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Abstract

Vocal tract length normalisation (VTLN) is a well known rapid

adaptation technique. VTLN as a linear transformation in the

cepstral domain results in the scaling and translation factors.

The warping factor represents the spectral scaling parameter.

While, the translation factor represented by bias term captures

more speaker characteristics especially in a rapid adaptation

framework without having the risk of over-fitting. This paper

presents a complete and comprehensible derivation of the bias

transformation for VTLN and implements it in a unified frame-

work for statistical parametric speech synthesis and recognition.

The recognition experiments show that bias term improves the

rapid adaptation performance and gives additional performance

over the cepstral mean normalisation factor. It was observed

from the synthesis results that VTLN bias term did not have

much effect in combination with model adaptation techniques

that already have a bias transformation incorporated.

Index Terms: Vocal Tract Length Normalization, Bias term,

Hidden Markov models, Speech synthesis, Speech recognition

1. Introduction

Recent advances in the field of statistical parametric speech syn-

thesis [1] has opened up new portfolio of applications like the

personalized speech-to-speech (S2S) translation system. An

unified framework of hidden Markov model (HMM) based

speech synthesis and recognition is very useful for common

modelling and speaker adaptation techniques across the S2S

system. Such systems demand that the speaker characteris-

tics be embedded into the output speech from the very first in-

put from the user. This demands for rapid speaker adaptation

techniques which require very little adaptation data. An uni-

fied framework also allows the same adaptation techniques be

used across both automatic speech recognition (ASR) and text-

to-speech (TTS) synthesis system.

Vocal tract length normalization (VTLN) is a rapid speaker

adaptation technique that has been successfully implemented in

both statistical speech synthesis [2] and speech recognition [3].

The vocal tract length (VTL) is inversely proportional to the for-

mant frequencies and VTLN normalizes the cepstral features to

represent an average VTL. The same technique can adapt the

average voice to a particular target speaker. Similar to other

linear transformations, VTLN could be implemented as a lin-

ear transformation of the cepstrum or equivalently model pa-

rameters. The linear transformations usually have two impor-

tant terms representing translation and scaling. The warping

factor in a VTLN implementation represents the scaling. But,

the translation term usually referred to as bias is often ignored

mainly for the convenience of performing the warping in the

speech spectral domain.

VTLN having very limited parameters (a single parameter

in the case of bilinear transform) is extremely useful as a rapid

adaptation technique. But, at the same time, a single parameter

limits the number of speaker characteristics that can be captured

by the adaptation technique. It was shown earlier by the authors

that VTLN is a powerful rapid adaptation technique and further

that it can be effectively combined with other linear transfor-

mation techniques like constrained structural maximum a pos-

teriori linear regression (CSMAPLR) [4, 5] to improve rapid

adaptation performance for both ASR and TTS. But, these other

linear transformations have a multitude of parameters to be esti-

mated. As a trade-off between capturing effective speaker char-

acteristics for rapid adaptation performance and limiting the

number of the parameters to be estimated, it might be fruitful

to implement VTLN along with the bias term. In this case, the

extra parameters in the bias terms could capture more speaker

characteristics and still performing as a rapid adaptation tech-

nique since the number of parameters in the bias term is limited

(usually of the order of the feature dimensionality).

Bias is a very important term in adaptation using linear

transformations and influences the performance a lot. It was

shown in [6] that a set of offset transforms alone without any

scaling/rotation for the mean of the Gaussian models, termed as

shift-MLLR, could be used for generating better speaker adap-

tive models. The offset terms are the bias terms of the speaker

transformation. Current implementations of VTLN do not esti-

mate a bias term. This paper presents a complete derivation of

the bias term for VTLN. Unlike the scaling matrix A, deriva-

tion of bias is very different for other maximum likelihood lin-

ear transformations (MLLTs) and VTLN. There has been earlier

attempts to use the bias term from MLLTs with VTLN which re-

sulted in performance improvements in an ASR system [7, 8].

This paper presents a complete derivation of the bias term for

VTLN and evaluates this term in order to validate the hypothesis

that it is an important factor in any linear adaptation technique.

