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Abstract
The Open Web Application Security Project (OWASP), released the “OWASP Top 10 Internet of Things 2018” list of the
high-priority security vulnerabilities for IoT systems. The diversity of these vulnerabilities poses a great challenge toward
development of a robust solution for their detection and mitigation. In this paper, we discuss the relationship between these
vulnerabilities and the ones listed by OWASP Top 10 (focused on Web applications rather than IoT systems), how these
vulnerabilities can actually be exploited, and in which cases static analysis can help in preventing them. Then, we present an
extension of an industrial analyzer (Julia) that already covers five out of the top seven vulnerabilities of OWASP Top 10, and
we discuss which IoT Top 10 vulnerabilities might be detected by the existing analyses or their extension. The experimental
results present the application of some existing Julia’s analyses and their extension to IoT systems, showing its effectiveness
of the analysis of some representative case studies.

Keywords IoT security · Static analysis · OWASP IoT Top 10 · IoT privacy · Insecure IoT ecosystem interface · Static
analysis

1 Introduction

In most of the attacks targeting Internet of Things (IoT) sys-
tems [11,19,41,69], a common IoT device is used to intrude
into the system, and exploit the larger network to which IoT
devices are connected. According to Gartner, by 2020, more
than 25% of cyber-attacks on enterprises will target IoT sys-
tems [39]. Therefore, cyber-attacks are moving their targets
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from vulnerable computers to IoT devices. The ubiquitous
nature of IoT ecosystems goes beyond the boundaries of tra-
ditional network security, and it widens the attack surface, as
interconnected devices operate from different physical loca-
tions and network layers. In such scenarios, attackersmay use
automation tools to simulate authorized operations on legit-
imate devices to create a springboard effect where they may
exploit minor vulnerabilities. IoT systems usually comprise
at least threemajor components: devices, cloud, and compan-
ion applications [20]. Each of these componentsmay contain
security vulnerabilities, and when combined together such
issues might increase their severity exponentially because of
various computational and network features of IoT ecosys-
tems.

In general, a “Thing” in IoT (aka, device) executes
(embedded) software on microcontrollers (MCUs) with
a small memory footprint, where autonomy, reconfigura-
tion, safety, and fault tolerance are highly sought to meet
functional safety requirements. Moreover, IoT devices rely
on cloud services (e.g., to communicate and store data).
This yields to communications between devices physically
located at different places through different communication
mediums supported by distinct protocols. This diversity may
highly compromise the integrity of device data that could be
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sensitive or under IoT user’s control. Tracking this across
diversified communication mediums (e.g., WiFi, Bluetooth,
and NFC) is difficult and error prone as it may propagate
through multiple layers and devices. Furthermore, track-
ing malicious flow can be overwhelming especially when
there are millions of devices communicating through the
same channels. Finally, the cloud environment facilitates
the development of sophisticated programs allowing the
access and control of devices from remote locations. Such
software may come in the form of Web or mobile applica-
tions, or even enterprise programs. This software, supported
by ubiquitous connectivity, may become a suitable attack
surface for intruders. Ideally, applications based on cloud ser-
vices should use identity management, access management,
identity governance, and authentication services to enforce
security. However, due to computational constraints of IoT
devices, a full-flagged implementation of these services may
not be possible. This increases the risk of exploitation of
weak points in the companion applications to gain signifi-
cant remote control of IoT systems.

Several standards and certifications have been proposed
over the years in order to prevent software vulnerabilities.
The Open Web Application Security Project (OWASP) is
probably the most notable and popular effort in this context.
Among the many projects carried on by this foundation, the
OWASP Top 10 project lists the most dangerous security
vulnerabilities in Web applications. Similarly, the OWASP
Internet of Things Top 10 project focuses on the 10 most
critical risks for the IoT ecosystem. OWASP Top 10 policy
refers to the Top 10 as an “awareness document” which may
be adopted by industries to improve their product develop-
ment processes in order to minimize and/or mitigate themost
critical security risks. The vulnerabilities listed by OWASP
IoT Top 10 in 2018 include, among others, weak and hard-
coded passwords, insecure network interfaces, lack of update
mechanisms, and insecure ecosystem interfaces. The diver-
sity of these vulnerabilities poses a critical challenge to adopt
a robust solution for their detection and mitigation.

The first version of OWASP Top 10 dates back to 2003.
During the last 15years, this list has widely impacted the pro-
cesses to enforce cybersecurity in Web applications driving
the development and adoption of various tools to prevent
software vulnerabilities. Static analysis focuses on their
detection at compile time without executing the program.
Since this approach does not need to have concrete values to
expose different execution paths, it can navigate the code
more pervasively at the price of introducing some forms
of approximation. Different kinds of static analyzers have
been implemented and commercialized, ranging from syn-
tactic analyzers (mostly considering small portions of the
code in isolation) to tools based on formal methods (thus
building up a complete semantic model of the programs
and approximating howdifferent software componentsmight

interact).OWASPTop10pushed industrial static analyzers to
detect the software vulnerabilities listed among its categories.
Therefore, various types of analyses have been developed in
order to detect injection and XSS vulnerabilities, leakages
of sensitive data, hardcoded passwords, as well as usage of
weak cryptographic algorithms.

Can we therefore conclude that the application of static
analysis to detect security IoT vulnerabilities is straightfor-
ward? Unfortunately, no. In particular, the IoT ecosystem
comprises quite diversified types of software, like “Web,
backend API, cloud or mobile interfaces,” and embedded
software as well. Each software components is potentially
written in a different programming language (e.g., C for
embedded software, and Java for Web and mobile appli-
cations), executes independently, and interacts over vari-
ous communication channels. Existing static analyzers are
mostly focused on individual programs. If independent pro-
grams interact with each other, then the analysis considers
each program “in isolation,” missing some potential vulner-
abilities, or producing too many false alarms. In addition,
existing static analyzers do not possess any knowledge or
interface to specify the physical world of an IoT system.

In addition, the IoT ecosystem poses new challenges. For
this reason, few years ago OWASP opened the IoT project1

that released the IoT Top 10 list.2 Like OWASP Top 10, this
list is aimed at impacting how enterprises develop and debug
their software in order to prevent vulnerabilities. However,
this scenario is more recent and quickly evolving.

In this paper, we discuss each category of the OWASP IoT
Top 10 list, and if and how such vulnerabilities can be pre-
vented by means of static analysis. In particular, we compare
them with OWASP Top 10 category, and how the static ana-
lyzers developed w.r.t. these vulnerabilities can be applied
to IoT software as well. In addition, we extend an existing
industrial static analyzer (Julia’s Injection checker in particu-
lar) to properly address the novel challenges arising from IoT
systems. We present some preliminary experimental results
that show that our extension is in position to precisely dis-
cover security vulnerabilities specific of IoT systems.

The rest of the paper is structured as follows. Section 2 dis-
cusses related literature, while Sect. 3 introduces how static
analysis has been applied to address some of the categories
of the OWASP Top 10 list. Section 4 presents in detail the
OWASP IoT Top 10 list, and for each category it discusses
if and how static analysis can help to prevent the particular
type of software vulnerabilities. Section 5 informally intro-
duces the extension of the Julia static analyzer we developed
to address some of the IoT Top 10 issues not yet covered by

1 https://www.owasp.org/index.php/OWASP_Internet_of_Things_
Project.
2 https://www.owasp.org/index.php/OWASP_Internet_of_Things_
Project#tab=IoT_Top_10.
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existing analyses, while Sect. 6 discusses some preliminary
experimental results of this implementation. Finally, Sect. 7
concludes.

2 Related work

The diversity of IoT devices continues to grow, and nowadays
it ranges from simple sensing and actuating devices to com-
plex systems like connected vehicles, smart televisions and
cameras. This diversification is closely related to what hap-
pened in other computing paradigms such as wireless sensor
network (similar core concepts), edge and cloud computing
(similar adoption of existing technology). On the one hand,
IoT takes advantage of the most sophisticated technologies.
On the other hand, it also inherits and increases the secu-
rity concerns of these technologies. To make it even worse,
in addition to the existing vulnerabilities, it also introduces
some unique security threats due to its specific system archi-
tecture.

