61 research outputs found

    Study of Jacobian Normalization for VTLN

    Get PDF
    The divergence of the theory and practice of vocal tract length normalization (VTLN) is addressed, with particular emphasis on the role of the Jacobian determinant. VTLN is placed in a Bayesian setting, which brings in the concept of a prior on the warping factor. The form of the prior, together with acoustic scaling and numerical conditioning are then discussed and evaluated. It is concluded that the Jacobian determinant is important in VTLN, especially for the high dimensional features used in HMM based speech synthesis, and difficulties normally associated with the Jacobian determinant can be attributed to prior and scaling

    Vocal Tract Length Normalization for Statistical Parametric Speech Synthesis

    Get PDF
    Vocal tract length normalization (VTLN) has been successfully used in automatic speech recognition for improved performance. The same technique can be implemented in statistical parametric speech synthesis for rapid speaker adaptation during synthesis. This paper presents an efficient implementation of VTLN using expectation maximization and addresses the key challenges faced in implementing VTLN for synthesis. Jacobian normalization, high dimensionality features and truncation of the transformation matrix are a few challenges presented with the appropriate solutions. Detailed evaluations are performed to estimate the most suitable technique for using VTLN in speech synthesis. Evaluating VTLN in the framework of speech synthesis is also not an easy task since the technique does not work equally well for all speakers. Speakers have been selected based on different objective and subjective criteria to demonstrate the difference between systems. The best method for implementing VTLN is confirmed to be use of the lower order features for estimating warping factors

    Bias Adaptation for Vocal Tract Length Normalization

    Get PDF
    Vocal tract length normalisation (VTLN) is a well known rapid adaptation technique. VTLN as a linear transformation in the cepstral domain results in the scaling and translation factors. The warping factor represents the spectral scaling parameter. While, the translation factor represented by bias term captures more speaker characteristics especially in a rapid adaptation framework without having the risk of over-fitting. This paper presents a complete and comprehensible derivation of the bias transformation for VTLN and implements it in a unified framework for statistical parametric speech synthesis and recognition. The recognition experiments show that bias term improves the rapid adaptation performance and gives additional performance over the cepstral mean normalisation factor. It was observed from the synthesis results that VTLN bias term did not have much effect in combination with model adaptation techniques that already have a bias transformation incorporated

    Speaker normalisation for large vocabulary multiparty conversational speech recognition

    Get PDF
    One of the main problems faced by automatic speech recognition is the variability of the testing conditions. This is due both to the acoustic conditions (different transmission channels, recording devices, noises etc.) and to the variability of speech across different speakers (i.e. due to different accents, coarticulation of phonemes and different vocal tract characteristics). Vocal tract length normalisation (VTLN) aims at normalising the acoustic signal, making it independent from the vocal tract length. This is done by a speaker specific warping of the frequency axis parameterised through a warping factor. In this thesis the application of VTLN to multiparty conversational speech was investigated focusing on the meeting domain. This is a challenging task showing a great variability of the speech acoustics both across different speakers and across time for a given speaker. VTL, the distance between the lips and the glottis, varies over time. We observed that the warping factors estimated using Maximum Likelihood seem to be context dependent: appearing to be influenced by the current conversational partner and being correlated with the behaviour of formant positions and the pitch. This is because VTL also influences the frequency of vibration of the vocal cords and thus the pitch. In this thesis we also investigated pitch-adaptive acoustic features with the goal of further improving the speaker normalisation provided by VTLN. We explored the use of acoustic features obtained using a pitch-adaptive analysis in combination with conventional features such as Mel frequency cepstral coefficients. These spectral representations were combined both at the acoustic feature level using heteroscedastic linear discriminant analysis (HLDA), and at the system level using ROVER. We evaluated this approach on a challenging large vocabulary speech recognition task: multiparty meeting transcription. We found that VTLN benefits the most from pitch-adaptive features. Our experiments also suggested that combining conventional and pitch-adaptive acoustic features using HLDA results in a consistent, significant decrease in the word error rate across all the tasks. Combining at the system level using ROVER resulted in a further significant improvement. Further experiments compared the use of pitch adaptive spectral representation with the adoption of a smoothed spectrogram for the extraction of cepstral coefficients. It was found that pitch adaptive spectral analysis, providing a representation which is less affected by pitch artefacts (especially for high pitched speakers), delivers features with an improved speaker independence. Furthermore this has also shown to be advantageous when HLDA is applied. The combination of a pitch adaptive spectral representation and VTLN based speaker normalisation in the context of LVCSR for multiparty conversational speech led to more speaker independent acoustic models improving the overall recognition performances

    Compensating hyperarticulation for automatic speech recognition

    Get PDF

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Métodos discriminativos para la optimización de modelos en la Verificación del Hablante

