13 research outputs found

    Design and Fabrication of a Low-Cost System for Smart Home Applications

    Get PDF
    Smart systems and security got impressive attention and development in recent years, which have been appeared in the terms of smart homes, intelligent security, and the Internet of Things (IoT). Home automation comprises the controlling of the electrical appliances in the home wirelessly or automatically. Many different integrated circuits, sensors, modules, and embedded systems are available to be compatible to integrate with smart homes. In order to apply the concept of smart homes, many issues should be considered like as providing a user-friendly, reliable, secure, and cost-effective. In this paper, an effective and low-cost smart home system is designed and implemented based on the Arduino microcontroller boards with its compatible modules. The proposed work employed many types of sensors to carry out the tasks for the smart home for a couple of the essential segments, the first one is home security and the latter one is home automation. The antitheft home segment is based on the laser source directed on the light-dependent resistor and infrared sensor; once the thief tries to cut the laser or passes beside the sensor, the alarm will be switched on. The later segment aims to detect the fire occurring by the means of the flame sensor, gas leakage detection by the MQ-05 sensor, servo motor to opening/closing the garage door, LCD to display the status of the all-utilised sensors, and finally, the Bluetooth module to controlling the garage door wirelessly. To increase the system performance and reliability the Arduino Nano and the Arduino Leonardo board are utilised.

    Internet of Things Based Reconfigurable SIMD Processor for High-Speed End Devices in FPGA

    Get PDF
    This research article proposed the reconfigurable Single Instruction Multi Data (SIMD) processor design to speed up the accelerated computing task in IoT operations. Single Instruction Multi Data models leverage the parallel real source to speed up computing accelerated tasks. It proposes the utilization of reconfigurable Kogge Stone-dependent hybrid adder structures, now referred to as KS-CPA, in which reconfiguration occurs during the addition operation. The Least Significant Bits (LSB) are processed using a carry propagate adder, while the Most Significant Bits (MSB) are computed using the Kogge Stone adder. Depending on the data width and device-accessible energy resources, the hybrid configuration of the adder offers the 4-bit, 8-bit, and 16-bit addition. The adder form is identified by a shift in the configuration of its Carry Look-ahead and then by a Kogge Stone Adder (KSA). Throughout the activity, the KS-CLA crossbreed configuration is used to attain the fastest speed and low energy usage. The effectiveness, including its proposed hybrid adder, is evaluated by looking at the speed, energy, and area parameters, including a suitable area use during rapid applications in which both less delay and low power adders are required. Considering these, we are structuring an IoT processor that can be reconfigured to gain from SIMD. We have demonstrated that our hybrid adder-enhanced processor saves energy up to 13% and reduces 27% latency. The proposed 16 and 32-bit adders will boost time, power, and Area Delay Product (ADP) by almost 18-24% and 13-19% respectively

    ІoТ платформи для автоматизації житлових приміщень

    Get PDF
    Розробка ІоТ-платформ для автоматизації житлових приміщень має значний потенціал для вдосконалення якості життя людей і забезпечення енергоефективності. Одним з головних трендів у сфері технологій є зростаюча популярність Інтернету речей, що передбачає підключення різних пристроїв та сенсорів до мережі Інтернет. Застосування ІоТ в житлових приміщеннях дозволяє створити «розумний дім», де всі електронні пристрої можуть спілкуватися між собою, обмінюватися даними та виконувати завдання автоматично. В глобальному сенсі ІоТ прискорить створення та розвиток розумних міст. Мета кваліфікаційної роботи полягає у вивченні, аналізі та розробці ефективних ІоТ-платформ, спрямованих на автоматизацію житлових приміщень з метою поліпшення комфорту, енергоефективності та безпеки для мешканців. У результаті підготовки кваліфікаційної роботи був проведений літературний огляд ІoТ платформ для автоматизації житлових приміщень, проаналізовані недоліки та переваги на прикладі двох промислових систем – IoT від Xiaomi та Apple HomeKit