In this context, Assiri et al. [4] reviewed the security and
privacy issues associated with IoT ecosystem. Das et al. [18]
carried out a comparative study of different security protocols
of IoT. In this process, they presented a taxonomy for security
protocols used in IoT which includes device authentication,
access control, privacy preservation, etc. Similarly, Frustaci
et al. [29] and Neshenko et al. [52] presented a taxonomy
of the IoT security issues based on the perception, trans-
portation, and application. Tweneboah-Koduah et al. [67]
analyzed the taxonomy of various security issues, whereas
Ge at al. [30] devised an IoT securitymodel consisting of five
phases (namely data processing, security model generation,
security visualization, security analysis, and model updates).
This model is capable of analyzing IoT security strate-
gies based on well-defined security metrics. Mavropoulos
et al. [50] proposed a class-based notation for the architec-
tural modeling languages and corresponding mechanism for
transition between different models. Khattak et al. [44] dis-
cussed the various components of an IoT architecture from
the context of perception layers security. Here, they cate-
gorized and classified possible attacks at different layers in
their architecture. Yoon et al. [71] proposed an architecture
for remote security management of IoT devices to prevents
various threats in advance. Urien [68] devised an architecture
where a TLS server running on a secure chip is used to secure
the communication among various devices. This server facil-
itates strongmutual authenticationwith the clients and serves
as an identitymodule.However,most of these security frame-
works only outlines the IoT system vulnerabilities, and they
do not provide any analysis of the major security issues listed
in OWASP IoT Top 10.

From another perspective, the limited computational
resources prevent IoT devices from implementing advanced

authentication mechanism. Thus, device authentication is a
weak point in the IoT security landscape. TheMirai malware
exploited such devices to launch a DDoS attack in the larger
network. El-Hajj et al. [21] provided an analysis of the dif-
ferent authentication mechanisms based on the multi-criteria
classification. They compared and analyzed the existing
authentication protocols to evaluate their relative advantages
and disadvantages. Hao et al. [36] devised a secure device
authentication mechanism by integrating physical security
with the asymmetric cryptography. The cryptographic key is
generated by estimating the device features such as interme-
diate nodes and radio-frequency. The experimental results
demonstrate a more effective protection against various
common attacks. Bhawiyuga et al. [5] proposed a token-
based authentication mechanism on the MQTT protocol
for resource-constrained devices. The devised mechanism
comprises four components (namely publisher, subscriber,
MQTT broker, and token authentication server). Here,
the publisher/subscriber first submits its credentials to the
authentication server to get the token. After obtaining a valid
token, it can store and use it for further authentication. Shah et
al. [60] presented mutual authentication mechanisms based
on multiple keys. A secure vault is used for sharing the
keys among many IoT devices. Initially, keys of the secure
vault are provided which changes after a successful commu-
nication session. Similarly, a signature-based authenticated
mechanism for the IoT devices was introduced by Challa et
al. [9]. The mechanism is simulated using NS2 and later ana-
lyzed using Burrows–Abadi–Needham logic. Finally, Alizai
et al. [3] proposed a mechanism where devices are allowed
into a network only if they pass a multi-factor authentication
process. Such an approach helps in mitigating the common
attacks like replay and man in the middle by using nonce and
timestamps.

A fully flagged authentication process is often dubbed as a
too-costlymechanism toward ensuring device security. Thus,
in order to contrast such limitation one could secure the net-
work by using technologies like enforcing various layers of
defense, segregating devices into separate networks using
firewalls, etc. [35]. In this context, Zaidan et al. [72] explored
the security challenges of existing communication compo-
nents for IoT-based smart homes. Sahay et al. [23] proposed
a framework called CyberShip-IoT, which mitigates network
traffic attacks by leveraging the software defined network
(SDN) paradigm. Chze et al. [10] devised amulti-hop routing
protocol for secure communication among IoT devices. This
approach authenticates a device through multilayer parame-
ters before forming a new network for enhancing the security
of the communication. Farris et al. [24] analyzed security
issues of network functions virtualization (NFV) and SDN
from the perspective of IoT. They also depicted the crit-
ical security challenges needed to be addressed for SDN
and NFV based security mechanisms when adopted by IoT
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systems. Kim et al. [45] devised a trustworthy networking
system based on self-certifying ID (SCID), whereas Shin
et al. [61] used trust between Proxy Mobile IPv6 (PMIPv6)
domain and IoT systems to device a newprotocol for address-
ing various security issues. The devised protocol supports
features like handover management, mutual authentication,
key exchange, etc. Giuliano et al. [32] analyzed IoT cap-
illary networks for various IP and non-IP IoT devices to
propose an algorithm based on secure key renewal mecha-
nism for better network security. Although these approaches
enhance security of IoT systems, they usually incur a substan-
tial implementation complexity, and/or impose a significant
runtime overhead which may hinder the performance as data
is transferred using these secure network channels.

Typically, in an IoT system, the values measured from
sensors often control the physical behavior of other devices.
Thus, security of transmitted data in the IoT ecosystem is
very important for preventing attacks [46]. However, the tra-
ditional cryptographic algorithms are not suitable for the
resource constraint IoT devices. For this purpose, Kim et
al. [46] devised a mechanism by implementing proxy re-
encryption for transmitting data with minimal encryption
overhead. Sahay et al. [59] prevented the flow of malicious
data in the system by devising a mechanism for detecting
the malicious nodes which are vulnerable to version num-
ber attacks, whereas Hou et al. [38] combined the concept
of IoT architectures and data life cycles to devise a three-
dimensional approach for exploring IoT security. Singh et
al. [62] presented an overview of the blockchain technology
and its implementation toward enhancing the security of IoT
using blockchain, whereas Jeon et al. [42] uses MySQL’s
Mobius configuration to devise a novel IoT server platform
supported by a blockchain for secure storage and retrieval of
sensor data. Further, Sollins et al. [64] addressed the issue
of conflicts in the collection, usage, and management of
large volume of data from the perspective of IoT security
and privacy requirements. However, like many other secu-
rity enforcing mechanisms, these approaches consider the
data flow from an IoT end-point devices through the Internet
to a cloud layer (or vice versa) at runtime to ensure secure
usage of IoT data, but they do not track how this data flows
through different software layers statically.

In this context, static program analysis [14] can be very
useful for determining taintedness of the data (e.g., sensi-
tive or user controlled data) propagating across different IoT
layers. In particular, taint analysis [53,65,66,66] tracks if
something from a source (e.g., methods retrieving user input
or sensitive data) flows into a sink (e.g., methods sending
data to Internet or executing SQL queries) without being san-
itized (e.g., encrypted or escaped). This approach has been
widely applied to the detection of SQL injections in Web
applications [66], leakages of sensitive data [26,27], etc. A
first attempt to apply such approach to a scenario similar to

IoT was performed by Mandal et al. [47] and Panarotto et
al. [58], that utilized this approach to detect leakages and
injection vulnerabilities in Android automotive apps [49].
Huuck [40] discussed the use static code analysis to detect
some of these types of issues. Similarly, Celik et al. [8] iden-
tified security and privacy issues of five IoT platforms, and
applied existing static analyzers to detect these issues. These
approaches pointed out that “a suite of analysis tools and
algorithms targeted at diverse IoT platforms is at this time
largely absent.” Further, taint analysis should be performed
overmultiple programs, as IoT systems composedofmultiple
interactive components executing independently. Therefore,
the current IoT security landscape demands a mechanism for
analyzing the security vulnerabilities of the IoT systemwhich
facilitates cross-interface data propagation. In this regard, the
existing taint analysis techniques can be very useful, but they
can only analyze a program in isolation. Therefore, the taint
analysis should be enhanced to support the analysis of a mul-
tiple interactive programs running independently.

3 Static analysis of OWASP Top 10
vulnerabilities

3.1 OWASP Top 10

OWASP Top 10 [57] is one of the flagship and most popular
OWASP projects.

