Compensating Hyperarticulation for Automatic Speech Recognition

Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften

der Fakultät für Informatik der Universität Fridericiana zu Karlsruhe (TH) genehmigte

Dissertation

Von Hagen Soltau

aus Nordhausen am Harz

Tag der mündlichen Prüfung: 14.2.2005

Erster Gutachter: Prof. Dr. A. Waibel
Zweiter Gutacher: Prof. Dr. J. Hirschberg
Dritter Gutacher: Prof. Dr. R. Dillmann

Abstract

This thesis details the effects of hyperarticulation in the context of automatic speech recognition used for human-to-machine interaction. Hyperarticulation can be characterised as a speaking mode exhibiting an exaggerated articulation and occurs as a natural reaction in an effort to resolve recognition errors. Despite the user's attempt to disambiguate word confusions, hyperarticulation causes a significant increase in recognition errors. Current state-of-the-art technologies in automatic speech recognition fail to deal with hyperarticulated speech.

The effect of hyperarticulated speech on the recognition performance was investigated. Changes in pitch, formant frequencies, or phone duration lead to a mismatch between the train and test environment. The effects occur on a sub-phonetic, articulatory domain. The estimation of model parameters with hyperarticulated training data reduces the speaking style mismatch, but even then hyperarticulation still degrades the recognition performance drastically. This result can be attributed to wrong model assumptions in the framework of phoneme based Hidden Markov Models.

The contribution of this thesis is to show how articulatory properties can be used for recognition of hyperarticulated speech. The articulatory vector space is an algebraic representation of speech events. It provides a fine granularity for modelling of articulatory variations due to different speaking modes. This algebraic representation of speech events allows to describe hyperarticulated effects on a sub-phonetic, articulatory domain. Hyperarticulated variations can be explained using the concept of contrastive attributes. Contrastive attributes are attributes to disambiguate word confusions. Effects of hyperarticulation can be described as the activation or deactivation of contrastive attributes. The mathematical framework, developed in this thesis, provides a set of operations and basis elements to work with contrastive attributes. Hyperarticulation can be seen as warping of trajectories in an articulatory vector space. The vector model consists of probability density functions for each dimension. An exponential combination of the underlying function leads to a score function for the speech events.

The effects of hyperarticulation were studied on two languages: English and German. On both languages, similar performance degradations were observed in a hyperarticulated speaking mode. The influence of hyperarticulation on pitch, formants, and phone duration leads to similar changes both in English and German. Recognition experiments show drastic im-

provements with the vector models over pure phoneme based models. This confirms that hyperarticulation occurs on a sub-phonetic level in an articulatory domain, where standard phoneme based models are not able to capture these variations. Furthermore, a combination of normal with corresponding hyperarticulated utterances achieves a significant improvement over the recognition performance of normal speech. Thus, hyperarticulated data can be used as additional knowledge to improve the recognition of normal speech.

A further evaluation of the generalisation capability of articulatory vector spaces was conducted on the SUSAS (speech under actual and simulated stress) corpus. Significant error reductions were obtained on this type of data. The results confirm the potential of articulatory properties for modelling of speech.

Zusammenfassung

Diese Dissertation behandelt hyperartikulierte Effekte in Kontext automatischer Spracherkennung für Mensch-Maschine Interaktion. Hyperartikulation kann charakterisiert werden durch eine übertrieben klare Artikulation und tritt auf als eine natürliche Reaktion um Erkennungsfehler zu beheben. Wir zeigen, daß trotz der eigentlich Intention des Benutzers, Wortverwechselungen aufzulösen, dieser Sprechmodus zu einer signifikanten Fehlererhöhung führt. Derzeitige Forschungsysteme im Bereich automatischer Spracherkennung sind nicht in der Lage auf Hyperartikulation angemessen zu reagieren.

Der Effekt hyperartikulierter Sprache auf die Erkennungsleistung wurde untersucht. Veränderungen der Tonhöhe, der Formanten, und der Phonemdauer führen zu einer Diskrepanz zwischen Testdaten und trainierten Modellparametern. Die Veränderungen treten auf einer sub-phonetischen Ebene in einer artikulatorischen Domäne auf. Die Schätzung von Modellparametern mittels hyperartikulierter Trainingsdaten reduziert die Unterschiede zwischen den Modellen und der Testdaten. Gleichwohl besteht ein deutlicher Erkennungseinbruch bei hyperartikulierter Sprache selbst bei Verwendung hyperartikulierter Trainingsdaten. Diese Ergebnisse können fehlerhaften Annahmen bei phonembasierten Hidden Markov Modellen zugeschrieben werden.

Der Beitrag der Dissertation ist es zu zeigen, wie artikulatorische Attribute zur Verbesserung bei der Erkennung hyperartikulierter Sprache eingesetzt werden können. Artikulatorische Vektorräume können hierbei als algebraische Repräsentation von Sprachereignissen verwendet werden. Dies erlaubt eine feinere Auflösung der akustischen Eigenschaften im Vergleich zu Phonemen. Die algebraische Repräsentation von Sprachereignissen erlaubt es, hyperartikulierte Effekte auf einer sub-phonetischen Ebene in einer artikulatorischen Domäne zu beschreiben. Hyperartikulierte Veränderungen können mittels kontrastiver Attribute erklärt werden. Kontrastive Attribute sind Attribute zur Disambiguierung von Wortverwechselungen. Effekte von Hyperartikulation können dabei als Aktivierung und Deaktivierung kontrastiver Attribute beschrieben werden. Das, in dieser Dissertation entwickelte, mathematische Grundgerüst stellt hierbei Operatoren und Basiselemente zur Manipulierung kontrastiver Attribute bereit. Dabei kann Hyperartikulation als eine Verzerrung von Trajektorien im artikulatorischen Vektorraum angesehen werden. Das Vektormodell besteht aus Wahrscheinlichkeitsdichte-Funktionen für jede Dimension. Eine exponentielle Kombination der zugrundelegenden Funktionen erlaubt es, eine Bewertungsfunktion für Sprachereignisse zu definieren.

Der Einfluß von Hyperartikulation ist in zwei Sprachen untersucht worden: Deutsch und Englisch. Dabei ergaben sich für beide Sprachen ähnliche Analyseergebnisse hinsichtlich Tonhöhe, Formanten, sowie Phonemdauer. Erkennungsexperimente zeigen signifikante Verbesserungen mit Vektormodellen gegenüber herkömmlichen phonembasierten Ansätzen. Dies bestätigt, daß Hyperartikulation auf einer sub-phonetischen Ebene in einer artikulatorischen Domäne auftritt, in der traditionelle phonembasierte Modelle nicht in der Lage sind, solchen Variationen gerecht zu werden. Weiterhin konnte gezeigt werden, daß eine Kombination von normalen mit korrespondierenden hyperartikulierten Äußerungen zu einer deutlichen Erkennungsverbesserung bei normaler Sprache führt. Dies bedeutet, daß hyperartikulierte Äußerungen eine zusätzliche Informationsquelle für die Erkennung normaler Sprache darstellen.

Desweiteren ist eine Evaluation des artikulatorischen Vektorraums auf einem Korpus mit unterschiedlichen Sprechweisen durchgeführt worden. Experimente auf dem SUSAS (Sprache bei realem und simuliertem Streß) Korpus belegten, daß signifikante Verbesserungen durch artikulatorische Attribute möglich sind. Die Ergebnisse bestätigen das Potential artikulatorischer Vektorräume.

Acknowledgement

I want to thank Prof. Waibel for advising my dissertation. I appreciate his efforts for providing funding for our research group. Also, I would like to express my thanks to Prof. Julia Hirschberg and Prof. Dillmann for kindly taking over the task of being the co-advisor of my thesis.

A really great experience was writing the IBIS decoder, a very fast and memory efficient one-pass search engine. At this point of time, I would like to express my thanks to Florian Metze and Christian Fügen for this team work.

As I joined the Interactive Systems Labs in 1997, my first task was building the speech recogniser for the Verbmobil-II evaluations. I would like to thank Thomas Schaaf for the teamwork during a series of evaluations.

As I thought I come closer to my PhD defense, the SWB evaluation did arise in 2003. It was a great experience working with such a great team. Again, Florian and Christian were involved in Karlsruhe. On the other side of the Atlantic Ocean, Hua Yu and Qin Jin were part of our team.

After the SWB evaluation, I got finally the chance to write my dissertation. I would like to thank Vicky, Tanja, and Florian for proofreading my thesis and their valuable comments.

Special thanks go to Silke Dannenmaier and Annette Römer for their administrative support.

I would like to thank my parents, Annerose and Dieter, for all their support over the years, despite my rare visits in Nordhausen. Finally, I would also like to thank my sister Elke and my nephew Philip for their understanding that I had too little time for them in the last years.

Contents

1	Intr	coduction	1
	1.1	Motivation	1
	1.2	Related Work	4
	1.3	Thesis Goals	8
	1.4	Outline	9
2	Statistical Methods 1		
	2.1	Speech recognition as a Classification Problem	12
	2.2	Extraction of Relevant Features	12
	2.3	Models and Parameter Estimation	13
	2.4	Significance Tests	20
3	Hyperarticulation in the Context of ASR		23
	3.1	Definition of Hyperarticulation	23
	3.2	Corpus Collection	25
	3.3	Recognition Experiments	26
	3.4	Error Analysis	29
	3.5	Use of Hyperarticulated Training Data	40
	3.6	Summary	44
4	Cor	npensation Techniques	45
	4.1	Duration Modeling	47
	4.2	Pronunciation Modeling	49
	4.3	Separate Acoustic Model Sets	58
	4.4	Hyperarticulation in Context Decision Trees	62
	4.5	Summary	67

iv CONTENTS

5	The	Articulatory Vector Space	69
	5.1	Articulatory Phonetics	69
	5.2	Articulatory Modelling for ASR - a Review	75
	5.3	Hyperarticulation - Warping in an Articulatory Domain	76
	5.4	Statistical Modeling of Acoustic Events	84
	5.5	Detection of Articulatory Properties	89
	5.6	Speech Recognition with Vector Models	94
	5.7	Analysis of Contrastive Attributes	96
	5.8	Vector Models and Model Selection	99
	5.9	Utterance Combination	100
	5.10	Summary	101
6	A p	1 0	103
	6.1	Experimental Setup	104
	6.2	Results	105
	6.3	Validation	106
7	Inve	estigations on Portability	109
	7.1	Transfer to Other Languages	109
	7.2	Transfer to Other Speaking Modes	114
8	Con	aclusions	117
Aı	pen	dices	119
\mathbf{A}	Pho	oneset	121
В	Trai	ining Data	125
\mathbf{C}	Test	t Data	143
Bi	bliog	graphy	151

List of Tables

3.1	Database for normal and hyperarticulated speech	26
3.2	Error Rates on normal and hyperarticulated speech	29
3.3	Statistical Test comparing likelihoods on normal and hyperar-	
	ticulated data	30
3.4	Average phone duration	32
3.5	Average phone duration according to manner of articulation	32
3.6	Average phone duration according to place of articulation	32
3.7	Phone duration on normal and hyperarticulated data, t-test	
	with $\alpha = 0.05$	33
3.8	Speaking rate (mrate) on normal and hyperarticulated data,	
	t-test with $\alpha = 0.05$	35
3.9	Fundamental frequency in Hz on normal and hyperarticulated	
	data, t-test with $\alpha = 0.05$	36
3.10	Recognition performance with respect to $F0$	37
3.11	Significant differences at formant differences under hyperar-	
	ticulation, t-test with $\alpha = 0.05$	40
3.12	Supervised adaptation on hyperarticulated speech	42
3.13	Supervised MLLR on different training sets	43
3.14	Error rate versus amount of hyperarticulated adaptation data.	43
4.1	HMM topologies for hyperarticulated speech	47
4.2	Effect of estimating transition probabilities	48
4.3	Speaker dependent transition probabilities	49
4.4	Ranking of top 4 vowel recognition candidates, normal speech.	52
4.5	Ranking of top 4 vowel recognition candidates, hyperarticu-	
	lated speech	52
4.6	Patterns of phone variation	54
4.7	Dictionary size	57

