5 research outputs found

    Segmentation process and spectral characteristics in the determination of musical genres

    Get PDF
    Over the past few years there has been a tendency to store audio tracks for later use on CD-DVDs, HDD-SSDs as well as on the internet, which makes it challenging to classify the information either online or offline. For this purpose, the audio tracks must be tagged. Tags are said to be texts based on the semantic information of the sound [1]. Thus, music analysis can be done in several ways [2] since music is identified by its genre, artist, instruments and structure, by a tagging system that can be manual or automatic. The manual tagging allows the visualization of the behavior of an audio track either in time domain or in frequency domain as in the spectrogram, making it possible to classify the songs without listening to them. However, this process is very time consuming and labor intensive, including health problems [3] which shows that "the volume, sound sensitivity, time and cost required for a manual labeling process is generally prohibitive. Three fundamental steps are required to carry out automatic labelling: pre-processing, feature extraction and classification [4]. The present study developed an algorithm for performing automatic classification of music genres using a segmentation process employing spectral characteristics such as centroid (SC), flatness (SF) and spread (SS), as well as a time spectral characteristic

    Classification of Overlapped Audio Events Based on AT, PLSA, and the Combination of Them

    Get PDF
    Audio event classification, as an important part of Computational Auditory Scene Analysis, has attracted much attention. Currently, the classification technology is mature enough to classify isolated audio events accurately, but for overlapped audio events, it performs much worse. While in real life, most audio documents would have certain percentage of overlaps, and so the overlap classification problem is an important part of audio classification. Nowadays, the work on overlapped audio event classification is still scarce, and most existing overlap classification systems can only recognize one audio event for an overlap. In this paper, in order to deal with overlaps, we innovatively introduce the author-topic (AT) model which was first proposed for text analysis into audio classification, and innovatively combine it with PLSA (Probabilistic Latent Semantic Analysis). We propose 4 systems, i.e. AT, PLSA, AT-PLSA and PLSA-AT, to classify overlaps. The 4 proposed systems have the ability to recognize two or more audio events for an overlap. The experimental results show that the 4 systems perform well in classifying overlapped audio events, whether it is the overlap in training set or the overlap out of training set. Also they perform well in classifying isolated audio events

    Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    Get PDF
    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances

    A survey of tagging techniques for music, speech and environmental sound

    Get PDF
    Sound tagging has been studied for years. Among all sound types, music, speech, and environmental sound are three hottest research areas. This survey aims to provide an overview about the state-of-the-art development in these areas.We discuss about the meaning of tagging in different sound areas at the beginning of the journey. Some examples of sound tagging applications are introduced in order to illustrate the significance of this research. Typical tagging techniques include manual, automatic, and semi-automatic approaches.After reviewing work in music, speech and environmental sound tagging, we compare them and state the research progress to date. Research gaps are identified for each research area and the common features and discriminations between three areas are discovered as well. Published datasets, tools used by researchers, and evaluation measures frequently applied in the analysis are listed. In the end, we summarise the worldwide distribution of countries dedicated to sound tagging research for years
    corecore