The OWASP Top 10 is a powerful awareness doc-
ument for Web application security. It represents a
broad consensus about the most critical security risks
to Web applications. Project members include a vari-
ety of security experts from around the world who have
shared their expertise to produce this list.
We urge all companies to adopt this awareness doc-
ument within their organization and start the process
of ensuring that their Web applications minimize these
risks. Adopting the OWASP Top 10 is perhaps the most
effective first step toward changing the software devel-
opment culture within your organization into one that
produces secure code.

This project lists 10 categories of security vulnerabilities
of Web applications in order of relevance. The first version
of this classification was released in 2004, and it has updated
several times. The first two columns of Table 1 report the
2017 version. Over the years, OWASP Top 10 kept the pace
with the changes of the continuously evolving cybersecu-
rity world, where new vulnerabilities are discovered and
exploited as soon as the previous ones were detected and
fixed. OWASP Top 10 heavily impacted the focus of security
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Table 1 OWASP Top 10 2017 ID OWASP Top 10 2017 (application security) Coverage Julia

A1 Injection Full Injection

A2 Broken authentication Partial Passwords, cryptography

A3 Sensitive data exposure Full GDPR

A4 XML external entities (XXE) Full XXE

A5 Broken access control

A6 Security misconfiguration

A7 Cross-site scripting (XSS) Full Injection

A8 Insecure deserialization

A9 Using components with known vulnerabilities Full Vulnerable-components

A10 Insufficient logging and monitoring

assessments, and various commercial tools focused on the
detection of these software vulnerabilities.

3.2 Static analyzers

Static analysis detects bugs at compile time without execut-
ing the code. While dynamic analysis (e.g., testing) needs
specific execution states in order to expose different exe-
cution paths, static analysis can abstractly reason about all
different paths of execution. However, it needs to introduce
some form of approximation in order to represent the execu-
tion of a program and prove properties on them. In particular,
static analysis tools build a semantic model of a software at
compile time without executing it, and then check various
properties on that model. Nowadays, several standards and
regulations (e.g., MISRADO-178C, IEC 61508, ISO 26262,
and IEC 62304) require the application of such tools. This
pushed the development and commercialization of various
industrial static analyzers like ASTREE [17] and GrammaT-
ech CodeSonar [34].

Similarly, OWASP Top 10 pushed static analyzers to the
detection of security vulnerabilities on the back-end of Web
servers. In this paper, we will focus on the Julia static ana-
lyzer [43]. Note that, while other commercial analyzers like
SonarQube [1] exist, they cover all the same types of vulnera-
bilities. Therefore,we chose Julia as a representative example
since the most part of its analyses has been formalized and
published.

Julia implements an abstract interpretation-based engine
for the analysis and verification of Java bytecode and CIL. It
contains a call graph builder as well as several denotational
and constraint-based analyses that rely on an intermediate
representation of bytecode. Julia currently features about 50
checkers, ranging from a sound taint analysis engine [22,65]
to superficial analyses to detect a large set of typical errors in
software, such as null-pointer accesses, nontermination, and
wrong synchronization.

3.3 OWASP Top 10 coverage by static analyzers

The last column of Table 1 reports the coverage of the various
OWASP Top 10 categorizes by static analysis.

In particular, categoriesA1 (Injection),A3 (SensitiveData
Exposure), A4 (XML External Entities), and A7 (Cross-Site
Scripting) can be detected through taint analysis [66], that is,
an analysis that tries to detect if a value coming from a source
(e.g., methods retrieving some user input) flows into a sink
(e.g., methods executing SQL queries) without being sani-
tized (e.g., properly escaped). While the set of sources and
sinks is different for these analyses, the same taint analysis
can be applied to detect security vulnerabilities such as SQL
injections and XSS [6] (Julia’s Injection checker) as well as
to the detection of leakages of sensitive data [26,27] (GDPR
checker).

Category A2 comprises a wide range of different checks.
Some of them, like hardcoded passwords (checker Pass-
words) and weak cryptographic algorithms (checker Cryp-
tography), can be (partially) detected by means of static
analysis, while others, like the prevention of automated
attacks, require runtime analyses and/or monitoring.

Instead, A9 (Using Components with Known Vulnera-
bilities) can be fully detected by specific tools such as the
OWASP Dependency Check.3 Julia embeds such detection
in the VulnerableComponents checker.

4 Security vulnerabilities of IoT software

In March 2018, OWASP released the “2018 Internet of
Things Top 10” [56] list of the high-priority security vul-
nerabilities for the IoT ecosystem.

The OWASP Internet of Things Project is designed to
help manufacturers, developers, and consumers better

3 https://www.owasp.org/index.php/OWASP_Dependency_Check.
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understand the security issues associatedwith the Inter-
net ofThings, and to enable users in any context tomake
better security decisions when building, deploying, or
assessing IoT technologies.
The primary theme for the 2018 OWASP IoT Top 10 is
simplicity. Rather than having separate lists for risks vs.
threats vs. vulnerabilities—or for developers vs. enter-
prises vs. consumers—the project team elected to have
a single, unified list that captures the top things to avoid
when dealing with IoT Security

Various organizations released detailed guidelines for IoT
security targeting different industries. Instead, the OWASP
IoT Top 10 provided a generic vulnerability classification
by creating a list consisting of very-critical issues relevant
for manufacturers, enterprises, and consumers at the same
time. This section re-caps the security vulnerabilities of
OWASP, reinforcing it with more context and clarification.
Furthermore, it also analyzes the feasibility of detecting such
vulnerabilities by static analysis means. In the rest of this
section, for each category of the OWASP IoT Top 10 list we
recall its description, we introduce a code snippet explaining
it, andwe discuss if and how static analysis techniques can be
applied to discover and/or prevent this kind of vulnerabilities.

I1:Weak, guessable, or hardcoded passwords

Use of easily brute forced, publicly available, or
unchangeable credentials, including backdoors in firm-
ware or client software that grants unauthorized access
to deployed systems.

Keeping a default password during system development
is (unfortunately) a common practice, and sometimes such
password might have been hardcoded within the program.
However, critical problems may occur when sensitive infor-
mation (such as credentials, encryption keys, and certificates)
is hardcoded. To make this issue even worse, the IoT devel-
oper/manufacturer keeps such information exactly same for
all the instances of the device/applications. This is easily
exploitable by the intruders to gain unauthorized access for
the entire product-line in general by using simple brute force,
or a reverse engineering approach.

Listing 1 Vulnerable use hardcoded IP Address.

1 class IPaddress {
2 String ipAdd = "172.16.254.1";
3 public final Connection getConnection() throws

SQLException {
4 return DriverManager.getConnection(
5 "jdbc:mysql://"+ipAdd+"/dbName", "admin", "54gvvc’&");
6 }
7 }

Examples For instance the code snippet reported in Listing 1
hard codes (i) the IP address of the server (field ipAdd), (ii)
the username (admin), and (iii) the password (54gvvc’&).
An attacker might reverse engineer this code obtaining the
admin credentials.

Listing 2 Vulnerable use hardcoded cryptographic keys.

1 byte[] key = {1, 2, 3, 4, 5, 6, 7, 8};
2 SecretKeySpec spec = new SecretKeySpec(key, "AES");
3 Cipher aes = Cipher.getInstance("AES");
4 aes.init(Cipher.ENCRYPT_MODE, spec);
5 return aesCipher.doFinal(secretData);

Similarly, keeping cryptographic keys in the source code
can cause serious security issues as source code can bewidely
shared in an enterprise environment and easily detectable.
The code snippet in Listing 2 depicts such an example.

Instead, weak (e.g., 123456) and guessable (that is,
already disclosed and publicly known) passwords are not
hardcoded inside the program, but they are stored in prop-
erty files or a database, and often they are provided by the
user.
Static analysis Hardcoded passwords within the program
can be detected by static analysis means. For instance, Julia
provides thePasswords checker4 that detects hardcodedpass-
words (CWE 259) and passwords that are retrieved from
property files (CWE522).However, this covers only partially
I1, since weak and guessable passwords can be detected only
(i) through dynamic analysis (e.g., penetration testing) on a
deployed system, or (ii) dynamic monitoring of the pass-
words selected by users checking that they conform some
standards (e.g., at least 8 characters, special characters, etc.)
and that they have not been previously disclosed in some
public databases (e.g., https://haveibeenpwned.com/). Thus,
category I1 can be partially detected using static analysis.

