as ground truth when examining the model’s accuracy when predict-

ing activities.  An example of how each classified activity can be identified on the video are shown 

in Figure 4-4. 

Sitting

 

Standing

 
 

Walking

 

Stairs

 

Figure 4-4. Examples of still images from the GoPro video: Sitting, Standing, Walking and 

Climbing Stairs. 

A total of 211 hours of video, accelerometer and pressure data were collected and reviewed. 

After video processing and manual labelling, a total amount of 136 hours was analysed and incor-

porated into the supervised machine learning model. 

4.6 Data Processing and Training considerations 

 

Before introducing the data processing, the experiment performed and the model perfor-

mance, certain training considerations and general assumptions are made. The following section 
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discusses and explores the underlying reasoning upon which these assumptions and their impact 

when evaluating the training of the model and assessing its performance.  

4.6.1 Truncation and Synchronization 

 

The Open Go insoles data is exported in .txt format and then later is transformed into 

“Comma-Separate Values” (CSV) file format using MATLAB (2017a, MathWorks). MATLAB 

is used to process the data due to the previous familiarity of the author with the software, its ease 

of use, its ability to manipulate tables, plot data, create user interfaces and the applications of its 

Machine Learning Toolbox. This raw data set includes accelerometer data and raw pressure values 

each sensor and centre of pressure and force from each foot. In the case of the ActivPAL, the 

company’s software organizes and exports the data in CSV format in two different modalities: raw 

acceleration data or by the duration of each activity until a transition is detected. Since the main 

interest in this thesis is to compare the pressure-base only proposition against the direct observation 

(video footage) and the ActivPAL (de facto standard), raw acceleration data from both the insoles 

and the ActivPAL is incorporated to pressure data and evaluated in section 6.1.1 and section 6.1.2 

respectively. The ActivPAL proprietary algorithm identifies three different activities: sedentary 

(=0), standing (=1) and stepping (=2). Since the ActivPAL sampling rate is set at 20 Hz as the 

factory default and the Go Pro insoles sampling rate is set at 10 Hz (the same as the pressure 

sensors), data had to be resampled, to fix the discrepancy of between the two sources of accelera-

tion data. Finally, the GoPro data is extracted from the Secure Digital (SD) cards in the form of 12 

min video of 2.1GB each. To avoid any unnecessary video processing, the video files are not 

merged.  
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To be able to identify and compare each activity on each device, data across all devices 

have to be truncated and synchronized. As mentioned previously, the Open Go insoles and the 

ActivPAL internal clocks are synchronized to the internal clock of the PC. Nevertheless, due to 

different starting methods of each device the starting and ending of each device’s raw data differed 

by between a few seconds to a few minutes.  Since the all sensors have a fixed starting and ending 

time, for the sake of simplicity data duration was adjusted to whichever collected the shortest data. 

For example, if the GoPro has started later than the rest of the sensors, the data from the rest of the 

sensors is truncated and ignored for eventual computations. Similarly, data is truncated at the time 

the first sensor stopped collecting data. In the case of the GoPro, video files have a start time that 

matches the time of the smartphone in which they were synchronized using the downloadable app 

from the Google Play Store. Since the ActivPAL are the only sensors which could be programmed 

and not manually started, it usually set the timeline for the rest of the sensors. Despite being able 

to synchronize all devices to the PC or the Smartphone, mismatches occasionally occurred during 

data collection and manual synchronization by direct observation had to be carried out. To deter-

mine the size of the delay for each sensor, the exact starting and stopping points of several specific 

events are visually identified by analysing the plotted raw data of each sensor. These events were 

mostly transitions of sitting to standing (or vice versa) since they were easy to identify in all the 

sensors’ data, being the pressure data, the GoPro video or the ActivPAL event marker. Since all 

participants started their respective data collection with the standardised test at the laboratory, a 

noticeable pattern of events across all participants was detected when examining the raw data, an 

example is shown in Figure 4-5.  
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Figure 4-5. Example of raw pressure data visualization during one participant’s laboratory-based 

data collection. Each activity is labelled as follows: 1-sitting, 2-standing, 3-walking, 4-cycling, 5 

-stairs, 6-leaning.   

Data is shifted accordingly to match these events while also checking that future events in 

the free-living part of the data also were synchronized. It is important to highlight that these dis-

crepancies in start and end time and the consequent loss of data were observed to be minimal (e.g. 

few seconds or minutes) as all sensors were manually started and stopped at the same time. 

4.7 Training considerations 

 

4.7.1 Transitions Between Activities 

 

One of the main sources of possible variability in the labelling and feature computation 

process is the transition between each activity. The most common ones occur when transitioning 

from sitting to standing and vice versa, followed by standing and walking. These transitions can 

become problematic as they may introduce significant variability in the pressure data depending 
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on the type of transition. Furthermore, depending on the context, each transition can show different 

trends. For example, standing up from a chair and standing up from the floor represent two differ-

ent behaviours. If these transitions are to be detected, a small window size such as 1 or 2 seconds 

would have to be implemented since these transitions tend to be quick (1 to 3 seconds). However, 

as later discussed in section 5.1.2, a window size that small will be suboptimal to the general 

recognition performance of the model and will also increase its computational cost. Consequently, 

transitions are not specifically targeted or attempted to be predicted. Nevertheless, they are not 

eliminated or filtered in any from the data set during the training of the machine learning model in 

order to ensure the conditions are as realistic as possible. Another reason why transitions are not 

specifically labelled as such is the difficulty to identify them during the labelling process shown 

later in section 5.1.1. For example, activity variations such as briefly leaning against a wall briefly 

while standing or pausing during a walk are hard to detect due to their brevity. In fact, further 

complication arises when transitions from different activities happen in quick succession such as 

walking immediately after sitting with a brief pause of standing in between. Labelling these brief 

changes independently would introduce unnecessarily variability to the data and would most likely 

be not useful or even detrimental to the overall result.  

4.7.2 Subject Evaluation 

 

Two types of subject validation are implemented in this work: 10-fold cross validation to 

test subject dependant performance and leave-one-out validation to test subject independent per-

formance. Cross validation is a common method used to evaluate the result of the model’s analysis 

on relatively small datasets [310]. This technique can also tell us how the results can be generalised 

as an independent data set from the sample data. Cross-validation involves splitting the data into 

two subsets, performing the computations on one subset known as the training set, and validating 
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the model obtained on the remaining subset known as the testing set [311]. The subject dependent 

evaluation is performed in order to assess the model’s ability to classify a participant’s activity 

using each participant’s own sample data. First, the original sample of each participant is randomly 

partitioned into 10 subsample sets. Nine of these subsets are used as the training data and the 

remaining subset is used as the testing data. This process is repeated 10 times, using each one the 

10 subsets as testing data, and averaging the results of all participants and each fold (hence the 

name of 10-fold cross validation). Theoretical evidence, extensive tests on numerous datasets and 

related work with different learning techniques have shown that 10 is an appropriate number of 

folds to get the best estimate of error [310]. Furthermore, related work supports that 10 folds may 

the optimum number of folds when evaluation models related to machine learning classifiers [311]. 

One of the main advantages of this method over repeated other validation methods such as random 

sub-sampling is that the whole sample data set is analysed only once, and it is also used for both 

validation and testing, so the resulting metric is approximation of the expected value of the true eval-

uation measure. This methodology will also allow to determine if there are any significant variation 

of sitting or standing behaviour among each participant that justifies or favours a small training 

period before the algorithm is tested on a new participant. For example, asking the user to do each 

task for a couple minutes may greatly improve the model’s accuracy. However, it would be ideal 

that the model could classify activities across all participants by using a determined set of collected 

data in advance without requiring no such training from each one of them. Thus, to assess if subject 

independent training is viable, leave-one-out validation is also performed. The model is trained 

with all the participant’s data except one and tested on this excluded participant while repeating 

the process for each one of the other participants (excluding and testing one at a time). If the 
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model’s performance is not significantly affected compared to the subject dependent evaluation, 

it may suggest that no user’s individual training is necessary. 
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Chapter 5: Daily life recognition model, experiments and validation 
 

5.1 Model training and Optimisation 

 

As mentioned in Chapter 3, a more reliable and accurate predictive model is desired in 

terms of choosing the window size used, the number and type of features, the classifier, and the 

number and location of sensors. Different experiments were performed to select the optimal pa-

rameters for the proposed model taking into consideration their accuracy trade-off and the design 

objectives. Furthermore, one of the main limitations found in the literature was collecting reliable 

data outside of the laboratory and including in the model calculations. Collecting data under con-

trolled conditions does not fully consider the diversity across the participants’ own behaviour and 

among different participants and contexts. Thus, to create a reliable method to monitor sedentary 

behaviour for long term monitoring across a wide population, daily life data including the one 

collected in free-living conditions, was used to train and evaluate the model’s performance. 

5.1.1 Data Labelling to set Criterion Standard 

 

The GoPro video from each participant is visually screened in its entirety to create the data 

which served as the ground truth used as the response to the model’s predictors. To ensure accurate 

labelling, the video is reproduced at a standard reproduction speed. In some cases, speed is in-

creased depending on the length of the task undertaken by the participant (i.e. sitting for an hour) 

and the ability to discern the participant’s activity by the viewer. In the case of the laboratory-

based component, correct labelling is easier to assess since tasks were previously defined by the 

study. However, in the case of the free-living data, assigning a label to each data sample is consid-

erably laborious due to the complexity, diversity and duration of annotating every task. The GoPro 
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creates a video file for each 12 min of 2.1 GB and each participant accumulated 10-14 hours of 

usable data translating into a total of 750-1050 video files or 1234 GB of data. Since combining 

the files would be a very resource intensive process, the timestamp of the start and beginning of 

each task is annotated along with the video file where it occurred. Afterwards, a continuous time 

line is constructed using these timestamps and multiplying the video file number by its duration 

(usually 12 min). Occasionally, files ended before their reached their 12 min mark if the participant 

turned off the camera or if the battery is depleted. Whenever it occurred, the start time of these 

files as well the start time of the file has to be identified to create an offset by deducting the extra 

time cause by the standard addition of 12 min per video file. An example of the table developed 

for the labelling process is shown in Appendix B-1. An example of a raw data sample along with 

labels from both the GoPro and ActivPAL is shown in Figure 5-1.   

 

Figure 5-1. Example of raw pressure data visualization during one participant’s laboratory-based 

data collection. The ground truth labels are as follows: 1-sitting, 2-standing, 3-walking, 4- cy-

cling, 5-stairs and 6-leaning. In the case of the ActivPAL the values shown are 1-sitting. 2-stand-

ing and 3-stepping. 
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In the case of mostly relatively sedentary participants a typical weekday routine can be 

relatively well defined into specific periods of sitting, standing and walking times by identify pos-

ture changes (e.g. sitting to standing) of the subject and mark the time they occurred. However, 

some of the participants are considerably more active and performed numerous activities which 

translated into frequent transitions among activities. After labelling each participant’s GoPro data, 

a label column is created in MATLAB using a nominal value to classify each of the activities of 

interest: Sitting, Standing, Walking, Cycling, Leaning and Stairs.  

As mentioned previously, participants had the liberty to turn off the camera if they desire 

to do so. The periods where video footage is not collected ranged between a few minutes to a 

couple hours. During this periods, pressure and accelerometer data cannot be labelled and is con-

sequently discarded. Additionally, periods in which any technical malfunction of the activPAL, 

pressure sensors or Go Pro Camera occur were also discarded to ensure all data from all sources 

is collected and properly labelled. The total amount of useful training data available is shown in 

Table 5-1.  

Table 5-1: Total amount of time and training data available for each different task explored in 

this work. Standard deviation is shown in parenthesis. 

Activity 
Total training time  

(hr:min:ss) 

Average amount of training 

time per subject (hr:min:ss) 

Total number of training 

points per 6 seconds win-

dow 

Sitting 77:59:30 5:11:58 (1:41:31) 46795 

Standing 23:40:30 1:34:42 (0:42:09) 14205 

Leaning 5:01:54 0:20:08 (0:08:14) 3019 

Walking 15:02:12 1:00:09 (0:24:25) 9022 

Cycling 2:42:18 0:10:49 (0:03:24) 1623 

Stairs 2:10:00 0:08:40 (0:02:48) 1300 

TOTAL 126:36:24 8:26:26 (3:02:31) 75964 
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5.1.2 Optimal Window calculations 

 

The selection of an appropriate sliding window size is a crucial requirement as it divides the data 

into smaller useful segments from which future features will be computed. As previously discussed 

in section 2.4.1, time-domain features such as mean value or standard deviation are used in this 

work since they require less computational resources. The size and type of this window varies 

depending on the type of input signal as well as the parameter to be identified. Prior to determining 

the window length for the analysis, two of the common windowing methods for activity monitor-

ing were considered: the sliding windows and overlapping windows [312, 313]. For the first 

method, data is grouped into windows of a specific size with no overlap or gap between each 

window, while in the second method a degree of overlap is permitted between consecutive seg-

ments. Consequentially, the overlapping windows method entails a larger amount of computations 

as compared to the non-overlapping methods. Since lower computational requirements is one of 

the main design objectives, non-overlapping sliding windowing method is preferred in this work. 

As previously discussed, choosing an optimal window size is very important since the time period 

over which features are computed can heavily affect its interpretation, as there is an important 

trade-off between choosing shorter versus longer epochs. Choosing an optimal window size con-

tributes to selecting better discriminating features [133]. For example, if a window of 30 seconds 

is chosen, and the user is sitting down and decides to grab a bottle of water nearby, he will stand 

up, take a few steps and sit down again, covering several activities within the same 30 seconds. 

Any feature computed will be affected due to the averaging of these three different activities (sit-

ting, standing and walking). Thus, a short epoch will ensure such activities overlaps are minimal, 

which proves to be particularly relevant if the user changes activities continuously as exemplify 

above. Unfortunately, a potential drawback is that a short window may create further variability 
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by only covering a small data segment and amplifying small variations. This may be partially 

compensated by the fact that only a small set of activities are to be identified, the large overall data 

sample (12~ hours) and that subjects tend to remain in one posture for long periods of time. It is 

also important to note technical requirements such as reduced battery duration and limited memory 

capacity may play an important role is choosing the size of the window [294]. Furthermore, the 

effectiveness of some of the features computed are heavily influenced by the length of the window. 

For instance, a short window may not be able to detect the correlation between left and right foot 

pressure while balancing overall weight during standing or each foot’s periodic landing during 

walking. In the case of a long window, a significant delay will be created when attempting to 

classify in real-time, which depending on the objectives and purpose of the model, may prove to 

be a serious or mild problem.  

In order to find the optimal trade-off of window length, a series of experiments are designed 

using the Random Forest algorithm, later determined as the optimal model’s classifier in Section 

5.1.3. MATLAB and the Weka Toolkit 3.8 (Waikato Environment for Knowledge Analysis) [314] 

are used to evaluate the performance over two different feature sets: one with all the available 

pressure related features and a second one with a smaller set of features obtained using the Infor-

mation Gain method from Section 5.1.4. All features are computed over windows length ranging 

from 2 to 32 seconds at a sampling rate of 10Hz meaning 260 data pointes per second for all 26 

sensors, at an increasing rate of the power of 2 seconds (see Table 5-2). After reviewing the results 

at the end of this section, another window length of 6 seconds is considered to observe if any 

significant difference exists between the window of 4 and 8 seconds.  
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Table 5-2. Window lengths considered while searching for the optimal length for the proposed 

model 

Pressure Samples 

(Per sensor) 

Pressure Samples 

(Per insole) 

Time (s) 

20 520 2 

40 1040 4 

60 1560 6 

80 2080 8 

160 2600 16 

320 3120 32 

 

As mentioned in Section 4.3.1, the chosen sampling rate is deliberately kept low to allow 

long term data storage in the insoles and to prolong battery life. A window length shorter than 2 

seconds is deemed too small to include due to the low sampling rate of the pressure sensors, the 

low predictive power and the objective of monitoring overall sedentary behaviour meaning that 

brief changes are not very significant. A window length longer than 32 seconds is deemed too long 

due to the overall reduced number of instances per feature and participant in the model. Further-

more, long windows would risk “averaging” one or more transitions among activities hampering 

one of the final objectives to determine the overall effect of such transitions over both short and 

longs periods of sedentary behaviour. The recalls during both subject independent and dependent 

training for each activity over the aforementioned different window lengths while evaluating the 

performance of the Random Forest classifier using all features are shown in Figures 5-2 and 5-3. 

The full extent of the computations can be found in Appendix C.  
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Figure 5-2. Recall per activity when computing all features using sliding windows of different 

lengths, the Random Forest classifier and dependent training evaluation. 

 

Figure 5-3. Recall per activity when computing all features using sliding windows of different 

lengths, the Random Forest classifier and independent training evaluation. 

2s 4s 6s 8s 16s 32s

sitting 98.49% 98.53% 99.01% 98.95% 98.59% 98.50%

standing 95.29% 95.18% 94.91% 94.52% 95.40% 94.68%

leaning 94.09% 92.36% 89.96% 88.46% 83.16% 79.19%

walking 89.38% 89.49% 89.47% 89.90% 89.58% 88.07%

cycling 96.82% 96.36% 96.21% 95.41% 92.70% 90.22%

stairs 73.95% 77.49% 78.29% 76.99% 78.15% 71.14%

All 96.05% 96.03% 96.29% 96.13% 95.80% 95.10%
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2s 4s 6s 8s 16s 32s

sitting 94.30% 94.81% 95.12% 95.56% 95.90% 95.82%
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Figure 5-2 shows that maximum performance for all activities during subject dependent 

training is at a window length of 6 seconds. However, in the case of activities such as standing and 

walking, recall reaches its maximum at 16 and 8 seconds respectively. The characteristics of these 

activities seem to be better captured by features computed over longer windows, while sitting is 

better captured by a slightly shorter window. At higher window lengths beyond 6 seconds, overall 

performance understandably falls, since a higher window length drastically reduces the number of 

training instances available for the model, particularly in the case of activities that scarcely occur, 

such as climbing stairs and cycling. For example, 1 minute of pressure data at 10 Hz using a 2 

second window yields 30 training data points per feature while a 32 second windows yields almost 

2 training data points, showing a drastic reduction in usable data. In fact, one of the main problems 

with uncommon activities such as leaning or brief activities such as climbing or descending stairs 

is the small amount of training data point available for the model to make accurate predictions. A 

graphical representation of this problem is shown in Figure 5-2 where activities such as stairs, 

leaning and cycling get gradually worse as the window length increases and activities with longer 

duration are significantly less affected.  

During subject independent training, the maximum recall for all activities occurs at a win-

dow length of 16 seconds. An increase in performance can be observed as the window length 

increases. Such increment can be explained by the fact that longer window lengths may smoothen 

the variability among the participants’ variations on each activity and improve the model’s ability 

to predict them. Similar to dependent training evaluation but to a lesser extent, the reduction of 

available training data as the window increases gradually affects the overall performance of scarce 

and short duration activities such as cycling and leaning. In fact, the time spent of most participants 

in cycling is minimal in comparison with time spent sitting or standing during the day. Participants 
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rarely engage in cycling, meaning that a very small set of data is available during training to accu-

rately construct the model to accurately predict it. Thus, the model is prone to misclassify cycling  

due to the potentially low pressures involved depending on the resistance of the bike. Stairs and 

leaning suffer from the same problem as they probably are being classified as standing. It seems 

that dependent training supports shorter window lengths while independent training supports 

longer window lengths mainly due to the discrepancies of how each individual participant per-

forms his or her activities. Furthermore, in the case of subject dependent training, the amount of 

data available is smaller compared to the one used in independent training since only one partici-

pants’ data is used at a time.  

The results of the computations using features obtained using Information Gain are pre-

sented in Figures 5-4 and 5-5.  

 

Figure 5-4. Recall per activity when computing Information Gain features using sliding windows 

of different lengths, the Random Forest classifier and dependent training evaluation. 
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Figure 5-5. Recall per activity when computing Information Gain features using sliding windows 

of different lengths, the Random Forest classifier and independent training evaluation. 

 

The results indicate that despite the performance drop due to the smaller number of features 

used, recall behaves similarly as with using the sensor pressures individually. More common ac-

tivities such as sitting, standing and walking have the smaller decrease in performance, while more 

uncommon activities such as leaning and stairs, are much more negatively affected. 

As shown in Figure 5-4, a window length of 6 seconds obtains the best overall performance 

in regards of individual and overall activity recognition during dependent training. Thus, after 

analysing the model’s prediction accuracy with different sliding window lengths, the results indi-

cate that the best window length depends on the activity and its characteristics, such as its duration 

or being static or dynamic. Unfortunately, having a different sliding window for each different 

activity would negatively affect one of the key design goals of keeping a low computational cost.  
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In summary, two different sets of features are tested at increasing window lengths during 

both subject dependent and independent training. Afterwards, the optimal trade-off between the 

possible loss of accuracy of some activities and meeting the design goal is determined. In the end, 

a window of 6 seconds is shown to be sufficiently short to avoid any significant delay in activity 

recognition and detect quick transition of activities as well as minimising any issues of introducing 

variability to static activities such as sitting. Specifically, in the case of subject dependent training, 

optimal recognition of infrequent activities such as stairs or leaning was found, allowing an accu-

rate identification despite the overall smaller sample size of a single participant. Furthermore, this 

window length produces a relatively short real-time recognition delay, allowing the user to ulti-

mately receive possibly useful feedback. The main disadvantage of not using a larger window was 

a reduction of overall performance during independent training. Nevertheless, since the main goal 

is to monitor sedentary behaviour (i.e. sitting time) the trade-off is considered advantageous in the 

end.   

5.1.3 Optimal Classifier selection 

 

In order to select an optimal classifier in terms of low computation cost, fast training and 

accurate classification times, the Weka Toolkit 3.8 (Waikato Environment for Knowledge Analy-

sis) [314] is used to make a comparison among popular classifiers in activity detection monitoring. 

As discussed in section 2.4.2, the following classifiers selected in this work are the naïve Bayes 

classifier, Decision Tables, the J48 classifier (commonly known as C4.5), the Nearest Neighbour 

classifier, the Logit Boost classifier, the Bagging classifier and finally the Random Forest classi-

fier. Regarding the classifier’s parameters, different approaches have been taken to improve some 

of the classifier’s performance. Before applying the Naïve Bayes classifier, data is discretised to 

transform numerical variables into categorical counterparts and improve performance. In the case 
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of Nearest Neighbour classifier, Euclidian distance and the value of “10 K” (10 nearest neighbours) 

were the optimal parameters. The number of nearest neighbours is determined by dividing the data 

into training and evaluation sets and evaluating which value of K does the best job of classifying 

the evaluation data set based on the training set. For the J48 classifier, multiple iterations with 

different confidence factors is performed to find the optimal parameter. Pruning is done as well to 

reduce the number of leaves on the tree and consequentially lessen the training times and compu-

tational cost. The LogitBoost classifier uses 10 iterations (i.e. number of trees) and one level deci-

sion tree called Decision Stump, which is often used as components in machine learning ensem-

ble techniques such as boosting. Similarly, for the Bagging method, 10 iterations are also used 

with the REPtree Classifier as the base classifier. For the Random Forest classifier, the standard 

100 iterations (i.e. number of trees) and an unlimited tree depth is selected to ensure the maximum 

possible performance is reached.  

The classifiers are evaluated by comparing their performance during both training and clas-

sification when using all features and subset of features obtained by applying the Information Gain 

criterion (see Section 5.1.4). The complete table with all relevant performance measurements is 

shown in Appendix D. Features are computed using 6 seconds sliding windows as previously dis-

cussed and determined in section 5.1.2. Two main parameters are compared to assess each classi-

fier overall performance. The first is training and classification time since lower times mean lower 

computational cost while the second is overall accuracy during both subject dependent and inde-

pendent methods. After running the model in the Weka Toolkit with each classifier and each com-

bination of features using a 2.5 GHz Intel core microprocessor, training and classification times 

are extracted and presented in Tables 5-3 and 5-4. Training and classification times are individually 

https://en.wikipedia.org/wiki/Machine_learning_ensemble
https://en.wikipedia.org/wiki/Machine_learning_ensemble
https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
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obtained for each participant in the case of the subject dependent method and across all participants 

in the case of the subject independent method.  

Table 5-3. Average times in seconds required by each classifier for training and classification 

when using subject dependent training 

Classifier 
All features (s) Information Gain Features (s) 

Training Classification Training Classification 

Nearest Neighbour 0.0003 0.5335 0.218 0.425 

Naïve Bayes 0.2045 0.0432 0.215 0.027 

Decision Tables 5.6884 0.0019 3.890 0.002 

J48 0.3679 0.0002 0.282 0.002 

Bagging 3.44 0.0013 .80 0.006 

LogitBoost 3.5574 0.0013 0.723 0.003 

Random Forest 0.5338 0.0031 0.346 0.005 

 

 

Table 5-4. Average times in seconds required by each classifier for training and classification 

when using subject independent training 

Classifier 
All features (s) Information Gain Features (s) 

Training Classification Training Classification 

Nearest Neighbour 0.004 69.151 6.305 16.322 

Naïve Bayes 8.167 0.495 5.019 0.096 

Decision Tables 115.181 0.027 19.294 0.014 

J48 24.666 0.004 4.976 0.014 

Bagging 41.52 0.010 12.05 0.020 

LogitBoost 89.555 0.009 8.219 0.015 

Random Forest 17.783 0.058 6.737 0.045 

 

From to the results obtained using all features, the Nearest Neighbour (NN) classifier have 

the fastest training times and the highest classification time in both. This is to be expected due to 

its simplicity during training in which only the distances among all training examples are com-

puted. On the other hand, classification times are considerably longer (around 140 times longer) 

than the rest of the classifiers since every instance must be compared among each other before 

being classified.  In fact, a classification time of 69 seconds would be too long for any real-time 

implementation. Despite its flexibility, the Nearest Neighbour classifier may be too computation-

ally expensive for this application since it also needs all training data points to be locally stored. 
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High memory requirements should be avoided since one of the key design goals to have a low-

cost implementation, meaning the Nearest Neighbour classifier in its current form is suboptimal. 

Following the Nearest Neighbour classifier, the Naïve Bayes (NB) behaves similarly having the 

second fastest training time and the second longest classification time. Although Naïve Bayes is 

12 times faster than Nearest Neighbour, it is also at least 14 times slower compared to the rest of 

the classifiers. Moreover, Naïve Bayes, like the Nearest Neighbour classifier, are only based on 

memory/training data, meaning that they require the parameters of a Gaussian distribution to be 

stored in the internal memory. Depending on the specifications of the final device, this may be too 

taxing for low power computational processors. Regarding training time, J48 and Random Forest 

are the third and fourth fastest classifiers respectively during dependent evaluation training. During 

independent training, their orders are reversed, and Random Forest becomes the faster of the two, 

showing that when training with a larger data set, the Random Forest classifier can outperform the 

J48 classifier. However, in terms of classification time, J48 is the fastest of all classifiers, while 

Random Forest is the fourth slowest. Both performances can be explained by the fact that J48 

classification consists only simple splitting of the “best” decision tree rule using the “best” feature, 

while random forest involves potentially unlimited decision trees with random selection of features 

to split on. Bagging and LogitBoost have the fifth and the sixth longest training times during both 

dependent and independent evaluation. LogitBoost is 4 to 7 times slower than Random Forest and 

J48 while Bagging is 2 to 3 times slower. This performance makes sense since both Bagging and 

Boosting are iterative method (10 iterations in this case) with different approaches. In Bagging 

each model uses a different sample, giving them a subtly different focus and perspective on the 

problem, while in LogitBoost new models are influenced by putting extra weight on weaker fea-

tures and misclassified instances of previously built models. Long training times are a significant 
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issue during subject dependent training, since the user would have to endure the long waiting time 

first for the training to be completed with his own data, delaying his actual activity classification. 

Finally, the Decision Table classifier has the worst performance during training in all cases.  

Some significant changes in classifier performance occur when training using Information 

Gain features due to the filtering done when selecting features. First, Nearest Neighbour classifier 

no longer has the fastest training times of all classifiers. In fact, with the exclusion of Decision 

Tables, training times for all classifiers are relatively similar in both Dependent evaluation (0.35 

± 0.21 seconds) and Independent Evaluation (6.25 ±1.34 seconds). In terms of classification times, 

Nearest Neighbour is still the slowest classifier followed by the Naïve Bayes classifier. Among 

the remaining classifiers, Random Forest exhibits the seconds slowest classification time although 

it still is 2 to 6 times faster than Naïve Bayes in subject dependent and independent evaluation 

respectively. Finally, classification times for J48, Bagging, Decision Tables and LogitBoost are 

not very significant.  

To summarise, the best classifiers in terms of computational performance for all presented 

scenarios are the J48 classifier and the Random Forest classifier. Both classifiers have relatively 

low computational cost and medium range training and classification times. However, LogitBoost, 

Bagging and Naïve Bayes may also be good choices. Naïve Bayes is the second fastest during 

training while Bagging and LogitBoost have an acceptable performance during classification and 

during training when using Information Gain features instead of all features. Once computational 

cost is considered by examining training and classification times, activity recognition must be 

evaluated to finally choose the optimal classifier. Each classifier is tested using every feature com-

bination presented previously and using a 6 second sliding window as in the case of training and 

processing times. Training and classification are done with 10 different random seed times to 
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minimise the impact of a single randomisation and obtain more realistic results. The performance 

of each classifier while using all available features is shown Table 5-5 when using the subject 

dependent approach and in Table 5-6 when using the subject independent approach.  

Table 5-5. Recall per activity using all available features and subject dependent training. 