    Static analysis for discovering IoT vulnerabilities

    Get PDF
    The Open Web Application Security Project (OWASP), released the \u201cOWASP Top 10 Internet of Things 2018\u201d list of the high-priority security vulnerabilities for IoT systems. The diversity of these vulnerabilities poses a great challenge toward development of a robust solution for their detection and mitigation. In this paper, we discuss the relationship between these vulnerabilities and the ones listed by OWASP Top 10 (focused on Web applications rather than IoT systems), how these vulnerabilities can actually be exploited, and in which cases static analysis can help in preventing them. Then, we present an extension of an industrial analyzer (Julia) that already covers five out of the top seven vulnerabilities of OWASP Top 10, and we discuss which IoT Top 10 vulnerabilities might be detected by the existing analyses or their extension. The experimental results present the application of some existing Julia\u2019s analyses and their extension to IoT systems, showing its effectiveness of the analysis of some representative case studies

    Systematic Analysis of Safety and Security Risks in Smart Homes

    Get PDF
    The revolution in Internet of Things (IoT)-based devices and applications has provided smart applications for humans. These applications range from healthcare to traffic-flow management, to communication devices, to smart security devices, and many others. In particular, government and private organizations are showing significant interest in IoT-enabled applications for smart homes. Despite the perceived benefits and interest, human safety is also a key concern. This research is aimed at systematically analyzing the available literature on smart homes and identifying areas of concern or risk with a view to supporting the design of safe and secure smart homes. For this systematic review process, relevant work in the most highly regarded journals published in the period 2016-2020 (a section of 2020 is included)was analyzed. A final set of 99 relevant articles (journal articles, book sections, conference papers, and survey papers) was analyzed in this study. This analysis is focused on three research questions and relevant keywords. The systematic analysis results and key insights will help researchers and practitioners to make more informed decisions when dealing with the safety and security risks of smart homes, especially in emergency situations.This publication was supported by Qatar University Internal Grant No. IRCC-2020-009

    Comparación de protocolos de comunicación para internet de las cosas (IoT)

    Get PDF
    La finalidad del presente artículo es contrastar los protocolos de comunicación para Internet de las Cosas (IoT), para esto, se aplica el Estudio de Mapeo Sistemático por medio del cual se realizan búsquedas en plataformas como IEEE Xplore y Scopus, así también con el Método AHP (Proceso Analítico Jerárquico) de esta forma se extraen las características más relevantes como seguridad, calidad de servicio, eficiencia energética, banda ancha y latencia de los protocolos de comunicación (HTTP, MQTT,DDS,XMPP,AMQP y CoAP). Posteriormente se utilizan estos criterios para el Método AHP obteniendo como resultado que el protocolo CoAP ofrece un 26% de seguridad, 24% de latencia, 21% de efectividad energética mayor a los demás protocolos y un 22% y 19% de ancho de banda y calidad de servicio respectivamente, seguido del protocolo MQTT con 24% de seguridad,14% de latencia,14% de efectividad energética,12% de ancho de banda y un 24% de calidad de servicio mayor a los demás protocolos sin dejar de lado a AMQP con 16% de seguridad,17% de latencia,19% de efectividad energética,12 % de ancho de banda y 15% de calidad de servicio, este protocolo a pesar de tener porcentajes aceptables para IoT requiere de más recursos físicos con los que se deben trabajar, tal es el caso de HTTP y MQTT.The purpose of this article is to contrast the communication protocols for the Internet of Things (IoT), for this, the Systematic Mapping Study is applied through which searches are made in platforms such as IEEE Xplore and Scopus, as well as with the AHP Method (Hierarchical Analytical Process) in this way the most relevant characteristics such as security are extracted, quality of service, energy efficiency, broadband and latency of communication protocols (HTTP, MQTT, DDS, XMPP, AMQP and CoAP). Subsequently, these criteria are used for the AHP Method obtaining as a result that the CoAP protocol offers 26% security, 24% latency, 21% of energy effectiveness greater than the other protocols and 22% and 19% of bandwidth and quality of service respectively, followed by the MQTT protocol with 24% security, 14% latency, 14% of energy effectiveness, 12% of bandwidth and 24% of quality of service greater than the other protocols without neglecting AMQP with 16% security, 17% of latency, 19% of energy effectiveness, 12% of bandwidth and 15% of quality of service, this protocol despite having acceptable percentages for IoT requires more physical resources with which to work, such is the case with HTTP and MQTT

    A Systematic Review of IoT Communication Strategies for an Efficient Smart Environment

