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Abstract

Coping with scarcity of labeled data is a common problem in sound classification tasks.
Approaches for classifying sounds are commonly based on supervised learning
algorithms, which require labeled data which is often scarce and leads to models that do
not generalize well. In this paper, we make an efficient combination of confidence-based
Active Learning and Self-Training with the aim of minimizing the need for human
annotation for sound classification model training. The proposed method pre-processes
the instances that are ready for labeling by calculating their classifier confidence scores,
and then delivers the candidates with lower scores to human annotators, and those with
high scores are automatically labeled by the machine. We demonstrate the feasibility
and efficacy of this method in two practical scenarios: pool-based and stream-based
processing. Extensive experimental results indicate that our approach requires
significantly less labeled instances to reach the same performance in both scenarios
compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2%
in human labeled instances is achieved in both of the pool-based and stream-based
scenarios on a sound classification task considering 16,930 sound instances.

Introduction 1

Sound classification is a relatively recent topic in the audio analysis research community 2

when compared to speech and music analysis. Yet, it has a wide range of applications 3

such as multimedia data search, context awareness and activity detection [1–4], security 4

surveillance [5, 6], military interest tracking [7], assistive devices for independent 5

living [8], healthcare monitoring [9, 10], among others. 6

In Table 1, we show an overview of state-of-the-art research in sound classification. 7

Noticeably, two main features characterize this area of research. Firstly, statistical 8

classifiers and fully supervised learning algorithms are the most common approaches to 9
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Table 1. Overview of state-of-the-art research in sound classification. For features, BoAP: bag-of-audio-phrases descriptor,
UFL: unsupervised feature learning, E: energy, SF: spectral features, ZCR: zero-crossing rate, TFB-ED: triangle filter bank
and eigen-decomposition, MFCC: mel-frequency cepstral coefficients, STE: subband temporal envelopes, and for classifiers,
SVM: support vector machines, RF: random forest, KFDA: kernel Fisher discriminant anlysis, HMM: hidden Markov models,
for learning methods, FS: fully supervised learning.

Work #Clips #Classes Features Classifiers Learning methods Domains

[1] 1,479 22 BoAP SVM FS human activity

[2] 8,732 10 UFL RF FS urban environment

[3] 5,949 62 E+SF+ZCR SVM FS surveillance

[6] 650 3 TFB-ED KFDA FS environment

[9] 115/10,500 7/105 MFCC HMM FS healthcare

[11] 705 10 STE SVM FS canteen

sound classification. This means that large amounts of training data (typically labeled 10

by human annotators) are required to create robust classification systems. Secondly, 11

prototypical databases with size less than 10,000 instances are employed in most case. 12

Indeed, and although the largest database mentioned in Table 1 comprises as many as 13

10,500 instances, the average size of each sound class is as small as 100 instances. In 14

comparison with automatic speech recognition research where typical corpora comprise 15

hundreds of hours of transcribed speech, annotated data in sound classification is scarce. 16

Therefore, there is a gap between the desirability of sufficient labeled data for training 17

robust models and the scarcity of annotated corpora. 18

While the development of web technology has allowed free access to vast amounts of 19

sound media data for research usage, the shortage of labeled data remains an important 20

issue that compromises the development of robust sound classification systems, which in 21

turn limits their performance in practical scenarios [12–14]. To our best knowledge, 22

even the largest environmental sound database ESC-US [15] so far contains only a 23

limited number of labeled instances (2,000 instances) and a large amount of unlabeled 24

instances (250,000 instances). This situation can be attributed to the burdensome and 25

costly annotation process that requires assigning a predefined label to each of the 26

various sound samples, which is especially critical for large databases [15]. Given this 27

scenario, it is of extreme importance to develop techniques that allow the development 28

of sound classification systems using databases with only partial human annotations 29

available. This issue is addressed in this paper, and our proposal to overcome the above 30

mentioned limitations is to combine Active Learning (AL) and Semi-Supervised 31

Learning (SSL). With this approach, we target real-use scenarios whereby machines are 32

required to make sense of the acoustic world surrounding them in meaningful ways by 33

learning autonomously (SSL), through interacting with humans (AL), and by 34

continuously adapting to a specific environment. Additionally, it also reduces the need 35

for human labeled data for the development of robust sound classification systems. 36

The best of two worlds: AL and SSL 37

AL [16] is a Machine Learning technique that aims at achieving greater accuracy with 38

fewer training labels by (actively) choosing the data from which it learns. In contrast 39

with the most commonly used Passive Learning (PL) techniques that randomly select 40

instances from data pools to be labeled, AL algorithms select those instances that are 41

the ‘most informative’ (with respect to a given measure function), and subsequently 42

query human or machine annotator for labeling. The informativeness of the instances to 43

be selected concerns their potential to improve the model’s performance by selecting the 44

PLOS 2/19



best examples during training. There are various strategies by which the 45

informativeness of unlabeled samples can be processed (as detailed in the next section), 46

and the effectiveness of AL has been shown in typical classification tasks such as 47

automatic speech recognition [17], multimedia retrieval [18], speech emotion 48

recognition [19], among others. 49

As a result of employing an certainty-based AL query strategy, especially when it 50

comes to a large scale raw data collection, a considerable number of unlabeled instances 51

will be left out because of their high confidence scores (i. e., low informativeness). Here, 52

we consider to further exploit this remaining set of instances (which are not selected for 53

the human to label) with a traditional SSL method. These instances, and their 54

corresponding labels automatically annotated by the machine classifier, will be added to 55

the human-labeled set to create a new, larger training set. As a result, we will combine 56