4.8	Pronunciation Modelling
4.9	Comparison of Meeting with SWB models and supervised
	adaptation (results in word error rate)
4.10	Model specialisation for normal and hyperarticulated speech 59
4.11	Model selection using an oracle 60
4.12	Specialised models: likelihood selection 61
4.13	Specialised models: speaking rate and pitch based selection 62
4.14	Comparison of adapted meeting models with HSC models 65
4.15	Tree generation with hyperarticulated questions
4.16	Splits relating to manner of articulation
4.17	Splits relating to place of articulation
5.1	Consonantal place of articulation
5.2	Contrastive Attributes: doubts vs. doubt 81
5.3	Detection accuracy for manner of articulation attributes 92
5.4	Detection accuracy for place of articulation attributes 92
5.5	Detection accuracy for global attributes
5.6	Basis Elements
5.7	Recognition experiments with vector models (results in word
	error rates)
5.8	Predictions of contrastive attributes
5.9	Predictions of contrastive manner of articulation attributes 98
5.10	Predictions of contrastive place of articulation attributes 98
	Enforcing contrastive attributes (results in word error rate) 99
	Vector models and model selection (results in word error rates).100
5.13	Utterance combination (results in word error rates on normal
	speech)
6.1	Counts for each class and labeler
7.1	German Corpus for normal and hyperarticulated speech 110
7.2	Performance degradation at hyperarticulated speech for Ger-
	man and English
7.3	Sub test groups partitioned according to error rate changes 111
7.4	Phone durations versus error rate
7.5	Word error rate as a function of $F0$ changes
7.6	Model Selection: Comparison of German and English 112
7.7	Articulatory Vector Space: Comparison of German and English112

LIST OF TABLES vii

7.8	Selection of vector models : Comparison of German and English113
7.9	Utterance combination for German and English
7.10	Comparison of phone and vector models on the SUSAS corpus
	(error rates)

List of Figures

1.1	Pitch contour for the word <i>Leonard</i> , spoken normally (left) and hyperarticulated (right)	3
1.2	Class probabilities for the attributes <i>Fricative</i> (left) and <i>Plosive</i> (right) while pronouncing <i>doubts</i> normally and hyperarticulated	4
1.3	Computer-elicited Hyperarticulate Adaptation Model (CHAM), with written permission from Sharon Oviatt [Oviatt '98]	6
3.1	Phone alignment for <i>endorsement</i> , normally spoken (bottom) and hyperarticulated (top)	31
3.2	Phone duration vs error rate	34
3.3	F1/F2 formant drift for speaker $spk2$	38
3.4	F1/F2 formant drift for speaker $spk9$	38
3.5	F1/F2 formant drift for speaker $spk4$	39
4.1	HMM composition	46
4.2	Pronunciation graph for ABIDING	54
4.3	Pronunciation decision tree for /IX/	56
4.4	Pitch contour for the word <i>Leonard</i> , spoken normally (left) and hyperarticulated (right)	62
4.5	Excerpt from the decision tree for /Z/	65

5.1	Organs of the human speech production: (1) Nasal cavity, (2)
	Hard palate, (3) Alveolar ridge, (4) Soft palate (Velum), (5)
	Tip of the tongue (Apex), (6) Dorsum, (7) Uvula, (8) Radix,
	(9) Pharynx, (10) Epiglottis, (11) False vocal cords, (12) Vocal
	cords, (13) Larynx, (14) Esophagus, and (15) Trachea, from
	[Lemmetty '99]
5.2	Vocal tract as a system of cavities
5.3	pulmonic consonants, [International Phonetic Association '99].
5.4	vowels, [International Phonetic Association '99]
5.5	$\Delta(o_t, a)$ for attribute <i>Fricative</i> while pronouncing <i>doubts</i> , nor-
	mally and hyperarticulated
5.6	$\Delta(o_t, a)$ for attribute <i>Plosive</i> while pronouncing <i>doubts</i> , nor-
	mally and hyperarticulated
5.7	Acoustic models for vector elements (example doubts) 88
6.1	Perception Study: User Interface
6.2	Baseline system: error rates with respect to human perception 106
6.3	Training with hyperarticulated data: error rates with respect
	to human perception
6.4	Articulatory vector models: error rates with respect to human
	perception

Chapter 1

Introduction

The performance of today's automatic speech recognition (ASR) systems still depends on many factors limiting the usefulness of such systems. So-called speaker independent systems are state-of-the-art in ASR. They do not require an enrollment phase in order to achieve low error rates in controlled environments. However, the performance of such systems is, in fact, not speaker or speaking-mode independent. Moreover, it is often observed that an extraordinary speaking mode results in a drastic performance degradation. An important problem arises if users change their speaking mode in order to correct recognition errors. For humans, this is a natural reaction intended to disambiguate word confusions, but it causes even more recognition errors. The goal of this work is, therefore, to achieve a better understanding of the influence of speaking styles on ASR systems and, with this understanding, to develop algorithms to compensate for such variations.

1.1 Motivation

Verbal Human-to-Machine Interaction

Besides the recognition of pre-recorded audio data, for example the transcription of broadcast news, automatic speech recognition plays an important role in creating user friendly computer interfaces. Dialogue systems are a key technology in supporting communication between humans and machines. Speaking style, dialect, speaking rate, accent, and even emotion can vary, depending upon the user or the system behaviour.

Examples of speaking style changes can be found in error recovery situations. Humans interacting with an automatic dialogue system change their speaking mode in order to react to recognition errors. Several studies have observed, e.g. in [Soltau & Waibel '98], that a user will expend more effort toward achieving better pronunciation in order to resolve recognition errors. From a functional point of view, the articulation efforts of the speaker depend on the listener's capability to recognise the utterance. As long as the voice interface works perfectly, sloppy speech will require only minimal articulation. If recognition errors occur and the user needs to repeat the utterance several times, the pronunciation will change to a hyper-articulated speaking mode. This reaction is quite similar to human conversations with hearing impaired people [Picheny et al. '86].

Contrary to the user's expectation, current state-of-the-art speech recognition systems fail to handle hyperarticulated speech. The recognition performance degrades significantly in such a speaking mode. In other words, humans make an effort to improve the recognition performance, but current systems react diametrically opposed to the speaker's efforts. This system behaviour is contrary to the way human-computer interfaces should work. A human's expectation that his or her attempt at clearer articulation will lead to better system performance will not be realized. One question that needs to be addressed is, therefore, why hyperarticulated speech has a negative impact on the performance of automatic speech recognisers.

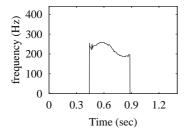
The inability of current ASR systems to deal with hyperarticulated speech has consequences for dialogue systems. For example, the user might enter an endless loop of interaction. One possible scenario is the following: The speech recogniser will fail to recognise some words. The user will therefore support the system by switching to a clearer articulation. The recogniser will then create even more errors. The user will extend his efforts towards a hyper-clear speaking mode. This will lead to even more recognition errors. Finally, the speech interface becomes completely useless and the user will seek other modalities instead [Suhm '98].

Disambiguation of Words

Interactive speech-based interfaces have a great potential to simplify access to modern information systems. As a matter of fact, however, the statistical nature of speech and the limitations of current ASR systems cause recognition errors. If a perfect recognition cannot be guaranteed, the interface must be

3

able to deal with recognition errors. If several repetitions are necessary to correct a recognition error, the user may switch to a *hyperarticulated* speaking mode. This speaking style is characterised by a very precise and accentuated pronunciation and a reduced rate of speech. Additionally, the position of the recognition error is often acoustically labeled by using several features, such as loudness, pitch, and duration. This effect is illustrated by the following example:



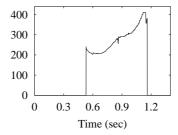


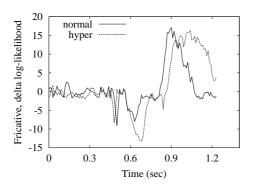
Figure 1.1: Pitch contour for the word *Leonard*, spoken normally (left) and hyperarticulated (right).

The word Leonard was confused with the word Leopard. In reaction to the error, the word was spoken again and pronounced very clearly in order to correct the mistake. Figure 1.1 exhibits changes in the pitch contour during a hyperarticulated speaking mode. The variation in the pitch contour in that particular case is used to encode the information of the previous recognition error. However, current preprocessing methods in automatic speech recognition attempt to filter pitch information, since they are normally considered to be irrelevant¹ As a consequence, later processing stages are not able to extract the information of the previous recognition error.

Further indicators used to disambiguate words can be extracted from articulatory attributes, e.g. place and manner of articulation. In an articulatory vector space, speech sounds will be treated as a composition of several articulatory attributes. Compared to a phoneme based approach, this representation allows a finer granularity and offers more insights into the kind of hyperarticulated effects that occur.

The data of the figure in 1.2 originates from the confusion of the word doubts with doubt. A different realisation of the articulatory attributes under

¹There are a few exceptions, e.g. the fundamental frequency is sometimes used for recognition of tonal languages (Chinese).



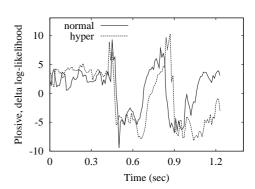


Figure 1.2: Class probabilities for the attributes *Fricative* (left) and *Plosive* (right) while pronouncing *doubts* normally and hyperarticulated.

hyperarticulation can be observed at the transition from the sound /t/ to the final /s/. The feature Fricative (corresponding to the /s/ sound) becomes activated at the end of the hyperarticulated audio signal compared to the corresponding realisation under normal conditions. On the other hand, the feature Plosive of /t/ gets suppressed at the end of the hyperarticulated utterance. This signaled that a plosive sound is not the final sound. Both the accentuation of the Fricative feature and the suppression of the Plosive feature place an emphasis of the missing /s/ sound at the mis-recognition of doubt instead of doubts.

1.2 Related Work

Hyperarticulated and related speaking modes have been investigated in several studies in recent years. This section is devoted in the review of those studies.

1. Picheny investigated in [Picheny '81] the acoustic characteristics of clear and conversational speech when talking to hearing impaired people. The study used a set of nonsense sentences which were spoken by three speakers. The intelligibility was tested by five listeners with sensorineural hearing losses. It was found that the human recognition accuracy is significantly higher for clear speech. Their results indicate that formant frequencies of vowels change to their "target values" in

5

- clear speech. Furthermore, the speaking rate is greatly reduced in clear speech. Changes in the long-term spectrum were not significant.
- 2. Shriberg, Wade and Price presented in [Shriberg et al. '92] an analysis of factors affecting performance of spoken language systems. The authors studied how users adapt to a spoken language system for air travel information (Darpa ATIS task). The study revealed a relationship between hyperarticulation and recognition errors. Users (mal-)adapted to the system by speaking more clearly and overenunciated words which resulted in a significant higher error rate.
 - In a further experiment, users were given instructions to avoid hyperarticulated effects but rather to speak naturally. The instructions resulted indeed into a smaller degree of hyperarticulation and to improved recognition performance. However, the difference in error rate was not reliable due to data sparseness.
- 3. Lindblom [Lindblom et al. '92] published a comparative study on acoustic-phonetic data for different speaking styles. He examined conversational speech, clear speech, and "baby talk". The observed pronunciation patterns varied significantly across the speaking style. To explain these observations, he proposes viewing the pronunciation variations as products of adaptation. Phonetic gestures and signals are modulated and tuned adaptively with respect to the communication demands. In other words, Lindblom's theory of speech adaptation in human-human conversations suggests that acoustic variability occurs as a functional adaptation of the speaker to the listener. A speaking mode can be explained as a point on the "articulation-axis", whereby the ends are hypo-clear and hyper-clear speech. Hypo-clear speech can be characterised by a minimum effort of articulation and requires that a listener is able to fill in missing phonetic information. On the other hand, hyper-clear speech needs more effort by the speaker. In the context of adaptation to a listener, the speaker attempts to produce an "ideal" acoustic realisation of speech units.
- 4. Oviatt proposed in [Oviatt '98] an adaptation model to describe changes in human speech when talking to a computer. Her model is based on Lindblom's theory in the context of human-computer error resolution. She proposed a two-stage model of a speaker's adaptation,

the Computer-elicited Hyperarticulate Adaptation Model (CHAM). The first stage of human adaptation consists of duration changes only and occurs in situations with low error rates. If the error rate increases, the second stage of a human's adaptation arises. According to the model, changes in pitch, amplitude, and articulation will be observed (see figure 1.3).