Activity 

Recall of each classifier using all features and dependent evaluation  

Nearest 

Neighbour 

Naïve 

Bayes 

Decision 

Tables 
J48 Bagging 

Logit-

Boost 

Random 

Forest 

Sitting 98.96% 95.46% 98.70% 98.47% 98.85% 98.61% 99.01% 

Standing 92.72% 71.62% 86.95% 88.88% 93.34% 91.75% 94.91% 

Leaning 85.87% 88.86% 81.90% 89.25% 89.18% 87.98% 89.96% 

Walking 90.04% 85.04% 79.10% 85.89% 88.56% 88.38% 89.47% 

Cycling 96.35% 95.71% 86.20% 93.25% 92.76% 93.86% 96.21% 

Stairs 76.95% 84.40% 68.40% 74.16% 75.71% 77.37% 78.29% 

ALL 95.73% 89.31% 83.54% 94.24% 95.64% 95.18% 96.29% 

 

Table 5-6. Recall per activity using all available features and subject independent training. 

Activity 

Recall of each classifier using all features and independent evaluation  

Nearest 

Neighbour 

Naïve 

Bayes 

Decision 

Tables 
J48 Bagging 

Logit-

Boost 

Random 

Forest 

Sitting 98.56% 85.51% 92.33% 94.05% 96.76% 97.25% 98.38% 

Standing 76.53% 42.08% 68.00% 74.24% 83.13% 79.23% 92.89% 

Leaning 55.60% 78.45% 18.60% 32.16% 38.11% 29.99% 68.23% 

Walking 83.11% 73.71% 32.25% 70.90% 81.64% 87.58% 88.03% 

Cycling 54.09% 76.09% 30.18% 45.83% 60.36% 50.59% 75.97% 

Stairs 43.89% 65.55% 42.58% 35.99% 45.63% 39.18% 64.70% 

ALL 89.13% 73.43% 47.32% 83.68% 88.25% 87.74% 94.00% 
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As shown in Tables 5-5 and 5-6, overall recall for all classifiers during subject dependent 

evaluation are significantly better compared to subject independent. This can be partly explained 

due to the evaluation methods since dependent training is evaluated using 10 -fold cross validation 

and independent training is evaluated using an independent test set (the excluded participant), 

which tends to give a more pessimistic result. The Random Forest classifier has the best overall 

performance with Nearest Neighbour having the second best one. The Naïve Bayes classification 

rates are not surprising since the classifier considers all features independently and given the une-

qual number of data for each activity, trouble discerning among them would be expected. On the 

other hand, the Random Forest performance makes sense since each iteration of the classifier fur-

ther concentrates on the weaker features discovered in previous iterations. In summary, the per-

formance of all classifiers during subject dependent evaluation is within a small margin (94.24% 

- 96.29%) excluding both the Naïve Bayes and the Decision Table classifiers.  

In the case of independent subject evaluation, the drop of performance for some activities 

is more pronounced. The hardest activities to classify correctly are stairs or leaning depending on 

the classifier. This is understandable since the pressure both activities have a small number of 

training points and vary considerably among participants. Features obtained from accelerometery 

which is further discussed in section 6.1.1, would most likely improve its accuracy in classifica-

tion. Similarly, leaning may be misclassified as standing since the leaning activity is relatively 

different among participants and consequentially, the angle at which they lean against the wall will 

vary the overall weight supported. Thus, the highest rate for leaning is 78.45% using Naïve Bayes, 

while on the case of stairs, the best rate is 65.55% also using Naïve Bayes. Unfortunately, Naïve 

Bayes’ sitting and standing recognition is the worst of all classifiers, which significantly drops its 

average recall due to the high prevalence of these activities. Furthermore, there seems to be a trade-
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off between accurately detecting common activities such as standing, sitting and walking com-

pared to less frequent activities such as leaning, stairs and cycling. However, Random Forest seems 

to be the exception as it has the highest performance for both sitting and standing and also rela-

tively good performances in leaning and stairs. Nevertheless, all classifiers except Naïve Bayes 

show a good performance recognizing sitting (92.33% to 98.56%), which is the activity of greatest 

interest since it is the most prevalent form of sedentary behaviour. Furthermore, it should be noted 

that during subject dependent evaluation, classifiers still show good performance when classifying 

all activities. A possible explanation may be that the model detects and learns using the partici-

pant’s own variation of uncommon activities such as leaning, improving the recognition rate for 

that participant in specific.  

The same set of experiments is performed to assess how does the classifiers performance 

is affected when using the features selected using the Information Gain criterion. Each classifier 

is tested using a 6 second sliding window, while training and classification was also done with 10 

different random seed times to minimise the impact of a single randomisation and obtain a more 

realistic result. Performances of each classifier is shown Table 5-7 when using the subject depend-

ent approach and in Table 5-8 when using the subject independent approach.  
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Table 5-7. Recall clustered per activity using Information Gain features and subject dependent 

training. 

Activity 

Recall of each classifier using Information Gain features and dependent evaluation  

Nearest 

Neighbour 

Naïve 

Bayes 

Decision 

Tables 
J48 Bagging LogitBoost 

Random 

Forest 

Sitting 98.82% 97.36% 98.70% 97.85% 98.22% 98.32% 98.71% 

Standing 82.62% 90.86% 86.95% 87.74% 90.47% 89.81% 93.79% 

Leaning 86.71% 85.04% 81.90% 79.30% 80.37% 83.09% 84.03% 

Walking 90.55% 87.52% 79.10% 84.37% 85.16% 87.09% 89.42% 

Cycling 96.59% 97.72% 86.20% 84.97% 87.69% 92.71% 94.25% 

Stairs 75.27% 82.06% 68.40% 62.92% 60.99% 72.73% 71.87% 

ALL 94.36% 95.05% 83.54% 92.67% 93.56% 94.18% 95.51% 

 

 

Table 5-8. Recall clustered per activity using Information Gain features and subject in independ-

ent training. 

Activity 

Recall of each classifier using Information Gain features and independent evaluation  

Nearest 

Neighbour 

Naïve 

Bayes 

Decision 

Tables 
J48 Bagging LogitBoost 

Random 

Forest 

Sitting 98.42% 83.18% 95.74% 94.26% 93.52% 96.88% 94.70% 

Standing 66.00% 55.14% 64.30% 69.54% 78.86% 69.52% 88.18% 

Leaning 32.70% 75.14% 6.10% 14.38% 15.40% 15.10% 12.50% 

Walking 92.68% 77.72% 47.88% 69.08% 77.10% 68.78% 83.08% 

Cycling 24.28% 75.59% 1.08% 15.26% 11.26% 12.36% 2.68% 

Stairs 20.32% 63.86% 12.84% 18.54% 13.10% 9.72% 5.46% 

ALL 86.26% 75.53% 79.72% 80.88% 83.46% 83.88% 85.60% 
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The results indicate that overall performances while using subject dependent training are 

again significantly better compared to subject independent training. The different number of fea-

tures does not significantly change overall performance subject dependent evaluation. Random 

Forest is still the classifier with the best performance followed by Nearest Neighbour, which is 

followed closely by Bagging and Logit Boost. Nevertheless, the performance of all classifiers is 

within a small margin of 92.05% to 95.51% (excluding the case of the Decision table classifier). 

In the case of independent subject evaluation, the Nearest Neighbour and Random Forest 

classifiers have the highest performance with overall performance drops of 8.1% and 11.59% re-

spectively. The Naïve Bayes overall recall dropped the most at 19.52%, but it also the highest 

recall when detecting leaning and stairs, following the trend observed while using all features. In 

fact, all classifiers perform considerably worse when predicting leaning with the highest recall rate 

after Naïve Bayes being Nearest Neighbour with 32.70% and the lowest being J48 with 14.38%.  

After feature selection, features computed from individual pressure sensors are mostly disregarded 

in favour of features computed with overall foot pressure data since most frequent activities such 

as sitting and standing perform well with overall pressure, unlike leaning. Interestingly, overall 

sitting prediction rate did not vary significantly when using all features or Information Gain fea-

tures. This result suggests that sitting is easier to discern among all other activities due to its unique 

characteristics captured in just a few features. However, another possible explanation for this var-

iation in activity prediction performance relies on the amount of training examples available for 

each activity as participants spend more time sitting, standing and walking than leaning, cycling 

or climbing stairs. It is noted that the Naïve Bayes classifier has the best performances for the least 

frequent activities (i.e. leaning, cycling and stairs) while using Information Gain features as the 

Naïve Bayes classifier may be able to better learn distinctive motion patterns per participant in 
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comparison to the other classifiers. Interestingly, all ensemble decision tree-based classifiers (Bag-

ging, LogitBoost and Random Forest) perform well when discerning the remaining and more fre-

quent activities (i.e. sitting, standing and walking). 

After reviewing all the classifiers performance, it is found that some of the ensemble clas-

sifiers with more complex decision trees implementations such as the Bagging, LogitBoost and 

Random Tree classifiers show promising performance but have non-optimal training times. Hence, 

further manipulation of the model parameters is done to find the optimal trade-off between com-

putational cost and optimal performance by evaluating the loss of accuracy when gradually de-

creasing the number of trees and the reduced classifier training time. The results of these experi-

ments are shown in Figures 5-6 and 5-7 when using all features and in Figures 5-8 and 5-9 when 

using only features obtained after applying the Info Gain criterion.  
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A)  

B)  

C)  

Figure 5-6. Average training times when computing all features over decreasing number of trees 

using the A) Random Forest, B) Bagging and C) LogitBoost classifiers during dependent training  
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A)  

B)  

C)  

Figure 5-7. Average training times when computing all features over decreasing number of trees 

using the A) Random Forest, B) Bagging and C) LogitBoost classifiers during independent train-

ing  
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A)  

B)  

C)  

Figure 5-8. Average training times when computing Information Gain features over decreasing 

number of trees using the A) Random Forest, B) Bagging and C) LogitBoost classifiers during 

dependent training 
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A)  

B)  

C)  

Figure 5-9. Average training times when using Information Gain features and A) Random Forest, 

B) Bagging and C) LogitBoost classifiers over decreasing number of trees during independent 

training 
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As can be seen in the Figures 5-6 to 5-9, all three classifiers training times gradually de-

crease in most of the cases when reducing the number of trees. In order to determine the best trade-

off, an overall comparison of the lowest training time and performance (shaded area) among all 

scenarios (all features vs Information Gain features, dependent vs independent evaluation) is con-

sidered. In the case of the Random Forest, when using only the subset of Information Gain features, 

performance is relatively stable until a sharp decline when less than 40 iterations are used during 

subject dependent evaluation. Interestingly, in the case of subject independent evaluation, the high-

est performance occurs at 40 iterations. When using all the features available, performance de-

creases with slight fluctuations during dependent evaluations and more dramatic changes in per-

formance during independent evaluation. From these comparisons, it is concluded that the lowest 

training time of the Random Forest Classifier prior to the biggest reduction in overall performance 

is obtained when using 40 iterations. In the case of the Bagging classifier, both performance and 

training times gradually decrease, with the highest drop in performance occurring between 4 and 

2 trees. Thus, it seems that 4 trees offer the best trade off the Bagging Classifier. Finally, a similar 

behaviour is observed in the case of the Logit Boost, as the biggest reduction in performance occurs 

while using 2 trees.  

After reviewing the performance of all classifiers, the best two classifiers with the best 

prediction rate are found to be the Nearest Neighbour and Random Forest classifiers. Unfortu-

nately, Nearest Neighbour high classification times make it impractical in this application. Thus, 

the next best classifier with the third highest performance would be the LogitBoost. To better 

portray the difference in performance per class of the Random Forest and LogitBoost classifiers, 

confusion matrices are generated and shown in Tables 5-9 to 5-12 to allow a better assessment of 

what activities recognition would be sacrificed by choosing one classifier over the other.  
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Table 5-9. Confusion Matrix when computing all features using the LogitBoost classifier and de-

pendent training evaluation. 

True 

Class  

 

Sitting 98.87% 0.62% 0.02% 0.44% 0.03% 0.01% 

Standing 2.42% 90.92% 0.89% 5.43% 0.06% 0.29% 

Leaning 1.62% 12.09% 85.56% 0.63% 0.00% 0.10% 

Walking 1.85% 9.74% 0.14% 86.74% 0.15% 1.38% 

Stairs 4.63% 0.38% 0.00% 1.27% 92.90% 0.82% 

Cycling 1.33% 2.78% 0.00% 15.25% 0.51% 80.13% 

 Sitting Standing Leaning Walking Stairs Cycling 

Predicted Class 

 

 

Table 5-10. Confusion Matrix when computing all features using the LogitBoost classifier and 

independent training evaluation. 

True 

Class  

 

Sitting 95.46% 3.88% 0.00% 0.43% 0.18% 0.04% 

Standing 13.69% 76.11% 2.06% 7.86% 0.04% 0.23% 

Leaning 12.06% 77.08% 10.17% 0.70% 0.00% 0.00% 

Walking 2.04% 15.66% 0.08% 83.26% 0.11% 1.51% 

Stairs 93.60% 2.03% 0.00% 1.78% 5.39% 0.13% 

Cycling 1.39% 9.05% 0.00% 49.37% 0.38% 22.09% 

 Sitting Standing Leaning Walking Stairs Cycling 

Predicted Class 

 

 

Table 5-11. Confusion Matrix when computing all features using the Random Forest classifier 

and dependent training evaluation. 

True 

Class  

 

Sitting 99.15% 0.60% 0.00% 0.24% 0.00% 0.00% 

Standing 1.18% 94.73% 0.06% 3.91% 0.00% 0.12% 

Leaning 0.99% 10.24% 88.41% 0.33% 0.00% 0.03% 

Walking 1.04% 9.85% 0.02% 88.31% 0.02% 0.75% 

Stairs 2.41% 0.38% 0.00% 0.95% 95.37% 0.89% 

Cycling 0.70% 2.78% 0.00% 15.25% 0.38% 80.89% 

 Sitting Standing Leaning Walking Stairs Cycling 

Predicted Class 
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Table 5-12. Confusion Matrix when computing all features using the Random Forest classifier 

and independent training evaluation. 

True 

Class  

 

Sitting 95.57% 3.95% 0.00% 0.44% 0.00% 0.03% 

Standing 5.01% 88.08% 1.56% 5.20% 0.00% 0.15% 

Leaning 3.08% 77.24% 19.21% 0.43% 0.00% 0.03% 

Walking 1.79% 13.98% 0.11% 85.05% 0.00% 1.73% 

Stairs 69.37% 2.98% 0.00% 0.19% 30.37% 0.00% 

Cycling 1.20% 6.20% 0.06% 40.38% 0.00% 34.43% 

 Sitting Standing Leaning Walking Stairs Cycling 

Predicted Class 

 

As observed in Figures 5-9 to 5-12, the Random Tree classifier performs significantly bet-

ter than the LogitBoost classifier in all activities. Furthermore, during independent evaluation, 

there is a larger difference in performance when predicting standing and cycling. Random Forest 

is misclassifying 10.21% of the standing activity as sitting and walking (5.01% and 5.20% respec-

tively) while LogitBoost is mostly confusing standing as sitting (13.69%). Both classifiers perform 

similarly for walking with a difference less than 1.79%, both mostly misclassifying it as standing. 

Finally, both classifiers perform well when classifying sitting during both subject dependent and 

independent training. Total training times during independent evaluation of both LogitBoost and 

the Random Forest after modifications are also compared and shown in Table 5-13.  

Table 5-13. Average training and classification times in seconds required by each classifier dur-

ing subject dependent and independent training 

Classifier 
All features Info Gain Features 

Training Classification Training Classification 

Subject Dependent 

LogitBoost 8.067 0.008 1.311 0.027 

Random Forest 1.504 0.707 1.684 0.017 

Subject Independent 

LogitBoost 211.725 .624 74.566 1.141 

Random Forest 65.816 0.225 64.674 0.371 
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As shown in Table 5-13, the LogitBoost classifier still shows a longer training and classi-

fication times than the Random Forest classifier. Thus, after considering all advantages and disad-

vantages of each classifier, this thesis will use the Random Forest classifier with 40 iterations as 

the final classification algorithm due to its optimal trade-off of computational cost and overall 

performance. Furthermore, as later discussed in Section 6.1, the lower performance of motion-

based activities such as cycling, stairs and leaning, will be addressed using accelerometers.  

5.1.4 Optimal Feature Selection 

 

Features must be extracted from the data set to accurately detect activity by detecting rel-

evant patterns or characteristics in the pressure signal. Furthermore, it is crucial to carefully choose 

the number and type of features by examining their contribution for activity detection and the 

computational cost they have. According to the stated design purposes, the minimal number of 

features must be selected to keep computational cost as low as possible and keep a final potential 

device portable, relatively inexpensive and with a prolong battery life. In a similar approach to 

finding the optimal window length, this section covers the set of experiments performed to deter-

mine the optimal set of features in terms of best performance and lowest computational cost. Fea-

tures are calculated using aggregated data from both feet as well as using data from each foot 

independently. Similarly, features are calculated on all pressure sensors. Some of these features 

are extracted after reviewing previous based on machine learning theory [141, 315]. Based on the 

main design considerations (see Section 4.1), only time-domain features are used since they require 

less computational resources than frequency-domain features. The complete list of time-domain 

features computed from each window of data is as follows: Mean, Standard Deviation, Variance, 

Maximum Value, Range, Root mean square, Mean Crossings, Total Area under Signal, Kurtosis, 

Skewness, Quartiles (First, Second and Third), Interquartile Range (Q1 and Q3), Mean difference, 
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Signal magnitude area, Signal magnitude vector and Cross Correlation of Left and Right Foot. 

Simple features such as Mean and Maximum Value should clearly indicate the difference between 

full weight-bearing activities such as standing, partially weight-bearing ones such as leaning and 

non-bearing such as sitting. Standard variation and the coefficient of variation (CV) should indi-

cate the amount of motion produced during data collection, with the difference that CV are affected 

by the signals’ mean value (e.g., the gravitational component of acceleration), although standard 

deviation is not. The number of median crossings is an indicator of the frequency of changes in 

the signal. This would help to detect the amount or intensity of motion by identifying sedentary 

activity such as sitting, as well as distinguishing walking and running.  

Features are ranked based on the importance of the information they provide to the model 

by determining which ones discern better among the activities and have a lower computational 

cost. To perform this selection, a technique called Information Gain criterion will be used. The 

Information Gain criterion feature selection technique is chosen because it is one of the fastest 

methods of supervised featured selection. This method provides a ranking of the most relevant 

features ranked by entropy (probabilistic measure of uncertainty). To obtain this optimal subset of 

features, computations are done per each sensor (26 pressure sensors) over sliding windows of 6 

seconds in length as suggested in Section 5.1.2. Table 5-14 presents specific features classified 

them according to their importance based on the Information Gain criterion. 
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Table 5-14. List of features ordered by their Information Gain score and their significance. 
Rank Feature Entropy 

1 Total Mean of Both Insoles 0.892 

2 Total RMS of Both Insoles 0.876 

3 Total Max of Both Insoles 0.838 

4 Total Range of Both Insoles 0.835 

5 Total third Quartile Range of Both Insoles 0.834 

6 Total Standard Deviation of Both Insoles 0.83 

7 Total Variance of Both Insoles 0.83 

8 Total Area under the Curve of Both Insoles 0.815 

9 Total Interquartile Range of Both Insoles 0.744 

10 RMS of Left Sensor #10 0.699 

11 Max of Left Sensor #10 0.68 

12 Mean of Left Sensor #10 0.664 

13 Area under the Curve of Left Sensor #10 0.663 

14 Maximum value of Right Sensor #5 0.641 

15 Total Range of Left Insole 0.634 

16 RMS of Left Sensor #7 0.633 

17 Total Max of Left Insole 0.632 

18 Mean of Left Sensor #7 0.632 

19 Total RMS of Left Insole 0.619 

20 Third Quartile Range of Left Sensor #10 0.611 

21 Standard Deviation of Right Sensor #5 0.613 

22 Area under the curve of Left Sensor #7 0.61 

23 Variance of Right Sensor #5 0.613 

24 Total Variance of Left Insole 0.606 

25 Total Standard Deviation of Left Insole 0.606 

26 Total Standard Deviation of Right Insole 0.604 

27 Maximum value of Left Sensor #7 0.605 

28 RMS of Left Sensor #11 0.604 

29 Total Variance of Right Insole 0.604 

30 RMS of Left Sensor #12 0.601 

 

It is worth noting that not all sensors may necessarily be used in the final implementation 

since accurate prediction may be obtained using only specific sensors as discussed in section 5.1.5. 

Once all the relevant features are identified, their performance with discerning among all the ac-

tivities of interest will be evaluated using both subject independent and dependent evaluation and 

Random Forest Classifier. 



111 

 

As can be observed in Table 5-14, the most important features are the ones computed from 

combining the data set of both insoles instead of computing them per sensor or per foot. Following 

these, the results show that features computed per foot are more important than per sensor features. 

This is good news according to the design goals, since reducing the number of sensors or reducing 

computational data per sensor would reduce computational cost. Therefore, the performance of 

this subset of features will be analysed to determine the model’s behaviour if these features are 

preselected. Furthermore, it will help to determine if features obtained from just overall pressure 

data or obtained form only one foot are necessary to accomplish acceptable performance and per-

haps reduce the required number sensors. In the current implementation, each feature is computed 

26 times due to the 13 sensors on each left and right insole. However, if only overall pressure data 

is required, it would be possible to reduce the number of necessary sensors, reducing features 

computational load as well as minimising the model’s training and classification times. Moreover, 

if features computed from only either the left or right foot are required, computational cost could 

be further reduced by half. Features are grouped into three different classifications presented in 

Table 5-15.  

Table 5-15. Features grouped depending if their calculations are per individual sensors, per in-

sole or for the sum of both insoles. 

Subsets Abbrev. Number 

Features selected with Info Gain Info Gain ~150 

Features per Sensor from Left Insole L_sensor 170 

Features per Sensor from Right Insole R_sensor 170 

Features from total sum of all sensors data from Left Insole  L_Sum 14 

Features from total sum of all sensors data from Right Insole R_Sum 14 

Features from total sum of all sensors data from Both Insoles LR_Sum 44 

 

Features for each foot are computed after combining the overall data of the 13 sensors per 

insole over the 6 second window, or in the case of the features for both insoles, after combining 

all 26 sensors. This process keeps computationally cost low since it only involves simple linear 
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operations. In the specific case of features that involve only one of the feet, the correlation feature 

is not computed. The model’s performance trade-off will be evaluated when using the features 

filtered with the Information Gain criterion, preselected features computed from the prior sum of 

both feet pressure data and features obtained from each of the respective foot. Although it is rea-

sonable to expect that performance to be similar when using Left foot or Right Foot features, both 

feet are evaluated independently for varication purposes.  A sliding window of 6 seconds is used 

in the modelling using both subject dependent and independent training. Table 5-16 and 5-17 pre-

sent the comparison of the activity recognition performance of each subset of features while using 

Random Forest, which is determined as the optimal classifier in the previous section (see Section 

5.1.3). Full results are shown in Appendix E. 

Table 5-16. Average recall of each feature subset using the Random Forest trained over a 6-sec-

ond sliding windows using subject dependent training. 

Activity 
Average recall using Random Forest 

ALL Info Gain L_Sensor R_Sensor L_Sum R_Sum LR_Sum 

Sitting 99.01% 98.71% 98.78% 98.59% 97.46% 96.97% 98.79% 

Standing 94.91% 93.79% 91.14% 90.08% 83.15% 80.04% 93.33% 

Leaning 89.96% 84.03% 84.74% 81.58% 68.11% 63.62% 84.37% 

Walking 89.47% 89.42% 88.52% 89.08% 83.62% 85.00% 87.62% 

Stairs 96.21% 94.25% 95.38% 95.53% 81.78% 77.76% 89.20% 

Cycling 78.29% 71.87% 76.95% 76.61% 54.66% 59.11% 64.73% 

All 96.29% 95.51% 95.08% 94.70% 90.80% 89.91% 94.99% 

 

 

Table 5-17. Average recall of each feature subset using the Random Forest classifier trained over 

a 6-second sliding windows using subject independent training. 

Activity 
Average recall using Random Forest 

ALL Info Gain L_Sensor R_Sensor L_Sum R_Sum LR_Sum 

Sitting 95.12% 93.99% 94.67% 94.70% 90.76% 88.87% 90.74% 

Standing 88.92% 86.30% 76.45% 73.42% 66.69% 65.59% 83.32% 

Leaning 16.38% 11.37% 8.39% 10.02% 14.04% 5.67% 17.38% 

Walking 81.73% 81.20% 82.93% 79.94% 77.12% 71.66% 78.01% 

Stairs 26.05% 1.05% 10.35% 31.40% 26.75% 11.35% 17.17% 

Cycling 36.63% 13.34% 37.89% 32.40% 9.98% 6.69% 7.11% 

All 87.40% 83.92% 84.49% 84.01% 79.68% 76.99% 82.57% 
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A minimal decrease in overall performance during subject dependent training is observed 

when using all features computed per sensor of both insoles and when using only the left insole 

(1.21%) or the right insole (1.59%). Expectedly, a relatively insignificant difference exists between 

right or left foot (0.38%). Stairs, leaning and stairs have a very significant drop in performance 

occur during independent training. Similar behaviour can be observed when features are computed 

per insole, with overall performance dropping more, particularly in the case. A possible explana-

tion is that leaning relies more on features computed per sensor since one of the main differences 

between standing and leaning is the area of the foot where pressure is applied. Finally, when com-

bining features from both feet and adding features computed from the sum of both insoles pressure 

data, a similar performance is achieved. Thus, it can be assumed that static activities are success-

fully discerned without analysing sensors individually. 

In the case of subject independent training, overall performance was at its worst when using 

L_sensor or R_Sensor feature subsets. The left and right insoles have a relatively similar perfor-

mance with differences of 0.48% when using computations per sensor and larger difference of 

3.69% when using the sum of all sensors per insole. Differences in performance may also be in-

fluenced by the fact that sensors from the one side may have become weaker faster over the dura-

tion of the study. Although another possible explanation could be that the pressure on the right 

foot provides better information in terms of activity recognition, subject dependent training did 

not show this behaviour. Thus, before making any definite assumptions, a bigger set of data col-

lection with different pair of insoles should be done to discard the possibility of a being a specific 

problem of the insoles used in this study. Regarding the performance when using both subsets 

L_Sum and R_Sum, overall performance became unsurprisingly worse due to the small number of 

features. Furthermore, a considerable decline in walking, stairs and cycling is noticed as using only 
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overall features of one foot do not provide information to the algorithm regarding the cadence of 

these activities. For instance, while using feature subset L_sensor or R_sensor, using information 

from each individual sensor allows the algorithm to identify walking or stairs by detecting the 

traditional heel strike, foot flat, heel off, toe off cycle that occurs during gait. 

Interestingly, the reduction in performance (1.3% and 4.87% during subject dependent and 

independent training respectively) for some activities is not very significant when using overall 

features per insole from both feet (subset LR_Sum) compared to using all features. It seems that 

using features computed from overall pressure data over both insoles achieves acceptable perfor-

mance and reduces the unnecessary complexity, computational cost and added power requirements 

introduced by having to compute features from every single sensor. Finally, the computational cost 

is evaluated for each feature subset as shown in Table 5-18.  

Table 5-18. Average training and classification times in seconds required by each classifier when 

using subject independent training.  

 Training Time Classification Time 

All 46.651 0.225 

Info Gain 27.97 0.21 

L_Sensor 22.996 0.136 

R_Sensor 26.806 0.138 

L_Sum 11.721 0.194 

R_Sum 12.497 0.199 

LR_Sum 17.592 0.16 

 

To summarise, using all available features performance has the best performance but also 

the highest computational cost while the feature subset obtained after applying the Information 

Gain criterion with a .5 entropy threshold produced the second-best performance. However, using 

the LR_Sum feature set achieved a similar performance with significantly reduced training times. 

Based on the results, it can be concluded that using overall features of both feet or features per 

sensor of one foot produces the optimal true positive prediction rate. Furthermore, computational 
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cost in terms of training time is also the third lowest (17.592 seconds). Thus, in the final imple-

mentation of this work, the subset of 44 features computed with overall pressure data was used. 

Although it is not the least computational expensive option, it offers optimal performance for a 

minimal increase in computational cost. Although a possible concern arises in terms of drop of 

performance in stairs and cycling due to limited amount of training examples, the total impact over 

weighted average performance is equally small since these tasks seldom occur during daily life.  

5.1.5 Optimal Sensor Location 

 

Previous studies have shown that just a few sensors are frequently necessary to obtain ac-

ceptable performance, depending the design goals [156]. Since the objective is to recognize sitting 

among other types of activities, having a detailed pressure map of the foot sole is likely to be 

unnecessary. In fact, the previous section (see Section 5.1.4) supported this hypothesis by showing 

that computing and using features from overall pressure instead of individual sensors produces 

only a small drop in performance (1.3% during subject dependent training and 4.87% during in-

dependent training) and a significant improvement in training times and computational cost. Thus, 

the goal of this section is to evaluate the contribution of each individual sensor to activity recog-

nition accuracy and determine the optimal sensor configuration in terms of performance and com-

putational cost. The analysis in this work is performed using a backward selection method. First, 

the baseline accuracy for all sensors is determined using all sensors (previously done in section 

5.1.5). Next, sensors are excluded one at a time from the baseline configuration and performance 

is evaluated. Afterwards, the configuration with the best performance becomes the new base con-

figuration. This procedure is repeated until only one sensor is left. It is worth noting that Force 

related features such as Overall Force Correlation are removed from the whole procedure since 

Force values are obtained with resultant force from all sensors. Instead, the correlation between 
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the sum of pressures of remaining sensors is computed and included. Sensors numbering, and lo-

cation can be seen in Figure 5-10. Overall performance using each configuration is shown in Table 

5-19. All computations are done using the Random Forest classifier, a sliding window of 6 seconds 

and both subject dependent and independent evaluation.  