AL and SSL methods to reduce the amount of human-labeled data. Specifically, human 57

annotators are required to label only those instances with the lowest certainty as 58

determined by the AL algorithm, while the remaining instances (those with the highest 59

certainty) are automatically labeled by a machine annotator. Then, both groups of 60

instances are fused and used to re-train the classifier. We will refer to this approach as 61

Semi-Supervised Active Learning (SSAL) throughout this paper. The effectiveness of 62

SSAL in reducing the amount of data to be labeled by human annotators will be 63

validated in a sound database with a size of 16,930 instances. 64

The major contribution of this work is the application of a hybrid method combining 65

AL and SSL in the field of sound classification, which is of extreme importance to the 66

field given the scarcity of labeled data and the need to minimise the costs associated 67

with human annotations. Furthermore, we provide a detailed operationalization of the 68

proposed method in two target scenarios: pool-based (all data is available at once) and 69

stream-based (a practical scenario whereby instances are gathered sequentially from 70

actual distributions) scenarios. 71

Related work 72

Active Learning 73

One of the most promising approaches proposed in the literature to efficiently exploit 74

unlabeled data for model development is AL [20–22]. By estimating the informativeness 75

of the unlabeled instances, AL selects only those with high potential to improve the 76

model’s performance for annotation. There are various strategies by which such 77

informativeness can be processed (aka, query strategies), and, according to the different 78

types of feedback considered, at least three categories can be generalized from previous 79

work [16]: 1) certainty-based sampling, 2) query-by-committee, 3) expected error 80

reduction. In the first type of strategy, the model (or active learner) determines the 81

certainty of the predictions on unlabeled data based on a previously trained model, and 82

queries an annotator for the labeling of those with the least certain classification. This 83

is perhaps the most commonly used query strategy. For instance, it has been applied in 84

text classification [22], automatic speech recognition [17], speech emotion 85

classification [19], audio retrieval [23], among others. The second type of strategy 86

(query-by-committee) involves two or more classifiers and the selection of those instances 87

about which the various models disagree the most, which are then delivered for human 88

annotation. This strategy can also be employed in regression tasks by measuring 89

disagreement as the variance among the committee members [24]. The third type of 90

strategy (expected error reduction) is a decision-theoretic approach that aims to 91

estimate how much the model’s generalization error is likely to be reduced. The 92

instances estimated to have a high impact on the expected model’s error are selected for 93
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Table 2. Overview of previous work combining Active and Semi-Supervised Learning techniques, and the work proposed in
this paper. AL: Active Learning, SSL: Semi-Supervised Learning, QBC: Query-By-Committee, EM: Expectation
Maximization, SBC: Similarity-based Classifier, CRFs: Conditional Random Fields, SVM: Support Vector Machines.

Article AL method SSL method Scenario Classifier Domain Year

[36] QBC EM pool naive Bayes text classification 1998

[34] Co-Testing Co-EM pool naive Bayes Web pages & pictures classification. 2002

[37] Co-Testing Co-Training pool SBC content-based image retrieval 2004

[31] Certainty-based Self-training fixed & dynamic pool Boosting spoken language understanding 2005

[38] Certainty-based Self-training stream CRFs natural language processing 2009

this work Certainty-based Self-training pool & stream SVM sound classification 2015

human annotation. This strategy has been adopted for text classification task with 94

Naive Bayes models [25], and leads to a dramatic improvement over certainty-based and 95

query-by-committee strategies. Unfortunately, the expected error reduction method is 96

also, in most cases, the most computationally expensive [16]. The effectiveness of AL 97

and the various query strategies has been shown in typical classification 98

tasks [16,19,22–25]. 99

Semi-Supervised Learning 100

Similarly to AL, the goal of SSL techniques is to exploit the availability of unlabeled 101

data for model training and improvement. Two broad categories of SSL have been 102

investigated to date: self-training [26] and co-training [27, 28]. Self-training is a 103

technique that permits to automatically annotate unlabeled data by using a preexisting 104

model trained on a smaller set of labeled data. Usually, those instances of the unlabeled 105

data set that are predicted with the highest degree of confidences are added to the 106

training set (together with the respective labels), and the classifier is re-trained with the 107

new (larger) set. This procedure is then repeated iteratively until a certain target 108

performance is achieved (or until no more unlabeled candidate data is available). This 109

approach is very attractive and useful to enhance the robustness of existing classifiers, 110

because it does not require the intervention of human annotators [29,30]. The 111

effectiveness of self-training has been demonstrated in various areas, including spoken 112

language understanding [31], handwritten digit and text classification [32], and sound 113

event classification [33] . 114

Another set of algorithms with the potential to exploit unlabeled data pools is 115

multi-view learning [30, 34,35]. Multi-view learning techniques focus on improving the 116

learning process by training different models for the same task concurrently, but using 117

different feature sets (aka, “views”) [16]. Co-training is one of the earliest schemes for 118

multi-view learning proposed in the literature. In this method, two models are initially 119

trained with two distinct different feature sets of the same labeled data set. Then, the 120

most confident predictions of each model on the unlabeled data are added to the 121

training set to train each other. The algorithm relies on three assumptions or 122

conditions: (a) sufficiency : each “view” is sufficient for classification on its own, (b) 123

compatibility : the target functions in both “views” predict the same labels for 124

co-occurring features with high probability, and (c) conditional independence: the 125