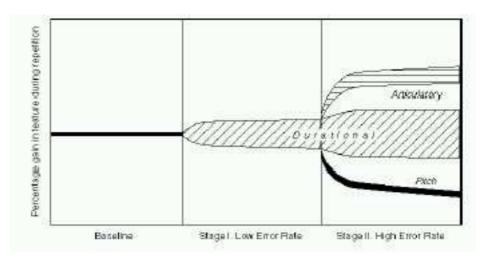


Figure 1.3: Computer-elicited Hyperarticulate Adaptation Model (CHAM), with written permission from Sharon Oviatt [Oviatt '98]

5. Levow presented in [Levow '98] a study of spoken corrections in Human-Computer Dialogues. She analysed 300 pairs of original and repeated correction utterances. The data were collected in a field trial using a voice-only interface to common desktop applications, such as e-mail, calendar, and stock quotes. She distinguished between corrections of mis-recognition errors (CME) and corrections of rejection errors (CRE). A general shift from conversational to clear speech was observed for corrections of rejection errors. In contrast, corrections of misrecognition errors exhibit additional pitch accent features. Duration and pause features exhibited significant differences. The minimum pitch decreased in male speakers. Furthermore, significant increases in the steepest rise of pitch were measured. She concludes: "These contrasts will be shown to ease the identification of these utterances as corrections and to highlight their contrastive intent". Based on these facts, she trained

7

- a decision tree to distinguish between original utterances and repeated corrections. The decision tree uses a set of 38 attributes based on duration, pitch, and amplitude. Her system achieved a classification accuracy of 75%.
- 6. Studies to detect recognition errors are presented in [Hirschberg et al. '99] and [Hirschberg et al. 2000]. The experiments are based on a spoken dialogue system to retrieve information about train schedules. The dialogue manager is based on a finite state machine allowing mixed initiative approaches. Several prosodic features exhibit significant differences between correct and misrecognised utterances. Using these features and output from the ASR engine, including confidences, a decision tree is trained to distinguish correct from misrecognised utterances. The system using prosodic features and ASR output (hypotheses and confidences) has a prediction error of 10.79%. An error rate of 13.39% is achieved if only ASR output is used. Thus, prosodic features provide additional information for detecting misrecognitions.
- 7. In [Hirschberg et al. 2001], the question of how to detect utterances intended to correct previous recognition errors is addressed. The motivation for this work is that knowledge about recognition errors and user's correction might be useful for dapting the dialogue strategy. For example, the dialogue manager could switch to an "error repair mode", where the dialogue strategy is focused on repairing previous system errors. The dialogue strategy could also become more restricted in such situations. Instead of allowing mixed initiatives, the dialogue manager could switch to a confirmation strategy if problematic turns are detected. If high reliability is required, a human operator might be involved when correction utterances are detected. In order to detect such problematic turns, Hirschberg investigated features such as prosody, ASR output, and dialogue state to distinguish between corrections and non-corrections. A decision tree was trained based on these features and achieved a classification error of 15.72%.
- 8. Kienast observed in [Kienast et al. '99] articulatory changes in emotional speech. Her experimental results are based on recordings from three actors. A high degree of articulatory simplification was observed

- in utterances expressing sadness and fear. "Happy" speech seemed to exhibit articular movements similar to neutral speech.
- 9. Holtzapfel investigated in [Holtzapfel et al. 2002] and [Holtzapfel 2003] the use of emotions for dialogue strategies. The idea behind this work is that the detection of emotions can guide the dialogue manager to choose an appropriate dialogue strategy according to the emotional state of a user. Holtzapfel integrated emotional parameters in task-oriented dialogue systems [Denecke 2002]. He introduced variables for the emotional state, both for the user and for the system. Emotional information is thereby encoded by corresponding facets of the feature structure. Two facets are used to store information about emotion: the type of emotion (neutral, stressed, happy, etc.) and the accumulated emotion score. The dialogue manager can use these facets to adapt the dialogue goals and the strategy for reaching the goals. Furthermore, emotions were used for the disambiguating of commands in a humanoid robot scenario.

It should also be mentioned that different strategies for dealing with recognition errors are possible. Suhm investigated in [Suhm '98] multiple modalities for interactive error recovery. In his study, he investigated interfaces for speech, handwriting, and text (typing). The speech interface could handle spontaneous speech as well as spelling sequences. Mouse gestures for selecting hypotheses from n-best lists were also used. He observed that users switch from one modality to another in order to resolve recognition errors. Although users initially prefer speech for correction, they learn with experience to prefer the most accurate modality. Thus, a system using multiple modalities can exploit different capabilities for reacting to recognition errors. But it was also shown that speech interfaces are the fastest way for input, if the underlying speech recogniser works well. Therefore, if speech recognisers learn to deal with hyperarticulated speech, the user might prefer to use the speech interface instead of switching to other modalities.

1.3 Thesis Goals

Summarising the above-mentioned investigations, acoustic and prosodic analyses of hyperarticulated speech were reported in these studies. In two studies, classifiers were presented in order to distinguish between normal and repeated

1.4. OUTLINE 9

or misrecognised utterances. These studies all lack an analysis of the recognition performance itself in the context of hyperarticulation. As we will show in this thesis, hyperarticulation causes a significant increase in recognition errors.

- The first goal of this thesis is, therefore, to answer the question: What are the differences between normal and hyperarticulated speech that cause the drastic increase in recognition errors. In short, a problem analysis is needed.
- If the reasons for the performance degradation are understood, we can address the next goal: The second goal of this thesis is to achieve a comparable recognition performance for both normal and hyperarticulated speech.
- To validate the thesis' goals, a corpus of normal and hyperarticulated speech is needed. Based on this corpus, the recognition performance will be evaluated using the algorithms and models developed in this work.

The scenario of verbal human-to-machine interaction and disambiguating word confusions indicates the relevance of hyperarticulated speech. But there is also a second argument why hyperarticulated speech should be investigated. Extraordinary speaking modes might be helpful for detecting invalid or weak assumptions in the current dominant approach of phoneme based Hidden Markov Models. Matched train/test conditions can cover wrong prerequisites. Switching to a hyper-clear speaking mode might, therefore, be used to discover invalid model assumptions.

1.4 Outline

The structure of this dissertation is based on an "analysis-to-synthesis" approach. An exact analysis of the problem is needed to find the necessary parts for assembling a solution for the problem.

This dissertation consists, therefore, of two major parts. In the first part, an analysis of the problem will be presented. Characteristic properties of hyperarticulated speech will be investigated and their relevance for compensating hyperarticulated effects will be discussed. Based on the results, novel

techniques for modeling acoustic properties and algorithms will be presented and evaluated in the second part of this work. Extensions of this work to other languages and speaking modes will be investigated in the final part. Starting with a brief introduction of statistical methods for automatic speech recognition, the dissertation is structured as follows:

- 1. Background (chapter 2)
- 2. Problem Analysis (chapter 3)
 - Properties of Hyperarticulated Speech
 - Influence of Speaking Style on the Recognition Performance
- 3. Algorithms and Models to Compensate for Hyperarticulation (chapter 4,5)
 - Articulatory Feature Structures
 - Adaptation Techniques
 - Hyperarticulation in Context Decision Trees
- 4. Extensions to other Speaking Styles and Languages (chapter 7)

Chapter 2

Statistical Methods

In this chapter, we present some background information for those readers who are not familiar with the technologies and concepts of automatic speech recognition (ASR). After introducing ASR as a statistical classification problem, typical feature extraction and parameter estimation techniques will be described. A short introduction to statistical significance tests will complete this chapter.

Current state-of-the-art speech recognition systems are based on the concept of Hidden Markov Models (HMM) to represent acoustic units. An HMM is a flexible finite state automat, together with a mechanism to propagate probabilities. Belief networks [Pearl '88] build a more general framework of this kind of automat. The syntax and semantic of a language are captured mostly by statistical n-gram language models (LM). The acoustic models (AM), together with the language models, form the backbone of a speech recogniser. From an algorithmic point of view, there are two basic problems. On the one hand, techniques for estimating the model parameters robustly are required. Therefore, large training samples are needed. On the other hand, the complexity of the acoustic and language models requires efficient search techniques in order to find the state sequence with the highest probability.

2.1Speech recognition as a Classification **Problem**

Bayes' decision theory establishes the foundation for the formulation of the classification problem in speech recognition. The recognition of a word or state sequence can be expressed as maximising the a-posteriori probability over all elements in the search space, given the acoustic observations as a sequence of feature vectors \vec{o} . Having an utterance consisting of a sequence of T feature vectors $O = (\vec{o_1}, ..., \vec{o_T})$, the classification problem can be expressed as:

$$W^* = \underset{W}{\operatorname{argmax}} P(W|O) \tag{2.1}$$

$$W^* = \underset{W}{\operatorname{argmax}} P(W|O)$$

$$= \underset{W}{\operatorname{argmax}} \frac{P(O|W) \cdot P(W)}{P(O)}$$

$$= \underset{W}{\operatorname{argmax}} P(O|W) \cdot P(W)$$

$$(2.1)$$

$$(2.2)$$

$$= \underset{W}{\operatorname{argmax}} P(O|W) \cdot P(W) \tag{2.3}$$

The maximisation process of the a-posteriori probabilities allows a separation of the a-priori probabilities P(W) and the class conditioned probabilities P(O|W). The best word sequence W^* is independent of the observation probability P(O) itself and can therefore be ignored. The a-priori probabilities P(W) will be computed via the language model $P(W|\tau)$, where τ are the parameters of the language model. On the other hand, the acoustic model contains the class probabilities $P(O|W,\lambda)$ with parameters λ . Given this framework, research in speech recognition focuses on the estimation of the parameter of the language model τ and of the acoustic model λ based on large training corpora.

2.2Extraction of Relevant Features

The goal of the preprocessing step is to remove problem invariant features from the digital acoustic signal and to arrange the feature space to be appropriate for the acoustic models. In the first step, a short-time spectral analysis will be performed to extract features in the spectral domain. This step is valid, since it can be assumed that the speech signal is at least short-time stationary. The next assumption is that the phase spectrum does not contain meaningful information for speech recognition. Consequently, only the

power spectrum will be passed to the next step. The properties of human perception of audio signals are emulated by a logarithmic scaling of the signal energy and a frequency scaling by applying a filter bank, e.g. mel or bark coefficients. Based on Fant's source-filter model [Fant '60], a so called liftering process is used to separate the vocal tract's transfer function from the periodic excitation signal. To that end, an inverse cosine function is applied to transform the signal from the spectral to the cepstral domain. These features are called mel-filtered cepstral coefficients (MFCC). Channel normalisation is performed by cepstral mean subtraction (CMS). Additionally, the feature values can be divided by their variances (cepstral variance normalisation, CVN), but this requires reliable variance estimates. The next step induces some context information: cepstral features from adjacent windows are concatenated to a single feature vector. A linear discriminant analysis (LDA) is used as a final step to transform the feature space. The LDA transform attempts to maximise the inter-class variances while minimising the intra-class variances. At the end of the feature processing, a sequence of T feature vectors $O = (\vec{o_1}, ..., \vec{o_T})$ is available. This sequence of feature processing steps is fairly standard in the ASR community, although there are several variations possible.