Bias term achieves the translation of the cepstra and can be

considered to be equivalent to the cepstral mean and variance

normalisation (CMVN). In CMVN, robustness against additive

noise is achieved by linearly transforming the cepstral trajecto-

ries to have zero mean and unit variance. This works investi-

gates if the bias term is just equivalent to the CMVN and if in

deed can provide additional performance improvements com-

pared to CMVN. From our earlier studies and also discussions

with other research groups, CMVN was observed to be not per-

forming very well in a TTS system. This paper investigates if

this is true for the case of bias transformation as well. Experi-

ments are performed in an unified framework for both ASR and

TTS. The paper is organised as follows. The derivation of the



bias term in VTLN is presented in the next section, followed

by experimental evaluations on both ASR and TTS systems in

section 3 and conclusions in section 4.

2. Bias for VTLN

VTLN involves three main parameters, (1) warping factor(s),

(2) a warping function, and (3) an optimization criterion. The

mel-generalized cepstral (MGCEP) [9] features are commonly

used in the statistical parametric speech synthesis and bilinear

transform based VTLN can be shown to be represented by a

linear transformation of these features [2]. MGCEP features

are very different from the conventional mel-frequency cepstral

coefficients (MFCC) used in an ASR system. MGCEP fea-

tures have a cepstral domain warping instead of a mel filter

bank based frequency warping resulting in an invertible set of

features between the cepstral and spectral domain. This prop-

erty makes them particularly attractive in generative models like

the statistical parametric speech synthesis systems and also pro-

vides a basis for a more accurate cepstral domain linear trans-

formation framework for VTLN which is usually represented by

a spectral transformation and only approximated as a equivalent

cepstral transform.

Implementing VTLN as a linear transformation in the cep-

stral domain involves two main components, viz. translation

and scaling represented as W = [A,b]. Where, A represents

the scaling represented by the warping matrix [10] and b rep-

resents translation usually referred to as bias. Current imple-

mentations of VTLN tend to ignore the bias term for the sake

of convenience of representing VTLN as a spectral transforma-

tion. But, it can be postulated that the bias term can bring more

speaker characteristics and still being limited in the number of

parameters can give performance improvements in a rapid adap-

tation framework. The derivation of the bias term for VTLN is

shown below. The auxiliary function to optimize the VTLN

based feature adaptation using the maximum likelihood (ML)

technique is given by:

Q = logL(x(t);µ,Σ,Aα,b) (1)

where, L represents the likelihood function, µ and Σ represent

the mean and variance of the model with x as the feature vec-

tor. Aα represents the VTLN transformation matrix with the

warping factor α and b, the bias term for VTLN to be derived.

Using a mixture of Gaussians for the state probability dis-

tributions with γm as the occupancy for each mixture, m yields

the following equation with a Jacobian term given by log |Aα|.

Q =
∑

t

∑

m

γm

[

log (N(Aαxt + b | µm,Σm)) + log |Aα|

]

(2)

=
∑

t

∑

m

γm

[

log
( 1
√

2π|Σm|
exp

{

−
1

2
(Aαxt + b

− µm)TΣm
−1(Aαxt + b− µm)

}

)

+ log |Aα|
]

(3)

Applying log and ignoring constants,

Q =
∑

t

∑

m

γm

[

−
1

2
log |Σm| −

1

2
(Aαxt + b− µm)T

Σm
−1(Aαxt + b− µm) + log |Aα|

]

(4)

Ignoring the terms independent of b results in

Q =
∑

t

∑

m

γm

[

−
1

2
(Aαxt + b− µm)TΣm

−1

(Aαxt + b− µm)
]

(5)

To optimize this auxiliary function using expectation maximiza-

tion (EM), calculate the derivative of this function on bias ’b’.

Following a similar derivation for mean in [11] and [12].