“views” are conditionally independent given the class label [27]. 126
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Combining Active and Semi-Supervised Learning 127

AL strategies can greatly reduce the time-consuming and expensive human labeling 128

work and lead to excellent performance improvements [16]. Nevertheless, AL is still 129

inadequate for some situations in which obtaining a large amount of human annotations 130

is unpractical (or not possible at all), and therefore needs to be minimized. Given that 131

SSL also aims at using unlabeled data in an efficient way, but without the intervention 132

of human annotators, it is natural to think about combining both techniques. Indeed, 133

various examples can be found in the literature and are summarized in Table 2. One of 134

the first works exploring combinations of AL and SSL algorithms was reported in [36]. 135

Later, [34] proposed a variant of query-by-committee method, which is known as 136

co-testing. In this method, two classifiers were trained separately on two different views 137

(similarly to co-training), and the unlabeled instances in which the classifier disagree the 138

most (‘contention points’ ) were selected for human annotation. Co-testing was then 139

combined with co-training using an expectation maximization (co-EM) algorithm to 140

automatically label instances that showed a low disagreement between the two 141

classifiers. The combined method proposed in [34] clearly outperformed co-EM, general 142

co-testing and co-training in Web pages and pictures classification. [37] also achieved 143

significant performance improvements by combining co-testing and co-training methods 144

in image retrieval compared to either co-testing or co-training retrieval method. 145

Certainty-based AL has been also used alongside self-training to significantly reduce the 146

human labeling effort in spoken language understanding [31] and natural language 147

processing [38]. In the work presented in this paper, we will tandem certainty-based AL 148

and self-training methods for sound classification. 149

Active Learning in two scenarios 150

In this paper we adopt an certainty-based AL approach. Moreover, we consider two 151

target scenarios: pool-based scenario and stream-based scenario. The focus on the first 152

scenario tackles situations where a large pool of unlabeled data can be gathered at once 153

(the most common in previous work; cf. Table 2). In this case, before deciding which 154

instances should be selected in each training iteration, every instance in the pool can be 155

evaluated in terms of their informativeness. The second scenario fits a practical scenario 156

in which unlabeled instances are gathered sequentially from actual distributions (e.g., 157

an online sound processing system). In this case, the (active) learner decides whether to 158

keep or discard each instance individually. Unlike the pool-based scenario, the 159

stream-based scheme is more appropriate for situations in which memory or processing 160

power may be limited (e.g., mobile and embedded devices) [16]. 161

A detailed description of the AL strategies used in this paper are shown in Tables 3 162

and 4. In both strategies we start with a small set of labeled instances Sl for training an 163

initial classifier M . With this classifier, we estimate the confidence scores Cs for the 164

instances that are candidates for labeling. In the pool-based scenario, the entire pool of 165

unlabeled instances Su is estimated, and only those instances with confidence scores 166

equal to or lower than the pre-defined threshold tha are selected for human annotation. 167

In the stream-based scenario, the instances are analyzed sequentially and selections are 168

made individually. At each iteration, the buffer B is send to human for annotation as 169

soon as it is full filled with instances with confidence scores less than the pre-defined 170

threshold tha. The threshold tha is determined by the human labeling resources 171

available or by the performance of the current classifier. 172
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Table 3. Certainty-based Active Learning algorithm in a pool-based scenario.

Input:
Sl : a small set of labeled instances
Su : a large pool of unlabeled instances
M : an initial classifier trained on Sl

tha : the confidence threshold
Do:
Classify each instance in Su using classifier M and calculate
the confidence score C for each selected instance.
Select those instances with Cs that are equal to or lower
than threshold tha, and submit them to human annotation.
Refer to the new labeled set as Snew.
Sl = Sl ∪ Snew, Su = Su − Snew.
Re-train classifier M using new Sl.

Until Su = ∅/labeler is unavailable/model training converges

Table 4. Certainty-based Active Learning algorithm in a stream-based scenario.

Input:
Sl : a small set of labeled instances
Su : a large stream of unlabeled instances
M : an initial classifier trained by Sl

B : a fixed buffer
tha : the confidence threshold

Do
Classify current instance from Su using classifier M and calculate the
confidence score C.
if C < tha

Retain current instance in buffer B.
otherwise
Discard current instance.

end if
if buffer B is full
Submit instances in B to human annotation.
Refer to the new labeled set as Snew.
Sl = Sl ∪ Snew, Su = Su − Snew.
Re-train classifier M using new Sl.

end if
Until Su is interrupted/labeler is unavailable/model training converges

Semi-supervised Learning 173

As mention, in order to further reduce the need for human annotation and enhancing 174

the classification performance, we complement the AL phase with self-training. A 175

detailed description of this strategy is presented in Table 5. First, we train an initial 176

model M using an initial (small) set of human-labeled data Sl. Then, we classify the 177

unlabeled instances Su and calculate the confidence scores (as it will be defined later in 178

this paper). Finally, we select those unlabeled instances with confidence scores equal to 179

or greater than a given threshold ths, and add them (together with the respective 180

machine-annotated labels) to the training set for the next iteration. 181

There are two parameters that need to be set in this strategy: the confidence 182

threshold ths and the size of the initial human-labeled data set |Sl|. Regarding the first, 183

which defines the amount of unlabeled data to be selected at each iteration of the 184
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Table 5. Semi-Supervised Learning strategy.