 

 

Figure 5-10. Distribution of the 13 pressure sensors across the insole. Sensor location was equal 

in both right and left insoles. Only one insole is shown for the sake of simplicity. 
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Table 5-19. Backward selection of the best sensor configuration. Bold font highlights 

the best average performance for each number of active sensors. 

 

 

As shown in Table 5-19, pressure data of all available sensors is clearly redundant. The 

best overall performance is obtained when using only 6 sensors, namely 5, 6, 7, 8, 10 and 11. A 

possible explanation of the lower overall performance may be that sensors 0, 1, 3, 4, and 9 insert 

counterproductive variability in pressure patterns. Sensors 0 and 1 are located in the toe area sug-

gesting that measuring pressure in the frontal area of the foot may be unnecessary. In fact, the first 

sensors to be removed are the ones in the upper half of the foot (0 to 4) with performance improving 

slightly. After crossing the optimal performance at 6 sensors, performance starts to drop at rate of 

3-5% when removing some of the sensors at the heel and central foot area. Furthermore, the last 

sensor to be removed and the one with the most important information for activity recognition is 

sensor 10, located in the heel area. This may indicate that the heel area of the foot is more relevant 

for activity recognition, a result that agrees with other studies found in the literature [156]. Finally, 

the computational cost is evaluated for each sensor configuration as shown in Table 5-20. Training 

13 12 11 10 9 8 7 6 5 4 3 2

0 87.84 88.88 88.76 89.80 Nul Nul Nul Nul Nul Nul Nul Nul

1 87.39 87.69 88.67 88.91 89.98 Nul Nul Nul Nul Nul Nul Nul

2 87.63 87.84 88.86 87.83 89.17 89.73 89.85 Nul Nul Nul Nul Nul

3 87.75 88.41 89.24 Nul Nul Nul Nul Nul Nul Nul Nul Nul

4 88.26 Nul Nul Nul Nul Nul Nul Nul Nul Nul Nul Nul

5 86.06 86.36 86.21 86.84 87.61 87.26 87.74 86.35 86.45 85.78 82.33 79.23

6 87.30 87.70 88.16 88.72 89.56 89.51 89.03 88.03 87.28 86.49 84.46 Nul

7 86.52 87.47 87.59 87.60 88.37 88.54 88.51 88.74 87.94 87.20 Nul Nul

8 86.66 87.54 87.46 88.32 89.12 89.33 88.62 90.14 Nul Nul Nul Nul

9 86.98 89.66 Nul Nul Nul Nul Nul Nul Nul Nul Nul Nul

10 86.07 87.67 86.18 86.63 87.11 87.11 87.63 87.57 87.46 77.41 68.81 68.22

11 86.32 87.36 88.45 88.43 89.39 88.71 88.03 88.03 88.19 Nul Nul Nul

12 88.13 88.79 88.92 89.21 89.82 90.02 Nul Nul Nul Nul Nul Nul

Sensor 

Removed

Number of Active Sensors
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times gradually decrease as sensors are removed with some surprising exception in which they 

slightly increase.  

Table 5-20. Average training and classification times in seconds required by each sensor  

configuration.  

Time 
Number of Sensors  

13 12 11 10 9 8 7 6 5 4 3 2 

Training 7.85 8.85 8.23 8.32 7.74 6.60 6.65 6.57 6.96 6.18 5.88 6.53 

Classifi-

cation 
0.033 0.034 0.037 0.041 0.027 0.029 0.034 0.033 0.032 0.036 0.034 0.040 

 

5.2 Results: Model Integration 

 

Once the best parameters are identified, the proposed model’s performance is evaluated. 

Three different sets of features are considered for the calculations: a worst-case scenario using all 

features, a set with features calculated with the Information Gain criterion, and an optimal scenario 

where the LR_Sum feature set is used which is the least computationally expensive of the three. 

These last two features sets are considered since they showed similar performance as shown in 

section 5.5.4. Furthermore, computations are also done using two configurations: one with all sen-

sors and the other one using only 6 sensors (5,6,7,8,10 and 11), which is deemed to be the one with 

the optimal trade-off in terms of accuracy and computational cost in Section 5.1.5. A sliding win-

dow of 6 seconds is used in the modelling and both subject dependent and independent evaluation 

is considered. Tables 5-21 and 5-22 present the comparison of the activity recognition performance 

of each case while using Random Forest, determined as the optimal classifier in section 5.1.3. Full 

performance measurements are shown in Appendix F. 
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Table 5-21. Average recall using both Laboratory and Free-living data and the Random Forest 

classifier over a 6 second sliding windows during subject dependent training. 

Activity 

All features LR_SUM Features Information Gain Features 

All sensors 
Optimal  

Sensors 
All sensors 

Optimal  

Sensors 
All sensors 

Optimal  

Sensors 

Sitting 
99.01% ± 

1.39% 

98.9% ± 

1.62% 

98.79% ± 

1.86% 

98.67% ± 

1.74% 

98.73% ± 

2.08% 

98.72% ± 

2.01% 

Standing 
94.91% ± 

2.5% 

94.2% ± 

2.87% 

93.33% ± 

3.15% 

92.92% ± 

3.03% 

93.87% ± 

2.88% 

92.86% ± 

3.56% 

Leaning 
89.96% ± 

7.72% 

87% ±  

8.15% 
84.37% ± 

9.83% 

84.7% ± 

9.73% 
84.01% ± 

9.65% 

82.27% ± 

9.4% 

Walking 
89.47% ± 

11.86% 

88.82% ± 

12.27% 

87.62% ± 

12.37% 

86.78% ± 

13.48% 

89.38% ± 

12.11% 

88.57% ± 

12.55% 

Cycling 
96.21% ± 

6.31% 

94.93% ± 

6.47% 

89.2% ± 

10.67% 

87.52% ± 

10.98% 

94.43% ± 

7.99% 

92.59% ± 

10.2% 

Stairs 
78.29% ± 

14.65% 

76.39% ± 

14.48% 
64.73% ± 

19.99% 

68.39% ± 

16.55% 
72.15% ± 

17.08% 

67.71% ± 

18.2% 

ALL 
96.29% ± 

4.32% 

95.83% ± 

4.79% 

94.99% ± 

6.32% 

94.8% ± 

6.08% 

95.51% ± 

5.28% 

95.03% ± 

6.02% 

 

 

Table 5-22. Average recall using both Laboratory and Free-living data and the Random Forest 

classifier over a 6 second sliding windows during subject independent training. 

Activity 

All features LR_SUM Features Information Gain Features 

All sensors 
Optimal  

Sensors 
All sensors 

Optimal  

Sensors 
All sensors 

Optimal  

Sensors 

Sitting 
95.12% ± 

5.91% 

94.75% ± 

5.86% 
90.74% ± 

6.27% 

92.91% ± 

5.95% 
93.32% ± 

5.49% 

93.31% ± 

5.18% 

Standing 
88.92% ± 

7.38% 

87.52% ± 

8.23% 

83.32% ± 

10.19% 

85.1% ± 

10.02% 

85.44% ± 

9.87% 

87.35% ± 

8.73% 

Leaning 
16.38% ± 

18.72% 

22.22% ± 

23.98% 
17.38% ± 

16.09% 

16.66% ± 

17.68% 
9.84% ± 

11.34% 

10.41% ± 

11.89% 

Walking 
81.73% ± 

16.55% 

82.77% ± 

14.91% 
78.01% ± 

16.47% 

81.93% ± 

15.45% 
82.85% ± 

19.54% 

84.2% ± 

13.37% 

Cycling 
26.05% ± 

30.66% 

35.78% ± 

34.67% 

17.17% ± 

19.82% 

22.73% ± 

27.49% 

1.26% ± 

2.86% 

5.93% ± 

9.3% 

Stairs 
36.62% ± 

22.81% 

36.96% ± 

17.12% 
7.11% ± 

5.78% 

14.16% ± 

13.73% 
14.03% ± 

13.15% 

8.11% ± 

9.45% 

ALL 
87.4% ± 

18.3% 

87.44% ± 

16.72% 
82.57% ± 

19.26% 

84.92% ± 

19.04% 
84.69% ± 

21.51% 

85.18% ± 

21.43% 
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5.3 Discussion 

 

As shown in Tables 5-21 and 5-22, overall recalls for all configurations during subject 

dependent evaluation are significantly better compared to subject independent evaluation. It is 

worth noting that this difference in performance may be due to the different validations methods 

since independent evaluation uses an independent test set. Unsurprisingly, the best overall perfor-

mance occurs when using all available features and six sensors. However, this just occurs when 

using all features, since computations with the rest of the feature sets follow closely behind. Nev-

ertheless, there is only a small drop in overall performance (≤0.53%), particularly in the case of 

sitting, and standing. A more significant change occurs in the case of cycling and stairs, and, to a 

lesser extent, in leaning. This makes senses, since the same behaviour is observed when analysing 

the changes in performance when using different features sets in Section 5.1.4 and different sensor 

configurations in Section 5.1.5.  

In the case of independent evaluation, the best overall performance occurs when all features and 

only 6 sensors are used. More interestingly, overall performance is slightly higher (0.04% to 

2.35%) in the rest of the 6-sensor configurations, an encouraging result that suggests a general 

good performance of the selected parameters. Unfortunately, a sharp drop in performance occurred 

when predicting both leaning and climbing stairs in comparison to subject dependent training. A 

possible explanation for this considerably low recognition rate is that these two activities may vary 

considerably among participants. This misclassification intensifies due to the complexity of both 

activities during free-living settings. In fact, leaning is an activity not strictly defined and relatively 

difficult to assess. Moreover, leaning can be further divided into different degrees depending on 

the inclination of the participant and how much weight is being supported by the object, structure 

or wall. For example, during daily life, participants lean against elevator walls, benches, walls, 
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cubicles, poles, windows, etc. depending on their relevant locations such as work, home or while 

commuting. Furthermore, it is observed that all leaning activities are relatively different among 

participants compared to standing or sitting. In fact, some participants rarely lean at all, reducing 

the quality of the model to recognize the activity by offering few training examples or biasing the 

model with a certain leaning activity by a specific participant. A similar situation occurred with 

stairs since the number of stairs and stair climbing duration of each participant varied significantly. 

Moreover, many different types of stairs are observed such as number of steps, width, length and 

step distribution, further introducing confounding factors to the model.  Another problem found 

with cycling was the limited amount of training examples since almost none of the participants 

cycled during the free-living component. That being said, recalls of both activities performed rel-

atively well during subject dependent evaluation suggesting it is mostly an issue when trying to 

predict these activities without first training the model with own user data. In the case of cycling, 

it can be observed that using less features or sensors drastically reduces its recognition perfor-

mance. This is supported by similar behaviour being observed in section 5.1.4 when exploring 

different features sets. Fortunately, activities of greater interest such as sitting standing and walk-

ing show good acceptable performance rates.  

The second main consideration to assess each configuration overall viability are classifica-

tions and training times since they reflect computational cost. As in previous occasions, each con-

figuration is tested with the Weka Toolkit using a 2.5 GHz Intel core microprocessor; training and 

classification times are extracted and presented in Table 5-23. Training and classification times 

were individually obtained for each participant and averaged in the case of the subject dependent 

method and across all participants in the case of the subject independent method.  
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Table 5-23. Average training and classification times in seconds required by each classifier.  

 

All features LR_Sum Features Information Gain Features 

All sensors 
Optimal  

Sensors 
All sensors 

Optimal  

Sensors 
All sensors 

Optimal  

Sensors 

Subject Dependent 

Training 1.697 1.594 0.856 0.997 1.559 1.257 

Classification 0.009 0.011 0.008 0.015 0.012 .013 

Subject Independent 

Training 81.350 65.353 35.169 46.623 107.962 47.947 

Classification 0.106 0.112 0.095 0.139 0.235 0.125 

 

The configuration in which all sensors and features have the highest training time occurs 

while using all sensors and Information Gain features during independent training. It seems that 

the additional calculations to obtain the highest ranked features using the Information Gain method 

prolonged training time more than all the features. The lowest training times are found while using 

the LR_Sum feature set and only 6 sensors. This is to be expected, since the LR_Sum feature set 

has the smallest number of attributes (44). Similarly, the amount of data from the sensors handled 

by the model is reduced by more than half (7/13) by omitting redundant sensors, further reducing 

the computational cost. The same trend can be observed in both dependent and independent eval-

uation. To summarise, the best configuration in terms of overall performance and computational 

performance is the one using 6 sensors and the LR_Sum feature set with a recall of 94.8% and 

training times of 0.856 seconds using subject dependent training and a recall of 84.92% and train-

ing times of 35.169 seconds using independent training.  
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Chapter 6: Model Improvement, Validation and Discussion 
 

6.1 Performance combining plantar pressure and acceleration data 

 

The proposed model presented in section 5.2 has a reasonable performance of 94.8% dur-

ing dependent training and 84.92% during independent training while using a 6-seconds sliding 

window, Random Forest classifier, all features, and 6 plantar pressure sensors. This section will 

further explore if incorporating accelerometer data to the model improves its overall performance, 

particularly in the case of dynamic activates such as climbing stairs, cycling and walking.  

6.1.1 Incorporation of Foot Accelerometer 

 

As discussed in Section 2.3.3, accelerometers have been one of the most important tech-

nologies used for activity recognition and physical activity monitoring. They have been incorpo-

rated into large-scale public health research and have shown to be instrumental due to their low 

energy requirements, small size and overall reliability. Unfortunately, they are not well suited for 

activities which are mostly static and underperform when used to measure sedentary behaviour 

monitoring. Nevertheless, as discussed in Section 2.3.3, accelerometers have shown excellent per-

formance when identifying non-static activities with period motions such as walking. Thus, this 

section will explore if the addition of foot-based accelerometers sufficiently improves the proposed 

model performance to justify the added computational cost. 

Data is extracted at a sampling rate of 10 Hz (same as the pressure sensors) from an accel-

erometer located at the centre of each insole. Performance is obtained by training the model using 

features only from the insoles’ accelerometer data, while also identifying the most discriminant 

features using the info gain criterion. In general, adding both the accelerometer sensor and the 
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accelerometer data to the current model structure may not present a significant problem due to 

their small size and weight to current pressure sensors. Nevertheless, the added computational 

expense as well as any increase in cost should be considered to determine if the trade-off is justi-

fiable in the potential final implementation. The same activities to recognize are the same as in 

previous experiment’s and data processing techniques are used as with the pressure data. Accel-

erometer features are also computed over 6 seconds windows and using the same Random Forest 

classifier. Overall results are shown in Tables 6-1 and 6-2 while other measurements of perfor-

mance are shown in Appendix G.  

Table 6-1. Average recall using different features sets while adding different acceleration data 

(ACC) from each foot. Computations are performed over a 6 second sliding window using the 

Random Forest classifier and subject dependent training (10- fold cross validation). 

Activity 

All Features LR_SUM Features 
Information Gain  

Features 

Pressure 
Pressure + 

Foot ACC 

Pressure Pressure + 

Foot ACC 

Pressure Pressure + 

Foot ACC 

Sitting 
98.9% ± 

1.62% 

98.98% ± 

1.7% 

98.67% ± 

1.74% 

98.83% ± 

1.94% 

98.72% ± 

2.01% 

98.74% ± 

2.24% 

Standing 
94.2% ± 

2.87% 

94.73% ± 

2.9% 

92.92% ± 

3.03% 

94.47% ± 

2.77% 

92.86% ± 

3.56% 

94.21% ± 

2.9% 

Leaning 
87% ± 

8.15% 

87.29% ± 

8.34% 

84.7% ± 

9.73% 

84.71% ± 

10.6% 

82.27% ± 

9.4% 

81.64% ± 

9.14% 

Walking 
88.82% ± 

12.27% 

89.48% ± 

12.91% 

86.78% ± 

13.48% 

89.49% ± 

13.75% 

88.57% ± 

12.55% 

89.15% ± 

13.53% 

Cycling 
94.93% ± 

6.47% 

96.71% ± 

5.16% 

87.52% ± 

10.98% 

95.93% ± 

6.15% 

92.59% ± 

10.2% 

94.81% ± 

9.95% 

Stairs 
76.39% ± 

14.48% 

77.45% ± 

15.29% 

68.39% ± 

16.55% 

76.59% ± 

16.01% 

67.71% ± 

18.2% 

67.02% ± 

19.63% 

ALL 
95.83% ± 

4.79% 

96.03% ± 

2.95% 

94.8% ± 

6.08% 

95.79% ± 

3.04% 

95.03% ± 

6.02% 

95.4% ± 

3.34% 
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Table 6-2. Average recall using different features sets while adding different acceleration data 

(ACC) from each foot. Computations are performed over a 6 second sliding window using the 

Random Forest classifier and subject independent training. 

Activity 

All Features LR_SUM Features IG Features 

Pressure 
Pressure + 

Foot ACC 

Pressure Pressure + 

Foot ACC 

Pressure Pressure + 

Foot ACC 

Sitting 
94.75% ± 

5.86% 

96.25% ± 

4.21% 

92.91% ± 

5.95% 

95.93% ± 

4.38% 

93.31% ± 

5.18% 

96.47% ± 

3.93% 

Standing 
87.52% ± 

8.23% 

90.24% ± 

6.62% 

85.1% ± 

10.02% 

90.55% ± 

6.95% 

87.35% ± 

8.73% 

90.03% ± 

7.47% 

Leaning 
22.22% ± 

23.98% 

21.59% ± 

19.32% 

16.66% ± 

17.68% 

4.4% ± 

6.21% 

10.41% ± 

11.89% 

13.96% ± 

10.87% 

Walking 
82.77% ± 

14.91% 

88.3% ± 

11.99% 

81.93% ± 

15.45% 

88.27% ± 

11.67% 

84.2% ± 

13.37% 

88.17% ± 

11.82% 

Cycling 
35.78% ± 

34.67% 

91.55% ± 

15.48% 

22.73% ± 

27.49% 

82.43% ± 

25.02% 

5.93% ± 

9.3% 

95.65% ± 

8.58% 

Stairs 
36.96% ± 

17.12% 

54.45% ± 

19.53% 

14.16% ± 

13.73% 

15.25% ± 

11.52% 

8.11% ± 

9.45% 

60.79% ± 

17.58% 

ALL 
87.44% ± 

16.72% 

89.98% ± 

6.27% 

84.92% ± 

19.04% 

88.31% ± 

7.62% 

85.18% ± 

21.43% 

89.83% ± 

6.64% 

 

As expected, Table 6-1 shows a slight increase of 0.2% to 0.99% in overall performance 

in all pressure feature sets when adding the foot acceleration features during the dependent evalu-

ation. An even larger improvement of 2.54% to 4.65% in overall performance is observed during 

independent evaluation. In the case of individual classes or activities, it is found that the addition 

of feet acceleration improved mobile activities such as leaning, cycling and stairs. However, this 

improvement comes at the cost of slightly diminishing walking recognition rate, possibly due to 

misclassifying walking as climbing stairs since both activities have similar acceleration patterns. 

A significant improvement is observed during independent evaluation for “cycling” (55.77%-

89.72%) and to a lesser extend “stairs” (1.10% - 52.68%), which is expected due to both activities 

easily identifiable periodicity. However, in some cases, “leaning” experiences a drop (-.64% to -

12.26%) in recognition rate. A possible explanation is that incorporating the features from the 
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accelerometers would increase misclassification of leaning as standing because the accelerometers 

are located at the base of the foot and their readings are practically the same during both activities.  

Finally, an additional cross validation analysis is performed to evaluate the performance of 

the proposed method while using 50% of the training data (2-folds) instead of the 90% in the 10-

fold method. Although related work and extensive tests on numerous datasets with different learn-

ing techniques have shown that 10 is an appropriate number of folds to get the best estimate of 

error, a good performance in this additional analysis would suggest that a smaller data set might 

be sufficient in future implementations, creating the potential of further reducing computational 

cost and overall data collection times [311]. Similar to the 10-fold validation method, the results 

from the iterations are averaged to produce a single estimated performance. Recall results are 

shown in Table 6-3.  

Table 6-3. Average recall using different feature sets while adding different acceleration data 

(ACC) from each foot. Computations are performed over a 6 second sliding window using the 

Random Forest classifier and subject dependent training (2-fold cross validation). 

Activity 

All Features LR_SUM Features 
Information Gain  

Features 

Pressure 
Pressure + 

Foot ACC 

Pressure Pressure + 

Foot ACC 

Pressure Pressure + 

Foot ACC 

Sitting 
98.79% ± 

1.83% 

98.89% ± 
1.87% 

98.54% ± 
1.94% 

98.85% ± 
2.04% 

98.34% ± 
3.13% 

98.47% ± 
3.11% 

Standing 
93.77% ± 

2.95% 

94.39% ± 
2.94% 

92.11% ± 
3.41% 

94.02% ± 
3.19% 

91.31% ± 
4.75% 

93.49% ± 
3.87% 

Leaning 
84.1% ± 
9.16% 

84.42% ± 
9.51% 

81.71% ± 
10.68% 

82.22% ± 
11.43% 

76.07% ± 
21% 

76.23% ± 
21.01% 

Walking 
88.06% ± 
13.05% 

89.15% ± 
13.79% 

85.94% ± 
14.12% 

89.06% ± 
14.23% 

86.28% ± 
18.38% 

87.56% ± 
18.78% 

Cycling 
92.67% ± 

8.54% 

96.12% ± 
6.2% 

84.68% ± 
12.98% 

95.92% ± 
7.06% 

86.06% ± 
16.88% 

90.15% ± 
17.63% 

Stairs 
73.46% ± 
15.59% 

74.59% ± 
15.59% 

64.6% ± 
18.63% 

71.47% ± 
17% 

63.04% ± 
20.81% 

63.21% ± 
21.1% 

ALL 
95.37% ± 

5.39% 

95.79% ± 
5.09% 

94.22% ± 
6.83% 

95.53% ± 
5.58% 

93.76% ± 
7.33% 

94.49% ± 
7.04% 
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Interestingly, recall rates are relatively similar between both validation methods. The big-

gest drop predictably occurred during the two activities with the lowest performance: a 2.49 % 

reduction during leaning and a 5.12% reduction during stairs. Nevertheless, acceptable perfor-

mance was obtained for overall recognition as well as specific activities. Thus, it seems that using 

half of the total data for training purposed achieves similar results than using 90% in 10-fold cross 

validation. Such results not only support the generalisation of the method but are also encouraging 

in terms of real-life feasibility since minimising the amount of training data translates into a re-

duction of the time the end-user needs to spend training the potential device. 

In summary, the improvement achieved by incorporating accelerometer data during subject 

dependent evaluation is small (less than 1%). In the case of subject independent evaluation, a 

higher improvement of 2.54% to 4.65% is noticed with a significant improvement for the cycling 

activity. Finally training and classification times are presented in Table 6-4 to illustrate the respec-

tive changes in computational cost when adding accelerometer data and while using different fea-

ture sets. 

Table 6-4. Average training and classification times in seconds required by each configuration. 

Computations are performed over a 6 second sliding window using the Random Forest classifier 

and both subject dependent and independent training. 

 All features LR_SUM Features Information Gain Features 

 Pressure 
Pressure + 

ACC 
Pressure 

Pressure + 

ACC 
Pressure 

Pressure + 

ACC 

Subject Dependent 

Training 1.594 1.632 1.266 1.901 1.257 1.979 

Classification 0.011 0.009 0.015 0.012 0.014 0.016 

Subject Independent 

Training 65.353 107.445 46.623 51.168 47.947 106.901 

Classification 0.112 0.173 0.139 0.092 0.125 0.186 
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The highest training times are found during independent training when using all features 

algorithm and adding the foot’s accelerometer features. Interestingly, similar classification times 

increase is found when using all features and the Information Gain feature set. A possible expla-

nation to this increase in classification time may be that a finer discretisation is needed when in-

corporating accelerometer features in comparison to just using pressure-based features. This means 

that using Information Gain features and accelerometer features may not be the optimal choice 

considering the goal of keeping a low computational cost. However, the model has the lowest 

training times during dependent training while including acceleration data when using both the 

LB_Sum feature set and the Information Gain feature set. This time reduction can be easily ex-

plained due to the reduced number of features. Interestingly, in the case of the LB_Sum feature 

set, adding the accelerometer data cause only a small increase in training times compared to using 

only pressure sensors in both dependent and independent training. Thus, the use of an accelerom-

eter to increase the recognition of dynamic activities may be justified in this case in terms of com-

putational cost. Nevertheless, further considerations should be made when translating the method 

to a wearable device, since adding the accelerometers might increase the cost, battery demands 

and size. In fact, maintaining the width of the device to a minimum may be of particular interest 

since the proposed location of the device will be inside the shoe and beneath the participant’s feet.  

6.1.2 Incorporation of Thigh Raw Acceleration 

 

This section explores if incorporating accelerometer data from the ActivPAL (located at 

the thigh) improves the overall performance of the model, particularly in the case of dynamic ac-

tivates such as climbing stairs, cycling and walking. Accelerometer data from the ActivPAL will 

be incorporated to the previous model of pressure plus foot acceleration. This second evaluation 

will be done to determine if there is any value of incorporating a secondary accelerometer sensor 
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on the thigh, considering both recognition performance and everyday convenience. Despite the 

small size of the ActivPAL, it is only used for research purpose as it has to be attached to the 

subject’s thigh, proving to be more invasive than general wearable technology in the market. Ac-

celerometer features are computed over 6 second windows and using the same Random Forest 

classifier. Overall results are shown in Table 6-5 and Table 6-6 while more detailed results of the 

ActivPAL can be found in Appendix H. Performance using the previous configuration of pressure 

sensors and foot accelerometer is added to facilitate its comparison.  

Table 6-5. Recall using different features sets while adding acceleration data (ACC) from the 

ActivPAL. Computations are performed over a 6 second sliding window using the Random For-

est classifier and subject dependent training. 

Activity 

All Features LR_SUM Features Information Gain Features 

Feet ACC 
Feet + Thigh 

ACC 
Feet ACC 

Feet + Thigh 

ACC 
Feet ACC 

Feet + Thigh 

ACC 

Sitting 
98.98% ± 

1.7% 

99.43% ± 

0.45% 

98.83% ± 

1.94% 

99.42% ± 

0.49% 

98.74% ± 

2.24% 

99.27% ± 

0.59% 

Standing 
94.73% ± 

2.9% 

95.54% ± 

2.4% 

94.47% ± 

2.77% 

95.07% ± 

2.46% 

94.21% ± 

2.9% 

94.71% ± 

2.78% 

Leaning 
87.29% ± 

8.34% 

89.41% ± 

6.44% 

84.71% ± 

10.6% 

88.85% ± 

7.75% 

81.64% ± 

9.14% 

83.22% ± 

8.99% 

Walking 
89.48% ± 

12.91% 

92.09% ± 

5.6% 

89.49% ± 

13.75% 

91.7% ± 

5.92% 

89.15% ± 

13.53% 

91.43% ± 

6.22% 

Cycling 
96.71% ± 

5.16% 

96.79% ± 

6.26% 

95.93% ± 

6.15% 

96.38% ± 

6.87% 

94.81% ± 

9.95% 

93.75% ± 

12.16% 

Stairs 
77.45% ± 

15.29% 

79.11% ± 

14.77% 

76.59% ± 

16.01% 

78.7% ± 

15.57% 

67.02% ± 

19.63% 

72.82% ± 

21.01% 

ALL 
96.03% ± 

2.95% 

96.97% ± 

3.97% 

95.79% ± 

3.04% 

96.8% ± 

4.14% 

95.4% ± 

3.34% 

96.21% ± 

5.2% 
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Table 6-6. Recall using different features sets while adding acceleration data (ACC) from the 

ActivPAL. Computations are performed over a 6 second sliding window using the Random For-

est classifier and subject independent training. 

Activity 

All Features LR_SUM Features Information Gain Features 

Feet ACC 
Feet + Thigh 

ACC 
Feet ACC 

Feet + Thigh 

ACC 
Feet ACC 

Feet + Thigh 

ACC 

Sitting 
96.25% ± 

4.21% 

97.89% ± 

2.87% 

95.93% ± 

4.38% 

97.73% ± 

2.87% 

96.47% ± 

3.93% 

97.8% ± 

2.92% 

Standing 
90.24% ± 

6.62% 

89.06% ± 

8.4% 

90.55% ± 

6.95% 

88.75% ± 

7.82% 

90.03% ± 

7.47% 

82.73% ± 

25.03% 

Leaning 
21.59% ± 

19.32% 

22.37% ± 

20.39% 

4.4% ± 

6.21% 

16.96% ± 

17.94% 

13.96% ± 

10.87% 

3.95% ± 

4.54% 

Walking 
88.3% ± 

11.99% 

86.94% ± 

12.13% 

88.27% ± 

11.67% 

86.94% ± 

11.7% 

88.17% ± 

11.82% 

79.22% ± 

25.12% 

Cycling 
91.55% ± 

15.48% 

88.42% ± 

22.27% 

82.43% ± 

25.02% 

93.19% ± 

10.76% 

95.65% ± 

8.58% 

77.65% ± 

30.06% 

Stairs 
54.45% ± 

19.53% 

54.57% ± 

22.64% 

15.25% ± 

11.52% 

55.12% ± 

25.3% 

60.79% ± 

17.58% 

19.3% ± 

16.79% 

ALL 
89.98% ± 

6.27% 

91.53% ± 

14.79% 

88.31% ± 

7.62% 

91.29% ± 

15.62% 

89.83% ± 

6.64% 

88.03% ± 

20.02% 

 

As can be seen in Tables 6-4 and 6-5, a further overall improvement of 0.81 % - 1.01% is 

observed when using features from both accelerometer locations during subject dependent evalu-

ation. In fact, most activities show a small improvement while dynamic activities such as walking 

and stairs, show the highest improvement. Furthermore, the thigh location of the accelerometer 

slightly improved leaning recognition accuracy by 1.58% - 4.14 %, since the thigh location offers 

some information regarding the body inclination unlike the accelerometers located at the foot. This 

improvement is more pronounced during independent subject evaluation with performance in-

creasing to similar or slightly higher levels only using foot acceleration. On the other hand, cycling 

shows a very similar performance as with the accelerometers located at the feet, since the infor-

mation obtained from thigh movements is less obviously related to the cycling motion. A consid-

erable improvement in stairs has been obtained during subject independent evaluation when using 

the LR_Sum feature set. Training and classification times are presented in Table 6-7 to illustrate 



131 

 

the respective changes when adding the ActivPAL accelerometer components and while using 

different feature sets. 