    Get PDF
    The massive increase in actuators, industrial devices, health-care devices, and sensors, have led to the implementation of the Internet of Things (IoT), fast and flexible information technology communication between the devices. As such, responding to the needs in speedily way, and matching the smart services with modified requirements, IoT communications have facilitated the interconnections of things between applications, users, and smart devices. In order to gain extra advantage of the numerous services of the Internet. In this paper, the authors first, provided a comprehensive analysis on the IoT communication strategies and applications for smart devices based on a Systematic Literature Review (SLR). Then, the communication strategies and applications are categorized into four main topics including device to device, device to cloud, device to gateway and device to application scenarios. Furthermore, a technical taxonomy is presented to classify the existing papers according to search-based methodology in the scientific databases. The technical taxonomy presents five categories for IoT communication applications including monitoring-based communications, routing-based communications, health-based communications, Intrusion-based communications, and resource-based communications. The evaluation factors and infrastructure attributes are discussed based on some technical questions. Finally, some new challenges and forthcoming issues of future IoT communications are presented

    Estrutura de internet das coisas para a participação ativa e segura dos consumidores na comunidade de energia

    Get PDF
    Desde o Acordo de Paris, diversas estratégias e metas climáticas ambiciosas foram estabelecidas a nível mundial e europeu, de forma a cumprir o objetivo de longo prazo da neutralidade carbónica. Tal, provocou uma pressão a nível global para que se fossem tomadas medidas que contribuíssem para a descarbonização em todos os setores. No entanto, verifica-se que as emissões de CO2 continuam a aumentar, sendo o setor de energia um dos principais responsáveis. Atualmente, no setor de energia, verifica-se a emergência das comunidades de energia e do uso de dispositivos de internet das coisas, visto que estes possibilitam novas oportunidades para integrar, monitorizar, controlar e otimizar o consumo de energia, possibilitando uma melhor eficiência e a sustentabilidade dos sistemas de energia. Contudo, o problema da ausência de confiança digital em sistemas de energia, nomeadamente no que toca à partilha de dados e informação, pode comprometer a sinergia entre o consumidor e os sistemas de gestão de energia. Esta dissertação tem como objetivo conceber, implementar, testar e validar um modelo de demand response que permita gerir eficazmente a participação dos membros de uma comunidade de energia, tendo em consideração a privacidade e a segurança dos dados dos utilizadores finais. Para tal, é considerado o uso de dispositivos de internet das coisas, tendo em conta a segurança e a privacidade dos respetivos dados dos consumidores finais. De uma forma geral, o modelo proposto é capaz de (i) identificar os períodos temporais em que seja benéfica a utilização de demand response para nivelar o consumo e a geração na comunidade de energia, com o auxílio de algoritmos de previsão, (ii) avaliar e classificar os candidatos, através de quatro métricas baseadas em algoritmos não supervisionados, para determinar quais serão selecionados a participar no evento, (iii) monitorizar, em tempo real, o respetivo evento e (iv) avaliar o impacto económico e ambiental que o evento causou na comunidade de energia. De modo a respeitar a privacidade e a equidade dos utilizadores finais, consideram-se três tipos de participação com diferentes níveis de privacidade e um mecanismo de equidade que é implementado durante a classificação dos candidatos. De modo a testar e validar a aplicabilidade e a eficiência do modelo proposto, foram considerados cinco casos de estudo que permitem analisar o desempenho do modelo consoante as métricas aplicadas, os tipos de participação disponíveis, a falta de compromisso dos candidatos para o evento e o mecanismo de equidade. Os resultados obtidos demonstraram a capacidade do modelo proposto ser implementado em diferentes contextos, tendo a capacidade de melhorar a sustentabilidade da comunidade de energia.Since the Paris Agreement, several ambitious climate strategies and targets have been set at global and European levels in order to meet the long-term goal of carbon neutrality. This has led to global pressure for action to contribute to decarbonisation in all sectors. However, CO2 emissions continue to increase, with the energy sector being one of the main contributors. The energy sector is currently experiencing the emergence of energy communities and the use of internet of things devices, as these provide new opportunities to integrate, monitor, control and optimise energy consumption, enabling improved efficiency and sustainability of energy systems. However, the problem of the absence of digital trust in energy systems, namely regarding data and information sharing, can compromise the synergy between the consumer and the energy management systems. This dissertation aims to conceive, implement, test and validate a demand response model that effectively manages the participation of the members of an energy community, considering the privacy and security of the end users' data. To this end, the use of internet of things devices is considered, considering the security and privacy of the respective end-user data. In general, the proposed model can (i) identify the time periods when it is beneficial to use demand response to level consumption and generation in the energy community, with the help of prediction algorithms, (ii) evaluate and classify the candidates through four metrics based on unsupervised algorithms, to determine which ones will be selected to participate in the event, (iii) monitor, in real-time, the respective event and (iv) evaluate the economic and environmental impact that the event caused in the energy community. In order to respect the privacy and fairness of end-users, three types of participation are considered with different levels of privacy and an equity mechanism is implemented during the ranking of candidates. In order to test and validate the applicability and efficiency of the proposed model, five case studies were considered to analyse the model's performance according to the metrics applied, the types of participation available, the lack of commitment of the candidates to the event and the equity mechanism. The results obtained demonstrated the ability of the proposed model to be implemented in different contexts, having the ability to improve the sustainability of the energy community