Input:
Sl : a small set of labeled instances
Su : a large pool of unlabeled instances
M : an initial classifier trained by Sl

ths : the confidence threshold
Do:
Classify every instance in Su using classifier M and calculate
the corresponding confidence score C.
Select those instances with Cs that are equal to or higher
than threshold ths, and label them with corresponding
predicted categories.
Refer to the machine-labeled set as Snew.
Sl = Sl ∪ Snew, Su = Su − Snew.
Re-train classifier M using the new set Sl.

Until model training converges/unlabeled data is unavailable

algorithm, we have to find a compromise between the impact of adding noisy instances 185

(low ths) and adding less informative ones (high ths). Regarding the second, we have to 186

consider that if the set is too small the initial model will have a high classification error 187

rate, and if the set is too large no improvement over the initial model can be expected 188

because there is nothing to be learned. In this paper, we will optimize these parameters 189

as it will be described in experimental section. 190

Combining Active and Semi-supervised Learning 191

As discussed above, active and semi-supervised learning share the common goal to 192

reduce the amount of human annotation effort by means of selective data sampling. 193

However, they further share the same criteria for data sampling – the confidence score. 194

The difference is that they achieve their goals from opposite ‘ends’: active learning 195

samples data with low classifier confidence, while semi-supervised learning samples the 196

data with high confidence. Thus, it comes naturally to combine them for more efficient 197

model learning. Our proposed approach is as follows. 198

By using two given confidence thresholds thssaL and thssaH , the candidate instances 199

that are evaluated for labeling can be sampled to generate two subsets : one subset 200

containing instances whose confidence scores are lower than thssaL, and another subset 201

containing those instances whose confidence scores are equal to or higher than thssaH . 202

It follows that the former subset of instances is selected for human labeling, and the 203

latter for machine labeling. This approach can be referred to as Semi-Supervised 204

Active Learning (SSAL), since it tandems the standard fully supervised AL strategy 205

with a bootstrapping strategy SSL, (i.e., self-training). SSAL is formally described in 206

Tables 6 and 7 for pool-based and stream-based scenarios, respectively. 207

In the pool-based scenario, at every learning iteration, we incrementally increase the 208

initial training set with a set of human-labeled instances (those with confidence scores 209

lower than the threshold thssaL), and a variable number of machine-labeled instances 210

(those with confidence scores equal to or higher than the threshold thssaH . As can be 211

observed from Table 6, there are twice as many model re-training operations in each 212

learning iteration compared to the individual AL and self-training approaches. In our 213

approach, we first re-train the model with the human-labeled date set Sa
new (AL phase), 214

and then produce the machine-labeled data set Ss
new (SSL phase). The purpose of this 215

design aims at improving the quality of the data set Ss
new by making use of a model 216
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Table 6. Semi-Supervised Active Learning in a pool-based scenario.

Input:
Sl : small set of labeled instances
Su : large pool of unlabeled instances
M : initial classifier trained by Sl

thssaL, thssaH : confidence thresholds
Do:
Classify every instance in Su using classifier M and calculate
the corresponding confidence score C.
Select instances with Cs lower than thssaL from Su and submit
them to human annotation.
Refer to the new labeled set as Sa

new.
Sl = Sl ∪ Sa

new, Su = Su − Sa
new.

*Re-train the classifier M using the new Sl.
Select those instances with Cs equal to or higher than thssaH ,
and add the corresponding predicted labels.
Refer to the machine-labeled set as Ss

new.
Sl = Sl ∪ Ss

new, Su = Su − Ss
new.

*Re-train the classifier M using the new Sl.
Until Su = ∅/labeler is unavailable/model training converges
* Note that the model is re-trained twice at each learning iteration.

Table 7. Semi-Supervised Active Learning in a stream-based scenario.

Input:
Sl : small set of labeled instances
Su : large stream of unlabeled instances
M : initial classifier trained by Sl

B : fixed buffer
thssaL, thssaH : confidence thresholds

Do
Classify current instance from Su using classifier M and calculate its
confidence score C.
Retain current instance in buffer B.
if Buffer B is full
Select those instances with Cs lower than thssaL from B and submit
them to human annotation.
Refer to the human-labeled set as Sa

new.
Sl = Sl ∪ Sa

new, Su = Su − Sa
new

*Re-train classifier M using the new set Sl, and re-classify the
remaining instances in B.
Automatically label those instances with Cs higher than thssaH in
B with predicted labels.
Refer to the machine-labeled set as Ss

new.
Sl = Sl ∪ Ss

new, Su = Su − Ss
new.

*Re-train the classifier M using the new Sl.
end if

Until Su is interrupted/labeler is unavailable/model training converges

* Note that the model is re-trained twice at each learning iteration.

PLOS 8/19



Table 8. Description of the subset of the FindSounds database used in this paper.