Table 6-7. Average training and classification times in seconds required by each configuration. 

Computations are performed over a 6 second sliding window using the Random Forest classifier 

and both subject dependent and independent training.  

 

All features LR_SUM Features Information Gain Features 

Pres-

sure 

Feet 

ACC 

Feet + 

Thigh 

ACC 

Pres-

sure 

Feet 

ACC 

Feet + 

Thigh 

ACC 

Pres-

sure 

Feet 

ACC 

Feet + 

Thigh 

ACC 

Subject Dependent 

Training 1.594 1.632 1.956 1.266 1.901 1.748 1.257 1.979 4.727 

Classifi-

cation 
0.011 0.009 0.010 0.015 0.012 0.011 0.014 0.016 0.061 

Subject Independent 

Training 65.353 107.445 97.492 46.623 51.168 83.701 47.947 106.901 141.568 

Classifi-

cation 
0.112 0.173 0.143 0.139 0.092 0.117 0.125 0.186 0.328 

 

As shown in Table 6-6, training time during dependent training remain low for all config-

uration with occasional exceptions when using the Information Gain feature set and foot plus thigh 

acceleration. In the case of independent training, there is also a sharp increase in training time 

when using the Information Gain feature set and foot plus thigh acceleration. In the case of 

LR_Sum features, a sharper increase occurs in training time compared to using only pressure or a 

combination of pressure and foot acceleration. In summary, it seems the small improvements in 

performance obtained by adding acceleration in the thigh may not sufficiently justify the burden 

of having to wear an extra device or the increase in computational expense dedicated to processing 

and possible wireless communication between a possible CPU and the thigh sensor.  

 



132 

 

6.2 Proposed Model’s Validation 

 

6.1.2 Validation against the de facto-standard 

 

The performance of the final configuration of the proposed machine learning model using 

the optimal parameters selected in Chapter 5 is presented and discussed in this section. The model’s 

performance is compared to the results obtained with the ActivPAL since it is currently regarded 

as the de facto technology for measuring sedentary behaviour [316]. As with the proposed model, 

the ActivPAL performance is assessed by comparing it with the current criterion. No extra com-

putations are made by the author since the proprietary software provides the activities predictions 

directly. Since the ActivPAL does not detects leaning, stairs or cycling, both recall and precision 

are 0% and undetermined respectively for these activities. The proposed model set of parameters 

consists in using a sliding window of 6 seconds, Random Forest classifier with 40 iterations, the 

LR_SUM time-based feature set, a 6 sensors configuration, using both Laboratory and Free-Living 

data for training, incorporating the accelerometers in the foot and using both subject dependent 

and independent training. Table 6-8 presents the recall obtained during both types of training and 

for comparison purposes. Furthermore, the ActivPAL’ s predictions are compared to the criterion 

standard with a confusion matrix as shown in Table 6-9. 
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Table 6-8. Recall of the proposed model with optimal parameters and the ActivPAL. Computa-

tions are performed over a 6 second sliding window using the Random Forest classifier and both 

subject dependent and independent training. The results of the ActivPAL are extracted directly 

from the proprietary software. 

Activity 

Proposed Model  

- Dependent 

Proposed Model  

- Independent 
ActivPAL 

Recall Precision Recall Precision Recall Precision 

Sitting 
98.83% ± 

1.94% 

99.07% ± 

2.06% 

95.93% ± 

4.38% 

97.14% ± 

3.42% 
96.38% 98.68% 

Standing 
94.47% ± 

2.77% 

91.08% ± 

5.32% 

90.55% ± 

6.95% 

71.75% ± 

13.27% 
88.73% 71.91% 

Leaning 
84.71% ± 

10.6% 

99.38% ± 

0.89% 

4.4% ± 

6.21% 

57.97% ± 

36.11% 
0.00% - 

Walking 
89.49% ± 

13.75% 

89.5% ± 

8.57% 

88.27% ± 

11.67% 

85.19% ± 

10.95% 
87.92% 65.26% 

Cycling 
95.93% ± 

6.15% 

99.18% ± 

1.27% 

82.43% ± 

25.02% 

99.34% ± 

1.86% 
0.00% - 

Stairs 
76.59% ± 

16.01% 

93.42% ± 

4.28% 

15.25% ± 

11.52% 

83.12% ± 

11.48% 
0.00% - 

ALL 
95.79% ± 

3.04% 

96.37% ± 

4.14% 

88.31% ± 

7.62% 

89.91% ± 

5.98% 
85.86% 85.86% 

 

 

Table 6-9. Confusion Matrix of ActivPAL with direct observation as true condition. 

Activity Sitting Standing Leaning Walking Cycling Stairs 

Sitting 96.38% 2.85% 0.00% 0.77% 0.00% 0.00% 

Standing 1.82% 88.73% 0.00% 9.45% 0.00% 0.00% 

Leaning 0.00% 97.82% 0.00% 2.18% 0.00% 0.00% 

Walking 2.20% 9.88% 0.00% 87.92% 0.00% 0.00% 

Cycling 1.60% 4.81% 0.00% 93.59% 0.00% 0.00% 

Stairs 2.31% 4.63% 0.00% 93.06% 0.00% 0.00% 

 

 

To facilitate the analysis of overall sedentary behaviour throughout the day, results in terms 

of accumulated time spent during each task are presented below. Figure 6-1 to 6-3 compare the 

results of the proposed model and the ActivPAL.  
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Figure 6-1. Average time spent in each task according to proposed model with optimal parame-

ters when using dependent training. 

 
Figure 6-2. Average time spent in each task according to proposed model with optimal parame-

ters when using independent training. 
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Figure 6-3. Average time spent in each task according to the de facto standard (activPAL).  

 

As observed in Figures 6-1 to 6-3 the recognition rate of stairs, leaning and cycling is zero 

since the ActivPAL only recognises sitting, standing and stepping activities. Nevertheless, it can 

still be observed in the misclassification percentages that most of the leaning activity is classified 

as standing, similar to the problematic found with the proposed model. Cycling and stairs activities 

is also misclassified as walking (or steps) since walking stairs and cycling are motion-based activ-

ities albeit with potentially very different energy expenditures. Regarding the case of standing and 

walking, similar behaviour is observed as with the proposed model with standing being misclassi-

fied as walking and vice versa. This behaviour suggests that the activPAL may have the same 

problem of correctly discerning among a few steps (or brief walking) and standing or other similar 

transitions. Lastly, the activPAL performs relatively well when predicting sitting with a recall of 

96.38%.  
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One of the key differences to be noted from the ActivPAL and the proposed model is the 

number of tasks identified and the impact it will have on performance. As observed in Figures 6-

1, to 6-3, the proposed model predicts a similar amount of sitting time on average as the ActivPAL 

with a difference of 1 minutes and 48 seconds during dependent training and 7 minutes 33 seconds 

during independent training. Interestingly, standing time measured by the proposed model during 

independent training and the ActivPAL is very similar, with a significant difference observed in 

the case of dependent training. As later shown in Section 6.2.2, total standing time determined by 

direct observation is in fact much closer to the dependent training estimation with a difference of 

less than 4 minutes and 43 seconds. It seems that the lower performance of the proposed model to 

detect leaning during independent training, produces a similar standing overestimation as the ac-

tivPAL, since leaning is not recognised at all and is probably classified as standing. The proposed 

model with subject dependent training offers the ability to recognise it to certain degree and open 

the possibility of studying in future work the difference between standing and leaning in terms of 

energy expenditure or overall sedentary behaviour. Lastly, the activPAL seems to be considerably 

overestimate the amount of walking performed in comparison with both the proposed model with 

a difference of 24 minutes and 1 second during dependent training and 21 minutes and 51 seconds 

during independent training. A possible explanation for this lower performance may be the inclu-

sion of cycling and possibly leaning in the free-living component of the data. Since the activPAL 

does not differentiate any of these two activities, it is reasonable that “climbing or descending 

stairs” and cycling (to a lesser extent since it may be misclassified as standing) are classified as 

walking as they all are motion-based activities.  

The results indicate the proposed model had a similar or better performance as the ac-

tivPAL when predicting most tasks during both dependent and independent training. Furthermore, 
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in the case of sitting and standing, the proposed model significantly outperforms the activPAL 

during dependent training and offers a slight improvement during independent training. Further-

more, sitting recognition is significantly improved during both dependent and independent train-

ing. Regarding the three remaining activities, leaning, cycling and stairs, it is not possible to per-

form a direct comparison since the activPAL does not measure these activities.  

6.1.2 Validation against direct observation 

 

Results are then compared to the criterion standard which is direct observation through the 

GoPro, to establish their recognition accuracy and compare the method’s overall performance 

against the proposed method using both independent and dependent evaluation. To better illustrate 

this comparison, a confusion matrix is provided in Tables 6-10 and 6-11 with all predictions being 

compared against the ground truth.  

Table 6-10. Confusion Matrix of the proposed model predictions with optimal parameters using 

dependent evaluation and direct observation as true condition 

Activity Sitting Standing Leaning Walking Cycling Stairs 

Sitting 99.03% 0.64% 0.00% 0.31% 0.00% 0.02% 

Standing 1.43% 93.96% 0.30% 4.18% 0.00% 0.12% 

Leaning 1.22% 18.12% 80.28% 0.32% 0.00% 0.06% 

Walking 1.56% 9.38% 0.03% 88.00% 0.08% 0.95% 

Cycling 1.02% 0.32% 0.00% 1.15% 96.75% 0.76% 

Stairs 0.80% 2.21% 0.00% 18.14% 0.06% 78.80% 
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Table 6-11. Confusion Matrix of the proposed model predictions with optimal parameters using 

independent evaluation and direct observation as true condition 

Activity Sitting Standing Leaning Walking Cycling Stairs 

Sitting 96.55% 2.90% 0.01% 0.46% 0.02% 0.06% 

Standing 5.23% 87.66% 1.57% 5.34% 0.00% 0.20% 

Leaning 2.91% 81.25% 15.40% 0.40% 0.00% 0.03% 

Walking 1.95% 9.85% 0.29% 86.47% 0.00% 1.44% 

Cycling 4.93% 0.31% 0.00% 0.25% 94.33% 0.18% 

Stairs 1.54% 4.69% 0.00% 30.69% 0.00% 63.08% 

 

Considering one of the design goals is to potentially implement this work into an alternative 

future wearable device, presenting the results in terms of time spent during each task at the end of 

the day may be more useful to the end-users. Furthermore, researchers of sedentary behaviour and 

physical commonly profile participants according to time spent in different activities to finally 

assess sedentary time [317]. Figure 6-4 shows the amount of time spent on each activity based on 

direct observation.  

 

Figure 6-4. Average time spent in each task according to the current criterion (direct observa-

tion). 
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Finally, a direct comparison levels of energy expenditure over time can be done between 

both methods, by linking previously classified levels of energy expenditure related to specific ac-

tivities. Although double labelled water is considered to be the gold standard for daily energy 

expenditure measurements, these classified levels of energy expenditure were obtained by using 

indirect calorimetry as it allows activity specific measurements during short durations (unlike dou-

ble labelled water) as mentioned in Section 2.3.2 [318]. Default MET values for all activities were 

obtained from the Compendium of Physical Activities. Nevertheless, it is important to remember 

that the Compendium was developed to classify physical activity and standardize MET estimations 

in population health research, not to determine the precise energy cost of physical activity, since 

these estimates may be inaccurate across individuals of different body mass and body fat category 

[319-321]. In the case of the activPAL estimation, the activPAL software utilises these same values 

used for sitting, standing and walking (or stepping, in the case of the ActivPAL) activities for 

energy expenditure estimation [322]. Pre-classified values along with the different energy expendi-

ture estimations obtained using the activPAL, direct observation and the proposed method are 

shown in Table 6-12.   

Table 6-12. Estimated energy expenditures of identified activities based on pre-classified values 

of the Compendium of Physical Activities. 

Activity 

Pre-classified 

values 

(METs)* 

Sum of Energy Expenditure Estimation (METs) 

Proposed Model  Validation 

Dependent 

Training 

Independent 

Training 
ActivPAL 

Direct  

Observation 

Sitting 1 5.30 5.14 5.27 5.20 

Standing 1.3 2.32 2.68 2.65 2.21 

Leaning 1.3 0.37 0.10 - 0.44 

Walking 3.5 3.45 3.57 4.85 3.51 

Cycling 6.8 1.15 1.17 - 1.23 

Stairs 6 0.94 0.67 - 0.87 

Total: 13.53 13.34 12.77 13.45 
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6.1.3 Discussion 

 

As seen in Table 6-8, the best per activity recognition and overall performance is obtained 

during subject dependent training. A drop of 7.48% in overall performance observed when using 

independent training. Moreover, leaning and stairs are the most affected activities with drops in 

performance of 80.31% and 61.34% respectively. This illustrates the fact that recognizing complex 

activities across participants is considerably more complex without using their own data since each 

participant’s activity can be different from one other. Furthermore, when using free-living data 

each participant’s routine included different types and amount of time spent on each activity.  Sit-

ting has the best recognition rate for both subject dependent and subject independent training 

(98.83% and 95.93% respectively). This seems reasonable, since its pressure signal shape is con-

siderably different from the rest of the activities identified. Furthermore, sitting has the highest 

amount of available training data. Thus, performance only drops by a small percentage (2.90%) 

even when considering variations across multiple individuals during independent training. This 

shows that despite the numerous variations of sitting activities either by the way the person behaves 

or interacts with the environment, predominant features used by the algorithm are still identifiable 

across all sitting activities. Similarly, standing also shows good performance during both subject 

dependent and independent training (94.47% and 90.55% respectively). It may be possible to in-

crease the recall by discarding leaning since it seems to be a source of misclassification as it is a 

similar activity. Likewise, walking and stairs can also be easily confused due to their similarity as 

ambulatory activities and their main difference only relies in the change of pace and force applied. 

Furthermore, the model has a large inequivalence between the amount of training examples avail-

able. For instance, “climbing or descending stairs” usually occurs for short periods of time and in 

between longer walking bouts, increasing the probabilities of being confused with the large sample 
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of “walking”. Moreover, these activities may not be well classified because a different window 

length than 6 seconds may be required due to their higher motion variability, which includes se-

quences of events (gait and activity transitions). “Climbing or descending stairs” is the activity 

with the worst performance during dependent training and the second worst during independent 

training. Brief bouts of climbing or descending stairs with less than five steps may have introduced 

the observed variability since the length of the activity (less than 3 seconds) would be too short to 

be detected by the longer 6 seconds window selected, causing stairs to be confused as walking. 

This situation may represent a problem when interpreting the results: If longer and more significant 

“climbing or descending stairs” occurred, these short bouts would represent most of the stairs ac-

tivity defined by the current criterion which would in turn, significantly lower the model’s recog-

nition rate. Even though the model misclassifies brief sessions (less than 2 seconds) of “climbing 

or descending stairs” (e.g. stairs with 1 or 2 steps) as walking, this misclassification might not be 

too serious in terms of energy expenditure, as the overall difference in energy expenditure between 

them would likely be relatively small. Leaning has the second lowest recall (84.71%) during de-

pendent training and the lowest (4.40%) during independent training by a considerable margin. 

This is not completely unexpected since its recognition accuracy has been consistently the lowest 

during all the experiments. It seems that particularly during independent training, the variability 

of how each participant leans and the different type of props they lean against, significantly hamper 

the model to discern leaning from standing. Based on the video recordings of each participant 

leaning activities are very varied ranging across leaning against many different surfaces: a regular 

wall at various angles, a pole in the Mass Rapid Transport (public transport in Singapore), a rail 

while waiting for a bus, an elevator wall, stair banisters, tables, desks, etc. Furthermore, leaning 

and foot positions also change considerably as some participants lean intermittently, on their side 
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or using only one foot. All these variations seem to drastically lower the amount or quality of 

identifiable features the model could use to predict leaning. An excellent performance of 95.93 % 

during dependent training and is obtained in the case of cycling since the combination of the pres-

sure data and the accelerometers located at the foot provided enough information to discern among 

other activities. A confusion with sitting is primarily avoided due to the addition of accelerometers 

as mentioned in Chapter 6.1.1. 

As shown in Tables 6-10 and 6-11, walking has a relatively low ratio of misclassifications 

as standing among both dependent and independent trainings (12 % and 13.53% respectively). 

This confusion may be due to a similar problem encountered for stairs recognition: the brevity of 

the activity being shorter than the selected window size. Consequentially, a few steps are labelled 

as walking in accordance to the ground truth, may be predicted erroneously as standing as the 

window averages the small amount of motion that occurred within its limits. Although a shorter 

window may improve brief walking or a few stairs steps recognition to a certain extent, it would 

most likely introduce variability and further misclassifications in the remaining activities as dis-

cussed in Section 5.1.2. Thus, this reduced recognition rate for these two activities is an optimal 

trade-off to avoid lowering the performance of the proposed model when predicting sitting and 

standing. Understandably, a similar problem also occurs with standing as it has misclassification 

rates as walking of 4.18% during subject dependent and 5.34% during subject independent train-

ing. It should be noted that also has misclassifications rates as sitting of 1.43% during subject 

dependent and 5.23 % during subject independent training. Both misclassification rates are prob-

ably related to the various transitions that occur before and after standing. Subjects are sitting down 

before standing up, sitting after standing up, walking before stopping to stand still or standing 

before walking. All these transitions further introduce more variability as in the all the cases 
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previously discussed. In some cases, subjects are involved in tasks which involved numerous con-

secutive transitions, such as doing chores at home or doing activities that involved making inter-

mittent pauses while walking.  Nevertheless, the relatively small amount of accumulated time spent 

during these transitions is considerably lower compared to the total amount of time spent standing 

longer than the selected window size of 6 seconds.  

Aa shown in Figures 6-1 and 6-2 compared against Figure 6-4, the proposed model has 

excellent results when recognizing the total amount of sitting action in comparison to direct obser-

vation. Comparing the average amount of time spent sitting of all participants, the model overes-

timates bit only 5 minutes and 58 seconds during dependent training and underestimates it by 3 

minutes and 22 during independent training. Regarding standing, the model overestimates total 

time spend on average by 4 minutes and 43 seconds during dependent training and 20 minutes and 

4 seconds during independent training. A possible explanation for this overestimation is the vari-

ability that the leaning activity creates during independent training. As mentioned previously, def-

inite criteria to differentiate between standing and leaning is hard to obtain due to the ample vari-

ability of leaning angles and surfaces used among participants. Consequently, standing overesti-

mation leads to leaning underestimation by 3 min and 6 seconds during dependent training and 15 

minutes and 21 seconds during independent training. On the other hand, walking time recognition 

is excellent as the proposed model underestimated it by only 1 minute and 24 seconds during 

dependent training and only 38 seconds during independent training. Similarly, the model under-

estimates cycling time by only 38 and 32 seconds during dependent and independent respectively. 

As described in Section 6.1.1, the addition of the foot accelerometers greatly improves cycling 

recognition avoiding its misclassification as sitting or walking. Finally, in the case of stairs, alt-

hough previous recall rates are low (76.59 % and 15.25% during dependent and independent 
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respectively), this does not translate into a large misclassified of overall time spent on each task 

throughout the day. In fact, the time spent over the day cycling, leaning, or climbing stairs seems 

to be minimal on all participants. As a result, lower or higher recognition rates do not significantly 

impact the overall performance of the model since the main focus relies in accurately measuring 

amount of sedentary time by discerning sitting and standing among the activities.  

As observed in Table 6-12, when comparing total MET values per session instead of time, 

it can be observed that the proposed model has a better performance than the activPAL when 

estimating the overall energy expenditure based on the pre-classified values found in the Compen-

dium of Physical Activity. It seems that the identification of the cycling and descending/ascending 

stairs activities contributes to a better energy expenditure. Although a direct comparison with di-

rect calorimetry or double labelled water would provide a much stronger validation, the results 

based on these pre-classified values is encouraging.  

Finally, it should be noted that some of the factors mentioned to explain the model’s re-

duction in performance such as limited amount of data of specific activities, are related to the usual 

difficulties found when collecting real-time data during free-living conditions in many wearable 

devices. For example, due to the limitations of the current technology in terms of both battery and 

storage size, data collection is not extended beyond 24 hours for each participant. Thus, insufficient 

training data of occasional activities such as leaning, cycling or unaccounted activities such as 

squatting or kneeling, are not included in the study. Similarly, changes in daily routine and conse-

quently activities during the weekend are not considered. Due to limited power or storage there is 

also the inability to experiment with higher sampling rates. Furthermore, some challenges specif-

ically relate to using plantar pressure data are encountered such as restrictions of certain activities 

such as vigorous sports where unusually high pressure may be applied to the pressure sensors, 
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water-based activities or any activity that involves shoe removal (dance or martial arts class for 

example). Thus, further improvement is needed in the following areas: how to provide enough 

power to either the sensors and possibly processing unit without sacrificing wearability or afford-

ability, how to either transmit or store the data, and how to address shoe wear limitations when 

using pressure sensors under to monitor sedentary behaviour.  

In summary, it seems the proposed model outperforms the activPAL by classifying an 

overall amount of classifying closer to the values obtained during direct observation. Most im-

portantly, sitting has the best performance across all activities during both subject dependent and 

independent training with recognition rates of 98.83% and 95.93% respectively. Considering sit-

ting has misclassifications rates as standing of 0.64% during subject dependent and 2.90% during 

subject independent training and is scarcely confused with any of the remaining activities, it seems 

that using pressure data from the insoles is an effective method of accurately detecting sitting 

among any other activities.  
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Chapter 7: Conclusions 
 

7.1 Conclusion 

 

This thesis investigated different activities and sedentary behaviour recognition using plan-

tar pressure and applying machine learning techniques to construct a predictive model. The fol-

lowing problems are studied: to identify a wearable non-obtrusive technology that could monitor 

daily life sedentary behaviour, to design a study protocol to monitor different daily life activities 

in free-living conditions and obtain a ground truth, to develop a predictive model able to accurate 

discern sitting among different activities, and to find the optimal trade-off between computational 

cost and performance based on wearable design factors.  

First, an extensive literature review of current physical activity and sedentary behaviour 

measuring methods and their limitations has been carried out to identify a niche technology. After 

identifying plantar pressure due to its potential benefits, a thorough and in-depth scoping review 

of available plantar pressure devices in both the commercial market and the literature is performed. 

Afterwards, a novel methodology for developing a predictive model using machine learning is 

proposed taking into consideration the design characteristics of wearable devices available in both 

the market and research field. These characteristics include small size, low computational cost and 

accurate performance. The trade-off between the design considerations and activity recognition is 

the basis for data collection, processing, training and evaluation discussed in the subsequent chap-

ters. Moreover, to validate the proposed implementation, a comparison is performed to the current 

standard criterion for sedentary behaviour, the activPAL. After collecting pressure, acceleration 

and video data from 20 participants, data processing and labelling is performed to provide the 

machine learning model with training data. In order to determine the parameters that allow an 
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optimal trade-off between performance and computational expense, multiple experiments have 

been performed to evaluate the recognition accuracy of the model using numerous iterations of 

different sliding window length, types of classifiers, number and type of features, and number and 

location of pressure sensors. Furthermore, activity recognition is also compared using laboratory-

based data and free-living data and incorporating thigh acceleration data. All predictions are also 

evaluated using both subject dependent and subject independent methods ensuring both intra and 

inter-participant reliability. The final classification model is built using a 6 second sliding window, 

a Random Forest classifier, features computed using the sum of overall pressure in each foot. Most 

importantly, optimal performance occurs when training with free-living data, using only six pres-

sure sensors instead of the 13 sensors from the initial approach and using only statistical parameters 

such as mean or max pressure on each foot instead of localised sensor readings. Furthermore, 

incorporating a foot accelerometer increases the proposed model’s performance specifically im-

proving the recognition of more complex activities such as stairs or stairs. Final validation is per-

formed by comparing the model’s prediction against the ground truth obtained using the recordings 

of all participants. An average performance of overall recall of 95.79% is obtained for subject 

dependent training and 88.21% for subject independent training in comparison to the 86.14% of 

the activPAL. In the specific case of sitting, a recall of 98.83% and 95.93% is achieved during 

dependent and independent evaluation respectively. Results expressed in terms of sedentary time 

spend throughout the day are very encouraging as well. An average sitting time of 5 hours 11 

minutes and 38 seconds have been measured by direct observation, while an average amount of 

sitting of 5 hours 17 minutes and 56 seconds and 5 hours 8 minutes and 36 seconds during depend-

ent and independent training respectively have been obtained. Thus, the results obtained in this 
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work support the claim that a pressure-based device and an optimised machine learning algorithm 

is a viable option over current methods to monitor daily life sedentary behaviour. 

7.2 Contributions 

 

Several key contributions are made to the field of sedentary behaviour monitoring and 

wearable sensors.  

• The collection of daily life data together with uninterrupted video footage of 20 participants 

is collected. The use of a wearable camera to obtain ground truth with the purposes of train-

ing, classification and validation is novel and has not been reported in previous work.   

• The exploration of certain sitting and standing variations and how they impact accuracy 

recognition as well as the addition of a potential new activity classification, such as leaning.  

• The use of a combination of live recording, machine learning, plantar pressure and foot ac-

celerometers to measure sedentary behaviour.  

• The validation of the proposed model using current de facto standard, the ActivPAL, and the 

current criterion, direct observation, in the form of actual footage of the participants via a 

wearable camera. This is novel and has never been reported before as most related studies 

recreate daily life activities in semi-controlled environments. 

• The use of using both subject dependent and subject independent as different training and 

validation strategies to be used in the development of future wearable devices.  

• The exploration of different parameters of the classification machine learning model such as 

optimal sliding window length, type and characteristics of different classifiers, feature sets 

and sensor configurations. Specifically, the finding that statistical parameters such as mean 
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pressure over the whole foot instead of localised features per sensor, significantly reducing 

the computational cost without sacrificing performance.  

• The exploration of different plantar pressure configurations including the number and loca-

tion of sensors as a viable method of main posture recognition without the use of traditional 

hip or leg accelerometers. Specifically, the finding that only 6 sensors is sufficient to obtain 

accurate performance instead of a grid of sensors over the whole area of the foot. 

• The comparison of using laboratory-based data and/or free-living data when measuring sed-

entary behaviour using a plant pressure and machine learning predictive models.  

• The development of a novel method which uses and compare its performance against the 

current criterion (i.e. direct observation) in sedentary behaviour studies to obtain criterion 

validity. Furthermore, the prosed method ensures absolute independence in the participant 

and while also accurately monitoring sedentary behaviour.  

In summary, this research contributes to the sedentary behaviour monitoring field by not 

only proposing a novel methodology that accurately measures sedentary behaviour using plantar 

pressure but also by identifying the parameters that allow an optimal trade-off between perfor-

mance in free-living settings and final commercial product viability. By performing multiple ex-

periment iterations, the proposed model is developed with low computational costs so design con-

siderations such as small size, unobtrusiveness, reliability during free-living conditions and low-

power consumption are met. Resources such as processing power required for computations and 

number of sensors are minimised without significantly sacrificing the overall accuracy recognition 

of the model. Consequently, this work can be applied to the future development of an accurate, 

low-cost and unobtrusive consumer-based wearable device that is viable for daily life monitoring 

and fits the demands of the wearable market. Furthermore, the possibility of continuous feedback 
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of daily sedentary activities could increase the user’s personal knowledge of its own sedentary 

behaviour and allow further studies to monitor “real-life” sedentary behaviours and its health ef-

fects. In addition, such a device could easily integrate and contribute to the recent increase in 

physical activity research devices, ubiquitous devices such as smartphones and popular wearable 

devices in the market such as the Apple Watch or Fitbit.  

 7.3 Future work 

 

Based on the findings of this work, future research directions are outlined as follow: 

• Wearable Device Product Development or Integration. Developing a prototype based on 

the proposed methodology. Furthermore, the developed device can be integrated to current 

popular wearable technology or smartphones in order to add reliable sedentary behaviour 

monitoring. Given the high ownership of smartphones, working with available sensors and 

technologies of the user own smartphones will likely prove more beneficial than adding extra 

sensors or expanding the current device. For example, future studies could obtain Global 

Positioning Systems data from an individual’s smartphone to provide further context of cer-

tain activities that vary significantly according to the environment to further improve the 

model’s accuracy.  

• Type and size of sample. Increasing the number of participants and more importantly, di-

versifying the profile and background of the participants involved. Comparing sedentary be-

haviour patterns using the proposed methodology on participants across different genders, 

ages, work and home environment would be ideal since daily activities, posture and footwear 

may vary greatly. Collecting data from participant over several days including both 
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weekdays and weekends would also provide the model with more training examples and 

allow testing its performance during a greater variety of work and leisure activities.  

• Substitute or complement current sedentary behaviour devices. Perform studies to vali-

date using the proposed methodology as a viable alternative in cases where typical accel-

erometer-based devices may prove inadequate. For example, accelerometer detachment can 

be a concern when performing physical activity and sedentary behaviour studies on children 

at school. Using a plantar pressure-based device might ensure children are oblivious to the 

wearable device allowing constant monitoring. Furthermore, issues such as skin irritation 

due to sensor adhesion can also be avoided. 

• Weight-bearing rehabilitation applications. Besides the proposed application of sedentary 

behaviour monitoring, future studies can be performed to explore the proposed model ability 

of using the same plantar pressure data to also estimate body weight bearing distribution. 