Q =−
1

2

∑

t

∑

m

γm

[

(Aαxt + b− µm)TΣm
−1

(Aαxt + b− µm)
]

(6)

Using the standard matrix quadratic differential calculus for-

mula:

∂

∂x
(y − x)TA(y − x) = −A(y − x)−A

T (y − x) (7)

∂Q

∂b
=
1

2

∑

t

∑

m

γm

[

Σ
−1

m (Aαxt − µm + b)

+Σ
−1

m

T
(Aαxt − µm + b)

]

(8)

=
∑

t

∑

m

γmΣ
−1

m (Aαxt − µm + b) (9)

Equating the RHS to zero to find the maximum

∂Q

∂b
=

∑

t

∑

m

γmΣ
−1

m (Aαxt − µm + b) = 0 (10)

−
∑

t

∑

m

γmΣ
−1

m (Aαxt − µm) =
∑

t

∑

m

γmΣ
−1

m b (11)

Multiplying both sides by the inverse of the statistics over the

inverse of the covariance (Σ−1

m ):

b = −
(

∑

t

∑

m

γmΣ
−1

m

)

−1 ∑

t

∑

m

γmΣ
−1

m (Aαxt − µm)

(12)

Using a diagonal covariance matrix:

b =−
(

∑

t

∑

m

γm
∑

i

1

σ2

m,i

)−1

×
∑

t

∑

m

γm
∑

i

(Aα,ixt,i − µm,i)

σ2

m,i

(13)

The resulting bias term could be implemented with the linear

VTLN transformation. Since it is not possible to estimate the

transformation matrix and bias term simultaneously, a better

approach would be to iteratively optimize the two components

each estimated in alternative iterations considering the effect

of the other term. The bias term estimation is implemented in

the HMM-based speech toolkit (HTK) and evaluated with both

ASR and TTS experiments.

3. Experiments & Results

This section presents both ASR and TTS experiments in an uni-

fied framework. The motivation of these experiments is to test

the hypothesis that bias term is useful in improving the rapid

adaptation performance of VTLN. Additionally, in the case of



# of adp sent CSMAPLR VTLN Bias VTLN+Bias

2 15.19 39.12 16.52 16.36

5 13.18 39.05 16.05 16.22

10 12.75 38.89 16.13 16.12

40 11.9 38.61 16.25 16.02

Table 1: WER for different adaptation techniques. The SAT

model without any adaptation on the test data gives a WER of

40.31%

an ASR system, it is interesting to know if bias can provide fur-

ther improvements to a CMVN system. In the case of TTS, the

best rapid adaptation system is the combination of VTLN as a

prior to the CSMAPLR system. The experiments are performed

on TTS to determine if the bias term has any influence as a

prior on the CSMAPLR adaptation. Different methods are pre-

sented to combine VTLN and bias transformation as prior to the

CSMAPLR adaptation. The main aim of the TTS experiments

is to find the best method to combine these transformations in a

rapid adaptation framework.

3.1. ASR

Following the work in [13], this section presents ASR experi-

ments similar to the set-up in a TTS system. It is to show that

the techniques developed in this research can in fact be used for

both TTS and ASR, and the experiments are in accordance to

the unification theme of a speech-to-speech translation system.

It should be noted that the ASR results are based on the experi-

ments in [13] and does not represent the state of the art for this

corpus since the idea is to use a common features and modeling

techniques for ASR and TTS.

The hidden Markov models were built with 13 dimen-

sional cepstral features with ∆ and ∆2 for the (US English)

WSJ0 database. The spectral features were extracted using

STRAIGHT. Speech recognition and synthesis systems use the

same average voice training procedure, which involves speaker

adaptive training (SAT) and context clustering using decision

trees. The experimental set-up is the same as that of [13]1.

SAT models were generated using the (American English) Wall

street journal (WSJ0) database. The evaluations were carried

out using Spoke 4 (S4) task of the November 1993 CSR evalu-

ations (same as the ones used in the baseline system mentioned

above). The adaptation was carried out off-line using the rapid

enrollment data (for condition C3) which comprises 40 adapta-

tion utterances for each of the 4 speakers. The system uses 5k

word list with a bigram language model.

ASR performance is presented for the bias parameter of

VTLN. The bias parameter estimation is independent from that

of the warping factor for VTLN An efficient method should be

devised to combine these two components in an effective man-

ner. For these experiments VTLN warping factor ([Aα,0]) was

estimated initially and then this transformation was used as a

parent transform to estimate the bias term ([I,b] where I is the

identity matrix). Finally, the two components were combined

into a single transformation matrix (Aα,b]). Also, a bias alone

transformation was estimated using [I ,0] as the parent transfor-

mation. ASR evaluations were performed using all the schemes.