I2: Insecure network services

Unneeded or insecure network services running on the
device itself, especially those exposed to the internet,
that compromise the confidentiality, integrity/authen-
ticity, or availability of information or allow unautho-
rized remote control.

On the one hand, a common approach to secure net-
work services is to monitor an IT system through firewalls
and intrusion detection systems in order to prevent, recog-
nize, and block external attacks. In an IoT environment, this
requires to implement similar network security measures,
since things communicate over the very same Internet. On
the other hand, software running in the system should use
secure services (e.g., communications through https rather
than http).

4 https://static.juliasoft.com/docs/latest/Passwords.html.
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Listing 3 Vulnerable use of HTTP communication.

1 public class HttpClientExample {
2 private void sendGet() throws Exception {
3 String url = "http://www.example.com/search?q=get";
4 HttpClient client = new DefaultHttpClient();
5 HttpGet request = new HttpGet(url);
6 ...
7 }
8 private void sendPost() throws Exception {
9 String url = "http://example.com/wcResults.do";

10 HttpClient client = new DefaultHttpClient();
11 HttpPost post = new HttpPost(url);
12 ...
13 }
14 }

Examples For instance, using unencrypted services over
HTTP while sharing sensitive information may lead to criti-
cal attacks like DNS hijacking. Listing 3 depicts an insecure
use of such service.

Listing 4 Vulnerable use of UPnP Service.

1 private void doPortForwarding() {
2 PortMapping[] desiredMapping = new PortMapping[2];
3 desiredMapping[0] = new PortMapping(8123,

InetAddress.getLocalHost().getHostAddress(),
PortMapping.Protocol.TCP, " TCP POT Forwarding");

4 desiredMapping[1] = new PortMapping(8123,
InetAddress.getLocalHost().getHostAddress(),
PortMapping.Protocol.UDP, " UDP POT Forwarding");

5 UpnpService upnpService = new UpnpServiceImpl();
6 RegistryListener registryListener = new

PortMappingListener(desiredMapping);
7 upnpService.getRegistry().addListener(registryListener);
8 upnpService.getControlPoint().search();
9 }

Again, for hassle free set up of a new IoT connection
devices often use a technology called UPnP to allow IoT
devices to open certain ports in the router and allow traffic
through them. However, researchers [2] uncovered serious
security issues with UPnP particularly if a IoT device in the
network is exploited UPnP can give intruders remote control,
thus allowing them to steal sensitive information and access
to the other devices connected to the network. Further, the
compromised devices can be used to launch botnets to insti-
gate distributed denial of service (DDoS) campaigns. The
code snippet listed in Listing 4 shows that the port 8123 is
opened for the public traffic.
Static analysis Static analysis can detect when a program
relies on insecure network communications. For instance,
a standard string prefix analysis [12,13] approximates the
prefixes of a string, and it would be in position to detect what
communication protocols are used when building up URLs.
In addition, static analysis can automatically track and report
what ports are used by a program. However, currently Julia
does not implement such analyses.

Instead, securing the network services involves the mon-
itoring of the overall system (and not only the analysis of a
software), and thus it requires runtime analysis. Therefore,
static analysis can cover partially category I2.

I3: Insecure ecosystem interfaces

Insecure Web interface, supporting APIs, and mobile
interfaces of the IoT ecosystem increases the attack sur-
face of the device or its related components. Common
issues include a lack of authentication/authorization,
lacking or weak encryption, and a lack of input and
output filtering.

This category encompasses various OWASP Top 10 cate-
gories, since these were designed to improve the security of
a specific layer of the IoT ecosystem (that is, Web applica-
tions). In particular, the lack of authentication/authorization
and weak encryption is part of A2 (Broken Authentication),
while the lack of input and output filtering is part of A1
(Injection) and A7 (XSS).

An IoT system comprises various software layers that
communicate each other. Therefore, a vulnerability in one
of these layers might compromise the security of the overall
IoT system. Therefore, security and integrity of an IoT sys-
tem are challenged at multiple layers, as data flows through
many devices, networks, and administrative boundaries.

Listing 5 Vulnerable IoT Device

1 public class Server {
2 private static Socket socket1;
3 private static Socket socket2;
4 public static void main(String[] args) {
5 int rowNo = 1;
6 ...
7 while(true) {
8 // sensor 1
9 InputStream is1 = socket1.getInputStream();

10 InputStreamReader isr1 = new InputStreamReader(is1);
11 BufferedReader br1 = new BufferedReader(isr1);
12 String msg1 = br1.readLine();
13 String[] r1 = msg1.split("\t+");
14 // sensor 2: same code below as before for sensor

1, but flowing into r2
15 // compute average of the two sensors
16 hum = (Float.parseFloat(r[0]) +

Float.parseFloat(r2[0]))/2;
17 tc = (Float.parseFloat(r1[1]) +

Float.parseFloat(r2[1]))/2;
18 tf = (Float.parseFloat(r1[2]) +

Float.parseFloat(r2[2]))/2;
19 // create an object with the measured data
20 Put p = new Put(Bytes.toBytes("row"+rowNo));
21 p.add(Bytes.toBytes("ambiance"),

Bytes.toBytes("hum"), Bytes.toBytes(hum));
22 p.add(Bytes.toBytes("ambiance"),

Bytes.toBytes("tempc"), Bytes.toBytes(tc));
23 p.add(Bytes.toBytes("ambiance"),

Bytes.toBytes("tempf"), Bytes.toBytes(tf));
24 p.add(Bytes.toBytes("soil"),

Bytes.toBytes("moisture"),
Bytes.toBytes(r1[3]));

25 // insert data into the database
26 table.put(p);
27 rowNo++;
28 }
29 ...
30 }
31 }

123



78 P. Ferrara et al.

Examples Consider a scenario where sensor data is sent to
a database by the embedded software in the device, and then
read by a Web app through a servlet. The code snippet of
the IoT device in Listing 5 shows a possible leakage of data
between the reading of sensor data (line 12) and the its storage
to the database (line 26).

Listing 6 Vulnerable IoT Device

1 @WebServlet("/HbaseConnection")
2 public class HbaseConnection extends HttpServlet {
3 protected void doPost(HttpServletRequest request,

HttpServletResponse response){
4 String sensType = request.getParameter("sensType");
5 String result = queryHbase(sensType);
6 response.setStatus(HttpServletResponse.SC_OK);
7 OutputStreamWriter writer = new

OutputStreamWriter(response.getOutputStream());
8 writer.write(result);
9 ...

10 }
11 public String queryHbase(String sensType) {
12 double val=0.0;
13 String result = "";
14 try {
15 Class.forName("org.apache.drill.jdbc.Driver");
16 Connection c =

DriverManager.getConnection("jdbc:drill:zk=...");
17 Statement st = c.createStatement();
18 ResultSet rs1 = st.executeQuery("SELECT SensData."

+ sensType + " FROM hbase.SensData");
19 int count=0;
20 while(rs1.next()) {
21 float temp = Float.parseFloat(rs1.getString(1));
22 val = val+temp;
23 count++;
24 }
25 val = val/count*100;
26 val = Math.round(val);
27 val = val/100;
28 } catch (ClassNotFoundException | SQLException e)

{...}
29 return ""+val;
30 }
31 }

Listing 6 reports the implementation of the servlet of this
IoT system that retrieves the data and sends it to a companion
Android application. The sensitive data is retrieved from the
database (line 18) and, after computing the average (line 16–
18), it is transmitted through the servlet response (line 8).
Therefore, the sensor data (or better, their average) is leaked
by the servlet.

Listing 7 The MainActivity of the Android application.