For example, in the case of individuals with lower limb amputations or knee replacement, 

tracking sedentary time as well as how much weight is applied over each foot throughout the 

day would provide physicians valuable information to assess the patient’s rehabilitation pro-

gress. Furthermore, the possibility of giving real-time feedback to the individual may prove 

a valuable tool to improve the rehabilitation process. Similar research on diabetic popula-

tions may be relevant as well, since tracking the relationship between daily sedentary behav-

iour and plantar pressure throughout the day may contribute to the development of offloading 

techniques to avoid pressure ulcers. 

• Sedentary behaviour of people with pathological gait. Future work on population with 

pathological gait is another possible future implementation of this research. For example, 

people with multiple sclerosis tend to press their feet harder and have difficulty controlling 
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their foot movements, while victims from stroke tend to lean on their non-paretic side. Since 

the proposed methodology uses plantar pressure to monitor sedentary behaviour, basic gait 

parameters such as balance or cadence can be easily computed from the same plantar pres-

sure data without adding significant computational cost. Monitoring a patient’s sedentary 

behaviour together with these basic gait parameters could provide physicians a more com-

prehensive profile regarding how daily sedentary time may influence rehabilitation progress. 

• Analyse specific work-related activities. Work related sedentary behaviour is a public 

health concern due to long working hours and the increase of deskbound activities such as 

computer usage. Thus, one important application of the model proposed in this thesis is 

measuring sitting time of individuals on mostly sedentary jobs (e.g. lorry and taxi drivers, 

desk-bound workers, etc). Furthermore, additional leg-based physical activity cause by op-

erating machinery (e. g. pushing pedals) may be able to be detected and classified differently 

from regular sitting. 

• Study more complex activities and postures. Creating a follow-up study to assess the con-

founding factors discussed in this work that lowered the model’s performance, specifically 

for leaning and stairs. Since complex or uncommon activities suffer from a relative low 

amount of training examples, a larger amount of training data in free-living conditions may 

ultimately improve their recognition and overall performance. Further experimentation may 

be needed to determine if different set of calculations would improve these activities. Future 

work should be done to determine if there are any significant variations in plantar pressure 

that may influence the model’s prediction ability. Moreover, detecting certain types of foot-

wear such as heels and flat shoes would allow studying how shoe wear may influence daily 

activities and sedentary behaviour. 
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• Develop Smart Devices with real-time adaptability. Create a smart model that changes its 

machine learning approach and parameters depending on the user and activity. For example, 

changing the sliding window length according on the activity would reduce misclassification 

between static and dynamic activities. Although this approach would be more computation-

ally expensive, further work could be done to better determine what would be the optimal 

trade-off between personalisation and generalisation and under what circumstances. Further-

more, specific population type (age, gender, occupation, etc.) studies could be done to deter-

mine what kind of algorithm suits each one of them better to ensure it eventually fits the 

needs of the market.  
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Appendices 

A. Scoping review full list of references and devices 

 

  
Appendix A-1: Excerpt of the form developed for this work to list the technologies found, their 

attributes and their technical specifications.  

 

 

 

 

 

Opengo Science No Moticon 2013
Rechargeable Coin 

cell
48

13 capacitive pressure 

sensing pads 
13 ANT+, USB 

Orpyx LogR No Orpyx 2013+
180 mHh 

Rechargeable 
8 8 pressure  sensors 8 BLE

Surrosense rx System No Orpyx 2013
Coin cell battery (6 

months)
48 Pressure grid 8 ANT+, USB , WiFi

Pedar-x No Novel 2012 NIMh battery 4.5
Pressure sensors 

(capacitive)
85-99

USB/SD card or 

Classic Bluetooth

F-scan Wireless No Tekscan 2008 Li-on Battery -
Pressure sensors 

(resistive)

 960 sensing 

elements
USB, Wi-Fi

F-scan Datalogger No Tekscan 2008 Li-on Battery 2
Pressure sensors 

(resistive)

 960 sensing 

elements
USB

ParoTec No Paromed -
Pressure sensors

(hydrocell 
24 or 36 W-LAN

ParoLogg No Paromed -
Accelerometer, 

Pressure (hydrocell 
32 W-LAN

Boogio Yes REFLX Labs 2014 Yes 72
Accelerometer, 

Pressure
- BLE

Stridalyzer No ReTiSense 2014
Rechargeable

20
Accelerometer, 

Pressure
- BLE

Sensoria fitness socks No Sensoria 2013
Rechargeable 

Battery 
6

3 Pressure sensors 

(fifth and first 
3 BLE

Tune No Kinematix 2016 Yes 10 FSR 4 BLE

3L Labs footlogger Yes 3L Labs 2015
Rechargeable 

Battery
24 8

Bluetooth 2.1 , WiFi 

Gateway

Tiga-Edge Yes Plantiga
To be 

released
- BLE

Intelisoles Yes Imtelisoles
To be 

released

Accelerometer, 

Pressure
- BLE

Digitsole No Digitsole 2016 Yes 48 - -

Medilogic insole No Medilogic Resistive 240 Wireless

WIFS Yes - 9V 50 force sensor 4 RF

Freewalker Yes - Yes 24 FSR 8
RF, nRF24L01 by 

Nordic

Smart Sock Yes ®Texisense knitted piezoresistive 4

Chen, H. C., et al. Yes -
7.2V rechargeable Li-

ion
2 Load cells 14

Authier, A., et al. Yes - 600 mAh Li-ions 7..5 load cells 4

Zhu, C., et al. Yes - FSR 15 Bluetooth 2.0

Numchaichanakij, A., et 

al. 
Yes - one 9-volt

Piezoresistive force 

sensor
1 Serial

Nakajima, K., et al. Yes - lithium, 3V, 850 mAh 20
conductive rubber 

sensors
7

wireless ZigBee 

protocol

Rossi, S. M. M. D., et al. Yes - Li-poly 700mAh 7
silicone-covered opto-

electronic pressure
64 Bluetooth

Number of 

Sensors
Sensor Type ConnectivityBattery

Battery 

duration 

(hrs)

Name Manufacturer
Debut 

year

Proto-

type



171 

 

 

 
Device Source Device Source 

OpenGo Science [282] Chen, M., et al.  [172] 

Orpyx LogR [285] Chen, H. C., et al.  [173] 

Surrosense rx System [286] Authier, A., et al.  [174] 

Pedar-x [276] Zhu, C., et al.  [175] 

F-scan Wireless [280] Saeedi, A., et al.  [178] 

F-scan Datalogger [279] Numchaichanakij, A., et al.  [180] 

ParoTec [278] Nakajima, K., et al.  [181] 

ParoLogg [277] Feng, Y., et al.  [182] 

Boogio [323] Rossi, S. M. M. D., et al.  [183] 

Stridalyzer [274] Xu, H., et al.  [186] 

Sensoria fitness socks [283] Wang, X., et al.  [187] 

Tune [275] Wada, C. and M. Tokunaga  [188] 

3L Labs Footlogger [324] Wada, C., et al.  [189] 

Tiga-Edge [325] Tirosh, O., et al.  [190] 

Intelisoles [326] Tao, Y., et al.  [191] 

Digitsole [284] Takeda, T., et al.  [192] 

Bebop [327] Suh, Y. S. and S. K. Park  [193] 

Holmz [328] Stassi, S., et al.  [194] 

StabilitySole [179] Shu, L., et al.  [195] 

SmartShoe [196] Mazumder, O., et al.  [200] 

SmartStep [218] Lemos, J. D., et al.  [202] 

vitaliSHOE [203] Guo, Y. and L. Wang  [205] 

WalkinSense [204] Grenez, F., et al.  [210] 

PIMU [214] Martínez-Martí, F., et al.  [221] 

i-SMART ShoE II [215] Majumder, A. J. A., et al.  [222] 

WIISEL [216] Lu, L., et al.  [224] 

DAid® Pressure Sock System [220] Kawsar, F., et al.  [227] 

Smart-shoe [222] González, I., et al.  [229] 

Smart Insole [225] Gerlach, C., et al.  [230] 

SmartSkin Technologies [249] Corbellini, S., et al.  [231] 

GaitShoe [233] AbuFaraj, Z. O., et al.  [232] 

Runalyser [240] Shu, L., et al.  [234] 

Medilogic insole [281] Saito, M., et al.  [335] 

WIFS [246] Zhang, X., et al.  [237] 

Freewalker [254] Zhang, Z. and S. Poslad  [238] 

Smart Sock [262] Chen, B., et al.  [243] 

eSHOE [266] Morris, S. J. and J. A. Paradiso  [244] 

BioFoot [267] Ravindarn, G. and R. Manivannan  [245] 

Planipes [268] Lvping, R., et al.  [247] 

Electronic Orthotics Shoe [269] do Carmo Dos Reis, M., et al.  [253] 

Surdilovic, D., et al.  [166] Yang, C. M., et al.  [258] 

Mizuno, H., et al.  [169] Wertsch, J. J., et al.  [260] 

Karkokli, R. and K. M. McConville  [170] Holleczek, T., et al.  [268] 

Hannula, M., et al.  [171]     

Appendix A-2: List of technologies found and their source.  
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B. Criterion - GoPro tasks annotation 

 

 

Appendix B-1: Excerpt of the standardized form developed for this work to create the time-based 

labels or annotations. Time spent in each activity was coded to create a single vector with corre-

sponding offsets whenever necessary.  

Sampling rate

10

File number Start End Start End

Activity_type( 1 : 89850 ) = 0 ;

1 00:00 06:15 06:15 0 191 191 1 Activity_type( 1 : 1920 ) = 1 ;

1 06:16 11:35 05:19 192 511 319 1 Activity_type( 1921 : 5120 ) = 1 ;

2 11:50 17:20 05:30 1246 1576 330 1 Activity_type( 12461 : 15770 ) = 1 ;

2 05:40 12:20 06:40 876 1276 400 1 Activity_type( 8761 : 12770 ) = 1 ;

3 00:21 05:30 05:09 1277 1586 309 1 Activity_type( 12771 : 15870 ) = 1 ;

3 05:50 11:20 05:30 1606 1936 330 1 Activity_type( 16061 : 19370 ) = 1 ;

3 11:50 16:50 05:00 1966 2266 300 2 Activity_type( 19661 : 22670 ) = 2 ;

4 04:51 11:00 06:09 2267 2636 369 2 Activity_type( 22671 : 26370 ) = 2 ;

4 11:20 17:15 05:55 2656 3011 355 2 Activity_type( 26561 : 30120 ) = 2 ;

5 05:16 11:15 05:59 3012 3371 359 2 Activity_type( 30121 : 33720 ) = 2 ;

6 00:00 03:04 03:04 3416 3600 184 1 Activity_type( 34161 : 36010 ) = 1 ;

6 03:05 05:30 02:25 3601 3746 145 1 Activity_type( 36011 : 37470 ) = 1 ;

6 06:00 09:20 03:20 3776 3976 200 1 Activity_type( 37761 : 39770 ) = 1 ;

6 09:21 12:15 02:54 3977 4151 174 1 Activity_type( 39771 : 41520 ) = 1 ;

7 00:45 06:26 05:41 4181 4522 341 6 Activity_type( 41811 : 45230 ) = 6 ;

7 06:27 12:05 05:38 4523 4861 338 6 Activity_type( 45231 : 48620 ) = 6 ;

8 00:05 04:50 04:45 4861 5146 285 6 Activity_type( 48611 : 51470 ) = 6 ;

8 05:20 09:50 04:30 5176 5446 270 6 Activity_type( 51761 : 54470 ) = 6 ;

8 11:00 12:09 01:09 5516 5585 69 1 Activity_type( 55161 : 55860 ) = 1 ;

9 00:10 01:09 00:59 5586 5645 59 1 Activity_type( 55861 : 56460 ) = 1 ;

9 01:10 02:24 01:14 5646 5720 74 1 Activity_type( 56461 : 57210 ) = 1 ;

9 02:25 12:31 10:06 5721 6327 606 1 Activity_type( 57211 : 63280 ) = 1 ;

9 03:38 04:44 01:06 5794 5860 66 1 Activity_type( 57941 : 58610 ) = 1 ;

9 04:49 06:04 01:15 5865 5940 75 1 Activity_type( 58651 : 59410 ) = 1 ;

9 06:05 07:19 01:14 5941 6015 74 1 Activity_type( 59411 : 60160 ) = 1 ;

9 07:20 08:28 01:08 6016 6084 68 1 Activity_type( 60161 : 60850 ) = 1 ;

9 08:29 09:16 00:47 6085 6132 47 1 Activity_type( 60851 : 61330 ) = 1 ;

9 09:17 09:43 00:26 6133 6159 26 1 Activity_type( 61331 : 61600 ) = 1 ;

9 09:44 11:51 02:07 6160 6287 127 1 Activity_type( 61601 : 62880 ) = 1 ;

9 11:52 12:05 00:13 6288 6301 13 1 Activity_type( 62881 : 63020 ) = 1 ;

10 01:06 02:05 00:59 6362 6421 59 1 Activity_type( 63621 : 64220 ) = 1 ;

10 02:15 03:29 01:14 6431 6505 74 2 Activity_type( 64311 : 65060 ) = 2 ;

10 03:30 04:48 01:18 6506 6584 78 2 Activity_type( 65061 : 65850 ) = 2 ;

10 04:49 06:04 01:15 6585 6660 75 2 Activity_type( 65851 : 66610 ) = 2 ;

10 06:05 07:21 01:16 6661 6737 76 2 Activity_type( 66611 : 67380 ) = 2 ;

10 07:22 08:32 01:10 6738 6808 70 2 Activity_type( 67381 : 68090 ) = 2 ;

10 08:33 09:43 01:10 6809 6879 70 2 Activity_type( 68091 : 68800 ) = 2 ;

10 09:44 10:49 01:05 6880 6945 65 2 Activity_type( 68801 : 69460 ) = 2 ;

10 10:50 12:00 01:10 6946 7016 70 2 Activity_type( 69461 : 70170 ) = 2 ;

11 00:05 01:20 01:15 7021 7096 75 2 Activity_type( 70211 : 70970 ) = 2 ;

11 01:50 02:50 01:00 7126 7186 60 2 Activity_type( 71261 : 71870 ) = 2 ;

11 03:20 12:30 09:10 7216 7766 550 3 Activity_type( 72161 : 77670 ) = 3 ;

12 01:25 10:10 08:45 7821 8346 525 4 Activity_type( 78211 : 83470 ) = 4 ;

13 01:10 07:13 06:03 8621 8984 363 5 Activity_type( 86211 : 89850 ) = 5 ;

Activity Type
Go Pro video

Duration
Insole time (s)

Duration (s)
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C. Sliding Window Length Experiments for Optimal Performance 
 

Window 

Size (s) 
Activities Accuracy False Positive Rate Precision F-Measure 

2 

Sitting 98.87% ± 1.21% 1.18% ± 1.05% 98.52% ± 2.32% 98.5% ± 2.11% 

Standing 97.47% ± 2.55% 2.25% ± 2.94% 92.31% ± 4.83% 93.73% ± 3.59% 

Leaning 99.7% ± 0.31% 0.03% ± 0.05% 99.73% ± 0.4% 96.74% ± 2.82% 

Walking 97.54% ± 2.25% 1.32% ± 1% 90.43% ± 6.52% 89.77% ± 8.13% 

Stairs 99.92% ± 0.16% 0.02% ± 0.04% 99% ± 2.6% 97.83% ± 4.45% 

Cycling 99.43% ± 0.31% 0.14% ± 0.14% 92.73% ± 3.96% 80.88% ± 12.75% 

ALL 98.54% ± 0.73% 1.29% ± 0.59% 96.38% ± 3.31% 96.13% ± 3.72% 

4 

Sitting 98.82% ± 1.33% 1.26% ± 1.25% 98.39% ± 2.51% 98.45% ± 2.16% 

Standing 97.36% ± 2.9% 2.35% ± 3.26% 92.29% ± 5.39% 93.66% ± 3.99% 

Leaning 99.61% ± 0.45% 0.02% ± 0.04% 99.69% ± 0.55% 95.7% ± 4.18% 

Walking 97.55% ± 2.48% 1.31% ± 1.06% 90.68% ± 7.1% 89.89% ± 9.18% 

Stairs 99.91% ± 0.18% 0.01% ± 0.03% 99.25% ± 1.94% 97.63% ± 4.69% 

Cycling 99.5% ± 0.3% 0.13% ± 0.16% 93.53% ± 4.31% 83.34% ± 12.53% 

ALL 98.48% ± 0.74% 1.35% ± 0.61% 96.35% ± 3.2% 96.08% ± 3.49% 

8 

Sitting 98.99% ± 1.4% 1.18% ± 1.41% 99.06% ± 1.8% 99% ± 1.67% 

Standing 96.89% ± 3.02% 2.84% ± 3.51% 91.2% ± 5.02% 92.73% ± 3.55% 

Leaning 99.43% ± 0.56% 0.04% ± 0.05% 99% ± 1.22% 93.03% ± 5.19% 

Walking 97.49% ± 2.42% 1.37% ± 0.9% 90.17% ± 6.23% 89.73% ± 9.53% 

Stairs 99.88% ± 0.18% 0.02% ± 0.05% 98.98% ± 2.84% 96.91% ± 4.6% 

Cycling 99.52% ± 0.29% 0.1% ± 0.13% 95.22% ± 3.35% 84.36% ± 10.35% 

ALL 98.47% ± 0.92% 1.42% ± 0.75% 96.48% ± 3.79% 96.17% ± 3.9% 

16 

Sitting 98.66% ± 1.9% 1.45% ± 1.95% 98.78% ± 2.46% 98.67% ± 2.25% 

Standing 96.71% ± 3.38% 3.18% ± 3.83% 90.05% ± 5.27% 92.53% ± 3.9% 

Leaning 99.2% ± 0.71% 0.05% ± 0.08% 98.65% ± 1.82% 89.28% ± 6.75% 

Walking 97.53% ± 2.66% 1.33% ± 1.02% 90.36% ± 8.15% 89.59% ± 11.11% 

Stairs 99.83% ± 0.24% 0.01% ± 0.04% 99.2% ± 2.6% 95.14% ± 6.63% 

Cycling 99.52% ± 0.26% 0.1% ± 0.11% 95.33% ± 4.83% 84.93% ± 10.06% 

ALL 98.23% ± 0.85% 1.65% ± 0.82% 96.11% ± 3.94% 95.75% ± 3.96% 

32 

Sitting 98.55% ± 2.03% 1.77% ± 2.26% 98.67% ± 2.52% 98.57% ± 2.38% 

Standing 96.32% ± 3.62% 3.58% ± 4.14% 89.05% ± 5.61% 91.58% ± 4.19% 

Leaning 99.03% ± 0.79% 0.07% ± 0.12% 98.11% ± 3.19% 85.87% ± 8.09% 

Walking 97.26% ± 2.99% 1.5% ± 1.14% 89.47% ± 9.61% 88.03% ± 12.19% 

Stairs 99.76% ± 0.34% 0.01% ± 0.03% 99.17% ± 3.23% 94.03% ± 6.64% 

Cycling 99.49% ± 0.29% 0.08% ± 0.22% 97.55% ± 4.01% 90.84% ± 9.27% 

ALL 98.04% ± 0.96% 1.94% ± 0.91% 95.77% ± 4.33% 95.29% ± 4.39% 

Appendix C-1. Measurements of performance obtained using pressure data. Computations are 

performed using a different sizes of sliding window, the Random Forest classifier and all fea-

tures in a subject dependent manner. 
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Window 

Size (s) 
Activities Accuracy False Positive Rate Precision F-Measure 

2 

Sitting 98.52% ± 1.57% 1.7% ± 1.3% 98.02% ± 2.88% 98.07% ± 2.6% 

Standing 96.82% ± 3.22% 2.8% ± 3.66% 90.62% ± 5.66% 92.14% ± 4.3% 

Leaning 99.47% ± 0.46% 0.04% ± 0.11% 99.66% ± 0.32% 93.79% ± 4.21% 

Walking 96.99% ± 2.75% 1.85% ± 1.37% 86.94% ± 8.85% 87.56% ± 9.67% 

Stairs 99.86% ± 0.23% 0.02% ± 0.04% 98.96% ± 2.7% 96.29% ± 6.52% 

Cycling 99.15% ± 0.39% 0.12% ± 0.17% 92.33% ± 4.49% 68.12% ± 18.04% 

ALL 98.12% ± 0.87% 1.76% ± 0.71% 95.36% ± 4.24% 94.85% ± 5.33% 

4 

Sitting 98.5% ± 1.66% 1.69% ± 1.43% 97.99% ± 2.99% 98.07% ± 2.6% 

Standing 96.78% ± 3.32% 2.86% ± 3.79% 90.54% ± 5.93% 92.12% ± 4.39% 

Leaning 99.37% ± 0.59% 0.04% ± 0.07% 99.49% ± 0.74% 92.36% ± 5.68% 

Walking 97.14% ± 2.73% 1.7% ± 1.28% 87.96% ± 8.42% 88.02% ± 9.82% 

Stairs 99.87% ± 0.2% 0.01% ± 0.02% 99.49% ± 1.37% 96.62% ± 5.21% 

Cycling 99.31% ± 0.33% 0.13% ± 0.15% 92.09% ± 4.98% 75.24% ± 15.28% 

ALL 98.11% ± 0.85% 1.75% ± 0.73% 95.43% ± 4.03% 94.96% ± 4.6% 

8 

Sitting 98.84% ± 1.64% 1.35% ± 1.47% 98.96% ± 1.91% 98.86% ± 1.97% 

Standing 96.31% ± 3.45% 3.35% ± 4.06% 89.51% ± 5.62% 91.35% ± 3.92% 

Leaning 99.21% ± 0.64% 0.03% ± 0.04% 99.06% ± 1.17% 89.46% ± 6.25% 

Walking 97.15% ± 2.79% 1.66% ± 1.12% 88.23% ± 8.03% 88.4% ± 10.91% 

Stairs 99.86% ± 0.2% 0.01% ± 0.02% 99.49% ± 1.56% 96.49% ± 4.87% 

Cycling 99.41% ± 0.34% 0.13% ± 0.18% 93.72% ± 4.57% 79.81% ± 13.27% 

ALL 98.22% ± 1.08% 1.66% ± 0.9% 95.86% ± 4.58% 95.42% ± 4.75% 

16 

Sitting 98.43% ± 2.02% 1.76% ± 2.05% 98.61% ± 2.61% 98.45% ± 2.41% 

Standing 95.98% ± 3.77% 3.82% ± 4.19% 88.06% ± 5.38% 90.81% ± 4.01% 

Leaning 98.93% ± 0.73% 0.07% ± 0.09% 98.15% ± 2.29% 84.53% ± 7.71% 

Walking 97.18% ± 2.86% 1.61% ± 1.14% 88.19% ± 9.07% 87.92% ± 11.78% 

Stairs 99.79% ± 0.28% 0.01% ± 0.04% 99.37% ± 1.97% 93.97% ± 7.35% 

Cycling 99.37% ± 0.3% 0.15% ± 0.2% 94.17% ± 4.98% 81.92% ± 9.64% 

ALL 97.9% ± 1.04% 1.99% ± 0.99% 95.34% ± 4.8% 94.82% ± 4.93% 

32 

Sitting 98.19% ± 2.06% 2.2% ± 1.96% 98.38% ± 2.36% 98.23% ± 2.46% 

Standing 95.42% ± 3.86% 4.26% ± 4.44% 86.37% ± 5.28% 89.04% ± 4.1% 

Leaning 98.69% ± 0.72% 0.14% ± 0.1% 96.2% ± 2.82% 79.73% ± 7.96% 

Walking 96.89% ± 3.34% 1.79% ± 1.42% 87.83% ± 10.2% 86.49% ± 13.33% 

Stairs 99.67% ± 0.33% 0.03% ± 0.07% 98.15% ± 4.32% 91.48% ± 6.9% 

Cycling 99.36% ± 0.37% 0.16% ± 0.29% 94.71% ± 6.94% 88.07% ± 10.31% 

ALL 97.6% ± 1.16% 2.37% ± 1.06% 94.75% ± 5.2% 94.08% ± 5.58% 

Appendix C-2. Measurements of performance obtained using pressure data. Computations are 

performed using a different sizes of sliding window, the Random Forest classifier and the Infor-

mation Gain feature set in a subject dependent manner. 
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Window 

Size (s) 
Activities Accuracy False Positive Rate Precision F-Measure 

2 

Sitting 94.01% ± 3.85% 6.91% ± 3.76% 95.67% ± 4.01% 94.88% ± 4% 

Standing 89.93% ± 5.3% 9.89% ± 6.07% 65.71% ± 16.29% 74.5% ± 12.35% 

Leaning 96.78% ± 1.49% 0.17% ± 0.24% 58.49% ± 37.32% 19.75% ± 22.11% 

Walking 95.8% ± 3.46% 2.52% ± 1.89% 81.6% ± 10.53% 82.34% ± 11.05% 

Stairs 98.48% ± 1.07% 0.01% ± 0.02% 74.46% ± 42.65% 36.16% ± 32.84% 

Cycling 98.66% ± 0.49% 0.29% ± 0.28% 71.48% ± 21.59% 44.06% ± 15.61% 

ALL 93.76% ± 2.06% 6.44% ± 2.61% 86.64% ± 12.89% 85.22% ± 17.48% 

4 

Sitting 94.34% ± 3.92% 6.96% ± 3.77% 95.71% ± 3.89% 95.15% ± 4.04% 

Standing 90.47% ± 5.49% 9.12% ± 6.36% 67.84% ± 17.47% 75.58% ± 12.81% 

Leaning 96.93% ± 1.51% 0.3% ± 0.38% 68.14% ± 32.59% 26.08% ± 28.37% 

Walking 95.8% ± 3.53% 2.52% ± 2% 81.55% ± 10.62% 81.84% ± 11.99% 

Stairs 98.47% ± 1.09% 0.01% ± 0.02% 88.74% ± 29.63% 40.41% ± 32.84% 

Cycling 98.68% ± 0.5% 0.26% ± 0.24% 72.27% ± 20.35% 43.22% ± 18.47% 

ALL 94.07% ± 1.92% 6.34% ± 2.44% 87.67% ± 11.48% 85.81% ± 16.46% 

8 

Sitting 94.7% ± 3.33% 7.3% ± 4.22% 95.53% ± 4.03% 95.46% ± 3.63% 

Standing 90.88% ± 4.8% 8.63% ± 5.57% 68.46% ± 14.91% 76.26% ± 10.53% 

Leaning 96.72% ± 1.43% 0.38% ± 0.43% 59.67% ± 33.19% 24.81% ± 22.78% 

Walking 95.87% ± 3.53% 2.39% ± 2.08% 82.54% ± 10.86% 81.84% ± 12.4% 

Stairs 98.5% ± 1.07% 0% ± 0.01% 99.61% ± 1.17% 46.89% ± 31.05% 

Cycling 98.8% ± 0.51% 0.22% ± 0.3% 80.44% ± 20.03% 49.59% ± 19.47% 

ALL 94.38% ± 1.82% 6.46% ± 2.44% 87.84% ± 11.75% 86.33% ± 16.06% 

16 

Sitting 95.02% ± 3.28% 6.96% ± 4.15% 95.69% ± 4.03% 95.73% ± 3.59% 

Standing 91.68% ± 4.59% 7.69% ± 5.37% 71.14% ± 14.52% 78.15% ± 9.43% 

Leaning 96.81% ± 1.46% 0.48% ± 0.49% 63.2% ± 29.62% 34.52% ± 23.51% 

Walking 96.19% ± 3.44% 2.37% ± 2.16% 83.01% ± 11.2% 83.89% ± 10.99% 

Stairs 98.63% ± 1.09% 0% ± 0% 100% ± 0% 53.71% ± 34.25% 

Cycling 98.87% ± 0.53% 0.17% ± 0.22% 81.68% ± 21.16% 48.63% ± 23.06% 

ALL 94.76% ± 1.63% 6.08% ± 2.22% 88.61% ± 10.74% 87.52% ± 14.33% 

32 

Sitting 94.86% ± 3.42% 7.07% ± 4.04% 95.61% ± 3.89% 95.63% ± 3.53% 

Standing 91.63% ± 4.15% 7.66% ± 5.06% 70.7% ± 14.82% 77.55% ± 9.65% 

Leaning 96.89% ± 1.36% 0.48% ± 0.58% 66.73% ± 34.93% 36.28% ± 23.98% 

Walking 96.19% ± 3.23% 2.4% ± 1.95% 82.42% ± 10.6% 83.18% ± 11.31% 

Stairs 98.62% ± 1.03% 0% ± 0% 100% ± 0% 56.33% ± 23.7% 

Cycling 98.97% ± 0.49% 0.06% ± 0.09% 87.51% ± 20.4% 52.9% ± 21.46% 

ALL 94.66% ± 1.64% 6.15% ± 2.24% 88.67% ± 10.54% 87.51% ± 13.8% 

Appendix C-3. Measurements of performance obtained using pressure data. Computations are 

performed using a different sizes of sliding window, the Random Forest classifier and all fea-

tures in a subject independent manner. 
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Window 