Category # Subsets # Clips Duration [h]

People 45 2,540 2 h 09 min

Animals 85 2,834 2 h 42 min

Nature 19 937 1 h 17 min

Vehicles 34 2,166 2 h 47 min

Noisemakers 13 2,010 1 h 56 min

Office 18 1,769 1 h 01 min

Musical Instruments 62 4,674 3 h 49 min

Total 276 16,930 15 h 41 min

previously trained with reliable (human) labels. This is very important for the SSL 217

phase, since having the model trained first with reliable annotations from the AL phase 218

will decrease the amount of noisy data (instances with potentially wrong labels 219

assigned). This will avoid the deterioration of the performance that can occur in the 220

SSL phase. The same approach for avoiding noisy data is adopted in the stream-based 221

scenario, see Table 7. Additionally, we continuously fill the buffer B with new instances. 222

Once the buffer is full, two confidence thresholds thssaL and thssaH are adopted for 223

data splitting. 224

Database and Acoustic Features 225

For the purpose of this work, we use the FindSounds database 226

(http://www.findsounds.com/types.html - accessed on 25 July 2011), which provides a 227

large amount of varied real life sounds already categorized. In order to better suit our 228

study and avoid very unbalanced class distributions, we discarded those categories with 229

only a few instances (insects, with 7 subsets, and holidays, with 5 subsets) and combined 230

“birds” and “animals” categories in to a single category (“Animals”). The database used 231

in this study comprises seven categories (out of sixteen) of sounds : 1) People: sounds 232

resultant from 45 different human behaviors, such as coughing, laughing, moaning, 233

kissing, baby’s cry; 2) Animals: sounds from 69 different non-bird animals (e.g., cat, 234

frog, bear, lamb, blackbird) and 16 kinds of birds. 3) Nature: 19 kinds of nature 235

sounds (e.g. earthquake, ocean waves, flame, rain, wind); 4) Vehicles: sounds produced 236

by 34 different types of vehicles (e.g., car, motorbike, helicopter) and related actions 237

(e.g., braking, closing door); 5) Noisemakers: comprising 13 types of sound events 238

(e.g., alarm, bell, whistle, horn); 6) Office: original office space sound events (e.g, 239

typing, printing, phone calls, mouse clicking) 7) Musical Instruments: sounds from 240

62 different musical acoustic and electronic instruments (e.g., bass, drum, synthesizer). 241

In total, there are 16,930 sound instances in our database with durations ranging 242

from 1 to 10 seconds, which correspond to (approximately) 15 hours of environmental 243

sounds. All sound files were converted into raw 16 bit encoding, mono-channel, and 16 244

kHz sampling rate, as various formats and rates were used in the original versions 245

retrieved from the web. The details of the database and categories used are shown in 246

Table 8. Throughout this paper we will refer to the database as FINDSOUNDS. 247

In order to evaluate the effectiveness of the new method proposed in this paper, we 248

adopted the baseline audio feature set used in the Audio/Visual Emotion Challenge 249

(AVEC) 2012. This feature set comprises 1,841 features that result from a systematic 250

combination 25 energy- and spectral-related low-level descriptors (LLDs) with 42 251
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functionals, 6 voicing-related LLDs with 32 functionals, 25 delta coefficients of 252

energy/spectral-related LLDs with 23 functionals, 6 delta coefficients of voicing-related 253

LLDs with 19 functionals, and 10 voiced/unvoiced durational features (for full details on 254

the feature set please refer to [39]). All features and functionals were extracted with the 255

OpenSMILE toolkit [40]. 256

Experiments and Results 257

In this section, we describe a series of experiments conducted with the purpose of 258

empirically investigating the effectiveness of three learning methods in the context of 259

sound classification: 1) certainty-based AL; 2) SSL; and 3) our proposed method, SSAL. 260

Experimental Setup 261

For every experiment presented in this paper, we run a 10-fold cross validation (the split 262

is 90% for train, 10% for test) to obtain stable estimates of the algorithm’s performance. 263

We compute unweighted average recalls (UARs), the sum of the accuracies per class 264

divided by the number of classes without considerations of instances per class, as 265

evaluation metric. For result representation in figures below, the UARs over 10 rounds 266

along with the standard deviation bar are used. All experiments use the FINDSOUNDS 267

corpus introduced in previous section. In order to deal with the imbalance between the 268

number of instances in each category (or class distributions), we employ data 269

oversampling in the training set in order to add more instances belonging to the less 270

represented classes. Oversampling is performed in WEKA [41] using the Synthetic 271

Minority Over-sampling Technique (SMOTE) [42] (WEKA defaults settings are used). 272

Specifically, SMOTE does oversampling by creating “synthetic” examples for 273

minority class. It takes each minority class sample and produces synthetic examples 274

making use of all of the k minority class nearest neighbors. Depending upon the amount 275

of oversampling required, neighbors from the k nearest neighbors are randomly chosen. 276

Our experimental setup currently uses 5 nearest neighbors. Synthetic samples are 277

generated in the following way: Take the difference between the feature vector (sample) 278

under consideration and its nearest neighbor. Multiply this difference by a random 279

number between 0 and 1, and add it to the feature vector under consideration. This 280

approach effectively forces the decision region of the minority class to become more 281

general. 282

As classifier we use Support Vector Machines (SVM) [43] with linear kernels and 283

pairwise multi-class discrimination sequential minimal optimization (implemented in the 284