1 public class MainActivity extends AppCompatActivity {
2 TextView textView;
3 RadioGroup radioGroup;
4 RadioButton radioButton;
5 public void onClick(View view) {
6 String sensor="";
7 String type = "mul";
8 BackgroundWorker backgroundWorker = new

BackgroundWorker(this);
9 String result = null;

10 int sensType = radioGroup.getCheckedRadioButtonId();
11 if(sensType!=-1) {
12 radioButton = (RadioButton) findViewById(sensType);
13 String str = (String) radioButton.getText();
14 if(str.equals("Soil Moisture")){sensor =

"soil.moisture";}

15 else if(str.equals("Temerature in C")){sensor =
"ambiance.tempc";}

16 else if(str.equals("Temerature in F")){sensor =
"ambiance.tempf";}

17 else if(str.equals("Humidity")){sensor =
"ambiance.hum";}

18 ... // Wait and retrieve the data from
BackgroundWorker

19 textView.setText("Average "+str+": "+result);
20 }
21 }
22 }

Listing 8 Code snippet of the Android BackgroundWorker

1 public class BackgroundWorker extends AsyncTask<String,
Void, String> {

2 protected String doInBackground(String... params) {
3 String type = params[0];
4 String temp = params[1];
5 String servletURL = "...";
6 if(type.equals("mul")) {
7 String result, line;
8 URL url = new URL(servletURL);
9 HttpURLConnection httpURLConnection =

url.openConnection();
10 ...
11 BufferedWriter bufferedWriter = new

BufferedWriter(new
OutputStreamWriter(outputStream, "UTF-8"));

12 String post_data = URLEncoder.encode("sensType",
"UTF-8")+"="+URLEncoder.encode(temp,"UTF-8");

13 bufferedWriter.write(post_data);
14 ...
15 InputStream inputStream =

httpURLConnection.getInputStream();
16 BufferedReader bufferedReader = new

BufferedReader(new
InputStreamReader(inputStream,"UTF-8"));

17 while((line = bufferedReader.readLine())!=null)
18 result += line;
19 bufferedReader.close();
20 inputStream.close();
21 httpURLConnection.disconnect();
22 return result;
23 }
24 return null;
25 }
26 }

Again, when we consider the companion Android appli-
cation then it is clear that the tainted data received from the
servlet is displayed to the user. The code snippet in Listing 7
and 8 reports the code of the Android application. The back-
ground worker retrieves (line 17 of Listing 8) and returns
the data (line 22 of Listing 8) exposed by the servlet, while
the main activity displays such data (line 19 of Listing 7) to
the user. Therefore, if the device, cloud storage or compan-
ion application communicate correctly, they may propagate
through the entire network the sensitive data and leak it.
Static Analysis As discussed in Sect. 3, categories A1, A2,
and A7 are already covered by static analysis. In particu-
lar, Julia’s Injection checker covers A1 and A7, while A2
is partially covered by Passwords and Cryptography check-
ers. However, the interaction between different layers in an
IoT system poses new challenges to static analysis: exist-
ing techniques (like taint analysis) could only analyze each
layer of the example above in isolation. Therefore, they are
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not in position to track how user input flows between dif-
ferent layers, and they can cover only partially or with very
limited precision injection vulnerabilities in IoT software.
Further investigation and solutions [48] are needed in order
to address this novel scenario.

I4: Lack of secure updatemechanism

Lack of ability to securely update the device which
includes lack of firmware validation on device, lack
of secure delivery (un-encrypted in transit), lack of
anti-rollback mechanisms, and lack of notifications of
security changes due to updates.

IoT systemsmight be exposed tomalware and other attack
techniques that exploit vulnerable components installed in
the devices when the system was deployed. Therefore, it is
important to update the software on a regular basis to prevent
such attacks. A commonly used technique for this purpose is
public key infrastructure (PKI) based system, which is capa-
ble of providing required security for update mechanisms.
However, the majority of IoT devices lack the computation
power to execute PKI efficiently. Again, if the key is not
secure and can be extracted from the device, it is encrypted
with a single symmetric key for all the device instances, or
the encryption keys transferred along with the update for the
device firmware, then the IoT system is at risk of hijack-
ing the update process. Therefore, the lack of secure update
mechanism refers as well to how the firmware is managed,
and not specifically vulnerable components in the firmware.
Static analysis This type of vulnerability can be detected
only after the IoT system is deployed, as it involves the overall
set up of the different devices, and it cannot be detected by
analyzing the software of the various IoT layers.

I5: Use of insecure or outdated components

Use of deprecated or insecure software components/li-
braries that could allow the device to be compromised.
This includes insecure customization of operating sys-
tem platforms, and the use of third-party software
or hardware components from a compromised supply
chain.

Studies [70] showed that 80% of the code in today’s
applications are using libraries and frameworks, but the
vulnerabilities associated with these components has been
largely undermined. An outdated vulnerable library may
allow an intruder to exploit the full privilege of the applica-
tion, which may include accessing sensitive data, executing
transactions, etc. In this regard, the National Vulnerabil-
ity Database [54] lists majority of the outdated vulnerable
libraries. Therefore, the IoT applications shouldn’t use third-

party libraries which contain well-known vulnerabilities
published in National Vulnerability Database.
Static analysis This type of vulnerability is equivalent to
A9 (Using Components with Known Vulnerabilities) of the
OWASP Top 10 list, and it can be easily detected statically
using tools such as OWASP Dependency Checker as dis-
cussed in Sect. 3.2.

I6: Insufficient privacy protection

User’s personal information stored on the device or in
the ecosystem that is used insecurely, improperly, or
without permission.

During the last few years, identity thefts and leakages
of sensitive data are on the rise with increasing number of
devices exposed to the Internet. Assessing the type and pro-
tecting sensitive data in various IoT layers is nowadays a
critical topic. For instance, should the apps installed in the
infotainment systemcommunicate or store sensitive informa-
tion like location, speed, etc. of the vehicle all the time? Thus,
from the privacy perspective one should look for unnecessary
communication and storing of sensitive personal identifiable
information, encryption of all such data, and anonymization
whenever feasible to protect the privacy of the user. This
category is similar to A3 (Sensitive Data Exposure) of the
OWASP Top 10 list.
Examples To explain the scenario of privacy breaking IoT
applications, we considered the Rain Monitor app.5 It uses
OpenXC[55] to collect sensitive data (such as location,wind-
shield status, and speed) of a car, and transmit it to a remote
Web service, where it is collected and used to inform drivers
of possible showers in their area. Clearly, this app contains a
leakage of sensitive data to Internet, which can be seen as a
privacy issue.

Listing 9 A code snippet from the Rain Monitor app. Sensitive car data
is sent to the Internet and logged.

1 public class CheckWipersTask ... {
2 private final String WUNDERGROUND_URL =
3 "http://www.wunderground.com/...";
4 private VehicleManager mVehicle;
5 ...
6 public void run() {
7 // get messages from the CAN by means of the OpenXC

API library
8 Latitude latitude = (Latitude)

mVehicle.get(Latitude.class);
9 Longitude longitude = (Longitude)

mVehicle.get(Longitude.class);
10 WindshieldWiperStatus wiperStatus =

(WindshieldWiperStatus)
mVehicle.get(WindshieldWiperStatus.class);

11 ...
12 boolean wiperStatusValue =

wiperStatus.getValue().booleanValue();
13 ...
14 uploadWiperStatus(latitude, longitude, wiperStatus);

5 https://github.com/openxc/rain.

123

https://github.com/openxc/rain


80 P. Ferrara et al.

15 }
16
17 private void uploadWiperStatus
18 (Latitude latitude, Longitude longitude,

WindshieldWiperStatus wiperStatus) {
19 int wiperSpeed = 0;
20 boolean wiperStatusValue =

wiperStatus.getValue().booleanValue();
21 if (wiperStatusValue)
22 wiperSpeed = 1;
23 String finalUri = WUNDERGROUND_URL + "?wiperspd=" +

wiperSpeed + "&lat=" + latitude + "&lon=" +
longitude;

24 ...
25 HttpClient client = new DefaultHttpClient();
26 // send the CAN data on the Internet and receive an

ack back
27 HttpGet request = new HttpGet(finalUri);
28 HttpResponse response = client.execute(request); //

line 111
29 int statusCode =

response.getStatusLine().getStatusCode();
30 if (statusCode != HttpStatus.SC_OK)
31 Log.w(TAG, "Error " + statusCode + // line 114
32 " while uploading wiper status");
33 else
34 Log.d(TAG, "Wiper status (" + wiperStatus + ")

uploaded successfully"); // line 117
35 }
36 }

The code snippet in Listing 9 reports the snippet of the
OpenXC application that reads the car location and wind-
shield data, and sends it to the Internet, without encryption
nor authentication. The status of the HTTP request and of
the windshield is also logged. These are instances of injec-
tions: flow of sensitive data into dangerous operations. In this
case, the operations divulge sensitive information, violating
privacy.