Size (s) 
Activities Accuracy False Positive Rate Precision F-Measure 

2 

Sitting 94.01% ± 3.85% 6.91% ± 3.76% 95.67% ± 4.01% 94.88% ± 4% 

Standing 89.93% ± 5.3% 9.89% ± 6.07% 65.71% ± 16.29% 74.5% ± 12.35% 

Leaning 96.78% ± 1.49% 0.17% ± 0.24% 58.49% ± 37.32% 19.75% ± 22.11% 

Walking 95.8% ± 3.46% 2.52% ± 1.89% 81.6% ± 10.53% 82.34% ± 11.05% 

Stairs 98.48% ± 1.07% 0.01% ± 0.02% 74.46% ± 42.65% 36.16% ± 32.84% 

Cycling 98.66% ± 0.49% 0.29% ± 0.28% 71.48% ± 21.59% 44.06% ± 15.61% 

ALL 93.76% ± 2.06% 6.44% ± 2.61% 86.64% ± 12.89% 85.22% ± 17.48% 

4 

Sitting 92.36% ± 3.74% 8.69% ± 4.47% 94.4% ± 4.57% 93.54% ± 3.89% 

Standing 88.24% ± 5.24% 11.15% ± 5.8% 62.07% ± 16.64% 70.62% ± 13.3% 

Leaning 96.53% ± 1.18% 0.25% ± 0.51% 56.78% ± 33.76% 13.22% ± 11.83% 

Walking 95.27% ± 3.57% 3.31% ± 2.16% 77.19% ± 10.32% 79.49% ± 13.76% 

Stairs 98.06% ± 1.05% 0% ± 0% 80% ± 44.72% 8.09% ± 7.88% 

Cycling 98.49% ± 0.54% 0.06% ± 0.08% 77.18% ± 20.08% 22.32% ± 13.43% 

ALL 92.33% ± 2.41% 7.89% ± 3% 84.83% ± 13.6% 82.21% ± 20.96% 

8 

Sitting 92.64% ± 3.51% 8.71% ± 4.51% 94.47% ± 4.33% 93.79% ± 3.67% 

Standing 88.43% ± 5.03% 10.83% ± 5.59% 62.5% ± 16.44% 70.81% ± 12.73% 

Leaning 96.62% ± 1.32% 0.25% ± 0.38% 61.92% ± 36.91% 18.47% ± 13.46% 

Walking 95.29% ± 3.61% 3.2% ± 2.25% 77.84% ± 10.46% 79.27% ± 14.38% 

Stairs 98.05% ± 1.06% 0% ± 0.01% 95% ± 10% 8.19% ± 5.83% 

Cycling 98.57% ± 0.56% 0.12% ± 0.2% 78.92% ± 23.47% 31.76% ± 19.36% 

ALL 92.55% ± 2.37% 7.83% ± 2.96% 85.53% ± 13.15% 82.73% ± 20% 

16 

Sitting 93.26% ± 3.11% 8.33% ± 4.3% 94.79% ± 4.1% 94.3% ± 3.47% 

Standing 89.11% ± 4.54% 10.08% ± 5.39% 64.05% ± 16.07% 71.94% ± 11.74% 

Leaning 96.52% ± 1.32% 0.48% ± 0.69% 59.51% ± 37.59% 22.88% ± 16.17% 

Walking 95.1% ± 3.48% 3.3% ± 2.4% 76.87% ± 11.13% 77.73% ± 15.53% 

Stairs 98.07% ± 1.06% 0% ± 0% 100% ± 0% 11.41% ± 8.25% 

Cycling 98.6% ± 0.52% 0.08% ± 0.14% 80.3% ± 25.82% 35.81% ± 18.51% 

ALL 93.04% ± 2.16% 7.49% ± 2.72% 85.93% ± 13.15% 83.35% ± 19.23% 

32 

Sitting 93.7% ± 2.93% 8.23% ± 4.04% 94.96% ± 3.77% 94.69% ± 3.32% 

Standing 89.74% ± 4.08% 9.46% ± 5.2% 65.24% ± 13.8% 73.05% ± 9.19% 

Leaning 96.59% ± 1.3% 0.51% ± 0.54% 56.51% ± 30.31% 24.68% ± 14.75% 

Walking 95.27% ± 3.35% 3.19% ± 2.31% 77.85% ± 10.77% 78.76% ± 13.32% 

Stairs 98.09% ± 1.02% 0.01% ± 0.05% 75% ± 50% 24.27% ± 14.39% 

Cycling 98.63% ± 0.62% 0.1% ± 0.22% 79.4% ± 20.57% 35.3% ± 18.48% 

ALL 93.45% ± 2% 7.3% ± 2.61% 85.79% ± 12.95% 84.3% ± 18.06% 

Appendix C-4. Measurements of performance obtained using pressure data. Computations are 

performed using a different sizes of sliding window, the Random Forest classifier and the Infor-

mation Gain feature set in a subject independent manner. 
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D. Classifier Experiments for Optimal Performance 

 

Classifiers Activities Accuracy False Positive Rate Precision F-Measure 

Nearest 

Neighbour 

Sitting 98.92% ± 1.6% 1.27% ± 1.66% 98.91% ± 2.22% 98.93% ± 1.89% 

Standing 96.67% ± 3% 2.71% ± 3.24% 91.26% ± 5% 91.89% ± 3.55% 

Leaning 99.28% ± 0.54% 0.11% ± 0.12% 97.36% ± 2.32% 90.75% ± 5.31% 

Walking 97.3% ± 2.54% 1.61% ± 0.93% 88.35% ± 6.86% 88.9% ± 10.19% 

Stairs 99.89% ± 0.16% 0.04% ± 0.06% 97.93% ± 3% 96.79% ± 5.45% 

Cycling 99.46% ± 0.29% 0.17% ± 0.19% 92.53% ± 5.48% 83.2% ± 9.4% 

ALL 98.36% ± 0.98% 1.49% ± 0.68% 96.05% ± 4.07% 95.76% ± 4.33% 

Naïve 

Bayes 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 96.6% ± 2.67% 1.45% ± 1.93% 98.59% ± 2.68% 96.97% ± 2.72% 

Standing 91.48% ± 5.33% 3.42% ± 1.78% 81.76% ± 9.61% 75.24% ± 10.15% 

Leaning 95.5% ± 3.63% 4.21% ± 3.53% 53.06% ± 15.71% 65.17% ± 12.8% 

Walking 95.89% ± 4.46% 2.48% ± 2.42% 82.81% ± 15.5% 83.71% ± 15.92% 

Stairs 99.34% ± 1.83% 0.58% ± 1.78% 90.93% ± 19.69% 92.01% ± 14.79% 

Cycling 98.45% ± 2% 1.3% ± 1.96% 68.68% ± 24.51% 72.93% ± 20.75% 

ALL 95.61% ± 2.06% 2.02% ± 0.91% 91.02% ± 11.26% 89.51% ± 10.28% 

Decision 

Tables 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.48% ± 2.41% 1.96% ± 2.37% 98.36% ± 3.09% 98.48% ± 2.84% 

Standing 96.28% ± 3.69% 2.79% ± 3.44% 90.78% ± 5.51% 91.19% ± 4.83% 

Leaning 99.25% ± 0.89% 0.19% ± 0.23% 95.79% ± 4.41% 91.35% ± 8.16% 

Walking 96.92% ± 3.1% 1.84% ± 1.59% 87.32% ± 10.04% 87.73% ± 11.09% 

Stairs 99.8% ± 0.32% 0.06% ± 0.11% 97.32% ± 5.14% 95.31% ± 6.91% 

Cycling 99.38% ± 0.35% 0.24% ± 0.18% 87.52% ± 8.15% 80.9% ± 11.59% 

ALL 97.96% ± 1% 1.96% ± 0.63% 95.32% ± 4.28% 95.16% ± 4.57% 

J48 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.29% ± 2.05% 2.27% ± 1.97% 98.26% ± 2.53% 98.36% ± 2.45% 

Standing 95.62% ± 3.74% 2.88% ± 2.95% 89.61% ± 4.92% 89.17% ± 4.84% 

Leaning 99.12% ± 0.76% 0.43% ± 0.39% 91.09% ± 5.54% 89.93% ± 5.77% 

Walking 96.4% ± 3.31% 2.13% ± 1.9% 85.34% ± 10.53% 85.49% ± 10.86% 

Stairs 99.71% ± 0.34% 0.14% ± 0.15% 93.94% ± 5.36% 93.24% ± 6.19% 

Cycling 99.1% ± 0.45% 0.45% ± 0.23% 76.03% ± 14.02% 74.14% ± 14.7% 

ALL 97.65% ± 1.19% 2.21% ± 0.6% 94.31% ± 5.51% 94.21% ± 5.77% 

Appendix D-1. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and all features in a subject 

dependent manner. (Part 1) 
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Classifiers Activities Accuracy False Positive Rate Precision F-Measure 

Random 

Forest 

Sitting 99.06% ± 1.2% 1.09% ± 1.22% 99.18% ± 1.49% 99.09% ± 1.43% 

Standing 97.01% ± 2.86% 2.77% ± 3.36% 91.29% ± 5.02% 92.99% ± 3.63% 

Leaning 99.53% ± 0.51% 0.02% ± 0.03% 99.64% ± 0.61% 94.24% ± 4.75% 

Walking 97.49% ± 2.39% 1.33% ± 0.92% 90.38% ± 6.35% 89.69% ± 9.39% 

Stairs 99.9% ± 0.18% 0.01% ± 0.03% 99.37% ± 1.58% 97.59% ± 4.22% 

Cycling 99.51% ± 0.28% 0.13% ± 0.12% 93.93% ± 4.33% 84.19% ± 9.87% 

ALL 98.54% ± 0.91% 1.35% ± 0.74% 96.6% ± 3.81% 96.33% ± 3.89% 

Bagging 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.73% ± 1.53% 1.66% ± 1.69% 98.71% ± 2.2% 98.77% ± 1.82% 

Standing 96.7% ± 2.88% 2.75% ± 3.07% 90.84% ± 4.64% 91.99% ± 3.49% 

Leaning 99.38% ± 0.55% 0.13% ± 0.06% 96.81% ± 1% 92.48% ± 4.92% 

Walking 97.26% ± 2.47% 1.49% ± 0.97% 89% ± 6.5% 88.57% ± 9.33% 

Stairs 99.76% ± 0.2% 0.08% ± 0.07% 96.23% ± 3.39% 94.12% ± 4.4% 

Cycling 99.37% ± 0.33% 0.21% ± 0.15% 89.36% ± 6.32% 81.1% ± 10.48% 

ALL 98.24% ± 0.91% 1.72% ± 0.64% 95.79% ± 4.01% 95.61% ± 4.38% 

Logit 

Boost 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.48% ± 2.41% 1.96% ± 2.37% 98.36% ± 3.09% 98.48% ± 2.84% 

Standing 96.28% ± 3.69% 2.79% ± 3.44% 90.78% ± 5.51% 91.19% ± 4.83% 

Leaning 99.25% ± 0.89% 0.19% ± 0.23% 95.79% ± 4.41% 91.35% ± 8.16% 

Walking 96.92% ± 3.1% 1.84% ± 1.59% 87.32% ± 10.04% 87.73% ± 11.09% 

Stairs 99.8% ± 0.32% 0.06% ± 0.11% 97.32% ± 5.14% 95.31% ± 6.91% 

Cycling 99.38% ± 0.35% 0.24% ± 0.18% 87.52% ± 8.15% 80.9% ± 11.59% 

ALL 97.96% ± 1% 1.96% ± 0.63% 95.32% ± 4.28% 95.16% ± 4.57% 

Appendix D-2. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and all features in a subject 

dependent manner. (Part 2) 
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Nearest 

Neighbor 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 96.26% ± 2.21% 6.19% ± 3.21% 95.6% ± 3.91% 97.01% ± 2.11% 

Standing 92.28% ± 2.7% 4% ± 1.71% 78.88% ± 10.98% 76.93% ± 8.4% 

Leaning 96.33% ± 1.17% 1.7% ± 1.34% 62.6% ± 17.37% 56.04% ± 7.76% 

Walking 95.58% ± 1.5% 2.53% ± 1.22% 80.54% ± 6.17% 81.36% ± 4.12% 

Stairs 98.61% ± 0.95% 0.24% ± 0.4% 87.06% ± 18.3% 65.53% ± 16.2% 

Cycling 97.66% ± 1.15% 1.13% ± 1.13% 54.04% ± 28.64% 44.2% ± 12.45% 

ALL 95.56% ± 1.58% 4.86% ± 1.7% 89.79% ± 9.96% 88.91% ± 12.45% 

Naïve 

Bayes 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 83.85% ± 9.96% 3.53% ± 4.44% 96.62% ± 5.04% 90.06% ± 7.07% 

Standing 82.3% ± 7.5% 6.11% ± 6.11% 66.66% ± 22.91% 45.57% ± 5.64% 

Leaning 87.34% ± 5.79% 10.29% ± 4.28% 25.99% ± 11.49% 37.75% ± 12.72% 

Walking 92.88% ± 4.17% 3.87% ± 2.61% 72.64% ± 12.95% 72.45% ± 12.38% 

Stairs 92.74% ± 3.99% 3.73% ± 3.25% 39.83% ± 26.51% 49.55% ± 28.26% 

Cycling 94.76% ± 3.92% 2.99% ± 1.91% 34.13% ± 22.79% 40.69% ± 16.06% 

ALL 85.1% ± 3.51% 3.96% ± 1.53% 84.47% ± 19.14% 75.49% ± 19.4% 

Decision 

Tables 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 89.42% ± 2.1% 20.58% ± 7.38% 89.78% ± 5.42% 92.52% ± 2.37% 

Standing 86.91% ± 5.45% 8.18% ± 4.24% 59.5% ± 24.26% 60.74% ± 16.46% 

Leaning 94.65% ± 3.43% 1.68% ± 2.37% 30.82% ± 29.15% 18.58% ± 17.19% 

Walking 94.5% ± 2.07% 2.64% ± 1.27% 73.32% ± 12.26% 70.1% ± 25.75% 

Stairs 96.98% ± 0.72% 0.18% ± 0.13% 10.42% ± 19.29% 1.94% ± 3.38% 

Cycling 97.61% ± 0.84% 0.3% ± 0.56% 73.92% ± 31.63% 14.54% ± 9.38% 

ALL 90.04% ± 2.63% 15.62% ± 7.77% 80.9% ± 18% 80.3% ± 22.35% 

J48 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 91.98% ± 7.35% 9.25% ± 3.34% 94.25% ± 3.15% 93.94% ± 5.59% 

Standing 87.82% ± 4.75% 8.49% ± 5.25% 65% ± 21.4% 67.4% ± 15.28% 

Leaning 94.89% ± 1.18% 1.93% ± 0.77% 36.41% ± 18.5% 32.7% ± 19.74% 

Walking 94.04% ± 0.96% 2.78% ± 0.8% 73.98% ± 10.23% 71.93% ± 14.52% 

Stairs 97.89% ± 1.39% 0.68% ± 0.75% 65.75% ± 31.45% 52.95% ± 27.11% 

Cycling 97.44% ± 0.83% 1.08% ± 0.8% 45.31% ± 18.98% 36.21% ± 9.62% 

ALL 91.8% ± 2.23% 7.83% ± 2.7% 84.95% ± 15.95% 83.74% ± 16.61% 

Appendix D-3. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and all features in a subject 

independent manner. (Part 1) 
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Random 

Forest 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 91.11% ± 12.02% 3.43% ± 5.04% 97.65% ± 3.94% 97.95% ± 3.36% 

Standing 90.37% ± 7.61% 4.38% ± 4.8% 85.49% ± 10.8% 88.59% ± 8.94% 

Leaning 93.75% ± 6.9% 0.11% ± 0.22% 88.53% ± 23.83% 76.35% ± 29.56% 

Walking 95.65% ± 3.89% 1.97% ± 2.04% 86.51% ± 11.96% 87.28% ± 12.35% 

Stairs 97.22% ± 2.98% 0.01% ± 0.03% 99.45% ± 1.36% 83.29% ± 32.68% 

Cycling 97.03% ± 3.26% 0.15% ± 0.17% 90.2% ± 9.01% 72.84% ± 19.13% 

ALL 91.82% ± 1.88% 3.48% ± 1.11% 94.53% ± 5.49% 94.27% ± 6.41% 

Bagging 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 94.52% ± 5.33% 6.58% ± 6.25% 95.04% ± 7.27% 95.63% ± 4.59% 

Standing 90.29% ± 5.42% 6.98% ± 4.7% 71.43% ± 20.58% 74.51% ± 14.34% 

Leaning 96.21% ± 1.3% 1.08% ± 0.83% 57.24% ± 28.16% 44.56% ± 19.74% 

Walking 96.41% ± 1.05% 1.86% ± 0.56% 83.25% ± 5.41% 81.23% ± 16.3% 

Stairs 99.01% ± 0.61% 0.06% ± 0.11% 82.89% ± 33.78% 68.13% ± 32.51% 

Cycling 98.47% ± 0.47% 0.39% ± 0.4% 75.76% ± 19.27% 53.01% ± 16.48% 

ALL 94.21% ± 2.06% 5.18% ± 2.14% 89.38% ± 11.02% 87.91% ± 12.96% 

Logit 

Boost 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 96.78% ± 1.82% 8.71% ± 4.98% 94.15% ± 5.98% 95.51% ± 3.36% 

Standing 91.76% ± 2.6% 6.1% ± 2.65% 71.51% ± 17.99% 73.45% ± 11.67% 

Leaning 95.64% ± 0.93% 1.24% ± 1.27% 63.04% ± 29.55% 36.65% ± 18.39% 

Walking 95.61% ± 1.02% 2.5% ± 0.95% 81.44% ± 3.45% 84.11% ± 5.58% 

Stairs 98.78% ± 0.88% 0.14% ± 0.18% 86.64% ± 15.4% 59.81% ± 28.05% 

Cycling 98.5% ± 0.4% 0.31% ± 0.33% 77.59% ± 17.52% 46.8% ± 19.92% 

ALL 95.79% ± 1.94% 6.74% ± 2.69% 88.61% ± 10.09% 87.1% ± 14.46% 

Appendix D-4. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and all features in a subject 

independent manner. (Part 2) 
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Nearest 

Neigh-

bor 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.84% ± 1.52% 1.34% ± 1.29% 98.89% ± 1.8% 98.85% ± 1.84% 

Standing 96.38% ± 3.17% 2.65% ± 3.45% 91.55% ± 5.42% 91.06% ± 3.83% 

Leaning 99.28% ± 0.61% 0.14% ± 0.14% 96.69% ± 2.69% 91.07% ± 5.65% 

Walking 97.01% ± 2.68% 2% ± 1.17% 86.1% ± 7.75% 88.05% ± 10.17% 

Stairs 99.91% ± 0.15% 0.03% ± 0.03% 98.8% ± 1.67% 97.44% ± 4.83% 

Cycling 99.39% ± 0.31% 0.21% ± 0.23% 90.45% ± 6.2% 81% ± 10.78% 

ALL 98.22% ± 1.08% 1.57% ± 0.66% 95.77% ± 4.58% 95.44% ± 4.72% 

Naïve 

Bayes 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 97.31% ± 2.47% 1.25% ± 1.96% 98.72% ± 2.7% 97.51% ± 2.81% 

Standing 93.65% ± 5.12% 3.38% ± 2.21% 85.19% ± 6.36% 83.56% ± 7.72% 

Leaning 97.69% ± 2.57% 1.75% ± 2.32% 73.83% ± 17.25% 78.08% ± 13.15% 

Walking 96.16% ± 4.2% 2.58% ± 3.11% 83.4% ± 13.22% 85.18% ± 11.93% 

Stairs 99.51% ± 1.18% 0.45% ± 1.14% 89.77% ± 15.85% 92.8% ± 11.49% 

Cycling 98.8% ± 0.67% 0.91% ± 0.6% 66.39% ± 20.49% 71.66% ± 17.09% 

ALL 96.59% ± 1.51% 1.8% ± 0.88% 92.57% ± 8.46% 92.07% ± 7.33% 

Deci-

sion 

Tables 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 95.72% ± 2.77% 8.63% ± 4.06% 94.55% ± 4.04% 96.18% ± 3.29% 

Standing 93.38% ± 4.41% 4.37% ± 4.41% 84.19% ± 5.48% 82.43% ± 5.21% 

Leaning 98.08% ± 1.07% 0.61% ± 0.36% 83.04% ± 7.09% 73.78% ± 9.53% 

Walking 95.53% ± 3.2% 2.56% ± 1.33% 79.79% ± 9.68% 79.56% ± 12.72% 

Stairs 99.15% ± 0.58% 0.23% ± 0.19% 85.32% ± 11.4% 76.65% ± 13.88% 

Cycling 98.62% ± 0.53% 0.3% ± 0.19% 70.44% ± 18.19% 47.3% ± 22.63% 

ALL 95.48% ± 1.27% 6.46% ± 2.9% 89.75% ± 6.43% 89.37% ± 9.93% 

J48 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 97.67% ± 2.23% 3.07% ± 2.09% 97.72% ± 2.86% 97.78% ± 2.72% 

Standing 94.67% ± 4.01% 4.11% ± 4.11% 85.75% ± 5.6% 86.59% ± 4.36% 

Leaning 98.62% ± 0.92% 0.51% ± 0.29% 87.29% ± 5.39% 82.55% ± 7.89% 

Walking 96.35% ± 3.13% 2.01% ± 1.31% 84.61% ± 9.33% 84.25% ± 11.89% 

Stairs 99.47% ± 0.38% 0.22% ± 0.13% 89.93% ± 5.88% 86.63% ± 9.16% 

Cycling 98.91% ± 0.42% 0.45% ± 0.23% 75.06% ± 10.56% 67.01% ± 13.14% 

ALL 97.06% ± 1.28% 2.92% ± 0.94% 92.92% ± 6.31% 92.64% ± 7.05% 

Appendix D-5. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and Information Gain features 

in a subject dependent manner. (Part 1) 
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Ran-

dom 

Forest 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.86% ± 1.48% 1.31% ± 1.28% 99.05% ± 1.52% 98.89% ± 1.79% 

Standing 96.44% ± 3.26% 3.28% ± 3.86% 89.66% ± 5.6% 91.62% ± 3.88% 

Leaning 99.28% ± 0.65% 0.02% ± 0.02% 99.49% ± 0.63% 90.64% ± 6.19% 

Walking 97.21% ± 2.62% 1.62% ± 1.12% 88.4% ± 7.73% 88.7% ± 9.99% 

Stairs 99.86% ± 0.23% 0.01% ± 0.03% 99.33% ± 1.92% 96.49% ± 5.35% 

Cycling 99.4% ± 0.32% 0.13% ± 0.16% 93.77% ± 3.58% 80.41% ± 11.62% 

ALL 98.27% ± 1.04% 1.61% ± 0.88% 95.98% ± 4.55% 95.59% ± 4.57% 

Bag-

ging 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.13% ± 2.03% 2.45% ± 1.8% 98.19% ± 2.41% 98.2% ± 2.47% 

Standing 95.33% ± 3.81% 3.95% ± 4.21% 86.79% ± 5.8% 88.48% ± 4.41% 

Leaning 98.93% ± 0.72% 0.24% ± 0.13% 93.5% ± 2.53% 85.91% ± 6.15% 

Walking 96.46% ± 3.05% 2.02% ± 1.3% 84.8% ± 9.02% 84.74% ± 11.44% 

Stairs 99.62% ± 0.29% 0.11% ± 0.12% 94.88% ± 5.82% 90.61% ± 6.18% 

Cycling 99.08% ± 0.37% 0.27% ± 0.18% 83.07% ± 9.1% 68.45% ± 15.45% 

ALL 97.49% ± 1.21% 2.5% ± 0.92% 93.94% ± 5.73% 93.56% ± 6.54% 

Logit 

Boost 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.19% ± 2.34% 2.38% ± 2.14% 98.13% ± 2.8% 98.22% ± 2.8% 

Standing 95.4% ± 4.37% 3.53% ± 4.35% 88.38% ± 6.28% 89.01% ± 5.3% 

Leaning 98.94% ± 1.07% 0.3% ± 0.29% 92.86% ± 6.29% 87.29% ± 9.85% 

Walking 96.64% ± 3.31% 2.01% ± 1.65% 86.04% ± 10.72% 86.38% ± 12.06% 

Stairs 99.77% ± 0.4% 0.07% ± 0.13% 97.01% ± 5.61% 94.5% ± 8.27% 

Cycling 99.27% ± 0.38% 0.25% ± 0.17% 86.8% ± 8.61% 77.64% ± 11.77% 

ALL 97.57% ± 1.2% 2.38% ± 0.8% 94.44% ± 4.99% 94.19% ± 5.45% 

Appendix D-6. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and Information Gain features 

in a subject dependent manner. (Part 2) 
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Nearest 

Neighbor 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 89.81% ± 7.18% 19.14% ± 9.57% 88.98% ± 11.47% 93.1% ± 6.6% 

Standing 90.37% ± 7.31% 2.24% ± 0.75% 80.88% ± 12.78% 71.68% ± 7.75% 

Leaning 95.5% ± 2.43% 1.02% ± 0.89% 54.54% ± 29.77% 40.1% ± 24.05% 

Walking 96.05% ± 1.55% 3.02% ± 0.93% 77.58% ± 4.52% 84.36% ± 4.25% 

Stairs 97.48% ± 0.65% 0.34% ± 0.24% 58.14% ± 30.89% 33.26% ± 19.79% 

Cycling 97.55% ± 1.07% 0.48% ± 0.69% 65.34% ± 25.58% 25.8% ± 14.43% 

ALL 91.11% ± 2.49% 12.56% ± 8.18% 86.22% ± 8.74% 84.76% ± 15.91% 

Naïve 

Bayes 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 84.1% ± 8.93% 2.4% ± 2.75% 97.65% ± 3.17% 89.08% ± 8.45% 

Standing 82.46% ± 4.27% 6.8% ± 6.02% 68.49% ± 24.49% 57.8% ± 12.55% 

Leaning 91.18% ± 5.19% 7.88% ± 4.15% 30.79% ± 9.92% 42.47% ± 10.99% 

Walking 94.34% ± 3.35% 3.51% ± 2.22% 74.16% ± 12.35% 74.83% ± 13.78% 

Stairs 92.38% ± 4.02% 4.41% ± 4.26% 41.51% ± 29.83% 48.97% ± 28.05% 

Cycling 95.43% ± 3.68% 2.86% ± 2.53% 40.34% ± 25.15% 42.83% ± 15.22% 

ALL 85.6% ± 3.96% 3.39% ± 1.84% 85.99% ± 18.34% 78.26% ± 15.22% 

Decision 

Tables 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 87.66% ± 2.65% 28.18% ± 11.13% 85.98% ± 8.92% 90.28% ± 4.2% 

Standing 86.56% ± 2.24% 8.58% ± 3.04% 55.36% ± 23.14% 57.52% ± 14.44% 

Leaning 95.2% ± 1.48% 0.86% ± 0.63% 19.62% ± 21.92% 9.02% ± 9.94% 

Walking 93.35% ± 1.76% 2.08% ± 1.05% 67.68% ± 14.57% 53.02% ± 29.09% 

Stairs 97.07% ± 0.67% 0.16% ± 0.05% 10.42% ± 19.29% 1.94% ± 3.38% 

Cycling 97.72% ± 0.47% 0.38% ± 0.69% 51% ± 37.34% 16.8% ± 14.48% 

ALL 88.75% ± 2.86% 20% ± 11.39% 77.32% ± 18.96% 77.12% ± 24.05% 

J48 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 91.44% ± 3.26% 17.88% ± 11.87% 88.92% ± 12.01% 90.78% ± 6.29% 

Standing 86.96% ± 4.75% 8.26% ± 7.26% 61.34% ± 27.17% 60.16% ± 13.18% 

Leaning 95% ± 1.82% 1.28% ± 0.76% 31.94% ± 17.36% 19.28% ± 10.8% 

Walking 93.06% ± 3.53% 2.46% ± 1.21% 73.38% ± 14.9% 69.7% ± 25.69% 

Stairs 96.61% ± 0.69% 0.44% ± 0.31% 45.86% ± 29.08% 22.6% ± 12.91% 

Cycling 97.28% ± 1.28% 0.68% ± 0.65% 50.2% ± 28.45% 23.22% ± 9.88% 

ALL 91.16% ± 2.3% 11.88% ± 6.64% 82.8% ± 15.81% 80.04% ± 20.06% 

Appendix D-7. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and Information Gain features 

in a subject independent manner. (Part 1) 
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Random 

Forest 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 91.92% ± 5.64% 9.53% ± 5.1% 92.97% ± 5.54% 93.23% ± 4.3% 

Standing 89.12% ± 6.47% 11.23% ± 6.66% 64.77% ± 18.95% 72.23% ± 14.58% 

Leaning 96.47% ± 0.92% 0.21% ± 0.3% 69.9% ± 34.45% 20.75% ± 14.58% 

Walking 96.12% ± 0.78% 3.28% ± 2.13% 77.09% ± 10.31% 78.05% ± 14.54% 

Stairs 97.37% ± 0.51% 0.01% ± 0.03% 80% ± 44.72% 5.9% ± 6.55% 

Cycling 97.83% ± 0.38% 0.11% ± 0.19% 80.4% ± 22.46% 27.44% ± 15.06% 

ALL 92.28% ± 2.28% 8.27% ± 3.19% 84.17% ± 11.36% 81.6% ± 19.84% 

Bagging 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 90.8% ± 5.73% 11.14% ± 5.66% 93.52% ± 5.24% 93.08% ± 4.59% 

Standing 87.27% ± 6.49% 10.46% ± 7.37% 59.2% ± 23.44% 65.14% ± 17.37% 

Leaning 95.96% ± 1.17% 0.58% ± 0.38% 51.14% ± 19.48% 23.12% ± 9.65% 

Walking 94.93% ± 1.16% 2.86% ± 1.48% 75.22% ± 9.29% 75.38% ± 14.38% 

Stairs 97.26% ± 0.25% 0.28% ± 0.13% 49.86% ± 34.66% 17.98% ± 12.93% 

Cycling 97.64% ± 0.7% 0.38% ± 0.59% 49.74% ± 37.74% 17.98% ± 13.09% 

ALL 91.08% ± 2.57% 9.18% ± 3.58% 84.98% ± 16.09% 82.64% ± 20.1% 

Logit 

Boost 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 87.1% ± 8.26% 18.88% ± 4.5% 90.62% ± 3.76% 93.54% ± 1.35% 

Standing 85.84% ± 7.83% 8.48% ± 5.74% 62.28% ± 19.27% 62.86% ± 14.14% 

Leaning 95.63% ± 2.28% 0.48% ± 0.48% 56.16% ± 24.93% 23.2% ± 14.92% 

Walking 94.72% ± 2.7% 2.26% ± 0.97% 76.42% ± 7.77% 70.02% ± 21.65% 

Stairs 97.21% ± 0.8% 0.18% ± 0.19% 51.12% ± 33.29% 18.68% ± 16.78% 

Cycling 97.58% ± 0.52% 0.3% ± 0.3% 54.08% ± 27.86% 14.4% ± 10.37% 

ALL 88.44% ± 3.41% 14.5% ± 7.09% 83.3% ± 13.32% 81.96% ± 20.99% 

Appendix D-8. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, different classifiers, and Information Gain features 

in a subject independent manner. (Part 2) 
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E. Feature Set Selection Experiments for Optimal Performance 

 

Left 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.19% ± 1.44% 3.21% ± 1.71% 97.89% ± 1.83% 98.33% ± 1.77% 

Standing 96.2% ± 3.15% 2.98% ± 3.54% 90.11% ± 5.21% 90.51% ± 4.23% 

Leaning 99.31% ± 0.58% 0.04% ± 0.06% 99.04% ± 1.47% 90.96% ± 5.46% 

Walking 97.26% ± 2.5% 1.46% ± 1.06% 89.57% ± 6.8% 88.84% ± 9.32% 

Stairs 99.88% ± 0.21% 0.02% ± 0.04% 99.23% ± 2.13% 96.98% ± 5.25% 

Cycling 99.44% ± 0.31% 0.17% ± 0.15% 91.82% ± 3.58% 82.01% ± 11.26% 

ALL 97.82% ± 0.92% 2.71% ± 0.96% 95.42% ± 3.75% 95.11% ± 4.38% 

Right 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 97.73% ± 1.75% 4.09% ± 2.82% 97.26% ± 2.36% 97.91% ± 1.99% 

Standing 95.99% ± 3.1% 3.04% ± 3.45% 89.86% ± 5.14% 89.84% ± 4.42% 

Leaning 99.17% ± 0.71% 0.05% ± 0.06% 98.79% ± 1.54% 88.66% ± 7.82% 

Walking 97.37% ± 2.38% 1.42% ± 0.92% 89.61% ± 6.52% 89.1% ± 9.35% 

Stairs 99.89% ± 0.19% 0.01% ± 0.03% 99.42% ± 1.36% 97.21% ± 4.66% 

Cycling 99.48% ± 0.28% 0.13% ± 0.14% 93.15% ± 4.63% 83.22% ± 9.37% 

ALL 97.5% ± 0.88% 3.26% ± 1.29% 95.01% ± 3.54% 94.7% ± 4.33% 

Appendix E-1. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, Random Forest classifier, features per sensor from 

each insole in a subject dependent manner. 
 