2.3 Models and Parameter Estimation

Acoustic Models

Acoustic modeling deals basically with probabilities P(O|W), where W denotes a word or, more generally, an acoustic class and O is a sequence of feature vectors. Since speech signals exhibit differences in a temporal and spectral domain, an appropriate model must deal with both dimensions in a statistically consistent way. The temporal changes can be modeled as a finite state automat with associated transition probabilities between the states. Attaching observation probabilities to each state will extend the automat to a Hidden Markov Model (HMM). This model is also called "first order Markov process" since the state probability depends only on the predecessor. Defining $S = \{s_1..s_n\}$ as a set of n HMM states and $\mathcal{P} = S^T$ as the set of all state sequences of length T, the probability P(O|W), given the model λ , can be computed as:

$$P(O|W,\lambda) = \sum_{q \in \mathcal{P}} \prod_{t} a_{sq_t sq_{t+1}} p(o_t|q_t)$$
(2.4)

The element $q \in \mathcal{P}$ represents one path through the state automat, and, furthermore, q_t denotes the state index at time t. The variable $a_{s_i s_j}$ represents the probability for the transition from state s_i to s_j . A set of start and end of states completes the HMM definition. The Forward/Backward algorithm computes these probabilities via dynamic programming with a complexity of $O(n^2 * T)$. The forward and backward probabilities are defined as:

$$\alpha_t(j) = P(o_1..o_t, q_t = s_i | \lambda) \tag{2.5}$$

$$\beta_t(j) = P(o_{t+1}..o_T|q_t = s_i, \lambda) \tag{2.6}$$

The conditional probability $P(O|W,\lambda)$ can be expressed as a sum over the α 's and β 's:

$$P(O|W,\lambda) = \sum_{i} \alpha_{T}(i)\beta_{T}(j)$$
 (2.7)

Furthermore, a recursive scheme to compute α and β is available:

$$\alpha_t(j) = \sum_i \alpha_{t-1}(i) a_{ij} p(o_t | q_t = s_j)$$
(2.8)

$$\beta_t(j) = \sum_{i} \beta_{t+1}(i) a_{ji} p(o_{t+1}|q_{t+1} = s_i)$$
 (2.9)

The Viterbi algorithm is similar to the Forward/Backward algorithm, But it requires only one pass. If the \sum operator is replaced by the max operator, the best state sequence can be obtained:

$$q^* = \underset{q \in \mathcal{P}}{\operatorname{argmax}} \prod_{t} a_{s_{q_t} s_{q_{t+1}}} p(o_t | q_t)$$
 (2.10)

The decoding engine searches for the best state sequence, whereby the language model probabilities will be included. Complex acoustic and language models require an efficient search space organisation, as described for example in [Soltau et al. 2001a].

Despite the availability of efficient algorithms to work with HMM's, there are several drawbacks. One important point is that the emission probabilities depend only on the current state. Thus, certain dependency or independency relations cannot be expressed. For example, the observed feature vectors may depend on several factors such as speaking rate, dialect, gender, error recovery mode, microphone, or environmental noise. In an HMM framework, these factors must be treated as one state, although conditional independence between these factors may be an issue. A factorisation of these random variables would allow a better parameter sharing scheme. In the HMM framework, a state must represent all of these combinations to express the emission probabilities. As a result, the number of HMM states would grow exponentially. Belief networks [Pearl '88] allow the factorisation of such dependencies. However, parameter estimation and decoding in the framework of belief networks gives rise to a couple of problems.

Kullback-Leibler Statistics

Parameter estimation for ASR focuses often on the emission probabilities, which usually are modeled by mixtures of Gaussians. Furthermore, practical considerations lead to diagonal covariance restrictions. The probability density functions (pdf) for emission probabilities are as follows:

$$P(o|s,\lambda) = \sum_{i} w_{i} N(o|\mu_{i}, \Sigma_{i})$$
 (2.11)

$$N(o|\mu, \Sigma) = \frac{e^{-\frac{1}{2}(o-\mu)^{-1}diag(\Sigma)^{-1}(o-\mu)}}{\sqrt{(2\pi)^n det(diag(\Sigma))}}$$
(2.12)

The model is now exactly specified. The HMM parameters consist of the transition probabilities, mixture weights, diagonal covariance, and mean vectors.

The parameter estimation is often based on the maximum likelihood principle¹. A direct application of the maximum likelihood principle on HMMs is, however, not possible. Instead, Kullback-Leibler statistics are used to establish an iterative algorithm, known as the Baum-Welch re-estimation procedure. Inducing a variable q for the (hidden) state sequence and initial

¹Recently, the maximum mutual information criterion has been revived and is used in a lattice framework [Woodland & Povey 2002].

parameter λ^0 , the log-likelihood of parameter λ for an HMM can be expanded as:

$$\mathcal{L}(\lambda) = \log p(O|\lambda) \sum_{q \in \mathcal{P}} P(q|O, \lambda^0)$$
 (2.13)

$$= (\log P(O, q|\lambda) - \log P(q|O, \lambda)) \sum_{q \in \mathcal{P}} P(q|O, \lambda^{0}) \qquad (2.14)$$

$$= \sum_{q \in \mathcal{P}} \log P(O, q|\lambda) P(q|O, \lambda^0) -$$
 (2.15)

$$\sum_{q \in \mathcal{P}} \log P(q|O,\lambda) P(q|O,\lambda^0)$$
 (2.16)

The likelihood can be expressed as the Kullback-Leibler statistics $Q(\lambda, \lambda^0) = \sum_{q \in \mathcal{P}} \log P(O, q|\lambda) P(q|O, \lambda^0)$ and a rest term. Furthermore, the concavity of the log function leads to the following (Jensen-) inequality:

$$\sum_{q \in \mathcal{P}} P(q|O,\lambda^0) \log \frac{P(q|O,\lambda)}{P(q|O,\lambda^0)} \leq \log \sum_{q \in \mathcal{P}} P(q|O,\lambda^0) \frac{P(q|O,\lambda)}{P(q|O,\lambda^0)}$$
(2.17)
$$= 1$$
(2.18)

Maximising the parameter λ with respect to the Kullback-Leibler statistics, $Q(\lambda, \lambda^0) \geq Q(\lambda^0, \lambda^0)$ will increase the likelihood $\mathcal{L}(\lambda) \geq \mathcal{L}(\lambda^0)$. In the HMM framework, the term $P(q|O,\lambda^0)$ in $Q(\lambda,\lambda^0)$ denotes the state occupancies obtained using initial model parameters. The Baum-Welch algorithm will increase the likelihood in each training iteration. However, the final model parameters depend on the initial settings λ^0 . Kullback-Leibler statistics are not only used for HMM parameter estimation, but also for mixtures of Gaussians.

Vocal Tract Length Normalisation

Vocal Tract Length Normalisation (VTLN) is a feature transform which attempts to normalise the frequency changes due to different vocal tract lengths [Andreou et al. '94]. Fant's source-filter model suggests that the formant frequencies are scaled with the length of the vocal tract. Systematic speaker

variations can be compensated by warping the frequency axis. To that end, a piece-wise linear function $f(\omega)$ can be employed:

$$f(\omega) = \begin{cases} \alpha\omega & : \quad \omega < \omega_0 \\ \beta\omega + \gamma & : \quad \omega \ge \omega_0 \end{cases}$$
 (2.19)

whereby β and ω can be obtained via the constraints $f(\omega_0)$ and $f(\omega_N)$. The warping factor α can be estimated by a maximum likelihood criterion:

$$\mathcal{L}(\alpha) = \sum_{t} \log(J(\alpha)P(f(o_t, \alpha)|\lambda))$$
 (2.20)

A Brent search is often used, since no closed-form solution is available. Furthermore, the derivate $J(\alpha)$ is ignored and the resulting function no longer satisfies the requirements for being a pdf.

Model Adaptation

The maximum likelihood criterion can also be used for estimating a linear transform of the model parameters [Leggetter '95]. In the context of mixtures of Gaussians, a mean adaptation can be represented by such pdf's:

$$P(o|s,\lambda) = \sum_{i} w_i N(o; A\mu_i, \Sigma_i)$$
(2.21)

Keeping the Gaussian parameters w_i, μ_i, Σ_i fixed, the Kullback-Leibler statistics can be used to estimate the linear transform A. The Kullback-Leibler statistics can be written as:

$$Q(A, A^{0}) = c - \sum_{i,t} \gamma_{i}(t)(c_{i} + (o_{t} - A\mu_{i})^{T} \Sigma_{i}^{-1}(o_{t} - A\mu_{i}))$$
 (2.22)

The state probabilities $\gamma_i(t)$ are computed using the initial parameter A^0 . Terms not relevant for the optimisation are denoted by c and c_i . The maximisation of Q requires the solution of:

$$\frac{dQ(A,A^0)}{dA} = 0\tag{2.23}$$

Differentiating Q with respect to A leads to a set of linear equation systems, which can be solved row by row.

$$\sum_{i,t} \gamma_i(t) \Sigma_i^{-1} o_t \mu_i = \sum_{i,t} \gamma_i(t) \Sigma_i^{-1} A \mu_i \mu_i$$
 (2.24)

Feature Adaptation

Linear transforms can also be applied in the feature space. This technique has some advantages over model adaptation since combinations with adaptive training schemes and Gaussian selection algorithms are easy to realise. If a pdf p(x) and a feature transform f(x) are given, an appropriate pdf with respect to f would be $\hat{p}(x) = p(f(x)) \frac{df(x)}{dx}$. This ensures that the probability mass is conserved:

$$\int p(x)dx = \int p(y)dy = \int p(y)\frac{dy}{dx}dx = \int p(f(x))\frac{df(x)}{dx}dx = \int \hat{p}(x)dx$$
(2.25)

If $f: \vec{x} \to \vec{y}$ is a vector function, the corresponding substitution rule is extended to the functional determinant or Jacobian. The corresponding Kullback-Leibler statistics for a linear transform f(x) = Ax is, therefore:

$$Q(A, A^{0}) = c + \sum_{i,t} \gamma_{i}(t) (\log|A| - c_{i} - \frac{1}{2} (Ao_{t} - \mu_{i})^{T} \Sigma_{i}^{-1} (Ao_{t} - \mu_{i})) \quad (2.26)$$

The Jacobian |A| term complicates the optimisation process. However, the Laplace development for a row j allows the representation of the Jacobian as:

$$|A| = \sum_{jk} a_{jk} \tilde{a}_{jk} \tag{2.27}$$

$$\tilde{a}_{jk} = (-1)^{j+k} |A_{jk}|$$
 (2.28)

whereby \tilde{a}_{jk} denotes the adjunct of A, given j and k. This allows the implementation of an iterative optimisation scheme, working row by row. The adjunct's \tilde{a}_{jk} will be kept fixed while optimising the row j.

Semi-tied full Covariances

Semi-tied full Covariances (STC) [Gales '99] or Maximum Likelihood Linear Transform (MLLT) [Gopinath '98] introduce linear transforms for covariance modeling. The motivation for this approach is that diagonal covariances are used for practical reasons, but the observation space does not allow this since the features are correlated. A better parameter sharing scheme may be achieved by sharing the full transform matrices. The pdf is structured as follows:

$$P(o|s,\lambda) = \sum_{i} w_i N(o; \mu_i, A^T \Sigma_i A)$$
 (2.29)

whereby Σ_i is a diagonal matrix per component and A is supposed to be a full matrix which may be shared across components and states. Since the term $A^T\Sigma_iA$ represents a full matrix, the pdf evaluation becomes computationally expensive. If the inverse matrix $B = A^{-1}$ is used, a more efficient feature and mean transform can be obtained:

$$P(o|s,\lambda) = |B| \sum_{i} w_i N(Bo; B\mu_i, \Sigma_i)$$
(2.30)

The resulting Kullback-Leibler statistics has the same form as for the feature adaptation with the exception that the same matrix B is used to transform μ additionally:

$$Q(B, B^{0}) = c + \sum_{i,t} \gamma_{i}(t) (\log |B| - c_{i} - \frac{1}{2} (Bo_{t} - B\mu_{i})^{T} \Sigma_{i}^{-1} (Bo_{t} - B\mu_{i}))$$
 (2.31)

Language Models

The language model (LM) deals with the probabilities P(W), where $W = w_1..w_n$ denotes a sequence of words. For small, limited domains, context free grammars (CFG) are used to introduce constraints for the search space. The disadvantage of CFGs is that no algorithm to learn the structure from data is available so far. Human labour is, therefore, required to write grammars. For tasks covering large domains, statistical n-gram models are popular. The word history is constrained to the last n words. Lack of training data and disc space limits the word history to three, resulting in tri-gram models.