WEKA framework [41]). SVMs are supervised learning models based on the concept of 285

decision hyperplanes that define decision boundaries – hyperplanes in a 286

multidimensional space that separate sets of elements based on class memberships. The 287

output value of SVMs is the distance of a specific point from the separating hyperplane, 288

but a central aspect of our AL approach is the calculation of the confidence scores. To 289

convert these distances to probability estimates within the range of [0, 1] there are 290

various parametric and nonparametric approaches. In this work, we employed a 291

parametric method of logistic regression proposed in [44], which is one of the most 292

frequently used approaches to transform the output distances of SVMs into (pseudo) 293

probabilistic values [23,45,46]. This method assumes that the posterior probability 294

consists of finding the parameters A and B for a form of sigmoid function: 295

P (y|f(x)) = 1

1 + exp(Af(x) +B)
, (1)

mapping the value f(x) into probability estimates P (y|f(x)). For each instance, the 296
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sum of the posterior probability for all classes is equal to 1. This probability indicates 297

the classifier’s confidence about the predicted label given. We then define the 298

confidence score of x as follows: 299

C(x) = P (y|f(x)). (2)

Additionally, in the context of pool-based AL, and AL phase in SSAL experiments, 300

instead of using a threshold mechanism for data splitting as described in Tables 3, 6 and 301

7, we select 500 instances with lowest confidence scores for human annotation in each 302

learning round. And for stream-based AL as described in Table 4, we set the instances 303

buffer size as 500 for the sake of consistency. The reason behind is to fix the number of 304

human labeled instances in each learning iteration to further make an unified 305

performance comparison platform for different learning methods. 306

Confidence Scores Evaluation and Distribution 307

The learning methods proposed in this paper are based on two assumptions. First, the 308

confidence scores (cf. Eq. (2)) are good indicators of the classifier’s output certainty 309

level. This is essential to ensure that the instances with the lowest classification 310

certainty (low confidence scores) are selected to be delivered for human annotation, and 311

the instances with high classification certainty (high confidence scores) are directly 312

added to training data set with labels automatically given by the machine annotator. 313

Second, only a small portion of the unlabeled instances are classified with low certainty, 314

otherwise human effort cannot be dramatically reduced. 315

Before starting our experiments, it is relevant to evaluate whether these two 316

assumptions are in fact supported. To do so, we train a SVM classifier with 500 and 317

5,000 instances (randomly selected from a training set considering class balance), and 318

test it on the remaining (unlabeled) instances (14,737 and 10,237, respectively). In Fig. 319

1, we show the relation between the test instances’ confidence scores and corresponding 320

UARs, and in Fig. 2, we show the distribution of the confidence scores falling in 321

different ranges (i.e., [0.1, 0.4), [0.4, 0.7), [0.7, 1.0]) over unlabeled instances. As it can 322

be seen in Fig. 1, an increase in the UAR of the classifier is matched by an increase in 323

the confidence scores. Moreover, when the classifier is trained with more labeled 324

instances, the confidence scores tend to reflect better the classifier’s UAR. Hence, the 325

classifier confidence scores seem to reflect well the classifier’s certainty level regarding 326

the corresponding classification results. In relation to the second assumption, as shown 327

in Fig. 2, the majority of unlabeled instances are classified with high confidence values. 328

It is also evident that the classifier initially trained with more labeled instances, tends 329

to classify more unlabeled instances with higher confidence levels. Therefore, only a 330

small portion of the unlabeled data is classified with low certainty. 331

Figure 1. Relationship between classifier’s classification UARs and
confidence scores for 500 and 5,000 initial training instances.

Figure 2. Distribution percentage of classifier confidence scores for 500
(blue) and 5,000 (red) training instances. (There is no instance assigned with
confidence score falling in the range of [0.0, 0.1]).

Active Learning Experiments 332

In the certainty-based AL pool-based scenario, we use the same set of 500 samples as 333

pre-selected in above section to train the initial classifier. Then, in order to study the 334

PLOS 11/19



evolution of classification performance, we incrementally select, and manually label, 500 335

instances per iteration from the pool of remaining data (14,737 instances) for model 336

re-training until all data is labeled. The learning curves (UAR vs. number of instances 337

added) for the AL method are shown in Fig. 3. Additionally, we also show the results 338

for a passive learning (PL) method (i.e., randomly select instances for labeling) for the 339

sake of comparison. 340

As it can be observed from Fig. 3, the AL method effectively reduces the amount of 341

human annotations needed to achieve a given UAR. For instance, the PL method 342

achieves a top classification UAR up to statistical significance of 68.5% when using 343

11,500 instances (75.5% of the total number of instances in the data pool), while the AL 344

approach reaches the same UAR with 43.5% less labeled data (6,500 instances). The 345

best UAR up to statistical significance with AL, 69.3%, is achieved with only 7,500 346

manually labeled instances (49.2% of the total number of instances in the data pool), 347

which is statistical significantly higher than that of PL with p-value = 0.0326 for two 348

sample Kolmogorov-Smirnov test. 349

Figure 3. Learning curves for using active and passive learning method in
pool-based scenario.