The results are presented in Table 1. The table shows word

1The baseline system is the system ’d’ in Table IX of [13], which
has 13% word error rate (WER). The baseline system reported in [13]
uses the value of τ , the weight of the prior as one. Increasing this value
to 1000 improves the WER of CSMAPLR up to 12%.

error rates (WER) for different amounts of adaptation data rang-

ing from two to 40 adaptation sentences comparing four dif-

ferent systems: (1) CSMAPLR system, (2) VTLN adaptation

([Aα,0]) representing a single warping factor, (3) bias alone

transformation ([I, 0]) denoted as Bias and (4) VTLN with

bias ([Aα,b]) using the method mentioned above denoted as

VTLN+Bias The results show that bias is an important term

in the VTLN transform estimation. Just with the bias fac-

tor, the recognition performance improves a lot and becomes

comparable to the CSMAPLR system unlike the VTLN with-

out bias adaptation. The overall results are still not better

than the CSMAPLR system since the number of parameters

in the transformations (VTLN plus bias) are limited compared

to the CSMAPLR transformations. The idea of this paper is

not to directly compare the performances of VTLN+Bias with

CSMAPLR technique or present VTLN as a superior adaptation

technique compared to CSMAPLR. The idea is to understand if

the majority of the performance gains achieved by the linear

transformation systems like CSMAPLR can be attributed to the

bias term in these transformations.

Experiments are also performed to test the influence of bias

term in the presence of CMVN compensation. Two speaker

adaptive trained (SAT) models were trained, one with and other

one without using the CMVN. Then experiments are performed

on each of these models with bias adaptation. In the case of

CMVN model, CMVN is also used on the test data. The results

as WER are summarised in Table 2.

# of adp sent Using CMVN No CMVN

SAT model 35.9 40.31

2 16.16 16.52

5 16.09 16.05

10 16.18 16.13

40 16.16 16.25

Table 2: WER for bias term of VTLN. SAT model does not use

any adaptation on the test data.

The results show that the SAT model (without any adapta-

tion on test data) performance improves to 35.9% from 40.31%
when CMVN is used. The bias transformation further reduces

the WER to around 16%. But, the results with bias term does

not change with or without CMVN. This suggests that bias

transformation includes CMVN and is not limited to just the

cepstral normalisation. The additional performance improve-

ment can be obtained from the bias transformation when com-

pared to CMVN. Additionally, CMVN can be ignored if the

system uses a bias transformation.

3.2. Gender Transforms in TTS

A mismatch scenario where VTLN can perform well is the wide

variation in the speakers used in training and adaptation. This

variation might be because speakers are from different genders

for training and adaptation. The hypothesis is that VTLN can

represent the differences in vocal tract length across gender and

prove to be beneficial in such scenarios. For this purpose, we

have used the CSTR VCTK corpus2. This corpus was recorded

at the Centre for Speech Technology Research (CSTR), Univer-

sity of Edinburgh, UK in a specialized anechoic recording room

and has speech data uttered by 109 native speakers of English

2http://homepages.inf.ed.ac.uk/jyamagis/

page3/page58/page58.html



Techniques Male Test Female Test

One sentence five sentences One sentence five sentences

VTLN+Bias 6.0952 6.0332 6.0197 5.9827

VTLN-CMAPLR 5.9525 5.6150 5.8285 5.7947

BiasCN-VTLN-CMAPLR 6.0977 5.7830 5.8999 5.6304

VTLN+Bias-CMAPLR 5.9795 5.7950 5.8653 5.6148

Table 3: MCD for gender dependent female models using bias for VTLN prior

with various accents. From this corpus, we have chosen 31 male

and 29 female native speakers of UK English as target speakers

and have adapted the UK English female gender-dependent av-

erage voice models to them to see the impact of the VTLN with

bias as prior from many speakers, especially in cross-gender

cases.

The HMM speech synthesis system (HTS) [14] was used

for generating acoustic parameters for speech synthesis. HTS

models spectrum, logF0, band-limited aperiodic components

and duration in the unified framework of hidden semi-Markov

models (HSMMs). The STRAIGHT vocoder [15] was used to

synthesize speech waveforms from the acoustic parameters gen-

erated from the HSMMs. The HMM topology used was five-

state and left-to-right with no skip states. Speech features were

59th-order mel-cepstra, logF0, 25-dimensional band aperiod-

icity, and their delta and delta-delta coefficients, extracted from

48kHz recordings with a frame shift of 5ms. Objective evalua-

tion based on the mel-cepstral distance (MCD) was carried out.