Backing-off schemes are used to capture unseen n-grams. The models may be "refined" by adding word classes, phrases, and interpolations of them. The models can be trained by several criteria, such as maximum likelihood or maximum entropy.

$$P(W) = \prod_{i} P(w_i|w_{i-1}, w_{i-2}))$$
 (2.32)

2.4 Significance Tests

The non deterministic nature of speech makes it desirable to validate experimental results with significance tests. The basic idea is to establish a null-hypothesis H_o before starting the experiment and asking if the experimental results confirm the hypothesis. Details can be found in Brandt's textbook [Brandt '75]. A statistical test Test(T, A) is given by a verification function $T: O \to \mathbb{R}$ and a set $A \subset \mathbb{R}$, typically a confidence interval. The Null-hypothesis H_o can be rejected if $T(x) \in A$. An example can illustrate this: an experiment is planned to investigate whether the formant frequencies differ between normal speech and hyperarticulated speech. An appropriate null-hypothesis is that the differences are randomly distributed. It is further assumed that the formants are in a normal distribution. An appropriate test is, therefore, the student-test. The confidence interval is the α -quantile of the t-function. If the verification function is higher than a certain significance level α , it can be concluded that the differences are not randomly distributed. Further conclusions cannot be drawn.

For our purposes, the student-test (T-Test) and the F-Test for variance homogeneity are relevant. The student-test requires that the samples are distributed by a normal density with homogeneous variances. Given two sample sets S1 and S2 with homogeneous variances, the verification function for the student test is given by:

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}(\frac{1}{N_1} + \frac{1}{N_2})}}$$
(2.33)

The sample means are denoted as \bar{x}_1, \bar{x}_2 , the variances as s_1^2, s_2^2 , and the sample sizes by N_1, N_2 . The critical t-score is given by the α -quantile of the student-function:

$$s(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n}\Gamma(\frac{1}{2})\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$$
 (2.34)

The Gamma distribution is hereby defined as $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$. The variance homogeneity can be examined via the F-test. The verifica-

The variance homogeneity can be examined via the F-test. The verification function is given by:

$$f = \frac{\max(s_1^2, s_2^2)}{\min(s_1^2, s_2^2)}$$
 (2.35)

The underlying Fisher distribution F(m, n) is defined as:

$$f(x) = \frac{\left(\frac{m}{2}\right)^{\frac{m}{2}}\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}$$
(2.36)

The α -quantile from the Fisher distribution can be obtained analogously to the student distribution.

Chapter 3

Hyperarticulation in the Context of ASR

In order to understand the influence of hyperarticulation in automatic speech recognition, a comparative study of different kinds of articulation is needed. For this thesis, we collected a database of audio examples with different speaking modes. The corpus collection, which is also essential for training acoustic models later on, is described in the first section. Initial experiments investigating the influence of hyperarticulation on the recognition performance will be reported in section 3.3 followed by an error analysis.

3.1 Definition of Hyperarticulation

The effects of hyperarticulation have already been described in the literature [Shriberg et al. '92, Oviatt '98, Levow '98, Hirschberg et al. '99, Kienast et al. '99] although there is no well-established and precise definition of the term itself. There are two ways to characterise hyperarticulated speech: the first method relies on the concepts *hyper* and *articulation* while the second characterisation is based on a pragmatic, application-oriented approach.

1. The term *articulation* refers to the act or manner of producing a speech sound. It is the aspect of pronunciation that involves bringing articulatory organs together so as to shape the sounds of speech [Wordnet 2003]. The word *hyper* originates from the Greek language

and means "excessive, extreme, exaggerative". Thus, hyperarticulation describes an extreme speaking style producing speech sounds in an exaggerative way. Hyperarticulated sounds result from a very exact movement of the articulatory organs. In order to create hyperarticulated sounds, humans will make an effort to reach ideal positions for the articulators. For example, Picheny [Picheny et al. '86] observed that the formant frequencies for vowels move to their "target" values in clear speech.

2. Lindblom's theory of functional adaptation [Lindblom et al. '92] motivates the second approach. It is based on the assumption that humans want to achieve a particular communication goal, if they attempt to produce very precise speech sounds. It is clear that hyperarticulation needs much more effort by the speaker - and there must be a reason for this behaviour. In human-human communication, hyperarticulation occurs to improve the intelligibility. It is shown in [Soltau & Waibel '98] and [Oviatt '98] that hyperarticulated speech occurs also in human-computer interactions in order to react to recognition errors.

Instead of defining the hyperarticulated speaking mode by the acoustic properties¹, a problem- driven definition can be used. A hyperarticulated speaking mode arises in order to react to recognition errors. The intention of hyperarticulation is to disambiguate the true from the misrecognised word. The idea is to collect data in a scenario to correct recognition errors. Regardless of the absence of an exact definition, an analysis of these data will reveal the properties of speech used in an error recovery mode.

The approach chosen in this thesis for clarifying the concept of hyperarticulation is the pragmatic one. The strategy is to collect data using a scenario to correct recognition errors. This avoids an artifical definition of hyperarticulation. The advantage of this approach is that the data used for this work are "real world" data.

Another question arises, which is related to the problematic definition of the term hyperarticulation: how do humans judge the degree of hyperarticulation for a given utterance? This is an important question since we need to ensure that our pragmatic approach to use error-repair data for our

¹which would be somewhat artifical anyway.

study is valid with respect to human perception. Therefore, we conducted a perception study to label the degree of hyperarticulation from a human perspective. The results of this perception study are presented in chapter 6.

3.2 Corpus Collection

The goal of this data collection is to compare different speaking styles. Since the performance of so called speaker-independent speech recognisers is speaker-, channel-, and domain-dependent, the corpus collection needs a careful design to allow analyses across speaking styles. On the other hand, the database should contain *realistic* audio recordings from real users. In short, the database has two requirements:

- 1. Realistic recordings of hyperarticulated speech
- 2. Prevention of performance dependent conditions across speaking styles

Taking the first point into account, the recordings were collected with a simulated dialogue system. The subjects who sat in front of a computer were asked to correct previous recognition errors. The subjects were not told that the system was a simulation. In order to induce hyperarticulated speech in a realistic way, we analysed typical errors of our LVCSR system and generated a list of frequent word confusions. In most cases, inflections and phonetically similar words cause recognition errors.

The recording scenario consisted of two sessions. In the first session, the subjects used the dialogue system as usual. After that, a list of recognition errors from the first session was presented to the subjects. The users were then asked to correct the word confusions. The recognition errors were presented as phrases, e.g. "The word recounting was confused with recounted. Please repeat recounting.". There were up to three attempts allowed to correct an error. The subjects were also asked to disambiguate the words in the other direction in order to investigate if opposite features are used to contrast word confusions. Furthermore, subjects were naive users of speech technology, i.e. none were speech experts knowing how to work with ASR prototypes.

Session 1: dialoge system under normal conditions

record 50 turns per speaker

Session 2 : dialoge system in ''correction mode''

present word confusions up to 3 times

reverse order of words

The term "normal condition" refers here to a normal operation mode, where speech is produced without any attempts to diverge from a canonical pronunciation.

The advantage of this approach is that the database contains recordings comparable in domain, vocabulary, microphone, and environmental noise for each speaker across different speaking styles.

	speaker	uttera	nces speech		
		normal hyper		normal	hyper
train	34	3506	3923	124 min	158 min
test	11	1171	1444	34 min	57 min
all	45	4677	5367	158 min	215 min

Table 3.1: Database for normal and hyperarticulated speech.

In total, the database consists of 4677 normal and 5367 hyperarticulated recordings from 45 subjects. The corpus was divided into a training set of 34 speakers and a test set of 11 speakers. The test set is approximately 91 min. The set of training speakers is rather small. The purpose of these data is, however, to allow supervised adaptation experiments using acoustic models trained on large corpora, e.g. the Switchboard and Broadcast News databases. In the following experiments, the described corpus will be referred to by the name HSC (hyperarticulated speech corpus). HSC-normal is used to denote the normal portion and HSC-hyper for the hyperarticulated part.

3.3 Recognition Experiments

As discussed in the previous section, the data we are interested in were collected in an error recovery mode of a dialogue system. From the user's intention point of view, the user speaks more clearly and accentuated in order to facilitate the recognition process. The question that arises is whether this

change of speaking style results in a reduction of recognition errors or not. To answer this question, we conducted a series of recognition experiments with a state-of-the-art speech recogniser.

Experimental Setup

The system we used was trained on a large corpus (Switchboard, SWB) of around 300 hours of conversational telephony speech [Godfreq et al. '92]. The JANUS recognition toolkit [Finke et al. '97, Soltau et al. 2001b] developed at the Interactive System Laboratories provides a library and framework for building speech recognisers. The context decision tree is based on septa-phone models allowing a maximal context of 6, and it was created using a divisive clustering procedure based on an entropy criterion. The probability density functions are a mixture of Gaussians estimated with an algorithm entailing an incremental growth of Gaussians. Several normalisation and adaptation techniques are used, such as cepstral mean and variance normalization, or vocal tract length normalisation. The front-end uses linear discriminant analysis and semi-tied full covariances.

- acoustic models trained on SWB corpus
- \bullet entropy clustered poly-phones with a context of +/-3
- 10,000 context dependent HMM states with a variable number of Gaussians
- training by incremental growing of Gaussians, 288,000 in total
- semi-tied full covariances
- cepstral mean removal, variance normalisation, linear discriminant analysis

A zero-gram language model was used together with a search vocabulary of around 8,000 words. The thresholds of the beam search algorithm were sufficiently high to avoid search errors. This experimental setup ensures that any recognition errors can be directly attributed to the acoustic models.

The acoustic models used for these experiments were developed for the RT-03 CTS (Rich Transcription 2003, conversational telephony speech) evaluation. A detailed description can be found in [Soltau et al. 2002b, Soltau et al. 2003]. In short, the training consists of these steps:

- 1. Train fully-continuous models (10k codebooks)
 - (a) simultaneous diagonalisation to compute LDA on warped MFCC features
 - (b) re-organise data according to context dependent HMM states
 - (c) grow mixture components: (30 iterations) iterative merging and splitting of means and covariances
 - (d) estimate semi-tied full covariances (4 iterations)
- 2. Train semi-continuous models (50k distributions)
 - (a) FSA-SAT viterbi training (4 iterations)
 - (b) MMIE training (1 iteration)

Results

The recognition performance, as shown in table 3.2, indicates significant differences between normal and hyperarticulated speech. While an acceptable error rate of 25.6% is obtained under normal conditions, there is a relative error increase of more than 60% under hyperarticulation on average over all test speakers. An important aspect is the speaker dependency of the error increase. The error rate of some speakers exhibits drastic performance degradations, e.g. for spk1, spk4, or spk5. On the other hand, there is only a 4% increase in recognition errors for spk10.

These results suggest that the way users change their speaking style in order to disambiguate recognition errors is speaker dependent. The acoustic models, trained on conversational telephone speech, are not able to deal with hyperarticulated speech well. In summary, we showed with this experiment that:

- There are significantly more recognition errors at hyperarticulation.
- The reaction on word confusions is a speaker dependent effect in terms of an increase in recognition errors.