In order to simulate the stream-based scenario, we continuously sample instances 350

from the candidate set, one by one, in a random fashion. We decide to accept or discard 351

the selected instance immediately after sampling. Those with confidence scores lower 352

than the given threshold are accepted and added to the buffer. As soon as the buffer is 353

full (500 instances), the selected instances are delivered to human annotation, and 354

finally added to the training data set (together with respective label). The model is 355

then re-trained and the same process repeated. However, in most cases, the buffer can 356

not be filled up in last iteration. The selected instances are still manually labeled by 357

human for model training. Based on the analysis of the confidence score distribution 358

shown earlier in Fig. 2, which shows that only a few instances fall in the interval 359

between 0.0 and 0.4, we decided to test five different thresholds thas: 0.5, 0.6, 0.7, 0.8, 360

and 0.9. Additionally, for the sake of comparison, we also tested the PL method, 361

whereby instances are randomly selected (which can be considered as a stream-based 362

AL process with 1.0 as confidence threshold). The results are shown in Fig. 4. 363

Figure 4. Learning curves for using active and passive learning method in
stream-based scenario.

From Fig. 4, we can see that the AL approach with any of the five threshold levels 364

leads to better classification performances with a smaller amount of labeled instances 365

(compared to the PL approach). Furthermore, AL with lower threshold performs better 366

than with higher threshold, which indicates that selecting instances that are more 367

informative can lead to better performance with less annotation effort. However, lower 368

threshold also means a larger amount of discarded unlabeled instances, which is why the 369

learning curves with lower thresholds stop earlier - less instances are used for training. 370

Therefore, the value of threshold should carefully be tuned according to the specific 371

application. Quantitatively, in the best case scenario, to achieve the top classification 372

UAR up to statistical significance of PL (68.5%, with 11,500 instances labeled), the AL 373

method with a threshold of 0.9 requires only 6,500 instances to be annotated (43.5% 374

less than PL). Therefore, AL efficiently reduces the need for human annotations while 375

achieving the same performance as PL. 376
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Semi-supervised Learning Experiments 377

In this section, we evaluate the SSL method described in Table 5. Four initial training 378

data sizes (i.e., 500, 1,000, 2,000, and 5,000) and six thresholds thss (i.e., 0.6, 0.7, 0.8, 379

0.9, 0.95, and 1.0) are considered here. Note that with a threshold of 1.0, no 380

machine-labeled instances are added to the initial training data set. Additionally, in 381

each case, those learning iterations are going on until no more unlabeled data is 382

available. 383

The classification UAR figures for the different tests are depicted in Fig. 5. As it 384

can be seen, the best UAR with 500 human-labeled instances is achieved with a 385

threshold of 0.95, while for other initial numbers of instances used the best UARs are 386

achieved with a threshold of 0.8. This result may indicate that using less data to train 387

the initial classifier may require a higher confidence threshold in order to guarantee the 388

quality of machine labeling. With more data to train the initial classifier, the UAR of 389

the classifier is likely to increase and lower confidence thresholds seem to ensure the 390

informativeness of the instances. 391

Figure 5. Semi-supervised learning results for varying sizes of the initial
training set (different number of human labeled instances) in combination
with different confidence thresholds.

Semi-supervised Active Learning Experiments 392

The effectiveness of active and semi-supervised learning methods has been separately 393

evaluated in the previous two sections. Both methods showed advantages in boosting 394

the initial classification performance, while reducing manual labeling effort. In this 395

section, we focus on assessing the combination of the two learning methods - the new 396

method proposed in this paper - for both pool-based and stream-based scenarios. 397

In the pool-based scenario, we use the same 500 instances as in previous active 398

learning experiments for initial model training, and then incrementally select new 399

instances from the remaining pool (14,737 instances) for either human or machine 400

annotation. Specifically, in each round 500 instances are selected for human labeling 401

and a variable number of instances with confidence scores above a given threshold are 402

selected for machine labeling. In last iteration, once less than 500 instances are available 403

for selecting, human annotators label them all for model re-training. Fig. 6 shows the 404

classification performance of the SSAL method with a threshold of 0.95, as well as that 405

of the AL and PL methods. As it can be observed in Fig. 6, the SSAL method achieves 406

similar classification UAR with AL (69.4% (SSAL) vs 69.3% (AL)), and outperforms 407

the PL by circa 0.9% (69.4% (SSAL) vs 68.5% (PL)) with p-value = 0.0173 for 408

two-sample Kolmogorov-Smirnov test. Moreover, the classification performance curve 409

for SSAL stops earlier than other two since a larger amount of instances are labeled at 410

each iteration. In order to achieve the best performance of the PL method (68.5%; 411

11,500 human labeled instances), SSAL requires only 5,500 human labeled instances, 412

52.2% less than PL and 15.4% than AL (6,500). 413

Figure 6. Learning curves for semi-supervised active learning (in each
round 500 instances with lowest confidence scores are selected for human
annotation and a variable number of instances with confidence scores
above the threshold 0.95 are selected for machine annotation), active
learning, and passive learning in the pool-based scenario.

In order to evaluate the impact of the confidence thresholds on SSAL in the 414

pool-based scenario, we tested three values: 0.60, 0.80, and 0.95. The results are shown 415
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in Fig. 7. With a threshold of 0.60 many selected instances are labeled by machine and 416

the classification performance is worst compare to other two cases. A threshold of 0.80 417

leads to a similar classification performance curve to that of 0.95, but its curve stops 418

earlier with lower performance level for more instances are delivered to machine for 419

annotation. Therefore, a threshold of 0.95 is preferred in our experiments. Furthermore, 420

these tests indicate that the tuning of the threshold level is critical for the optimization 421

of the learning process. 422

Figure 7. Learning curves for semi-supervised active learning with different
thresholds in pool-based scenario.