    Get PDF
    La creciente necesidad de sistemas de autenticación seguros ha motivado el interés de algoritmos efectivos de Verificación de Hablante (VH). Dicha necesidad de algoritmos de alto rendimiento, capaces de obtener tasas de error bajas, ha abierto varias ramas de investigación. En este trabajo proponemos investigar, desde un punto de vista discriminativo, un conjunto de metodologías para mejorar el desempeño del estado del arte de los sistemas de VH. En un primer enfoque investigamos la optimización de los hiper-parámetros para explícitamente considerar el compromiso entre los errores de falsa aceptación y falso rechazo. El objetivo de la optimización se puede lograr maximizando el área bajo la curva conocida como ROC (Receiver Operating Characteristic) por sus siglas en inglés. Creemos que esta optimización de los parámetros no debe de estar limitada solo a un punto de operación y una estrategia más robusta es optimizar los parámetros para incrementar el área bajo la curva, AUC (Area Under the Curve por sus siglas en inglés) de modo que todos los puntos sean maximizados. Estudiaremos cómo optimizar los parámetros utilizando la representación matemática del área bajo la curva ROC basada en la estadística de Wilcoxon Mann Whitney (WMW) y el cálculo adecuado empleando el algoritmo de descendente probabilístico generalizado. Además, analizamos el efecto y mejoras en métricas como la curva detection error tradeoff (DET), el error conocido como Equal Error Rate (EER) y el valor mínimo de la función de detección de costo, minimum value of the detection cost function (minDCF) todos ellos por sue siglas en inglés. En un segundo enfoque, investigamos la señal de voz como una combinación de atributos que contienen información del hablante, del canal y el ruido. Los sistemas de verificación convencionales entrenan modelos únicos genéricos para todos los casos, y manejan las variaciones de estos atributos ya sea usando análisis de factores o no considerando esas variaciones de manera explícita. Proponemos una nueva metodología para particionar el espacio de los datos de acuerdo a estas carcterísticas y entrenar modelos por separado para cada partición. Las particiones se pueden obtener de acuerdo a cada atributo. En esta investigación mostraremos como entrenar efectivamente los modelos de manera discriminativa para maximizar la separación entre ellos. Además, el diseño de algoritimos robustos a las condiciones de ruido juegan un papel clave que permite a los sistemas de VH operar en condiciones reales. Proponemos extender nuestras metodologías para mitigar los efectos del ruido en esas condiciones. Para nuestro primer enfoque, en una situación donde el ruido se encuentre presente, el punto de operación puede no ser solo un punto, o puede existir un corrimiento de forma impredecible. Mostraremos como nuestra metodología de maximización del área bajo la curva ROC es más robusta que la usada por clasificadores convencionales incluso cuando el ruido no está explícitamente considerado. Además, podemos encontrar ruido a diferentes relación señal a ruido (SNR) que puede degradar el desempeño del sistema. Así, es factible considerar una descomposición eficiente de las señales de voz que tome en cuenta los diferentes atributos como son SNR, el ruido y el tipo de canal. Consideramos que en lugar de abordar el problema con un modelo unificado, una descomposición en particiones del espacio de características basado en atributos especiales puede proporcionar mejores resultados. Esos atributos pueden representar diferentes canales y condiciones de ruido. Hemos analizado el potencial de estas metodologías que permiten mejorar el desempeño del estado del arte de los sistemas reduciendo el error, y por otra parte controlar los puntos de operación y mitigar los efectos del ruido

    Speech Modeling and Robust Estimation for Diagnosis of Parkinson’s Disease

    Get PDF

    Three Dimensional Tissue Motion Analysis from Tagged Magnetic Resonance Imaging

    Get PDF
    Motion estimation of soft tissues during organ deformation has been an important topic in medical imaging studies. Its application involves a variety of internal and external organs including the heart, the lung, the brain, and the tongue. Tagged magnetic resonance imaging has been used for decades to observe and quantify motion and strain of deforming tissues. It places temporary noninvasive markers—so called "tags"—in the tissue of interest that deform together with the tissue during motion, producing images that carry motion information in the deformed tagged patterns. These images can later be processed using phase-extraction algorithms to achieve motion estimation and strain computation. In this dissertation, we study three-dimensional (3D) motion estimation and analysis using tagged magnetic resonance images with applications focused on speech studies and traumatic brain injury modeling. Novel algorithms are developed to assist tagged motion analysis. Firstly, a pipeline of methods—TMAP—is proposed to compute 3D motion from tagged and cine images of the tongue during speech. TMAP produces an estimation of motion along with a multi-subject analysis of motion pattern differences between healthy control subjects and post-glossectomy patients. Secondly, an enhanced 3D motion estimation algorithm—E-IDEA—is proposed. E-IDEA tackles the incompressible motion both on the internal tissue region and the tissue boundaries, reducing the boundary errors and yielding a motion estimate that is more accurate overall. Thirdly, a novel 3D motion estimation algorithm—PVIRA—is developed. Based on image registration and tracking, PVIRA is a faster and more robust method that performs phase extraction in a novel way. Lastly, a method to reveal muscles' activity using strain in the line of action of muscle fiber directions is presented. It is a first step toward relating motion production with individual muscles and provides a new tool for future clinical and scientific use
    • …
    corecore