Additionally, the outcome of this study is confirmed by earlier experiments [Soltau & Waibel '98] using a different setup and for the German language.

speaker	error	rate	relative increase
	normal	hyper	in error rate
spk1	16.8	35.4	110.7%
spk2	28.2	46.0	63.1%
spk3	19.4	23.4	20.6%
spk4	25.3	47.5	87.7%
spk5	12.4	44.7	260.5%
spk6	38.4	61.3	59.6%
spk7	18.2	21.0	15.4%
spk8	25.7	32.8	27.6%
spk9	38.4	64.5	41.9%
spk10	27.3	28.5	4.4%
spk11	33.3	53.4	60.4%
all	25.6	41.6	62.5%

Table 3.2: Error Rates on normal and hyperarticulated speech.

3.4 Error Analysis

Acoustic Models: Observation probabilities

The question that we address now is why does hyperarticulation cause such a drastic increase in recognition errors. The likelihoods of the acoustic models given the observable data can be used to examine how the models fit with the different speaking modes. The likelihoods of the Hidden Markov Models can be computed via the viterbi algorithm. In order to discover systematical variations across speaking styles, we performed statistical tests to examine if the likelihoods differ between normal and hyperarticulated speech. A so-called T-test, or student-test, with an α -quantile of 0.05 was used.

We can then interpret the results of the T-test in that the likelihoods exhibit significant differences across the speaking styles for 8 out of 11 speakers. In other words, the acoustic models do not match with hyperarticulated data using a significance level of 0.95.

speaker	significance test
spk1	
spk2	
spk3	_
spk4	
$\mathrm{spk5}$	_
spk6	
spk7	
spk8	_
spk9	
spk10	
spk11	

Table 3.3: Statistical Test comparing likelihoods on normal and hyperarticulated data.

Phone Duration

The likelihood differences indicated a mismatch between acoustic models and observations. There are several factors which may have contributed to the mismatch. One of these is the speaking rate. An analysis of the average phone duration gives us more detailed information of segmentation issues. We will examine the effect of hyperarticulation on speaking rate with respect to phone classes, speaker identity, and error rate.

The phone durations were estimated based on the state alignment computed with the viterbi algorithm. The procedure used true transcripts and standard three state HMM topologies.

To illustrate the duration changes between speaking styles, phone alignments for the word endorsement are depicted in figure 3.1. In general, the phone segments become longer in the hyperarticulated case. This stretching effect is, however, not evenly distributed for all phones. For example, the segments for /D/, /AO/, /R/ do not exhibit larger changes, while the segment for the final /T/ sound increased from 10ms to 27ms, a factor of 2.7. Another quite interesting aspect can be seen if we compare the segments for the /N/ sound. The duration of the first occurrence of /N/ is mainly twice the duration of normal articulation, but the second occurrence of /N/ is not affected by hyperarticulation. This example indicates that the increase in

duration is not only a global effect but phone and position dependent.

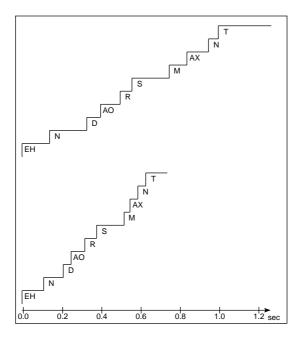


Figure 3.1: Phone alignment for *endorsement*, normally spoken (bottom) and hyperarticulated (top).

Besides this example, the results of a statistical analysis of the phone durations over the full test set are summarised in the following tables. The average segment length, reported in milli-seconds, increases by 28%. As shown in table 3.4 consonants are influenced considerably more by hyperarticulation than vowels. The effects for voiced and unvoiced sounds are comparable.

Another question is whether the *place* or the *manner* of articulation plays a role at the phone duration. To test this, we extracted the average segment length for each phone belonging to a certain place or manner of articulation. The tables 3.5 and 3.6 show the results of that examination. Plosive sounds like /p/ and /t/ exhibit an increase of around 44% on average, while the segments of fricative sounds are only 26% longer. A similar picture can be found for the place of articulation. Bilabial sounds, such as /p/, /b/, or /m/ show here significant differences with 44% longer segments, while glottal sounds are less affected.

phone class	normal[msec]	hyper[msec]	relative increase
All	99	127	28%
Vowels	101	117	16%
Consonants	100	132	32%
Voiced	97	122	26%
Unvoiced	106	137	29%

Table 3.4: Average phone duration.

phone class	normal[msec]	hyper[msec]	relative increase
Plosive	79	114	44%
Nasal	95	127	33%
Flap	45	53	18%
Fricative	124	156	26%
Approximant	79	104	32%
Lateral	92	119	29%

Table 3.5: Average phone duration according to manner of articulation.

phone class	normal[msec]	hyper[msec]	relative increase
Bilabial	80	115	44%
Labiodental	113	133	17%
Alveolar	103	135	31%
Palatal	57	79	38%
Velar	86	118	37%
Glottal	148	181	22%

Table 3.6: Average phone duration according to place of articulation.

Recapitulating these results, the phone duration increases significantly if hyperarticulation occurs. The effect is phone and position dependent. Vowels are less affected. There are differences according to place and manner of articulation. Furthermore, the duration changes depend on the speaker identity as shown in table 3.7. The duration per speaker is computed as the average over all phones. Despite the speaker with a higher speaker rate (spk8), all changes are statistically significant using a level of $\alpha = 0.05$. The relative duration change varies from -3% to 63%.

speaker	normal[msec]	hyper[msec]	relative increase	t-test
spk1	39	52	32%	
spk2	46	70	52%	
spk3	44	54	21%	
spk4	35	57	63%	$\sqrt{}$
$\mathrm{spk5}$	40	48	20%	
spk6	58	84	44%	$\sqrt{}$
spk7	36	40	12%	
spk8	48	47	-3%	_
spk9	47	56	18%	
spk10	37	55	46%	
spk11	56	63	14%	

Table 3.7: Phone duration on normal and hyperarticulated data, t-test with $\alpha = 0.05$.

Figure 3.2 shows the correlation of phone duration with error rate. It can be observed that speakers with a higher phone duration have a higher error rate. Moreover, this is valid both for normal and hyperarticulated speech. Considering the data points for normal speech only allows recognition of the correlation between phone duration and error rate. Therefore, it can be concluded that at least a part of the performance degradation at hyperarticulation can be directly attributed to higher phone durations.

Variation in Speaking Rate

The phone duration is measured using a forced alignment procedure. This approach requires transcripts, or at least hypotheses, to estimate the speaking rate. A possible application for the speaking rate is to use this as a

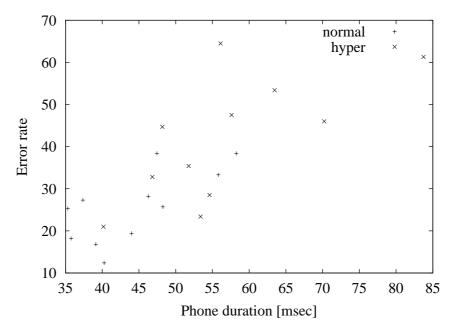


Figure 3.2: Phone duration vs error rate.

criterion for selecting an appropriate set of acoustic models. True transcripts are not available in such a scenario. Hypotheses can be used instead, but this, however, requires multiple decoding runs. A speaking rate estimator based on the audio signal only would be, therefore, advantageous for such scenarios. A combination of multiple signal based estimators is proposed in [Morgan & Fossler-Lussier '98] by Morgan and Fosler-Lussier. They used multiple measurements, like energy and peak counting, to form the *mrate* estimator. The *mrate* software is publicly available from [Morgan & Fossler-Lussier '98].

Table 3.8 shows the results obtained by this software from our data. The score *mrate* corresponds to the putative number of syllables per second. There are no significant differences (T-Test) across the speaking mode. On the other hand, the average phoneme length, measured on the true transcripts, increased by 28%.

There is a clear mismatch between the results from the previous section and the results obtained by the signal based estimator *mrate*. We need, therefore, to discuss which results are more reliable. The forced alignment

speaker	mrate (normal)	mrate (hyper)	significant differences
spk1	2.54	2.59	_
spk2	2.53	2.54	_
spk3	2.54	2.47	_
spk4	2.52	2.43	
$\mathrm{spk5}$	2.60	2.55	_
spk6	2.62	2.55	_
spk7	2.62	2.59	
spk8	2.47	2.44	_
spk9	2.62	2.57	_
spk10	2.62	2.56	_
spk11	2.62	2.56	_

Table 3.8: Speaking rate (mrate) on normal and hyperarticulated data, t-test with $\alpha = 0.05$.

procedure used true transcripts and complex acoustic models to compute speaking rate estimates. This information is not available for the *mrate* procedure. This procedure is solely based on the signal. Assuming that more information produces more reliable results, we can conclude that the forced alignment procedure produced more reliable speaking rate estimates. We will, therefore, assume that the results of the transcript based duration analysis are correct.

Pitch Information

The example in the introduction, figure 1.1, compares the pitch contour between a normal and hyperarticulated speaking mode. Extracting pitch information consists of two tasks. First, the pitch detection itself needs to be performed. This step computes raw F0 values. The data do not necessarily provide the correct pitch values since multiples of the true F0 can occur. This makes it necessary to perform a smoothing step, also called pitch tracking, which takes into account the previous estimates. There are several methods to extract the raw F0 values which are based on auto-correlation, linear predictive coding, or cepstrum. The pitch tracker used in this work is based on the work by Medan, Yair, and Chazan [Medan et al. '91] and was

developed at Cambridge University.

speaker	F0 (normal)	F0 (hyper)	significant differences
spk1	129.6	130.8	_
spk2	203.5	199.6	_
spk3	134.3	137.0	_
spk4	126.6	126.8	_
$\mathrm{spk5}$	134.6	152.7	
spk6	169.6	160.3	
spk7	130.0	128.8	_
spk8	145.5	138.2	
spk9	186.0	186.1	_
spk10	194.3	198.7	
spk11	240.0	239.6	_

Table 3.9: Fundamental frequency in Hz on normal and hyperarticulated data, t-test with $\alpha = 0.05$.

The average fundamental frequency per speaker is shown in table 3.9. The individual F0 values for all utterances for a speaker were used to draw a sample for the significance test. Significant changes were observed in both directions: speakers exhibit higher, as well as lower, pitch values with hyperarticulated speech. In a second step, the effect of the fundamental frequency on the recognition rate was analysed. To that end, the test set was divided into three sub-groups: same, increasing, or decreasing F0. The F0 changes are measured as the average difference between the speaking modes. The error rate for each group is shown in table 3.10. Speakers exhibiting a decreased fundamental frequency have a relative error increase of 47.8%, while the group with increasing pitch has a 71.8% increase in recognition errors. This is an indication that the fundamental frequency has an impact on the recognition performance in a hyper-clear speaking mode. Otherwise, other factors must exist which affect the error rate, since the speakers without F0 changes also show significantly higher error rates.

group	error	rate	relative increase
	normal hyper		in error rate
same $F0$	28.1	49.4	75.8%
increasing F0	21.0	36.1	71.9%
decreasing $F0$	27.6	40.8	47.8%

Table 3.10: Recognition performance with respect to F0.

Vocal Tract Resonances

The duration analysis indicated that vowels do not change their characteristics in a temporal domain. However, hyperarticulation may influence vowels in a spectral domain. Fant's source-filter model [Fant '60] of the speech production process consists of three linear shift-invariant components: glottis, vocal tract, and radiation at the lips. The output of these components can be computed via a discrete convolution in the temporal domain. The discrete convolution becomes a simple addition in the log-spectrum domain. For speech recognition purposes, the point of interest is the vocal tract. However, in some tonal languages, such as Chinese, the glottis output is important as well, since the pitch contour is necessary to distinguish between phones.