    Representación formal de mejores prácticas de IoT con base en los elementos del núcleo de la Esencia SEMAT

    Get PDF
    Internet de las Cosas (IoT) es una tecnología que consta de una serie de entidades interconectadas (objetos físicos inteligentes, servicios y sistemas de software) que trabajan de manera coordinada. Con ellas se busca simplificar y mejorar la eficiencia de los procesos buscando una mejor calidad de vida para las personas. En la literatura especializada se encontró que existen prácticas para desarrollar sistemas IoT que utilizan modelos monolíticos de Ingeniería de Software y que no son fáciles de implementar. Es necesario plantear una base común a través de una representación explícita que permita abarcar todas las problemáticas que puedan resultar al tratar de implementar estas prácticas. El objetivo de este proyecto es formalizar algunas de las mejores prácticas de IoT utilizando la extracción terminológica y teniendo como base de representación el núcleo de la Esencia de SEMAT (Software Engineering Method and Theory), el cual permite describir una base común liberando a las prácticas de las limitaciones de los métodos monolíticos. Esto permitirá a los equipos de implementación de sistemas IoT visualizar el progreso de las actividades independientemente de los métodos de trabajo, también permitirá compartir, adaptar, conectar y reproducir prácticas para crear nuevas formas de trabajo que ayudará a los desarrolladores a reutilizar sus conocimientos de forma sistemática y a los ejecutivos a dirigir programas y proyectos IoT con una mejor calidad que permitan reducir costos.Internet of Things (IoT) is a technology that consists of a series of interconnected entities (intelligent physical objects, services and software systems) that work in a coordinated manner. They seek to simplify and improve the efficiency of processes seeking a better quality of life for people. In the specialized literature, it was found that there are practices to develop IoT systems that use monolithic Software Engineering models and that are not easy to implement. It is necessary to establish a common base through a clean representation that allows covering all the problems that may result when trying to implement these practices. The objective of this project is to formalize some of the best practices of IoT using terminological extraction and having as a basis of representation the core of the Essence of SEMAT (Software Engineering Method and Theory) which allows to describe a common base freeing the practices of the limitations of monolithic methods. This will allow IoT system implementation teams to visualize the progress of activities regardless of work methods, it will also allow sharing, adapting, connecting and reproducing practices to create new ways of working that will help developers to systematically reuse their knowledge in a new way and executives to direct IoT programs and projects with better quality that reduce costs.MaestríaMagíster en Ingeniería de Sistemas y ComputaciónTabla de Contenido Pág. Resumen....................................................................................................................................... 16 Abstract........................................................................................................................................ 17 Introducción ................................................................................................................................ 18 Capítulo I: Marco Teórico ......................................................................................................... 21 1.1. Internet de las Cosas (IoT)..................................................................................................... 21 1.1.1. Arquitectura IoT.................................................................................................................. 21 1.1.1.1. Capa de percepción.......................................................................................................... 21 1.1.1.2. Capa de red ...................................................................................................................... 21 1.1.1.3. Capa de aplicación ........................................................................................................... 22 1.1.2. Aplicaciones de IoT............................................................................................................ 22 1.2. Ingeniería de Software ........................................................................................................... 22 1.2.1. Núcleo de la Esencia de SEMAT........................................................................................ 22 1.2.1.1. Elementos del Núcleo de la Esencia de SEMAT............................................................. 23 1.3. Buenas Prácticas .................................................................................................................... 29 1.3.1. Nombramiento correcto de buenas prácticas...................................................................... 29 1.4. Procesamiento del Lenguaje Natural (PLN).......................................................................... 31 1.4.1. Extracción Terminológica................................................................................................... 31 1.5. Revisión Sistemática de Literatura (RSL) ............................................................................. 33 1.6. Mapeo Sistemático de Literatura (MSL) ............................................................................... 33 1.7. Grupos focales ....................................................................................................................... 34 Capítulo II: Estado del Arte ...................................................................................................... 35 Capítulo III: Planteamiento del Problema y Objetivos........................................................... 38 3.1. Descripción del Problema ...................................................................................................... 38 7 3.2. Formulación del Problema..................................................................................................... 38 3.3. Justificación ........................................................................................................................... 39 3.4. Objetivos................................................................................................................................ 41 3.4.1. Objetivo General................................................................................................................. 41 3.4.2. Objetivos Específicos.......................................................................................................... 41 Capítulo IV: Metodología .......................................................................................................... 42 4.1. Revisión Sistemática de Literatura (RSL) ............................................................................. 42 4.1.1. Planeación........................................................................................................................... 42 4.1.1.1. Definición de las Preguntas de la Investigación .............................................................. 43 4.1.2. Búsqueda Primaria .............................................................................................................. 43 4.1.2.1. Especificación del Tipo de Búsqueda .............................................................................. 43 4.1.2.2. Selección de las Fuentes de Información......................................................................... 44 4.1.2.3. Definición de las Cadenas de Búsqueda .......................................................................... 44 4.1.3. Selección Preliminar........................................................................................................... 44 4.1.3.1. Eliminación de Documentos Irrelevantes........................................................................ 44 4.1.3.2. Eliminación de Documentos Duplicados......................................................................... 44 4.1.4. Selección............................................................................................................................. 