Listing 10 Another code snippet from the Rain Monitor app. Sensitive
car data is logged and used to build a URL address.

1 public class FetchAlertsTask extends TimerTask {
2 private final String TAG = "FetchAlertsTask";
3 private final String API_URL =

"http://api.wunderground.com/...";
4 ...
5 public void run() {
6 Latitude latitude = (Latitude)

mVehicle.get(Latitude.class);
7 Longitude longitude = (Longitude)

mVehicle.get(Longitude.class);
8 double latitudeValue =

latitude.getValue().doubleValue();
9 double longitudeValue =

longitude.getValue().doubleValue();
10 ...
11 Log.d(TAG, "Querying for alerts near " +

latitudeValue + ", " + longitudeValue); // line
68

12 ...
13 StringBuilder urlBuilder = new StringBuilder(API_URL);
14 urlBuilder.append(latitudeValue + "," +

longitudeValue + ".json");
15 URL wunderground = new URL(urlBuilder.toString()); //

line 76
16 ...
17 }
18 }

The code snippet in Listing 10 reports another fragment of
the source code from the same app. In this case, the applica-

tion reads the car position from the CAN and logs it. Hence,
anybody having access to the logs can reconstruct the move-
ments of the vehicle, a clear privacy issue. At the end, this
code builds a URL by using latitude and longitude. This
is a URL injection (sensitive data flowing into an Internet
address), possibly inherent to the task performed by this app.
Static analysis As discussed in Sect. 3.2, taint analysis can
be applied to detect leakages of sensitive data. Such approach
has been implemented in Julia’s GDPR Checker. Therefore,
this category can be covered by static analysis.

I7: Insecure data transfer and storage

Lack of encryption or access control of sensitive data
anywhere within the ecosystem, including at rest, in
transit, or during processing.

Consider the scenario discussed in I6: Insufficient Privacy
Protectionwhere an application sends the location of a car to
the cloud, and also logs some sensitive information coming
from the CAN in the local log file as depicted in the code
snippets of Listing 9 (line 31–32) and Listing 10 (line 15).
With regard to this category, the problem is that the sensitive
data is passed and stored in clear text. Therefore, anyonewith
access the network or the log can intercept and understand
it. To protect this sensitive data, messages must be properly
encrypted (e.g., with keys that are not directly accessible).
These keys are usually stored in a keystore and protected
with a password.

Listing 11 Malicious usage of a keystore.

1 KeyStore ks = KeyStore.getInstance("JKS");
2 char[] password = getPassword();
3 try (FileInputStream fis = new

FileInputStream("keyStoreName")) {
4 ks.load(fis, password);
5 }
6 // get private key
7 KeyStore.ProtectionParameter protParam = new

KeyStore.PasswordProtection(password);
8 KeyStore.PrivateKeyEntry pkEntry =

(KeyStore.PrivateKeyEntry)
ks.getEntry("privateKeyAlias", protParam);

9 PrivateKey myPrivateKey = pkEntry.getPrivateKey();
10 // save secret key
11 javax.crypto.SecretKey mySecretKey = ...;
12 KeyStore.SecretKeyEntry skEntry = new

KeyStore.SecretKeyEntry(mySecretKey);
13 ks.setEntry("secretKeyAlias", skEntry, protParam);
14 // store in the keystore
15 try (FileOutputStream fos = new

FileOutputStream("newKeyStoreName")) {
16 ks.store(fos, password);
17 }

Example The code snippet in Listing 11 uses such a
keystore. If the parameter passed to the constructor of
PasswordProtection() (line 4) and load() (line 7)
contain input under user’s control, then the security of the sys-
tem could be compromised by an attacker. Moreover, many
companion applications rely on weak cryptographic algo-
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rithms such as SHA1PRNG in SecureRandom. A common
but potentially harmful use of this algorithm is the creation
of encryption keys by using a password as a seed [31]. Due
to some implementation issues, the key could become deter-
ministic if the seed is generated with an unsafe algorithm.
These issues are prominent in many IoT devices devices and
the companion applications.
Static analysis Like category A2 of the OWASP Top 10 list,
also this category can be partially covered. In particular, the
use of unsafe cryptographic algorithms can be detected by
simple analyses that checks if someAPIs are calledwith some
specific values. Such vulnerabilities are already detected by
standard tools, like Julia’s Cryptography checker.

Instead, taint analysis can be applied to detect if user input
flows into cryptographic keys that are storing in a keystore.
However, to the best of our knowledge, state-of-the-art indus-
trial analyzers do not cover yet this scenario.

Finally, the lack of access control to sensitive data can be
only discovered when the system is deployed (e.g., through
some forms of dynamic analysis). Therefore, this category
can be covered only partially by static analysis means.

I8: Lack of device management

Lack of security support on devices deployed in pro-
duction, including asset management, update manage-
ment, secure decommissioning, systems monitoring,
and response capabilities.

This may lead to unauthorized access to the device or the
data. Due to poor configurations, devices may have debug
ports open for interaction with the system. An intruder may
communicate through these pin-outs to interact with the
entire system. The level of vulnerable interaction and privi-
lege exploitation is dependent on the type of communication
protocol. In the configuration file there may be pin-outs for
UART interface which enable intruders to access command
shell, logger output, etc. Again, based on the device configu-
ration an intruder may also get access to low-level interaction
with the microcontroller using protocols such as JTAG and
SWD, which can be used to read/write the internal flash,
read/write register values, debug the OS/base firmware code.
Static analysis This category requires to analyze a whole
deployed system (comprising firmware and runtime set-
tings), and it goes far beyond the IoT software involving
some forms of runtime monitoring. Therefore, it cannot be
detected by static analysis.

I9: Insecure default settings

Devices or systems shipped with insecure default set-
tings or lack the ability to make the systemmore secure
by restricting operators frommodifying configurations.

Malware likeMirai scans IoT devices trying to get control
by using the default username and password (e.g., admin/ad-
min). If a malware is able to get root access to the device,
it may exploit it for coordinating botnet attacks. Therefore,
when configuring a device, it is critical to enforce the admin-
istrator to follow strict security regulations.
Static analysis In general, these default settings are stored
in some properties file or databases, and thus, this category
cannot be detected using the static analysis.

I10: Lack of physical hardening

Lack of physical hardening measures, allowing poten-
tial attackers to gain sensitive information that can help
in a future remote attack or take local control of the
device.

One important aspect of IoT devices is that they are used
regularly by multiple users over time. On top of the device
usage, there is also the aspect of how a device is accessible,
and what level of device access is really needed. Physi-
cal security weaknesses are present for instance when an
attacker can disassemble a device to easily access the stor-
age medium and any data stored on that.Weaknesses are also
present when USB ports or other external ports can be used
to access the device using features intended for configuration
ormaintenance. This could lead to unauthorized access to the
device. An attacker could then steal confidential data from
the device’s memory and launch a spoofing attack.
Static analysis Physical presence of the intruders is required
to carry out these kinds of attacks, and therefore, they can be
prevented only by physical surveillance and access control of
the devices. Thus, static analysis cannot help to detect such
category of vulnerabilities.

4.1 Summary

The in-depth exploration of OWASP IoT Top 10 categories
suggests that IoT security vulnerabilities can be broadly clas-
sified into three categories: software, system, and device
hardware. Software vulnerabilities refer to security issues
associated with the applications running on the IoT system
at different layers. Instead, system vulnerabilities refer to
the security issues related to the firmware or operating sys-
tems of the devices, as well as to the configuration of the
deployed system. Finally, device hardware vulnerabilities are
associated with the hardware components and the physical
environment they are operating in.