The transfer function of the vocal tract can be described by its reflexion coefficients. This function can be represented as a complex polynomial. Its complex conjugate poles are called Formants. Suppose the vocal tract is simply a sequence of cylinders with different diameters. The corresponding transfer function would be:

$$V(z) = \frac{c}{1 - \sum_{k=0}^{N} \alpha_{k} z^{-k}}$$
 (3.1)

The coefficients α_k of the predictor polynomial can be computed via Durbin's recursion algorithm [Rabiner '78], which minimises the predictor error using an autocorrelation approach. If we use a different representation of the predictor polynomial,

$$1 - \sum_{k}^{N} \alpha_k z^{-k} = \prod_{k}^{M/2} 1 - e^{-c_k T} \cos(b_k T) z^{-1} + e^{-2c_k T} z^{-2}$$
 (3.2)

the formant frequencies $F_k = b_k/2\pi$ can be extracted by computing the

complex poles via the Laguerre algorithm [Press et al. '88]. This all-pole model is valid for certain sounds only. Nasals and fricatives cannot be described completely by their formant frequencies since they require zeros in the transfer function to model anti-resonances. Therefore, the focus of this investigation lies on the vowels. The vowel time boundaries may be computed by a forced alignment procedure.

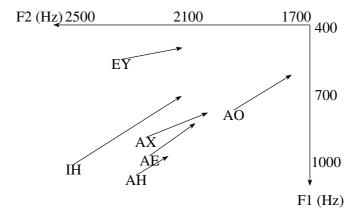


Figure 3.3: F1/F2 formant drift for speaker spk2.

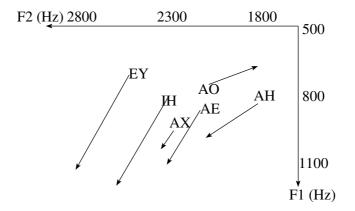


Figure 3.4: F1/F2 formant drift for speaker spk9.

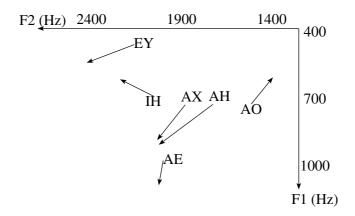


Figure 3.5: F1/F2 formant drift for speaker spk4.

Figures in 3.3, 3.4 and 3.5 exemplify how the formants drift under hyperarticulation. The formant frequencies F1 and F2 for the vowels /AE/, /AO/, /AH/, /AX/, /IX/, and /EY/ are computed via the LPC method as explained above. In all cases, the average formant frequencies change drastically under hyperarticulation. Independent of the absolute values of the average formant frequencies, the changes in the spectral domain are dependent on the speaker. Moreover, the phones exhibit different spectral changes even for the same speaker. In figure 3.4, the average formant frequencies F1 and F2 increase for both /EY/ and /IH/, while the formant shift for /AO/ moves in the opposite direction.

Besides these illustrations of spectral changes, a statistical test was performed to examine if there are significantly different formant frequencies in a hyper-clear speaking mode. As for the likelihood analysis, a T-test in conjunction with an F-test for the variance homogeneity was performed on a significance level of $\alpha=0.05$.

The results in table 3.11 do not provide strong evidence that the formant frequencies change at a significant level. Only certain vowels exhibit significantly different spectral features for some speakers. The outcome of this analysis runs parallel with the observations of the phone durations. According to these results, vowels are only weakly affected by hyperarticulation both in a temporal and in a spectral domain.

	A	E	A	Н	A	O	A	X	E	Y		X
	F1	F2	F1	F2								
spk1										$\sqrt{}$		
spk2												
spk3												
spk4										$\sqrt{}$		
spk5												
spk6												
spk7												
spk8												
spk9										$\sqrt{}$		
spk10										$\sqrt{}$		$\sqrt{}$
spk11												

Table 3.11: Significant differences at formant differences under hyperarticulation, t-test with $\alpha = 0.05$.

3.5 Use of Hyperarticulated Training Data

Assuming we are interested only in reducing error rates and do not need to understand hyperarticulated phenomena, we can simply try to collect hyperarticulated training data and estimate the model parameters using these data. It is obvious that such a solution has a limited applicability. First, it is rather difficult to collect sufficient training data for a hyperarticulated speaking mode. Secondly, the error analysis in the previous section gave us some clues that *invalid* model assumptions are at least one reason for the performance degradation. Now, invalid model assumptions cannot be "repaired" by just estimating the model parameters for this speaking style.

The intention of estimating the model parameters using hyperarticulated speech is to investigate how much error reduction is possible by using a brute-force method, while ignoring the reasons for the performance degradation. To that end, a corpus of 34 speakers with 2.6 hours of speech is available as table 3.1 shows. A pure Maximum-Likelihood estimation of the model parameters would be problematic due to the limited corpus size. For the recognition experiments reported in section 3.3, acoustic models trained on the SWB corpus were used. The hyperarticulated data can now be used to adapt these models. Two approaches were investigated:

1. Maximum-A-Posteriori Adaptation (MAP) MAP makes use of the knowledge about a *prior* distribution $g(\lambda)$ of the model parameters. Given a probability density function (pdf) $f(x|\lambda)$, the MAP solution for a data set X is given by:

$$\lambda_{MAP} = \operatorname*{argmax}_{\lambda} f(X|\lambda)g(\lambda)$$

Gauvain and Lee [Gauvain & Lee '94] have formulated the MAP solution for mixtures of Gaussians $\sum w_i N(x|\mu_i, \sigma_i)$ if the prior distribution function belongs to the conjugate family of the pdf. In that case, the prior distribution for μ_i and σ_i is from type Normal-Wishart and accordingly the Dirichlet function for the mixture weights w_i . The parameter for the prior distribution can be estimated on a large training corpus while the MAP estimates are based on the in-domain adaptation data. MAP adaption can, therefore, be interpreted as an interpolation of out-of-domain and in-domain models.

2. Maximum Likelihood Linear Regression (MLLR) Leggetter and Woodland [Leggetter '95] used a set of linear transforms to adapt the mixture components. There are two types of transforms:

$$\tilde{\mu} = A\mu + b$$
$$\tilde{\sigma} = B^T \sigma B$$

Maximising the corresponding Kullback-Leibler statistics leads to an estimation of the adaptation parameters. To make these transforms suitable for adaptation purposes, a regression tree is used to define a set of adaptation matrices. In these experiments, the basic regression classes rely on the individual Gaussian components. First, a binary tree is created by applying the k-means algorithm in a hierarchical way. The Gaussian components will hereby be clustered using the Euclidian distance of the means. Pruning of the regression tree depends on the amount of adaptation data available. The adaptation data associated with a node will be pushed to its parent node until a specific amount of data is collected. This ensures a reliable estimation of the adaptation matrices. As a consequence, the number of regression classes will be chosen dynamically, depending on the amount of adaptation data.

The experiments are based on the SWB models as described in section 3.3. The regression tree contains 256 nodes and the minimum occupancy threshold for the adaptation matrices is set to 1500 samples. The prior distribution for MAP is estimated on the SWB corpus. As mentioned before, the adaptation data is approximately 2.6 hours of hyperarticulated speech from 34 speakers. The results are given in table 3.12.

acoustic models	error	rate	relative error increase
	normal	hyper	at hyperarticulation
baseline	25.6%	41.6%	62.5%
MLLR	21.9%	35.0%	59.8%
MAP	23.4%	37.9%	61.9%

Table 3.12: Supervised adaptation on hyperarticulated speech.

Supervised MLLR adaptation leads to an error reduction of 19% on hyperarticulated speech. MAP adaptation seems to be less effective. An error reduction of 10% was obtained with MAP. This can be attributed to the huge number of Gaussians of the seed acoustic models. The system has about 10,000 context dependent states with more than 288,000 Gaussians. Gaussian components having very small occupancy counts will more or less remain unchanged in MAP adaptation. The advantage of the MLLR regression tree is a better tying of Gaussian components. It therefore allows a better exploitation of the adaptation data.

Another interesting observation can be made by comparing the error rates of normal speech with hyperarticulated speech before and after adaptation. The results indicate that both normal and hyperarticulated speech profit from the adaptation using hyperarticulated training data. The relative error increase due to a hyper-clear speaking mode was reduced from 62.5% to 59.8% only. This result is surprising. The adaptation process itself works well; the problem rather is that the ratio between the errors of normal and hyperarticulated speech does not improve. One possible explanation could be that the adaptation compensates channel and domain mismatches² well, while only a moderate compensation of the speaking style is achieved. To examine this hypothesis, we conducted adaptation experiments using the

²The acoustic models were trained on conversational telephony speech.

normal speech portion of the database in table 3.1. These data come from the same 34 speakers used for the hyperarticulated adaptation experiments.

adaptation data	error rate		relative error increase
	normal	hyper	at hyperarticulation
baseline	25.6%	41.6%	62.5%
normal	21.9%	36.8%	68.0%
hyper	21.9%	35.0%	59.8%
normal+hyper	21.4%	35.3%	64.9%

Table 3.13: Supervised MLLR on different training sets.

The results in table 3.13 confirm the hypothesis. Independent of the speaking style of the adaptation data, significant error reductions were obtained both for normal and for hyperarticulated speech. However, the ratio between recognition errors of normal and hyperarticulated speech improved barely compared to the baseline models. A similar performance is achieved when using both speaking styles for adaptation.

adaptation speaker	error rate
0	41.6%
5	37.6%
10	37.0%
15	36.3%
20	35.9%
25	35.6%
30	35.3%
34	35.0%

Table 3.14: Error rate versus amount of hyperarticulated adaptation data.

In our final experiment, the influence of the limited training data size was investigated. To that end, a series of adaptation experiments using only fractions of the available training data were conducted. The number of regression classes was chosen automatically depending on the data size. The results are shown in table 3.14. The corresponding performance for normal speech is 21.9%. The error rate curve for hyperarticulated speech is not yet

44 CHAPTER 3. HYPERARTICULATION IN THE CONTEXT OF ASR

in the saturated range, though the gap between normal and hyperarticulated speech is about 60% relative using all available data.

3.6 Summary

The analysis of hyperarticulated speech in context of automatic speech recognition led to the following observations:

- 1. Hyperarticulated speech causes a drastic increase in recognition errors.
- 2. Hyperarticulated changes depend on the speaker and phone identity.
- 3. Significant changes were observed both in a temporal and a spectral domain.
- 4. Vowels are less affected than consonants.
- 5. The changes of formant frequencies in a hyperarticulated speaking mode depends on the speaker identity (see figures 3.3, 3.4 and 3.5).
- 6. There is no evidence that the formants move toward their target values.
- 7. Adaptation of the acoustic models using hyperarticulated training data did not compensate for hyperarticulated effects (see table 3.13).

Chapter 4

Compensation Techniques

The intention of this chapter is to investigate compensation techniques for hyperarticulation in the context of a traditional ASR system. We will show that a limited amount of recognition errors can be reduced, but a real compensation of hyperarticulated effects cannot be achieved. We will systematically examine the ASR components regarding their behaviour on hyperarticulated speech. Despite the linguistic knowledge (which is not examined in context of hyperarticulation), ASR systems rely on the following knowledge sources:

- 1. Dictionary
- 2. Acoustic Models
 - (a) Front-End
 - (b) Model Topology
 - (c) Transition Probabilities
 - (d) Emission Probabilities

The preprocessing steps in the front-end module rely on psycho-acoustic knowledge, e.g. a logarithmic scaling of the signal energy and a frequency scaling by applying a filter bank. In this thesis, it is assumed that hyperarticulated speech does not effect such basic principles, and the front-end module does not need to be re-designed. Indeed, preliminary experiments did not show any evidence that a hyperarticulated front-end improves recognition results.

The American Heritage dictionary of the English language [Pickert 2000] defines *phonotactics* as "the set of allowed arrangements or sequences of speech sounds in a given language". Basically, the purpose of the dictionary is to map words to phone sequences. Pronunciation variants can be handled by allowing alternative entries in the dictionary or using more general pronunciation networks.

The HMM topology defines a structure on the sub-phonetic level. Thereby, a phone will be split into several temporal pieces, typically into a beginning, a middle, and an end state. The network layout, plus the corresponding transition probabilities, has an impact on the average phone duration. Modeling phone duration for ASR purposes often means working on the HMM topology. Both the dictionary and the Hidden Markov Model can be considered as (probabilistic) finite state automata. Moreover, both knowledge sources can be formed into a single Hidden Markov Model, as shown in figure 4.1 exemplarily.