45 4.1.4.1. Definición de criterios de inclusión ................................................................................. 45 4.1.4.2. Definición de criterios de exclusión ................................................................................ 45 4.1.5. Extracción de Datos............................................................................................................ 45 4.1.5.1. Definición de Criterios de Calidad .................................................................................. 45 4.1.5.2. Extracción de Datos de cada Documento ........................................................................ 45 4.1.6. Análisis ............................................................................................................................... 45 4.2. Relación de los Componentes de Mejores Prácticas en IoT con los elementos del núcleo de la Esencia ..................................................................................................................................... 45 8 4.2.1. Selección de algunas de las Mejores Prácticas en IoT........................................................ 46 4.2.2. Construcción del Vocabulario de Términos de IoT............................................................ 46 4.2.2.1. Mapeo Sistemático de Literatura (MSL) ......................................................................... 46 4.2.2.2. Construcción del Extractor Automático de Términos ..................................................... 48 4.2.2.3. Validación del Extractor Automático de Términos......................................................... 48 4.2.2.4. Extracción del Vocabulario con el Extractor Automático de Términos.......................... 49 4.2.3. Selección de los Nombres para Mejores Prácticas en IoT.................................................. 49 4.2.4. Tabulación de Componentes de Prácticas IoT con Elementos del Núcleo de la Esencia... 49 4.3. Modelado de Mejores Prácticas en IoT con el Núcleo de la Esencia .................................... 49 4.4. Validación de los Modelos de Mejores Prácticas en IoT....................................................... 51 4.4.1. Planeación del Grupo Focal................................................................................................ 51 4.4.2. Desarrollo del Grupo Focal................................................................................................. 52 4.4.3. Análisis de Datos y Reporte de Resultados ........................................................................ 53 Capítulo V: Desarrollo de la Tesis............................................................................................. 54 5.1. Revisión Sistemática de Literatura (RSL) en IoT.................................................................. 54 5.1.1. Conclusiones de la Revisión Sistemática de Literatura ...................................................... 55 5.2. Relación de los Componentes de Mejores Prácticas en IoT con los elementos del núcleo de la Esencia ...................................................................................................................................... 57 5.2.1. Selección de algunas de las Mejores Prácticas en IoT........................................................ 57 5.2.2. Construcción del Vocabulario de Términos de IoT............................................................ 58 5.2.2.1. Mapeo Sistemático de Literatura (MSL) ......................................................................... 59 5.2.2.2. Construcción del Extractor Automático de Términos ..................................................... 72 5.2.2.3. Validación del Extractor Automático de Términos......................................................... 88 5.2.2.4. Extracción del Vocabulario con el Extractor Automático de Términos.......................... 89 5.2.3. Selección de los Nombres para Mejores Prácticas en IoT.................................................. 89 9 5.2.4. Tabulación de Componentes de Prácticas IoT con el Núcleo de la Esencia ...................... 90 5.3. Modelado de Mejores Prácticas en IoT con el Núcleo de la Esencia .................................. 100 5.4. Validación de los Modelos de Mejores Prácticas en IoT..................................................... 110 5.4.1. Planeación del Grupo Focal.............................................................................................. 110 5.4.1.1. Definición del Objetivo.................................................................................................. 110 5.4.1.2. Identificación de los Participantes................................................................................. 111 5.4.1.3. Programación de la Reunión.......................................................................................... 111 5.4.1.4. Preparación de los Materiales del Grupo Focal ............................................................. 111 5.4.1.5. Enviar Recordatorio a los Participantes......................................................................... 112 5.4.2. Desarrollo del Grupo Focal............................................................................................... 112 5.4.2.1. Presentación de los Participantes................................................................................... 112 5.4.2.2. Grabación de la Reunión................................................................................................ 112 5.4.2.3. Entrega de Materiales .................................................................................................... 112 5.4.2.4. Presentación del Grupo Focal ........................................................................................ 113 5.4.2.5. Discusión y Evaluación de los Modelos........................................................................ 113 5.4.2.6. Finalización de la Reunión............................................................................................. 113 5.4.3. Análisis de Datos y Reporte de Resultados ...................................................................... 113 5.4.3.1. Resultados de Validación de la Práctica 1 ..................................................................... 113 5.4.3.2. Resultados de Validación de la Práctica 2 ..................................................................... 114 5.4.3.3. Resultados de Validación de la Práctica 3 ..................................................................... 114 5.4.3.4. Resultados de Validación de la Práctica 4 ..................................................................... 115 5.4.3.5. Resultados de Validación de la Práctica 5 ..................................................................... 115 5.4.3.6. Resultados de Validación de la Práctica 6 ..................................................................... 116 5.4.3.7. Resultados de Validación de la Práctica 7 ..................................................................... 116 10 5.4.3.8. Resultados de Validación de la Práctica 8 ..................................................................... 117 5.4.3.9. Resultados de Validación de la Práctica 9 ..................................................................... 117 5.4.3.10. Resultados de Validación de la Práctica 10 ................................................................. 118 5.4.3.11. Conclusiones de la Validación de los Modelos ........................................................... 118 Capítulo VI: Conclusiones y Trabajo Futuro ........................................................................ 120 6.1. Conclusiones........................................................................................................................ 120 6.2. Cumplimiento de Objetivos................................................................................................. 121 6.3. Trabajos Futuros .................................................................................................................. 124 Referencias ................................................................................................................................ 125 Anexos........................................................................................................................................ 15