In relation to the stream-based scenario, we started once more with 500 instances for 423

the training of the initial model. In order to simulate a steady stream of incoming data, 424

we randomly sampled new instances from the remaining set (14,737 instances) until the 425

buffer was full (1,000 instances) in a sequential process. At this point, we selected the 426

500 instances with lowest confidence scores for human annotation, and the 100 instances 427

with the highest confidence scores for machine annotation. 428

Fig. 8 depicts the classification performance figures of the SSAL, AL and PL 429

methods in the stream-based scenario. As it can be seen, the SSAL method outperforms 430

both the AL and the PL approaches. In particular, for the same number of human 431

labeled instances (6,000 instances), SSAL leads to a 10.0% increase in UAR up to 432

statistic significance in relation to AL with p-value = 0.0446 for two-sample 433

Kolmogorov-Smirnov test. Moreover, it reaches the best performance of PL (68.5%) 434

with less 52.2% human effort (i.e., using only 5,500 labeled instances). 435

Figure 8. Learning curves for semi-supervised active learning (in each
round 500 instances with lowest confidence scores are selected for human
annotation, and 100 instances with the highest confidence scores are
selected for machine annotation), active learning, and passive learning in
stream-based scenario.

In Table 9, we summarize the best performances in a statistically significant way for 436

all methods evaluated (SSAL, AL, and PL) in the pool-based and stream-based 437

scenarios, as well as the number of human-labeled instances needed to achieve that 438

performance. Specifically, in each learning iteration, AL and AL phase of SSAL in both 439

scenarios are all parameterized with a selection of 500 instances for human 440

annotation,the SSL phase of pool-based SSAL selects a number of instances with 441

confidence scores higher than 0.95 for machine annotation, and the SSL phase of 442

stream-based SSAL selects 100 instances with highest confidence scores for machine 443

annotation. As it can be observed, the SSAL effectively reduces the human labeling 444

effort. 445

Conclusion 446

In this paper, we proposed to tandem Active Learning and Self-Training with the aim of 447

bridging the gap between the desire of sufficient amounts of training data and the 448

scarcity of labeled data in the context of sound classification. In this method, we 449

exploited human and machine labeling with the goal of minimizing the human labeling 450

effort: humans were asked to selectively label those instances that the machine was 451

most uncertain about, and the machine automatically labeled those instances that it 452

could predict with a high confidence level. In order to evaluate the certainty of the 453

labels predicted by the machine annotator, we used a classifier confidence score to 454
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Table 9. Best performances up to statistic significance achieved using semi-supervised
active learning (SSAL), active learning (AL), and passive learning (PL) in pool-based
and stream-based scenarios, as well as the number of human-labeled instances (#HLI)
needed to achieve that performance.

Pool-based scenario

Learning methods SSAL AL PL

Best UAR (%) 69.4 69.3 68.5

#HLI 6,500 7,500 11,500

Stream-based scenario

Learning methods SSAL AL PL

Best UAR (%) 68.7 68.7 68.5

#HLI 6,000 7,000 11,500

determine the informativeness of the labeled instances, which, as demonstrated is a 455

good indicator of the classifier’s certainty about the classification results. 456

Our proposed method was evaluated on a database with 16,930 instances in both 457

pool-based and stream-based scenarios. Furthermore, we compared our method to 458

Active Learning, Self-Training and Passive Learning. Results show that Active Learning 459

requires significantly less human-labeled data compared to Passive Learning to achieve 460

the same UAR, and that Semi-Supervised Active Learning outperforms both these 461

methods in terms of classification performance and number of human labeled instances 462

necessary to achieve such performance. In both of the pool-based and stream-based 463

scenarios, the Semi-Supervised Active Learning approach allowed us to reduce by 52.2% 464

the amount of human annotations necessary to achieve the best performance of all other 465

methods tested. 466

While demonstrating the effectiveness of our method, it became also evident that for 467

a successful application of Semi-Supervised Active Learning, the tuning of the 468

confidence threshold is crucial. As we have shown, performance deterioration can occur 469

due to the inclusion of noisy machine-labeled data in the training set. Also, if too many 470

instances are machine-labeled, the classifier performance may never reach a satisfactory 471

level given that very few instances are left for human labeling (considered to be more 472

reliable). Therefore, an optimization process for searching an appropriate threshold is 473

fundamental for the application of Semi-Supervised Active Learning. This tuning is 474

certainly task-specific as it will depend on the complexity of the classification problem 475

(and respective confidence levels), and the objectivity of the ground truth or golden 476

standard (which affects the quality of the labels). While the current fixed threshold 477

strategy may not be suitable in other classification tasks, one can refer to [47], [48] and 478

the references therein for more sophisticated thresholding and selection criteria that 479

delicately balance the trade-off between asking for human labeling versus receiving 480

machine labels. 481

Finally, and while in this paper we demonstrated the effectiveness of 482

Semi-Supervised Active Learning in largely reducing the need for human annotations in 483

the context of sound classification. Given the non task-specific nature of the algorithm 484

proposed, our method can also be applied to other classification scenarios. In particular, 485

this methodology fits applications in hybrid learning environments where the machine is 486

required to continuously increase and adapt its knowledge about the acoustic 487

environment as well as being able to learn in cooperation with humans. 488
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