The MCD is the Euclidean distance between the synthesized

cepstra and those derived from the natural speech, and can be

viewed as an approximation to the log spectral distortion mea-

sure according to Parserval’s theorem.

Evaluations were performed to check the influence of bias

on the rapid adaptation. Bias has to be combined with VTLN

and the CSMAPLR transformations to achieve the best rapid

adaptation performance. Two methods were adopted to this end.

Bias can be seen as cepstral shift similar to cepstral mean nor-

malization. Hence, the first method involves using bias as a

cepstral normalization technique for the model means and then

continue as in [4] using VTLN as prior for CSMAPLR trans-

formation. Second method involves estimating VTLN and bias

iteratively with one as a parent transform of the other and fi-

nally combining them both into a single transformation. This

combined VTLN and bias transformation can act as the prior

for CSMAPLR. The hypothesis here is that bias term can add

improvements to rapid adaptation when combined with VTLN

and CSMAPLR. Objective evaluations as MCD scores were es-

timated on the gender dependent female models. Both male and

female test speakers were evaluated. The results compare four

different systems:

1. VTLN and bias estimated iteratively with each one as a

parent transform of the other. This transformation (re-

ferred to as VTLN+Bias) is used to adapt the model.

2. VTLN is used as a prior to the root node of

the CSMAPLR transformation (referred to as VTLN-

CSMAPLR). This is the same system presented in our

earlier work [4].

3. Bias used as a cepstral mean normalization and then,

VTLN transformations estimated and used as prior at the

root node of the CSMAPLR transformation. This system

is named BiasCN-VTLN-CSMAPLR

4. VTLN along with Bias as presented in the case 1 being

used as a prior at the root node of CSMAPLR transfor-

mation (referred to as VTLN+Bias-CSMAPLR)

Randomly chosen single and five adaptation sentences were

used to generate the transforms for each method. 100 sentences

were synthesized with each of these techniques for each of test

speakers and the MCD was measured from the synthetic speech

utterances as the objective measure. The results are shown in

Table 3 for one and five adaptation sentences. The results show

no perceivable difference when bias is combined using the tech-

niques proposed. The hypothesis cannot be established that the

VTLN with bias acts as a better prior for CSMAPLR adapta-

tion. This could be because when acting just as a prior, bias

term is not able to contribute to performance enhancement. The

combination of bias with VTLN and CSMAPLR requires fur-

ther investigation in order to utilize full potential of the bias

term.

4. Conclusions

This paper presented the derivation of the bias term for VTLN

and implemented it successfully in the HTS system to per-

form both ASR and TTS experiments. The ASR experiments

validated the fact that bias transformation is important es-

pecially when the amount of adaptation data is limited and

achieves performance comparable to the CSMAPLR transfor-

mation. The idea of the paper is not to compare the VTLN or

Bias transformation to powerful model adaptation techniques

like CSMAPLR. But, the results show that the majority of the

performance gain achieved by the linear transformation like

CSMAPLR could be just due to the presence of a bias factor.

This supports the earlier observations in [6]. Bias gives perfor-

mance improvements even in the absence of VTLN warping and

hence seems to be a good trade-off between speaker character-

istics captured with limited amount of adaptation data and the

number of parameters to be estimated for adaptation. From the

CMVN experiments it was established that bias transformation

includes cepstral mean normalisation but, is not limited to this.

Hence, if bias transformation is used in adaptation to a target

speaker, CMVN could be ignored saving some computational

overhead.

As mentioned earlier, CMVN is not known to give addi-

tional improvements in the case of TTS. From the experiments

presented in the paper, the same is true for the bias transfor-

mation for TTS. Different methods were presented to combine

VTLN, bias and CSMAPLR transformations including using

bias as a cepstral mean normalisation technique. In TTS, the

bias term does not seem to have a great influence especially

when combined with powerful model based adaptation tech-

nique as a prior information or as a cepstral mean normalisation

term. This requires further study to clarify what other contri-

butions can be made by the bias term in statistical parametric

speech synthesis.
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