    A survey on communication components for IoT-based technologies in smart homes

    No full text
    The new and disruptive Internet of Things (IoT)-based technologies being used in smart homes have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision toward this area, we must be aware of the utilized approaches and the existing limitations in this line of research. To this end, an extensive search was conducted for articles dealing with (a) smart homes, (b) IoT, and (c) related applications were comprehensively reviewed and a coherent taxonomy for these articles was established. ScienceDirect, IEEE Xplore, and Web of Science databases were checked for articles on IoT-based smart home technologies. The retrieved articles were then filtered based on specified criteria “Communication components aspects”, and 82 articles were eventually selected and classified into four categories. The first category included articles that representing internet devices in a framework or model that follows the requirements of the stage in which any system is developed, the second category included analytical studies that monitor the possible changes in the variables used in a specific case study, the third category included evaluation, comparative studies, and assessing their worth or merit, and the fourth category included reviews and surveys a review and survey of the communication components of IoT-based smart home technologies. The motivation for using IoT-based technologies in smart homes, the issues related to application obstruction, and the development and utilization of smart homes are then examined based on the findings from the literature. With the exception of the 82 articles reviewed earlier, the telecommunication standards and concepts of this research were covering IoT solutions, communication protocols, IoT stack protocol, and quality of service for IoT based smart home technologies
    corecore