Again, static analysis detects the program vulnerabilities
without executing the code. Therefore, this approach is suit-
able for detecting application vulnerabilities, such as reading
sensors data and sending it to the cloud or storing it locally.
Instead, discovering vulnerabilities on the overall system
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Table 2 OWASP IoT Top 10 2018

ID IoT vulnerabilities Application security Category Coverage Julia

I1 Weak guessable, or hardcoded passwords A2 System, software Partial Passwords

I2 Insecure network services System, software Partial

I3 Insecure ecosystem interfaces A1, A2, A7 Software Partial Injection, cryptography, passwords

I4 Lack of secure update mechanism System

I5 Use of insecure or outdated components A9 Software Full Vulnerable-components

I6 Insufficient privacy protection A3 Software Full GDPR

I7 Insecure data transfer and storage System, software Partial Cryptography

I8 Lack of device management Device, hardware

I9 Insecure default settings Device, hardware

I10 Lack of physical hardening Device, hardware

involves often firmware and RTOS, and thus, it cannot be
pursued by static analysis as it usually demands execution of
the program to monitor runtime behaviors and device con-
figuration (e.g., adjusting duty cycle, sending signal to the
microcontroller’s pins, communication protocols, managing
credentials from the configuration files, etc.). Finally, the vul-
nerabilities associated with the device hardware and physical
operational environment cannot be detected using static anal-
ysis as they have nothing to do with the application software.
Table 2 summarizes the categories of the OWASP IoT top 10
2018 vulnerabilities, and their coverage using static analysis.
DiscussionSix out of the top sevenvulnerabilities ofOWASP
IoT Top 10 can be addressed by static analysis. Exist-
ing industrial solutions were developed mainly to address
OWASP Top 10 vulnerabilities in Web applications, and in
fact the four IoT categories that have a corresponding cate-
gory in OWASP Top 10 are already covered by Julia. While
the coverage of IoT categories might be less or more perva-
sive (e.g., for I1 this approach can detect only very specific
cases), in two cases (I5 and I6) static analysis could provide
deep coverage. Therefore, next section will briefly intro-
duce the extension of Julia’s analyses we developed, while
Sect. 6 will present the experimental results of these analyses
when applied to some IoT applications publicly available in
GitHub.

5 Extending static analyzers to IoT systems

In this section, we describe how we extended Julia’s taint
analysis engine [7,22,65] in order to detect IoT security vul-
nerabilities such as leakages of sensitive data and interface
interaction issues.

5.1 IoT privacy checker

An IoT device consists of multiple sensors, which provide
their own APIs to access (potentially sensitive) sensor data.

Thus, it is very difficult to provide a single solution applicable
for all IoT devices and companion apps. For this purpose, we
applied Julia’s taint analysis to detect privacy issues related
to sensitive sensor data. Figure 1 depicts the working mecha-
nism of the IoT privacy checker, that relies on a dictionary of
sources and sinks specific to the APIs of IoT devices under
analysis. Here, sources refer to methods retrieving sensitive
information about the device, whereas sinks includemethods
that potentially leak data (e.g., logging, database, or net-
work manipulation). The analyzer tags as tainted (aka, with
a Boolean flag set to true) all the value retrieved from some
sources, and then it propagates such values throughout the
whole program following the program’s semantics. Then, the
analyzer checks the flag associated to the values passed to the
sink. If it is false then flow of tainted data into that sink is not
possible; otherwise, it generates awarning, reporting a poten-
tial leakage of private data. We instantiated our approach to a
specific library used by some of the examples wewill discuss
in Sect. 6.

5.2 Insecure ecosystem checker

Julia’s taint analysis can provide an exhaustive report track-
ing how tainted data flows through the program up to a
sink [25]. Such approach has been instantiated for the GDPR
analysis [26,27], and it allows the user to specify sources
and sinks through an Excel spreadsheet. This spreadsheet
contains all the potential API calls that could retrieve or leak
sensitive data. The user can then tag these with the category
of sensitive data they retrieve or with leakage points they dis-
close information to. The GDPR checker then applies Julia’s
taint analysis engine with the specification provided through
the annotated Excel file, and it returns an exhaustive report
with all possible data flowgraphs representing potential leak-
ages. We extended the GDPR checker to work with multiple
programs, for this we added intermediate sources and sinks
in the boundaries of the different interfaces with the help of
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Fig. 1 IoT privacy checker (I6)

the communication channel, and tracked the propagation of
tainted data across the interfaces.

Figure 2 depicts the working principle. The analyzer first
generates the possible set of sources and sinks from the given
programs. The users may provide the set of external sources
(primaryorigin) and sinks (final destination) for various types
of sensitive data. Usually, we have a program (e.g., embed-
ded software in an IoT device) that access the sensitive data
and transmits it through somecommunication channel. In this
case, the analysis considers as sources the ones defined by the
user (that is, external sources), while the sinks are determined
from the communication channel (termed as intermediate
sinks). Then, we usually have another application that reads
data from the communication channel and exposes it to other
applications. Here, both sources and sinks are the ones spec-
ified for some specific communication channels. Finally, we
could have a program that read data from the communication
channel, and leaks it to some external sinks. In this latter case,
the sources are the one defined for communication channels,
while the sinks are the ones defined by the user (external
sinks). A complete IoT system comprises several applica-
tions that are all analyzed by our approach, and then the
results are combined into a final report.

6 Experimental results and discussion

The IoT checkers have been implemented on top of the
commercial Julia static analyzer [43] for Java and .NET
bytecode, based on abstract interpretation [15,16]. As of ver-
sion 2.7.0.2, Julia implements 48 different checkers, divided

Fig. 2 Insecure ecosystem checker (I3)

into two main groups. The basic checkers perform sim-
ple yet comprehensive semantic controls of software issues.
Instead, the advanced checkers perform deep semantic con-
trols that need a complete inspection of the call graph, a
precise abstraction of the heap, as well as other supporting
(e.g., flow [22]) analyses. The analyses have been executed
on a r5.xlarge Amazon Web Service machine, that features
a Xeon Platinum 8000 series (Skylake-SP) processor with a
sustained all core Turbo CPU clock speed of up to 3.1GHz
and 32GB of RAM.

6.1 IoT privacy

Listing 12 Vulnerability warnings for the Rain Monitor app.

1 CheckWipersTask.java:111:XSS-injection into method
"execute"

2 CheckWipersTask.java:114:Log forging into method "w"
3 CheckWipersTask.java:117:Log forging into method "d"
4 FetchAlertsTak.java:68:Log forging into method "d"
5 FetchAlertsTak.java:76:URL injection into method "<init>"

In the Rain Monitor app, we introduced in the descrip-
tion of category I6 of the OWASP IoT Top 10 in Sect. 4,
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we instructed Julia’s GDPR analysis with the sources of sen-
sitive data about the car. Julia’s taint analysis then issues
the five warnings about potential injections reported in List-
ing 12. These correspond to the privacy issues informally
discussed in the aforementioned section, and reported in List-
ing 9. The first warning reports that sensitive data about the
vehicle flows intomethod executewhich creates an HTTP
request.Moreover, the status of theHTTP request and the sta-
tus of the windshield get logged into a file, as shown in the
code snippet of Listing 9. The analysis catches these issues
in the second and third warning. Instead, in the code snippet
of Listing 10, sensitive data (latitude and longitude) is read
from the CAN, logged at line 68 (fourth warning), and later
concatenated into a URL at line 76 (fifth warning). The latter
points to a remote Web service that tracks the position of
the car and the weather. Clearly, this is potentially a privacy
breach. In conclusion, the privacy checker issues five injec-
tion warnings on Rain Monitor and they are all true alarms,
although inherent to the main functionality the app performs.

6.2 Insecure ecosystem

To design and demonstrate the capabilities of Insecure
Ecosystem checker, we scanned GitHub for repositories con-
taining IoT systemsmade up of several interacting programs.
We ended up selecting five repositories based on Android
Things, where an edge program and an Android applica-
tion communicate through some channels. Android Things
supports cloud, Bluetooth and Near Field Communication
(NFC) connectivity between different IoT components. We
selected the repositories that have at-least an Android orWeb
application along with an Android Things application (that
is, an edge program). This narrowed the available reposito-
ries, since the majority is functionally repetitive, and many
did not compile because of missing resources, or incorrect
Gradle Build files.