Left 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 95.57% ± 2.97% 8.28% ± 3.53% 94.56% ± 4.14% 95.98% ± 3.61% 

Standing 93.85% ± 4.77% 4.06% ± 4.44% 85.76% ± 6.34% 84.29% ± 5.7% 

Leaning 98.35% ± 1.16% 0.34% ± 0.32% 90.26% ± 7.35% 76.63% ± 12.06% 

Walking 96.24% ± 3.3% 2.2% ± 1.57% 83.29% ± 10.33% 83.13% ± 12.76% 

Stairs 99.39% ± 0.49% 0.21% ± 0.14% 89.16% ± 7.51% 84.19% ± 10.27% 

Cycling 98.94% ± 0.47% 0.27% ± 0.19% 79.92% ± 10.15% 63.13% ± 17.39% 

ALL 95.58% ± 1.21% 6.14% ± 2.86% 91.02% ± 4.74% 90.61% ± 7.48% 

Right 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 94.54% ± 3.43% 10.56% ± 6.17% 93.42% ± 4.44% 95.15% ± 3.77% 

Standing 93.34% ± 4.58% 4.19% ± 4.26% 84.86% ± 6.71% 82.17% ± 6.49% 

Leaning 98.19% ± 1.16% 0.3% ± 0.19% 90.04% ± 5.35% 73.06% ± 14.27% 

Walking 96.49% ± 3.09% 2.05% ± 1.49% 84.74% ± 9.58% 84.64% ± 11.11% 

Stairs 99.27% ± 0.61% 0.25% ± 0.14% 87.61% ± 6.87% 81.3% ± 12.08% 

Cycling 99% ± 0.44% 0.31% ± 0.21% 81.01% ± 8.6% 66.46% ± 16.73% 

ALL 94.88% ± 1.42% 7.55% ± 3.93% 90.3% ± 4.13% 89.74% ± 7.45% 

Appendix E-2. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, Random Forest classifier, features per sum of val-

ues per insole in a subject dependent manner. 
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Sum 

of Left 

and Right  

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.64% ± 1.57% 1.96% ± 1.8% 98.64% ± 1.91% 98.71% ± 1.87% 

Standing 96.39% ± 3.29% 3.22% ± 3.68% 89.65% ± 5.37% 91.35% ± 3.93% 

Leaning 99.15% ± 0.74% 0.15% ± 0.14% 96.35% ± 2.85% 89.49% ± 6.63% 

Walking 97.04% ± 2.74% 1.68% ± 1.19% 87.6% ± 8.14% 87.38% ± 10.22% 

Stairs 99.71% ± 0.38% 0.05% ± 0.05% 97.5% ± 2.66% 92.65% ± 7.28% 

Cycling 99.25% ± 0.36% 0.15% ± 0.17% 91.25% ± 4.58% 73.76% ± 14.59% 

ALL 98.09% ± 0.99% 2.02% ± 0.76% 95.41% ± 4.49% 95.01% ± 5.33% 

All Fea-

tures 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.64% ± 1.57% 1.96% ± 1.8% 98.64% ± 1.91% 98.71% ± 1.87% 

Standing 96.39% ± 3.29% 3.22% ± 3.68% 89.65% ± 5.37% 91.35% ± 3.93% 

Leaning 99.15% ± 0.74% 0.15% ± 0.14% 96.35% ± 2.85% 89.49% ± 6.63% 

Walking 97.04% ± 2.74% 1.68% ± 1.19% 87.6% ± 8.14% 87.38% ± 10.22% 

Stairs 99.71% ± 0.38% 0.05% ± 0.05% 97.5% ± 2.66% 92.65% ± 7.28% 

Cycling 99.25% ± 0.36% 0.15% ± 0.17% 91.25% ± 4.58% 73.76% ± 14.59% 

ALL 98.09% ± 0.99% 2.02% ± 0.76% 95.41% ± 4.49% 95.01% ± 5.33% 

Appendix E-3. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, Random Forest classifier and two feature sets: fea-

tures per sum of values from both insoles and all features in a subject dependent manner. 
 

Left 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 90.57% ± 5.96% 16.45% ± 7.01% 90.37% ± 7.97% 92.17% ± 6.31% 

Standing 88.87% ± 6.03% 8.35% ± 6.75% 67.13% ± 15.44% 69.79% ± 10.85% 

Leaning 96.58% ± 1.59% 0.22% ± 0.28% 49.25% ± 35.76% 14.11% ± 14.07% 

Walking 95.65% ± 3.7% 2.59% ± 2.29% 81.5% ± 11.67% 81.85% ± 11.25% 

Stairs 98.23% ± 0.96% 0.02% ± 0.02% 77.86% ± 32.09% 23.31% ± 21.14% 

Cycling 98.76% ± 0.58% 0.24% ± 0.24% 73.96% ± 19.57% 47.54% ± 19.82% 

ALL 91.36% ± 2.53% 12.25% ± 5.93% 83.3% ± 10.99% 82.22% ± 18.45% 

Right 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 90.55% ± 4.17% 17.11% ± 8.65% 90.21% ± 6.86% 92.23% ± 4.84% 

Standing 88.43% ± 5.2% 8.19% ± 5.11% 65.89% ± 15.72% 67.87% ± 9.75% 

Leaning 96.53% ± 1.48% 0.34% ± 0.68% 46.89% ± 36.78% 16.01% ± 14.78% 

Walking 95.41% ± 3.49% 2.78% ± 2.26% 79.77% ± 11.33% 78.9% ± 15.69% 

Stairs 98.59% ± 1.1% 0.05% ± 0.11% 84.02% ± 32.36% 61.3% ± 25.95% 

Cycling 98.58% ± 0.44% 0.32% ± 0.31% 68% ± 24.78% 42.71% ± 14.5% 

ALL 91.24% ± 2.58% 12.67% ± 6.2% 82.72% ± 11.61% 82.31% ± 16.98% 

Appendix E-4. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, Random Forest classifier, features per sensor from 

each insole in a subject independent manner. 
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Left 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 86.72% ± 5.04% 18.83% ± 7.27% 88.48% ± 8.53% 89.2% ± 5.54% 

Standing 85.3% ± 5.14% 10.36% ± 5.67% 58.56% ± 17.93% 59.77% ± 12.16% 

Leaning 96.35% ± 1.42% 0.72% ± 0.5% 35.72% ± 26.2% 19.3% ± 17.07% 

Walking 94.38% ± 3.72% 3.11% ± 1.62% 75.18% ± 11.61% 75.37% ± 15.02% 

Stairs 98.19% ± 1.05% 0.39% ± 0.22% 44.43% ± 31.35% 34.55% ± 27.28% 

Cycling 97.33% ± 2.26% 1.23% ± 2.22% 22.6% ± 13.51% 11.41% ± 6.5% 

ALL 88.1% ± 3.6% 14.23% ± 6.59% 77.88% ± 16.5% 77.62% ± 19.21% 

Right 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 84.74% ± 6.04% 22.75% ± 11.2% 86.81% ± 8.26% 87.58% ± 6.19% 

Standing 83.81% ± 5.78% 12.02% ± 5.43% 53.7% ± 15.14% 56.92% ± 12.27% 

Leaning 96.21% ± 1.66% 0.53% ± 0.54% 29.32% ± 25.39% 9.19% ± 8.35% 

Walking 93.94% ± 3.55% 3.5% ± 2.78% 72.41% ± 15.28% 71.03% ± 18.85% 

Stairs 97.68% ± 1.44% 0.6% ± 0.75% 29.79% ± 24.91% 16.22% ± 15.46% 

Cycling 97.8% ± 0.82% 0.69% ± 0.47% 16.29% ± 15.83% 9.05% ± 6.28% 

ALL 86.51% ± 4.19% 17.04% ± 8.11% 75.02% ± 18.41% 74.83% ± 21.23% 

Appendix E-5. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, Random Forest classifier, features per sum of val-

ues per insole in a subject independent manner. 
 

Sum 

of Left and 

Right  

  Accuracy False Positive Rate Precision F-Measure 

Sitting 90.43% ± 4.35% 9.56% ± 4.34% 93.59% ± 4.63% 92% ± 4.19% 

Standing 87.01% ± 5.67% 11.94% ± 5.97% 59.8% ± 17.26% 67.83% ± 14.21% 

Leaning 96.59% ± 1.44% 0.57% ± 0.45% 41.01% ± 33.28% 23.96% ± 21.2% 

Walking 94.63% ± 3.79% 3.17% ± 2.45% 77.05% ± 10.99% 76.91% ± 12.34% 

Stairs 98.08% ± 1.4% 0.32% ± 0.75% 58.6% ± 35.12% 24.62% ± 23.78% 

Cycling 97.84% ± 1.29% 0.66% ± 1.05% 24.38% ± 24.06% 9.82% ± 7.96% 

ALL 90.81% ± 2.71% 8.59% ± 3.26% 82.07% ± 17.29% 80.94% ± 19.2% 

All Fea-

tures 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 94.5% ± 3.93% 7.05% ± 3.89% 95.66% ± 3.89% 95.29% ± 3.99% 

Standing 90.56% ± 5.11% 9.03% ± 5.95% 67.62% ± 16.63% 75.49% ± 12.33% 

Leaning 96.78% ± 1.43% 0.31% ± 0.34% 56.07% ± 36.36% 23.79% ± 22.95% 

Walking 95.8% ± 3.5% 2.47% ± 2.09% 81.66% ± 10.96% 81.23% ± 13.3% 

Stairs 98.51% ± 1.09% 0.01% ± 0.01% 82.63% ± 38.62% 39.33% ± 35.1% 

Cycling 98.75% ± 0.55% 0.24% ± 0.27% 75.28% ± 19.84% 47.91% ± 21.3% 

ALL 94.18% ± 1.9% 6.38% ± 2.45% 87.13% ± 12.37% 85.79% ± 16.7% 

Appendix E-6. Measurements of performance obtained using pressure data. Computations are 

performed using a 6-seconds sliding window, Random Forest classifier and two feature sets: fea-

tures per sum of values from both insoles and all features in a subject dependent manner. 
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F. Performance measurements while using only pressure data and opti-

mal parameters  

 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.87% ± 1.49% 1.42% ± 1.51% 98.91% ± 1.93% 98.9% ± 1.77% 

Standing 96.73% ± 3.1% 2.97% ± 3.53% 90.49% ± 5.13% 92.23% ± 3.81% 

Leaning 99.37% ± 0.57% 0.04% ± 0.05% 98.93% ± 1.12% 92.23% ± 5.24% 

Walking 97.34% ± 2.52% 1.42% ± 0.94% 89.43% ± 7.08% 88.89% ± 9.89% 

Stairs 99.88% ± 0.18% 0.01% ± 0.03% 99.34% ± 1.67% 96.86% ± 4.32% 

Cycling 99.47% ± 0.31% 0.13% ± 0.12% 93.37% ± 5.11% 83% ± 10.2% 

ALL 98.35% ± 0.94% 1.6% ± 0.75% 96.14% ± 4.07% 95.86% ± 4.22% 

Appendix F-1. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, all fea-

tures, and 6 pressure sensors in a subject dependent manner. 

 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.4% ± 1.74% 2.34% ± 2.13% 98.28% ± 2.41% 98.47% ± 2.06% 

Standing 96.19% ± 3.53% 3.27% ± 3.78% 89.45% ± 5.59% 91.06% ± 4.18% 

Leaning 99.21% ± 0.7% 0.11% ± 0.09% 97.19% ± 1.98% 90.05% ± 6.65% 

Walking 96.97% ± 2.84% 1.66% ± 1.1% 87.24% ± 8.2% 86.72% ± 11.03% 

Stairs 99.64% ± 0.41% 0.07% ± 0.08% 96.51% ± 3.61% 91.04% ± 7.96% 

Cycling 99.26% ± 0.35% 0.21% ± 0.21% 89.14% ± 6.97% 75.96% ± 11.62% 

ALL 97.9% ± 0.98% 2.25% ± 0.78% 95.08% ± 4.51% 94.77% ± 5.2% 

Appendix F-2. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the 

LR_Sum feature set, and 6 pressure sensors in a subject dependent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.71% ± 1.56% 1.69% ± 1.52% 98.78% ± 1.78% 98.75% ± 1.88% 

Standing 96.22% ± 3.23% 3.39% ± 3.78% 89.18% ± 5.56% 90.85% ± 3.82% 

Leaning 99.19% ± 0.62% 0.04% ± 0.06% 98.89% ± 1.38% 89.3% ± 5.9% 

Walking 97.01% ± 2.67% 1.77% ± 1.1% 87.28% ± 7.84% 87.69% ± 10.28% 

Stairs 99.82% ± 0.27% 0.01% ± 0.02% 99.34% ± 1.43% 95.42% ± 6.73% 

Cycling 99.31% ± 0.34% 0.15% ± 0.17% 92.72% ± 5.22% 76.71% ± 12.72% 

ALL 98.1% ± 1.08% 1.89% ± 0.85% 95.55% ± 4.78% 95.09% ± 5.13% 

Appendix F-3. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the Infor-

mation Gain feature set, and 6 pressure sensors in a subject dependent manner. 
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  Accuracy False Positive Rate Precision F-Measure 

Sitting 94.4% ± 4.02% 6.6% ± 3.75% 95.85% ± 3.81% 95.2% ± 4.03% 

Standing 90.6% ± 5.25% 8.65% ± 5.73% 68.55% ± 17.49% 75.4% ± 12.57% 

Leaning 96.7% ± 1.32% 0.62% ± 0.59% 54.11% ± 33.75% 31.73% ± 24.88% 

Walking 95.78% ± 3.64% 2.59% ± 2.39% 81.49% ± 10.99% 81.72% ± 12.12% 

Stairs 98.68% ± 1.15% 0.02% ± 0.05% 89.1% ± 29.69% 50.49% ± 38.44% 

Cycling 98.66% ± 0.52% 0.31% ± 0.28% 65.88% ± 23.39% 45.27% ± 17.27% 

ALL 94.12% ± 1.88% 6.05% ± 2.25% 87.29% ± 12.58% 86.23% ± 15.19% 

Appendix F-4. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, all fea-

tures, and 6 pressure sensors in a subject independent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 92.82% ± 3.87% 7.21% ± 3.59% 95.21% ± 4.06% 93.93% ± 3.9% 

Standing 89.39% ± 5.04% 9.61% ± 4.92% 64.71% ± 17.29% 72.19% ± 13.6% 

Leaning 96.31% ± 1.41% 0.87% ± 0.85% 44.63% ± 33.81% 25.8% ± 21.41% 

Walking 95.1% ± 3.62% 3.21% ± 2.43% 77.5% ± 10.81% 79.15% ± 12.03% 

Stairs 98.11% ± 1.46% 0.37% ± 0.64% 35.77% ± 37.97% 29.33% ± 31.45% 

Cycling 98.1% ± 0.81% 0.52% ± 0.58% 37.31% ± 29.19% 17.97% ± 15.55% 

ALL 92.79% ± 2.03% 6.7% ± 2.38% 83.9% ± 16.91% 83.49% ± 18.4% 

Appendix F-5. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the 

LR_Sum feature set, and 6 pressure sensors in a subject independent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 92.64% ± 3.38% 8.77% ± 4.13% 94.46% ± 4.22% 93.78% ± 3.62% 

Standing 88.95% ± 5.06% 10.51% ± 5.42% 63.64% ± 15.88% 72.16% ± 12.22% 

Leaning 96.56% ± 1.18% 0.33% ± 0.71% 52.64% ± 39.56% 20.98% ± 17.65% 

Walking 95.32% ± 3.82% 3.22% ± 2.56% 77.81% ± 11.14% 80.67% ± 11.52% 

Stairs 98.14% ± 1.05% 0% ± 0.01% 96.81% ± 5.28% 21.51% ± 15.87% 

Cycling 98.46% ± 0.51% 0.05% ± 0.08% 67.54% ± 34.19% 15.31% ± 14.23% 

ALL 92.64% ± 2.22% 7.82% ± 2.91% 85.25% ± 13.69% 83.2% ± 19.47% 

Appendix F-6. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the Infor-

mation Gain feature set, and 6 pressure sensors in a subject independent manner. 
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G. Performance measurements while using pressure data and foot accel-

eration 

 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 99% ± 1.56% 1.14% ± 1.49% 99.07% ± 2% 99.02% ± 1.85% 

Standing 96.89% ± 3.18% 2.83% ± 3.59% 91.08% ± 5.16% 92.8% ± 3.94% 

Leaning 99.4% ± 0.57% 0.02% ± 0.03% 99.38% ± 0.81% 92.55% ± 5.39% 

Walking 97.36% ± 2.68% 1.45% ± 1.06% 89.5% ± 7.62% 89.27% ± 10.57% 

Stairs 99.92% ± 0.13% 0.01% ± 0.03% 99.18% ± 2.15% 97.83% ± 3.83% 

Cycling 99.49% ± 0.31% 0.13% ± 0.12% 93.42% ± 5.34% 83.56% ± 10.84% 

ALL 98.46% ± 0.94% 1.4% ± 0.76% 96.37% ± 3.99% 96.13% ± 4.07% 

Appendix G-1. Measurements of performance obtained using pressure and foot acceleration data. 

Computations are performed using a 6-seconds sliding window, Random Forest classifier, all 

features, and 6 pressure sensors in a subject dependent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.96% ± 1.68% 1.14% ± 1.53% 99.02% ± 2.06% 98.97% ± 1.99% 

Standing 96.71% ± 3.41% 3.03% ± 3.93% 90.58% ± 5.52% 92.47% ± 4.14% 

Leaning 99.26% ± 0.75% 0.05% ± 0.08% 98.74% ± 1.81% 90.54% ± 7.3% 

Walking 97.28% ± 2.77% 1.49% ± 1.06% 89.05% ± 7.94% 88.88% ± 11.1% 

Stairs 99.92% ± 0.13% 0.01% ± 0.03% 99.39% ± 2.12% 97.92% ± 4.03% 

Cycling 99.45% ± 0.31% 0.15% ± 0.12% 92.06% ± 5.97% 82.35% ± 11.33% 

ALL 98.39% ± 0.99% 1.44% ± 0.83% 96.14% ± 4.19% 95.89% ± 4.33% 

Appendix G-2. Measurements of performance obtained using pressure and foot acceleration data   

from 6 sensors. Computations are performed using a 6-seconds sliding window, Random Forest 

classifier, the LR_Sum feature set, and 6 pressure sensors in a subject dependent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 98.84% ± 1.76% 1.28% ± 1.55% 98.95% ± 2.1% 98.86% ± 2.1% 

Standing 96.41% ± 3.49% 3.32% ± 3.97% 89.53% ± 5.46% 91.68% ± 4.14% 

Leaning 99.17% ± 0.66% 0.03% ± 0.04% 99.03% ± 0.97% 88.89% ± 6.25% 

Walking 97.09% ± 2.89% 1.71% ± 1.2% 87.69% ± 8.73% 88.18% ± 11.34% 

Stairs 99.88% ± 0.19% 0.01% ± 0.03% 99.31% ± 1.83% 96.63% ± 6.44% 

Cycling 99.32% ± 0.32% 0.15% ± 0.15% 92.66% ± 5.59% 76.85% ± 12.43% 

ALL 98.23% ± 1.06% 1.61% ± 0.9% 95.77% ± 4.68% 95.38% ± 4.98% 

Appendix G-3. Measurements of performance obtained using pressure and foot acceleration data 

from 6 sensors. Computations are performed using a 6-seconds sliding window, Random Forest 

classifier, the Information Gain feature set, and 6 pressure sensors in a subject dependent man-

ner. 
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 Accuracy False Positive Rate Precision F-Measure 

Sitting 99% ± 1.56% 2.77% ± 2.67% 97.48% ± 3.23% 96.81% ± 2.97% 

Standing 96.89% ± 3.18% 7.84% ± 4.7% 72.84% ± 14.42% 79.58% ± 10.15% 

Leaning 99.4% ± 0.57% 0.41% ± 0.47% 59.23% ± 36.71% 28.59% ± 23.65% 

Walking 97.36% ± 2.68% 2.27% ± 1.97% 83.78% ± 10.87% 85.86% ± 10.94% 

Stairs 99.92% ± 0.13% 0.01% ± 0.03% 99.83% ± 0.67% 94.75% ± 9.83% 

Cycling 99.49% ± 0.31% 0.21% ± 0.22% 84.11% ± 12.93% 63.35% ± 17.09% 

ALL 98.46% ± 0.94% 3.5% ± 2.14% 90.41% ± 11.29% 89.3% ± 13.94% 

Appendix G-4. Measurements of performance obtained using pressure and foot acceleration data. 

Computations are performed using a 6-seconds sliding window, Random Forest classifier, all 

features, and 6 pressure sensors in a subject independent manner. 
 

 Accuracy False Positive Rate Precision F-Measure 

Sitting 98.96% ± 1.68% 3.44% ± 3.06% 97% ± 3.52% 96.39% ± 3.16% 

Standing 96.71% ± 3.41% 9.12% ± 4.78% 69.67% ± 13.49% 77.82% ± 9.89% 

Leaning 99.26% ± 0.75% 0.06% ± 0.08% 72.58% ± 29.25% 12.77% ± 10.64% 

Walking 97.28% ± 2.77% 3.28% ± 2.22% 78.38% ± 10.38% 82.93% ± 10.48% 

Stairs 99.92% ± 0.13% 0% ± 0% 99.79% ± 0.8% 87.91% ± 18.71% 

Cycling 99.45% ± 0.31% 0.07% ± 0.12% 87.31% ± 16.61% 25.4% ± 15.29% 

ALL 98.39% ± 0.99% 4.29% ± 0% 88.44% ± 0% 86.41% ± 0% 

Appendix G-5. Measurements of performance obtained using pressure and foot acceleration data   

from 6 sensors. Computations are performed using a 6-seconds sliding window, Random Forest 

classifier, the LR_Sum feature set, and 6 pressure sensors in a subject independent manner. 
 

 Accuracy False Positive Rate Precision F-Measure 

Sitting 98.84% ± 1.76% 3.26% ± 2.83% 97.14% ± 3.42% 96.75% ± 2.94% 

Standing 96.41% ± 3.49% 8.03% ± 4.14% 71.75% ± 13.27% 78.93% ± 9.64% 

Leaning 99.17% ± 0.66% 0.34% ± 0.47% 57.97% ± 36.11% 21.09% ± 15.15% 

Walking 97.09% ± 2.89% 2.07% ± 2.01% 85.19% ± 10.95% 86.61% ± 11.12% 

Stairs 99.88% ± 0.19% 0.03% ± 0.08% 99.34% ± 1.86% 97.23% ± 4.93% 

Cycling 99.32% ± 0.32% 0.23% ± 0.21% 83.12% ± 11.48% 68.54% ± 15.4% 

ALL 98.23% ± 1.06% 3.79% ± 0% 89.91% ± 0% 89.01% ± 0% 

Appendix G-6. Measurements of performance obtained using pressure and foot acceleration data 

from 6 sensors. Computations are performed using a 6-seconds sliding window, Random Forest 

classifier, the Information Gain feature set, and 6 pressure sensors in a subject independent man-

ner. 
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H. Performance measurements while using pressure data and both foot 

and thigh accelerometer data 

 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 99.43% ± 0.41% 0.64% ± 0.46% 99.53% ± 0.55% 99.48% ± 0.47% 

Standing 97.56% ± 1.75% 2.08% ± 1.69% 92.73% ± 3% 94.07% ± 2.58% 

Leaning 99.5% ± 0.43% 0.03% ± 0.02% 99.37% ± 0.61% 93.89% ± 3.96% 

Walking 97.88% ± 1.55% 1.29% ± 0.89% 91% ± 5.12% 91.45% ± 5.21% 

Stairs 99.93% ± 0.13% 0.01% ± 0.03% 99.38% ± 1.54% 97.91% ± 4.28% 

Cycling 99.54% ± 0.27% 0.11% ± 0.11% 94.53% ± 4.58% 85.17% ± 9.84% 

ALL 98.92% ± 0.82% 0.94% ± 0.61% 97.16% ± 3.46% 96.99% ± 3.5% 

Appendix H-1. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, all fea-

tures, and 6 pressure sensors in a subject dependent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 99.38% ± 0.47% 0.79% ± 0.57% 99.44% ± 0.63% 99.43% ± 0.54% 

Standing 97.46% ± 1.9% 2.13% ± 1.89% 92.7% ± 3.3% 93.82% ± 2.7% 

Leaning 99.43% ± 0.57% 0.06% ± 0.08% 98.53% ± 1.65% 93.16% ± 5.13% 

Walking 97.81% ± 1.57% 1.32% ± 0.88% 90.76% ± 5.29% 91.15% ± 5.49% 

Stairs 99.92% ± 0.15% 0.01% ± 0.03% 99.43% ± 1.78% 97.68% ± 4.73% 

Cycling 99.51% ± 0.26% 0.14% ± 0.12% 92.71% ± 3.55% 84.05% ± 10.11% 

ALL 98.85% ± 0.84% 1.04% ± 0.59% 97% ± 3.5% 96.82% ± 3.68% 

Appendix H-2. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the 

LR_Sum feature set, and 6 pressure sensors in a subject dependent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 99.24% ± 0.53% 0.92% ± 0.62% 99.35% ± 0.65% 99.31% ± 0.6% 

Standing 97.03% ± 2.08% 2.61% ± 2.18% 90.93% ± 3.42% 92.73% ± 2.84% 

Leaning 99.23% ± 0.62% 0.04% ± 0.06% 98.94% ± 1.5% 89.97% ± 5.86% 

Walking 97.64% ± 1.66% 1.47% ± 0.94% 89.82% ± 5.6% 90.52% ± 5.72% 

Stairs 99.87% ± 0.22% 0.01% ± 0.02% 99.36% ± 1.15% 95.88% ± 8.34% 

Cycling 99.41% ± 0.31% 0.15% ± 0.15% 92.64% ± 4.67% 79.55% ± 14.28% 

ALL 98.66% ± 0.94% 1.23% ± 0.73% 96.52% ± 4.08% 96.21% ± 4.38% 

Appendix H-3. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the Infor-

mation Gain feature set, and 6 pressure sensors in a subject dependent manner. 
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  Accuracy False Positive Rate Precision F-Measure 

Sitting 97.57% ± 2.56% 3.54% ± 3.94% 97.76% ± 3.2% 97.82% ± 2.96% 

Standing 93.16% ± 4.43% 6.13% ± 4.22% 75.76% ± 8.87% 81.56% ± 7.12% 

Leaning 96.89% ± 1.59% 0.43% ± 0.65% 66.35% ± 38.17% 29.71% ± 24.61% 

Walking 96.45% ± 3.65% 2.17% ± 2.24% 84.48% ± 11.15% 85.56% ± 11.1% 

Stairs 99.69% ± 0.7% 0% ± 0% 100% ± 0% 92.07% ± 16.46% 

Cycling 99.08% ± 0.49% 0.21% ± 0.2% 82.45% ± 16.67% 62.87% ± 20.68% 

ALL 96.7% ± 1.72% 3.6% ± 1.47% 91.04% ± 9.94% 90.47% ± 13.88% 

Appendix H-4. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, all fea-

tures, and 6 pressure sensors in a subject independent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 97.54% ± 2.59% 3.21% ± 3.61% 97.88% ± 3.06% 97.8% ± 2.91% 

Standing 92.9% ± 4.09% 6.42% ± 4.08% 74.64% ± 9.29% 80.75% ± 7.18% 

Leaning 96.7% ± 1.42% 0.43% ± 0.57% 54.61% ± 31.03% 22.53% ± 21.09% 

Walking 96.43% ± 3.63% 2.19% ± 2.22% 84.24% ± 11.53% 85.45% ± 11.16% 

Stairs 99.82% ± 0.33% 0.01% ± 0.04% 99.56% ± 1.34% 95.93% ± 6.08% 

Cycling 99.13% ± 0.45% 0.17% ± 0.16% 83.08% ± 16.13% 62.98% ± 23.07% 

ALL 96.64% ± 1.81% 3.44% ± 1.58% 90.48% ± 11.44% 90.13% ± 15.09% 

Appendix H-5. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the 

LR_Sum feature set, and 6 pressure sensors in a subject independent manner. 
 