In particular, we selected IoT systems communicating
through Google Firebase [33] (Doorbell [63] and Elec-
tricity Monitor [28]), Near Field Communication (Color
Thing [37]), Bluetooth (Bluetooth Low Energy (BLE)
fun [51]), and Internet (Robocar [73]). In the rest of this sec-
tion, we discussed the results of the analysis when applied to
these IoT programs.

6.2.1 Firebase: Doorbell and electricity monitor

Most IoT systems rely on different cloud services as commu-
nication channel between the edge software and the mobile
applications. A very popular choice is Google Firebase [33].
We have considered two different IoT systems that com-
municate through Firebase: Doorbell [63] and Electricity
Monitor [28].

Fig. 3 Doorbell analysis result

Android Things Doorbell [63] implements a smart door-
bell that captures the image of the visitor who presses
the bell button. The picture obtained from the camera is
processed through Google’s Cloud Vision API; the edge
software then uploads it to a Firebase database, together
with Cloud Vision annotations and metadata. The com-
panion Android app accesses the database and presents
data to the user. For the analysis of this program, we
tagged as sources and sinks of the communication channel
StorageReference.putBytes (called at line 181 of
DoorbellActivity) and FirebaseStorage.
getReferenceFromURL (called at line 88of Doorbell
EntryAdapter), respectively. Furthermore, we speci-
fied ImageReader.acquireLatestImage as exter-
nal source (i.e., the Android API that retrieves a camera
image, called at line 162 of DoorbellActi
vity) and GlideRe- quests.load as external sink
(i.e., the method of the mobile app that displays an image,
called at line 91 of DoorbellEntryAdapter). The pro-
grams alongwith theExcel spreadsheet tagging these sources
and sinks are passed to Julia’s GDPR checker. Figure 3
reports the flow graph produced by the taint analysis, where
the results on the two programs have been connected (Thing
and Android App). In addition, the bold arrow represents
a data flow between components. This result shows that the
edge software retrieves the image and stores it in Firebase,
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Fig. 4 Electricity monitor analysis result

where themobile app retrieves it to show it to the user. There-
fore, our approach detects the information flow from source
(picture taken from a camera) to sink (image shown in a
mobile app).

The second IoT system in this category is Electricity
Monitor [28], that tracks the availability of electricity and
notifies the user about black-outs, in an Android app. It uses
Firebase as communication means between the edge soft-
ware and the mobile app. Similarly to Doorbell, we add
as source and sink of the communication channel meth-
ods DataSnapshot.getValue (called at line 74 of
OverviewPresenter) and Database Reference.
setValue (called at line 41of Electricity Monitor
Activity), respectively. The external source is the
ElectricityLog instance in field ElectricityMo-
nitorActvity.electricityLog (since it keeps track
of the status of electricity). The external sink is setIsPo-
werOn of ElectricityViewModel, since the informa-
tion contained there is shown to the user of the mobile app.
Note that we might have chosen additional external sinks
since the view model contains several other fields, but we
focused on a single specific value since the other cases would
be identical. The analysis of these programs, with this con-
figuration, generates the flow in Fig. 4. It shows that the
edge software accesses the log of the status of electricity and
immediately retransmits it to Firebase; moreover, the mobile
app accesses this data and shows the electricity status to the
user, by passing this data to the view model.

6.2.2 Near Field Communication: color thing

Near Field Communication (NFC) allows short-range
wireless connectivity. The Color Thing program [37] relies
on NFC to allow communication between an edge program
and a mobile app, that changes the colors of some LEDs

Fig. 5 Color thing analysis result

connected to a Raspberry Pi 3. The source of the com-
munication channel is the parameter of the event listener
Activity.onMessageReceived (used at line 238
of ColorActivity). Method Connections.se- nd
ReliableMessage (called at line 310 of Controller
Activity) is a sink of the communication channel. The
external source is the method parameter of the event listener
ControllerActivity.
onColorSelected, that receives the input of the user
through the mobile app at line 272 of this activity. The exter-
nal sink is PCA9685. setPWM, that sets the LEDs’ color.
As in the other examples, the programs are analyzedwith this
configuration. The result, in Fig. 5, shows that the Android
app reads the user input, elaborates an adequate payload
transforming the user input into an RGB color and trans-
mits it through NFC; the edge software receives this input,
processes the value, and transmits a coherent value to the
hardware device to set the LEDs’ color.

6.2.3 Bluetooth: BLE fun

Bluetooth is another way of communication between
nearby devices. The Bluetooth Low Energy (BLE) fun—
Android (Things) program [51] relies on Bluetooth Low
Energy technology to communicate between an Android
Things program and a mobile app. It simply sends a counter
from the edge software to the Android app. For this com-
munication channel, source and sink are the second param-
eter of the event listener Bluetooth GattCallback.
onCharacteristicRead, accessed at line 83 of
GattClient, and the parameter of BluetoothGatt
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Fig. 6 BLE fun analysis result

Fig. 7 Robocar analysis result

Server.sendResponse, called at line 112 of Gatt
Server, respectively. The initial value of the counter is read
by calling SharedPreferences.getInt at line 19 of
AwesomenessCounter and is consequently tagged as
external source. The external sink is Button.setText,
called at line 37 of InteractActivity, since it shows
the value to the user of the mobile app. Figure 6 reports the
analysis results: the edge software accesses a counter stored
in shared preferences and transmits it, after some computa-
tion, through Bluetooth; themobile app receives it and shows
it to the user.

6.2.4 Internet: Robocar

As a last example, we considered an IoT system that
allows one to drive a little, remote-controlled, autonomous
car built with Android Things [73]. The system con-
sists of a mobile app to control the car and of some
edge software, that sends driving instructions to the car.
The two programs communicate through standard HTTP

requests and responses. The repository provides specific
interfaces to send and receive data. Hence, source and
sink of the communication channel are the parameter of
HTTPRequestListener.onSpeed(RobocarSpeed)
and the value passed to RobocarClient.setSpeed
(int,int), respectively. In addition, the external source is
the second parameter of GameControllerActivity.
handle- JoystickButtonEvent(View,Motion
Event), since this activity manages the joystick of the
mobile app. The external sink is LocahostDriver.
changeSpeed, called at line 212 of MainActivity.
Figure 7 reports the result of the analysis that, this time,
did not find any explicit flow from the external source to
the external sink. Although the edge software does receive
data from the communication channel and sends it to the
external sink (as the figure reports), the mobile app does
not send data to the Internet: it just performs some checks
of user input (retrieved through the external source) and
sends distinct constant values based on such checks (see
GameControllerActivity.handleJoystick
Butt- onEvent).Hence, there is no explicit flow from the
external source to the communication channel, while there
is an implicit flow, not detected by taint analysis. From our
point of view, this means that the program correctly trans-
lates the user input into sanitized (namely constant) values.
In that way, the software prevents the user (and potentially
an attacker) from sending arbitrary speed values that might
damage the device.

7 Conclusion

In this paper, we discussed how static analysis can be adopted
to prevent security vulnerabilities in IoT systems. In particu-
lar, we started by discussing how this type of tools is currently
applied to prevent OWASP Top 10 vulnerabilities in Web
applications. We then analyzed OWASP IoT Top 10, and dis-
cussed how these vulnerabilities are related to OWASP Top
10 and what existing static analyses can be re-used to detect
IoT vulnerabilities. We then introduced two extensions of an
existing industrial static analyzer (Julia) and presented some
preliminary experimental results.

Overall, six out of the first seven vulnerabilities listed
by OWASP IoT Top 10 can be covered at least partially by
static analysis means. Five of these types of vulnerabilities
are already provided by Julia’s checkers, but in some cases
its coverage is partial since the IoT scenario introduces novel
complexity (in particular, communications between different
software layers) that were not present in Web applications.
Therefore, we extended these analyses (in particular, about
leakages of sensitive data coming from sensors, and insecure
ecosystem interfaces passing tainted data between different
software layers) to address this scenario. The experimental
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results show that the proposed extensions are capable of fully
detecting several issues related to these categories.
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