  Accuracy False Positive Rate Precision F-Measure 

Sitting 94.2% ± 11.36% 11.15% ± 25.43% 94.56% ± 11.36% 95.75% ± 7.44% 

Standing 90.75% ± 7.13% 6.9% ± 4.75% 70.26% ± 12.24% 78.1% ± 11.02% 

Leaning 96.51% ± 1.59% 0.16% ± 0.34% 60% ± 40.82% 7.4% ± 7.59% 

Walking 95.34% ± 3.8% 2.64% ± 2.34% 80.1% ± 11.32% 82.26% ± 11.42% 

Stairs 99.46% ± 0.76% 0.05% ± 0.13% 96.95% ± 6.72% 89.01% ± 13.8% 

Cycling 98.63% ± 0.51% 0.06% ± 0.07% 74.91% ± 27.97% 30.48% ± 21.02% 

ALL 93.98% ± 1.8% 8.63% ± 3.73% 87.12% ± 11% 86.79% ± 18.41% 

Appendix H-6. Measurements of performance obtained using pressure data from 6 sensors. Com-

putations are performed using a 6-seconds sliding window, Random Forest classifier, the Infor-

mation Gain feature set, and 6 pressure sensors in a subject independent manner. 
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I. MATLAB code used for data extraction, processing and compu-

tation 

% Options for all: Yes or No options   

ACC = 1; 

AP_raw = 1; 

  

Data_output_type = 0; %0.Only Pressure, 1.Pressure+Acc, 2.Pressure+Acc+AP,3.Pressure+Acc+AP  

Pn = 15; %number of participants 

Wn = 1; %total number of windows 

Wf = 6; %Base factor of exponential windows 

  

%For export only 

LRB = 0; %To obtain only LRB or others features 

Force_include = 0; 

Only_Lab = 0; %0 - Lab+FL , 1 - Lab only 

  

Remove_Sensor = 0;   %0 = no, 1 = yes .For removal of sensors 

if Remove_Sensor == 1 

sn_number = [5 6 7 8 10 11]+1; %Number of analysed sensors 

Number_of_Sensors_removed = 13-length(sn_number); 

N_S = 13-Number_of_Sensors_removed;   %Number of remaining sensors 

else 

sn_number = 13; 

N_S = 13;     

end 

  

Remove_Sensor_Ind = 0; 

view_plot = 0; %(p = 1 means plot force) 

%% 

C_LRB = cell(Pn,Wn); 

C_all = cell(Pn,Wn); 

C_L_Sensor = cell(Pn,Wn); 

C_R_Sensor = cell(Pn,Wn); 

C_L_Sum = cell(Pn,Wn); 

C_R_Sum = cell(Pn,Wn); 

C_lab = cell(Pn,Wn); 

C_lab_LRB = cell(Pn,Wn); 

C_EachSensor = cell(Pn,13); 

AP_prediction = cell(Pn,Wn); 

Ground_truth = cell(Pn,Wn); 

size_data = zeros(Pn,Wn); 

size_data_EachSensor = zeros(Pn,Wn); 

start_lab = ones(1,Pn); 

end_lab = ones(1,Pn); 

findings = cell(Pn,1); 

  

for j = 1:Pn %Participants 

N = j; 

    for sn = sn_number  %Removing individual sensors 

        Remove_Sensor_N = sn; 
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        for g = 1:Wn 

        window = Wf.^g;  % Window Size 

        e = window; 

            if e == 64 

            window = 6; 

            end 

run import_Pnumber.m 

  

        if N==6 || N== 11 

        raw_lab_0   =   import_insole_data(filename,c,b); 

        else 

        raw_lab_0   =   import_insole_data(filename,a,d); 

        end 

 

run Replace_NaN.m %output raw_lab_1 

  

 

if N == 12 

%To correct insoles data anomaly 

    raw_lab_P_L = array2table(vertcat(raw_lab_1{1:105000,21:33},raw_lab_1{105001:end,21:33}*.4)); 

    raw_lab_P_L.Properties.VariableNames = {'VarName21','VarName22','VarName23','Var-

Name24','VarName25',... 

        'VarName26','VarName27','VarName28','VarName29','VarName30','VarName31','VarName32','Var-

Name33'}; 

    raw_lab_F_L = array2table(vertcat(raw_lab_1{1:105000,37},raw_lab_1{105001:end,37}*.4)); 

    raw_lab_F_L.Properties.VariableNames = {'VarName37'}; 

    raw_lab = [raw_lab_1(:,1:20) raw_lab_P_L raw_lab_1(:,34:36) raw_lab_F_L raw_lab_1(:,38:39)] ; 

elseif N== 15    

    raw_lab_P_L = array2ta-

ble(vertcat(raw_lab_1{1:110000,21:33},raw_lab_1{110001:224800,21:33}*.3,raw_lab_1{224801:end,21

:33}*.5)); 

    raw_lab_P_L.Properties.VariableNames = {'VarName21','VarName22','VarName23','Var-

Name24','VarName25',... 

        'VarName26','VarName27','VarName28','VarName29','VarName30','VarName31','VarName32','Var-

Name33'}; 

    raw_lab_F_L = array2ta-

ble(vertcat(raw_lab_1{1:110000,37},raw_lab_1{110001:224800,37}*.3,raw_lab_1{224801:end,37}*.5))

; 

    raw_lab_F_L.Properties.VariableNames = {'VarName37'}; 

    raw_lab = [raw_lab_1(:,1:20) raw_lab_P_L raw_lab_1(:,34:36) raw_lab_F_L raw_lab_1(:,38:39)] ; 

else 

raw_lab = raw_lab_1; 

end 

clearvars filename a b c d raw_lab_0 raw_lab_P_L raw_lab_F_L 

  

%% Create the activity labels 

run labelling.m 

%Named as GoPro_label 

  

%% Run ActivPal code 
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run ActivPAL_calculations.m 

%output: activpal_event_offset and T_AP_raw_offset 

  

%% Transpose data 

%This code will create the index "q" adding n values (n=Hz) each cell which wil be used  

%for the "for" cycle used to transpose the data into n second windows with no overlap 

 

run transpose_data.m 

  

input = activpal_event_offset; 

input_2 = T_AP_raw_offset; 

run transpose_activpal.m 

%obtain T_activpal_raw and AP_label 

  

clearvars data_transpose input input_2 T_AP_raw_offset %activpal_event_offset  

%% Obtain Activity_transposed and T_data (data rearranged into the 

% window size and per variable name without label) 

  

%Divide T_data into Pressure Data and Acceleration Data 

T_data_Pr_forCC = T_data_full(:,1:26); 

T_data_Pr_test = T_data_full(:,1:26); 

T_data_F = T_data_full(:,27:28); 

T_data_Acc = T_data_full(:,29:34); 

  

T_data_AP = T_activpal_raw; 

  

T_data_Pr = T_data_Pr_test; 

  

if Remove_Sensor == 1   %Change T_Data_Pr depending on number of sensors 

T_data_Pr_L = T_data_Pr_test(:,1:13); 

T_data_Pr_R = T_data_Pr_test(:,14:26); 

% T_data_Pr_L(:,Remove_Sensor_N) = []; 

% T_data_Pr_R(:,Remove_Sensor_N) = []; 

T_data_Pr_L.Left_Pressure9 = []; 

T_data_Pr_R.Right_Pressure9 = []; 

T_data_Pr_L.Left_Pressure4 = []; 

T_data_Pr_R.Right_Pressure4 = []; 

T_data_Pr_L.Left_Pressure3 = []; 

T_data_Pr_R.Right_Pressure3 = []; 

T_data_Pr_L.Left_Pressure0 = []; 

T_data_Pr_R.Right_Pressure0 = []; 

T_data_Pr_L.Left_Pressure1 = []; 

T_data_Pr_R.Right_Pressure1 = []; 

T_data_Pr_L.Left_Pressure12 = []; 

T_data_Pr_R.Right_Pressure12 = []; 

T_data_Pr_L.Left_Pressure2 = []; 

T_data_Pr_R.Right_Pressure2 = []; 

% T_data_Pr_L.Left_Pressure8 = []; 

% T_data_Pr_R.Right_Pressure8 = []; 

% T_data_Pr_L.Left_Pressure11 = []; 

% T_data_Pr_R.Right_Pressure11 = []; 
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% T_data_Pr_L.Left_Pressure7 = []; 

% T_data_Pr_R.Right_Pressure7 = []; 

% T_data_Pr_L.Left_Pressure6 = []; 

% T_data_Pr_R.Right_Pressure6 = []; 

T_data_Pr = [T_data_Pr_L T_data_Pr_R]; 

end 

  

%% Pre-process data: *Feature Extraction* - Pressure Data 

%The sensor data contains window of 10 seconds (10 points/window). As discussed, the table created 

above is used to calculate the different feature outputs displayed below which use a variety of anonymous 

functions. 

run CorrCoefficient.m 

if Remove_Sensor == 1  

% T_CC(:,Remove_Sensor_N) = []; 

T_CC.CC9 = []; 

T_CC.CC4 = []; 

T_CC.CC3 = []; 

T_CC.CC0 = []; 

T_CC.CC1 = []; 

T_CC.CC12 = []; 

T_CC.CC2 = []; 

%T_CC.CC8 = []; 

%T_CC.CC11 = []; 

%T_CC.CC7 = []; 

%T_CC.CC6 = []; 

end 

clearvars T_data_Pr_forCC 

  

%Body Posture 

T_Mean=varfun(@Wmean,T_data_Pr); %generates the mean of windowed data per sensor 

    T_TotalMean_L = mean(T_Mean{:,1:N_S},2); %generates the mean of windowed data of all left sen-

sors 

    T_TotalMean_R = mean(T_Mean{:,N_S+1:N_S*2},2);  

    T_TotalMean_B = (T_TotalMean_L + T_TotalMean_R)/2; 

     

T_Stdv=varfun(@Wstd,T_data_Pr); %generates the standard deviation of windowed data 

    T_TotalStdv_L = std(table2array(T_data_Pr(:,1:N_S)),0,2); 

    T_TotalStdv_R = std(table2array(T_data_Pr(:,N_S+1:N_S*2)),0,2); 

    T_TotalStdv_B = std(table2array(T_data_Pr),0,2); 

     

T_Var=varfun(@Wvar,T_data_Pr); %Motion variation 

    T_TotalVar_L = var(table2array(T_data_Pr(:,1:N_S)),0,2); 

    T_TotalVar_R = var(table2array(T_data_Pr(:,N_S+1:N_S*2)),0,2); 

    T_TotalVar_B = var(table2array(T_data_Pr),0,2); 

     

T_Max = varfun(@Wmax,T_data_Pr); %finds the max point in the window 

    T_TotalMax_L = max(T_Max{:,1:N_S},[],2); 

    T_TotalMax_R = max(T_Max{:,N_S+1:N_S*2},[],2); 

    T_TotalMax_B = max(T_Max{:,1:N_S*2},[],2); 

     

T_Range = varfun(@Wrange,T_data_Pr); %finds the max point in the window 
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    T_TotalRange_L = range(table2array(T_data_Pr(:,1:N_S)),2); 

    T_TotalRange_R = range(table2array(T_data_Pr(:,N_S+1:N_S*2)),2); 

    T_TotalRange_B = range(table2array(T_data_Pr),2); 

  

T_Rms=varfun(@Wrms,T_data_Pr); %generates the root mean square of the windowed data 

    T_TotalRms_L = rms(table2array(T_data_Pr(:,1:N_S)),2); 

    T_TotalRms_R = rms(table2array(T_data_Pr(:,N_S+1:N_S*2)),2); 

    T_TotalRms_B = rms(table2array(T_data_Pr),2); 

  

%Motion periodicity 

T_MCross = varfun(@WMcross,T_data_Pr); %finds the mean crossings 

      T_TotalMCross_L = table2array(varfun(@WMcross,table(table2array(T_data_Pr(:,1:N_S))))); 

      T_TotalMCross_R = table2array(varfun(@WMcross,table(table2ar-

ray(T_data_Pr(:,N_S+1:N_S*2))))); 

      T_TotalMCross_B = table2array(varfun(@WMcross,table(table2array(T_data_Pr)))); 

     

T_Area = varfun(@Warea, T_data_Pr); 

    T_TotalArea_L = sum(T_Area{:,1:N_S},2); 

    T_TotalArea_R = sum(T_Area{:,N_S+1:N_S*2},2); 

    T_TotalArea_B = T_TotalArea_L + T_TotalArea_R; 

  

T_Kurt = varfun(@Wkurt,T_data_Pr);  

    T_TotalKurt_L = kurtosis(table2array(T_data_Pr(:,1:N_S)),1,2); 

    T_TotalKurt_R = kurtosis(table2array(T_data_Pr(:,N_S+1:N_S*2)),1,2); 

    T_TotalKurt_B = kurtosis(table2array(T_data_Pr),1,2); 

     

T_Skew = varfun(@Wskew,T_data_Pr);  

    T_TotalSkew_L = skewness(table2array(T_data_Pr(:,1:N_S)),1,2); 

    T_TotalSkew_R = skewness(table2array(T_data_Pr(:,N_S+1:N_S*2)),1,2); 

    T_TotalSkew_B = skewness(table2array(T_data_Pr),1,2); 

     

T_Quart = varfun(@WQuartile,T_data_Pr); 

    T_TotalQuart_L = prctile(table2array(T_data_Pr(:,1:N_S)),[25 50 75],2); 

    T_TotalQuart_R = prctile(table2array(T_data_Pr(:,N_S+1:N_S*2)),[25 50 75],2); 

    T_TotalQuart_B = prctile(table2array(T_data_Pr),[25 50 75],2); 

  

T_IQR = varfun(@Wrange,T_Quart);  

    T_TotalIQR_L = range(T_TotalQuart_L,2); 

    T_TotalIQR_R = range(T_TotalQuart_R,2); 

    T_TotalIQR_B = range(T_TotalQuart_B,2); 

     

%% Pre-process data: *Feature Extraction* - Acc Data 

  

%Body Posture 

T_Mean_Acc =varfun(@Wmean,T_data_Acc); %generates the mean of windowed data per sensor 

    T_TotalMean_L_Acc = mean(T_Mean_Acc{:,1:3},2); %generates the mean of windowed data of all 

left sensors 

    T_TotalMean_R_Acc = mean(T_Mean_Acc{:,4:6},2); %generates the mean of windowed data of all 

right sensors 

    T_TotalMean_B_Acc = (T_TotalMean_L_Acc + T_TotalMean_R_Acc)/2; 
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T_Mean_Dif_Acc_XY_L = T_Mean_Acc{:,1} - T_Mean_Acc{:,2};   

T_Mean_Dif_Acc_XZ_L = T_Mean_Acc{:,1} - T_Mean_Acc{:,3}; 

T_Mean_Dif_Acc_YZ_L = T_Mean_Acc{:,2} - T_Mean_Acc{:,3}; 

T_Mean_Dif_Acc_XY_R = T_Mean_Acc{:,4} - T_Mean_Acc{:,5};   

T_Mean_Dif_Acc_XZ_R = T_Mean_Acc{:,4} - T_Mean_Acc{:,6}; 

T_Mean_Dif_Acc_YZ_R = T_Mean_Acc{:,5} - T_Mean_Acc{:,6}; 

  

T_Mean_Dif_Acc = ta-

ble(T_Mean_Dif_Acc_XY_L,T_Mean_Dif_Acc_XZ_L,T_Mean_Dif_Acc_YZ_L,... 

    T_Mean_Dif_Acc_XY_R,T_Mean_Dif_Acc_XZ_R,T_Mean_Dif_Acc_YZ_R); 

     

T_Stdv_Acc =varfun(@Wstd,T_data_Acc); %generates the standard deviation of windowed data 

    T_TotalStdv_L_Acc = std(table2array(T_data_Acc(:,1:3)),0,2); 

    T_TotalStdv_R_Acc = std(table2array(T_data_Acc(:,4:6)),0,2); 

    T_TotalStdv_B_Acc = std(table2array(T_data_Acc),0,2); 

     

T_Var_Acc =varfun(@Wvar,T_data_Acc); %Motion variation 

    T_TotalVar_L_Acc = var(table2array(T_data_Acc(:,1:3)),0,2); 

    T_TotalVar_R_Acc = var(table2array(T_data_Acc(:,4:6)),0,2); 

    T_TotalVar_B_Acc = var(table2array(T_data_Acc),0,2);   

     

T_Max_Acc =varfun(@Wmax,T_data_Acc); %finds the max point in the window 

    T_TotalMax_L_Acc = max(T_Max_Acc{:,1:3},[],2); 

    T_TotalMax_R_Acc = max(T_Max_Acc{:,4:6},[],2); 

    T_TotalMax_B_Acc = max(T_Max_Acc{:,1:6},[],2); 

     

T_Range_Acc = varfun(@Wrange,T_data_Acc);  

    T_TotalRange_L_Acc = range(table2array(T_data_Acc(:,1:3)),2); 

    T_TotalRange_R_Acc = range(table2array(T_data_Acc(:,4:6)),2); 

    T_TotalRange_B_Acc = range(table2array(T_data_Acc),2); 

     

T_Rms_Acc =varfun(@Wrms,T_data_Acc); %generates the root mean square of the windowed data 

    T_TotalRms_L_Acc = rms(table2array(T_data_Acc(:,1:3)),2); 

    T_TotalRms_R_Acc = rms(table2array(T_data_Acc(:,4:6)),2); 

    T_TotalRms_B_Acc = rms(table2array(T_data_Acc),2); 

  

%Motion periodicity 

T_MCross_Acc =varfun(@WMcross,T_data_Acc); %finds the mean crossings 

      T_TotalMCross_L_Acc = table2array(varfun(@WMcross,table(table2array(T_data_Acc(:,1:3))))); 

      T_TotalMCross_R_Acc = table2array(varfun(@WMcross,table(table2array(T_data_Acc(:,4:6))))); 

      T_TotalMCross_B_Acc = table2array(varfun(@WMcross,table(table2array(T_data_Acc)))); 

  

%Motion shape 

T_Area_Acc = varfun(@Warea, T_data_Acc); 

    T_TotalArea_L_Acc = sum(T_Area_Acc{:,1:3},2); 

    T_TotalArea_R_Acc = sum(T_Area_Acc{:,4:6},2); 

    T_TotalArea_B_Acc = T_TotalArea_L_Acc + T_TotalArea_R_Acc; 

     

    T_TotalSMA_L_Acc = sum(abs(table2array(T_data_Acc(:,1:3))),2); %Signal Magnitude Area 

    T_TotalSMA_R_Acc = sum(abs(table2array(T_data_Acc(:,4:6))),2); 

    T_TotalSMA_B_Acc = (T_TotalSMA_L_Acc + T_TotalSMA_R_Acc)/2; 
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LR = table2array(varfun(@Wsmv, T_data_Acc)); %Signal Magnitude Vector 

    T_TotalSMV_L_Acc = sqrt(sum(LR(:,1:3),2)); 

    T_TotalSMV_R_Acc = sqrt(sum(LR(:,4:6),2)); 

    T_TotalSMV_B_Acc = sqrt(sum(LR,2)); 

    clearvars LR 

   

T_Kurt_Acc = varfun(@Wkurt,T_data_Acc);  

    T_TotalKurt_L_Acc = kurtosis(table2array(T_data_Acc(:,1:3)),1,2); 

    T_TotalKurt_R_Acc = kurtosis(table2array(T_data_Acc(:,4:6)),1,2); 

    T_TotalKurt_B_Acc = kurtosis(table2array(T_data_Acc),1,2); 

     

T_Skew_Acc = varfun(@Wskew,T_data_Acc);  

    T_TotalSkew_L_Acc = skewness(table2array(T_data_Acc(:,1:3)),1,2); 

    T_TotalSkew_R_Acc = skewness(table2array(T_data_Acc(:,4:6)),1,2); 

    T_TotalSkew_B_Acc = skewness(table2array(T_data_Acc),1,2); 

     

T_Quart_Acc = varfun(@WQuartile,T_data_Acc);  

    T_TotalQuart_L_Acc = prctile(table2array(T_data_Acc(:,1:3)),[25 50 75],2); 

    T_TotalQuart_R_Acc = prctile(table2array(T_data_Acc(:,4:6)),[25 50 75],2); 

    T_TotalQuart_B_Acc = prctile(table2array(T_data_Acc),[25 50 75],2); 

  

T_IQR_Acc = varfun(@WIQR,T_Quart_Acc);  

    T_TotalIQR_L_Acc = range(T_TotalQuart_L_Acc,2); 

    T_TotalIQR_R_Acc = range(T_TotalQuart_R_Acc,2); 

    T_TotalIQR_B_Acc = range(T_TotalQuart_B_Acc,2); 

  

 

run AP_features.m 

  

clearvars Hz window_size T_Mean_Dif_Acc_XY_L T_Mean_Dif_Acc_XY_L 

T_Mean_Dif_Acc_XY_L... 

    T_Mean_Dif_Acc_XY_L T_Mean_Dif_Acc_XY_L T_Mean_Dif_Acc_XY_L 

  

%% Pre-process data: *Feature Extraction* - Force Data 

     

if Remove_Sensor == 1 

run kurt_skew_Nan_Sensors.m 

else 

run kurt_skew_Nan.m 

end 

     

             

%% Group all the features %collects all data 

run Features_array2table.m 

  

%% Combine all features 

features_lab =[T_Mean T_Stdv T_Max T_Range T_Rms T_MCross T_Area T_Kurt T_Skew T_Var 

T_Quart T_IQR T_CC... 

    T_TotalMean_L T_TotalMean_R T_TotalMean_B T_TotalStdv_L T_TotalStdv_R T_TotalStdv_B... 

    T_TotalVar_L T_TotalVar_R T_TotalVar_B T_TotalArea_L T_TotalArea_R T_TotalArea_B... 
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    T_TotalKurt_L T_TotalKurt_R T_TotalKurt_B T_TotalSkew_L T_TotalSkew_R T_TotalSkew_B... 

    T_TotalMax_L T_TotalMax_R T_TotalMax_B T_TotalRange_L T_TotalRange_R T_TotalRange_B... 

    T_TotalRms_L T_TotalRms_R T_TotalRms_B T_TotalMCross_L T_TotalMCross_R T_TotalM-

Cross_B... 

    T_TotalIQR_L T_TotalIQR_R T_TotalIQR_B T_TotalQuart_L T_TotalQuart_R T_TotalQuart_B... 

    T_Force_CC... 

    T_Mean_Acc T_Mean_Dif_Acc T_Stdv_Acc T_Max_Acc T_Range_Acc T_Rms_Acc 

T_MCross_Acc T_Area_Acc T_Kurt_Acc T_Skew_Acc T_Var_Acc... 

    T_Quart_Acc T_IQR_Acc... 

    T_TotalMean_L_Acc T_TotalMean_R_Acc T_TotalMean_B_Acc T_TotalStdv_L_Acc T_To-

talStdv_R_Acc T_TotalStdv_B_Acc... 

    T_TotalVar_L_Acc T_TotalVar_R_Acc T_TotalVar_B_Acc T_TotalArea_L_Acc T_To-

talArea_R_Acc T_TotalArea_B_Acc... 

    T_TotalKurt_L_Acc T_TotalKurt_R_Acc T_TotalKurt_B_Acc T_TotalSkew_L_Acc T_To-

talSkew_R_Acc T_TotalSkew_B_Acc... 

    T_TotalMax_L_Acc T_TotalMax_R_Acc T_TotalMax_B_Acc T_TotalRange_L_Acc T_To-

talRange_R_Acc T_TotalRange_B_Acc... 

    T_TotalRms_L_Acc T_TotalRms_R_Acc T_TotalRms_B_Acc T_TotalMCross_L_Acc T_TotalM-

Cross_R_Acc T_TotalMCross_B_Acc... 

    T_TotalIQR_L_Acc T_TotalIQR_R_Acc T_TotalIQR_B_Acc T_TotalQuart_L_Acc T_To-

talQuart_R_Acc T_TotalQuart_B_Acc... 

    T_TotalSMA_L_Acc T_TotalSMA_R_Acc T_TotalSMA_B_Acc T_TotalSMV_L_Acc T_To-

talSMV_R_Acc T_TotalSMV_B_Acc... 

    T_AP_features... 

    F_Table_L F_Table_R F_Table_B... 

    ]; 

  

%% Obtain Activity label and copy free-living features table with labels added 

  

Activity_mode = mode (Activity_transposed,2); 

features_lab_label = features_lab; 

features_lab_label.activity=Activity_mode; 

  

clearvars Activity_transposed features_lab 

  

%% Eliminates voids of the data from GoPro features table 

%Obtain features table with and without activity labels  

a = Activity_mode == 0; 

features_lab_label_noVoids = features_lab_label; 

features_lab_label_noVoids(a,:) = []; 

  

AP_label_noVoids = mode(table2array(AP_label),2); 

AP_label_noVoids(a,:) = []; 

  

AP_label_export = AP_label_noVoids; 

GoPro_label_export = features_lab_label_noVoids.activity; 

 

% You end up with raw_data, T_data (reorganized data), data_features and the model 

  

Weka_data = features_lab_label_noVoids; 
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run Feature_selection.m 

  

run Labels2segments.m 

if Remove_Sensor == 1  

Weka_data_Pr_all.T_Force_CC = []; 

end 

  

clearvars trial weka_trial 

  

%% To export location of lab session and fix N=6 and N=11 

if N == 1  

    e2 = 25;  

else 

    e2= 10; 

end 

  

if e == 64 

    e1 = 6; 

else 

    e1 = e; 

end 

  

if N==6  

mm = sum(features_lab_label.activity(:) == 0); 

inicio_lab = round(230498/(e1*e2)-mm+75,0); 

fin_lab = height(Weka_data_Pr_all); %Works for any feature set 

elseif N==11 

mm = sum(features_lab_label.activity(:) == 0); 

inicio_lab = round(258051/(e1*e2)-mm+66,0); 

fin_lab = height(Weka_data_Pr_all); %Works for any feature set 

end 

  

if N == 6 || N == 11 

Weka_data_Pr_all = vertcat(Weka_data_Pr_all(inicio_lab:fin_lab,:),Weka_data_Pr_all(1:inicio_lab-1,:)); 

Weka_data_Pr_LRB = vertcat(Weka_data_Pr_LRB(inicio_lab:fin_lab,:),Weka_data_Pr_LRB(1:ini-

cio_lab-1,:)); 

Weka_data_L_Sensor = vertcat(Weka_data_L_Sensor(inicio_lab:fin_lab,:),Weka_data_L_Sen-

sor(1:inicio_lab-1,:)); 

Weka_data_R_Sensor = vertcat(Weka_data_R_Sensor(inicio_lab:fin_lab,:),Weka_data_R_Sen-

sor(1:inicio_lab-1,:)); 

Weka_data_L_Sum = vertcat(Weka_data_L_Sum(inicio_lab:fin_lab,:),Weka_data_L_Sum(1:inicio_lab-

1,:)); 

Weka_data_R_Sum = vertcat(Weka_data_R_Sum(inicio_lab:fin_lab,:),Weka_data_R_Sum(1:inicio_lab-

1,:)); 

  

AP_label_export = vertcat(AP_label_export(inicio_lab:fin_lab,:),AP_label_export(1:inicio_lab-1,:)); 

GoPro_label_export = vertcat(GoPro_label_export(inicio_lab:fin_lab,:),GoPro_label_export(1:inicio_lab-

1,:)); 

end 

  

[jj,~]=find(Weka_data_Pr_all.activity=='stairs'); 
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findings{N,1} = jj; 

if N == 15 && window == 32 

kk = length(jj); 

else 

kk = find(diff(jj)> 10); 

end 

end_lab(1,N) = jj(kk(1)); 

  

           C_LRB{j,g} = Weka_data_Pr_LRB; 

        C_all{j,g} = Weka_data_Pr_all; 

        C_L_Sensor{j,g} = Weka_data_L_Sensor; 

        C_R_Sensor{j,g} = Weka_data_R_Sensor; 

        C_L_Sum{j,g} = Weka_data_L_Sum; 

        C_R_Sum{j,g} = Weka_data_R_Sum; 

  

        AP_prediction{j,g} = AP_label_export; 

        Ground_truth{j,g} = GoPro_label_export; 

  

        size_data(j,g) = height(Weka_data); 

        size_data_EachSensor(j,sn) = height(Weka_data); 

        end 

   end 

        if view_plot == 1 

        run Manual_synchro.m 

        end 

end 

  

clearvars j g e e1 e2 f sn start_lab end_lab jj kk mm 

 

Appendix I-1. Excerpt of MATLAB code used for data extraction, filtering, processing, feature 

computation, ground truth labelling and final data export.   
 