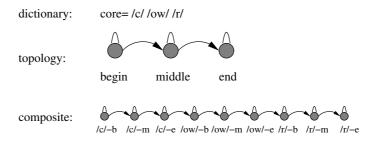


Figure 4.1: HMM composition.

Furthermore, this chapter discusses the question: Can hyperarticulated training data be efficiently used to build acoustic models? Under the premise that the model assumptions are valid in a hyper-clear speaking mode, compensation of hyperarticulation can be treated as reducing the mismatch between the model parameter and the test data. From an abstract point of view, this problem can be solved by estimating the parameters using appropriate training data. This will, however, introduce a new problem: If the models are trained on hyperarticulated speech only, a mismatch between these model parameters and normal speech will occur. An important aspect hereby is that a performance degradation for normal speech should be avoided if special hyperarticulated models are used. In the third section of this chapter, separate acoustic models for each speaking mode will be investi-

gated. Instead of generating two separate model sets, an integrated approach is evaluated in section four which relies on context decision trees.

4.1 Duration Modeling

Focusing on the HMM topology and the transition probabilities, which define a temporal partition or structure for acoustic units, the examination of the average phone durations in section 3.4 indicates the need of hyperarticulated duration models¹.

HMM Topologies

The easiest way to perform a kind of duration modeling is to work on the HMM topology. The minimum phone duration is linked to the number of states since the decoding engine aligns at least stateN time segments to a phone model. So, varying the number of states is a very simple way to compensate for changes in the speaking rate. It is obvious that this technique has several disadvantages. First, the "design principle" of HMM topologies is mostly based on a trial-and-error method. This also makes it rather hard to work on phone and speaker dependent models. Secondly, the modeling power is rather limited.

Nevertheless, this type of duration modeling is examined for the sake of completeness. As shown in table 4.1, doubling the number of HMM states gives a small improvement on hyperarticulated data but degrades the performance on normal speech.

topology	error rate	
	normal	hyper
3state	25.6%	41.4%
6state	25.8%	40.9%

Table 4.1: HMM topologies for hyperarticulated speech

¹To be more precise, duration models which fit hyperarticulated speech are needed.

Transition Probabilities

Given the stochastic nature of speech, a more sophisticated approach for duration modeling should rely on a mathematical, statistical estimation method for transition probabilities in the HMM framework. The JANUS toolkit usually keeps the transition probabilities fixed.² However, the expectation-maximisation algorithm, known from the estimation problem for mixtures of Gaussians, can be applied here. Given the conditional probability for a transition from state i to j at time t:

$$\gamma_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda)$$
 (4.1)

which can be computed via the forward/backward method, the maximum likelihood solution for transition probabilities can be expressed as follows:

$$\pi(i,j) = \frac{\sum_{t} \gamma_t(i,j)}{\sum_{k=1}^{n} \sum_{t} \gamma_t(i,k)}$$
(4.2)

transition	error rate	
probabilities	normal	hyper
fixed	25.6%	41.4%
trained	24.3%	38.7%

Table 4.2: Effect of estimating transition probabilities

The 2.7% absolute improvement shown in table 4.2 demonstrates that keeping constant transition probabilities is not adequate for hyperarticulated speech. On the other hand, the normal portion of the test set also profits from trained transition probabilities. A possible cause for this is the mismatch with the original SWB training data.

Speaker Adaptation

The term Speaker Adaptation is usually associated with acoustic modeling, particularly Maximum Likelihood Linear Regression. Speaker adaptation,

 $^{^2}$ It was found on various LVCSR tasks that these probabilities do not have an impact on the error rates. Therefore, these transition probabilities are often ignored and set to constant values.

however, is more than just transforming mixtures of Gaussians. Since the speaking rate is a speaker dependent factor, there is reason to believe that transition probabilities should be used in a speaker adaptive framework. This will require two decoding passes:

- 1. Decoding with speaker independent transition models
- 2. Estimation of transition models per speaker based on the hypotheses from the first pass
- 3. Decoding with speaker dependent transition models

transition	error rate	
probabilities	normal	hyper
speaker independent	24.3%	38.7%
speaker dependent	24.2%	36.5%

Table 4.3: Speaker dependent transition probabilities

The outcome of introducing speaker dependencies in duration modeling is shown in table 4.3. A significant error reduction of 2.2% was obtained for the hyper-clear portion of the test set. Returning to the analysis of phone durations in section 3.4, these results are in line with the observations made in this section: Speaking rate variations caused by a hyper-clear speaking mode, depends both on phone and speaker identity. Compensating hyperarticulation in a temporal domain leads to an error reduction of 4.9% absolute.

4.2 Pronunciation Modeling

When designing a dictionary, a few assumptions about the speaking style are made. The phonotactic knowledge encoded in the dictionary is based mainly on canonical, speaker independent pronunciations for each word. Typically, this assumption is valid for read speech only. A mismatch between the dictionary and the actual pronunciation can often lead to a significant performance degradation. For example, phones may be slurred or even omitted in spontaneous speech. Comparing hypo-clear with hyper-clear speech on an axis of "sloppiness", these speaking styles would lie on the opposite ends, while read

speech would be the "centre" on this axis. Obviously, this is not a precise model of the situation, but it can be used as an argument why it might be worthwhile investigating which phonological rules apply for hyperarticulated speech.

As we discussed in the introduction of this chapter, pronunciation modeling means finding appropriate phoneme sequences or networks³. What we discuss here is not building a dictionary from scratch, but investigating hyperarticulated variations from a standard pronunciation. In this sense, there are three types of phonological variations:

- 1. Substitutions
- 2. Insertions
- 3. Deletions

These types are sufficient enough to define new pronunciation variants if a dictionary is already given. The deletion of phones occurs quite frequently in sloppy speech, but it is rather unlikely that this happens for hyperarticulation since the speaking rate is significantly slower. But, as we have seen in the previous chapter, the slower speaking rate means higher phone durations but not necessarily inserted phones. Indeed, an informal investigation has shown that deletions and insertions of phones do not occur very frequently in a hyper-clear speaking mode.

The remaining type of variation is substitution of phones. To investigate this variation, we need to find which phones are confusable and in which context. A well known practice is to use a phone recogniser producing a set of phonetic transcripts and compare them with the references [Humphries '97]. By aligning the phone hypotheses with their counterparts from the dictionary, a set of phonetic exchange rules can be obtained as a byproduct. There is a dilemma if we want to use a phone recogniser to find pronunciations for a certain speaking style. If the phone recogniser uses a language model, we have to presume that the phonotactical information (encoded in the language model) is valid. But if we want to compensate for pronunciation rules invalid at hyperarticulated speech, we cannot expect that a phone based language model (derived from the dictionary) is correct. Therefore, the language model has to be excluded from the phone recogniser. As a consequence, we face

³To be exact: acyclic, directed graphs

much higher phone error rates. But phone hypotheses with error rates of more than 60% or 70% are not suitable to extract reliable phonetic variations. A different approach is, therefore, proposed to avoid such problems.

In the first step, the confusability of phones will be computed. Given a two-dimensional array of confusion costs, the phone sequences can be expanded to constrained phone networks. A decoding along these networks will then produce a set of phone hypotheses. A set of context dependent substitution rules can then be obtained via a dynamic programming technique.

Phone Confusions

The Kullback-Leibler divergence can be used for computing the distance between phone models for normal and hyperarticulated speech. The Kullback-Leibler divergence is a criterion based on information theory to measure the additional information mass to code a distribution f, given the information of distribution g for a random variable Y.

$$I(g; f) = E_Y \log \frac{f(Y)}{g(Y)} = \int_{-\infty}^{\infty} \log \frac{f(y)}{g(y)} f(y) dy$$

Now, this measure tells us something about the similarity of the models and, accordingly, their probability density functions. This allows an indirect measurement of the phone confuseability with respect to hyperarticulated effects. Given sufficient statistics, phone models can be trained and the model similarity can be measured via the Kullback-Leibler divergence. The disadvantage of this approach is that we have a rather indirect method for measuring how two phones compete with each other. If we are interested in reducing the recognition errors caused by wrong pronunciations, a more direct measurement is desired. For example, the decoding engine takes the input data and uses the conditionals $P(x|\lambda)$ to prune away unlikely models.

The approach chosen here finds competing models similar as the decoder Does, with the exception of the segmentation. A forced alignment with the correct phone transcript is used to retrieve the phone boundaries. Given this segmentation, the conditionals $P(x|\lambda)$ can be computed for each model and for each phone occurrence in the data. Finally, frequent phone confusions are extracted from the likelihood matrix, both for normal and hyperarticulated speech.

vowel	cnt	hypotheses			
AH	188	AH 12.2%	UH 11.2%	AE 9.0%	$\&AH^{4} 6.4\%$
AY	247	AY 19.8%	IY 10.9%	AE 8.1%	EY 7.7%
EH	665	IY 19.5%	AE 12.9%	EY 8.1%	UW 7.2%
IY	725	IY 36.6%	AE 12.0%	EY 11.0%	UW 9.5%
OW	392	OW 15.3%	UH 12.0%	AE 10.2%	EY 9.4%

Table 4.4: Ranking of top 4 vowel recognition candidates, normal speech.

vowel	cnt	hypotheses			
AH	234	AE 9.4%	AH 7.3%	IY 7.2%	UH 6.0%
AY	287	AY 15.7%	AE 12.2%	IY 9.4%	UW 7.9%
EH	760	IY 20.1%	AE 18.0%	EY 8.2%	EH 8.2%
IY	836	IY 37.3%	AE 15.1%	EY 10.9%	UW 9.9%
OW	471	OW 20.2%	EY 10.4%	AE 7.6%	&OW 5.9%

Table 4.5: Ranking of top 4 vowel recognition candidates, hyperarticulated speech.

Tables 4.4 and 4.5 can be read as follows:

The number of occurrences per set of vowels is given in the second column. The higher occurrences for hyperarticulated speech are due to word repetitions in the error repair mode, as explained in section 3.2. The remaining columns contain how often a vowel was recognised as another phone. For example, 9.4% of hyperarticulated AH occurrences were recognised as AE. The phone hypotheses are sorted according to their frequency and only the top-4 ranks are displayed. It should be noted that we consider not only vowel confusions here, but also the conditionals are computed for all phones, e.g. vowel-consonant confusions are considered as well.

Interpreting the above tables, the first thing noted is that there are only two top-rank misclassifications for hyperarticulated vowels. On the other hand, the hyperarticulated version of /OW/ seems easier to discern from other phones. Besides this observation, there is not a clear change in vowel confuseability for hyperarticulated speech. A similar picture arises if we analyse consonantal sounds. Higher confusion rates for hyperarticulated speech can be observed for some plosives only. Indeed, a significance test shows no evidence for systematical phone variations.

The results of this analysis indicate that the pronunciation dictionary is *not* the source of our problem- that recognisers fail to recognise hyperarticulated speech. Nevertheless, we want to complete the series of experiments to anwser the question whether hyperarticulated speech requires a specialised pronunciation dictionary.

Constrained Phoneme Networks

The next step toward a new pronunciation dictionary is to transcribe the training data on a phone level. To that end, the confusion matrices are used to convert the flat dictionary entries to phoneme networks. An example of the resulting graphs is shown in the following figure:

For sake of clarity, this example represents the context independent variant only. For the experiments conducted here, however, the networks are expanded into their context dependent counterparts. The training data is then retranscribed along these phoneme networks and an expanded list of training pronunciations, together with their frequencies, is gathered.

⁴The & symbol indicates an interjection

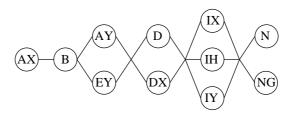


Figure 4.2: Pronunciation graph for *ABIDING*.

Decision Trees

Before building a new dictionary for recognition experiments, we have faced the problem of predicting pronunciations for unseen test data. Let us first note that it is possible to describe the variations in the training pronunciations as a set of rewrite rules which will be applied to the base-forms. These rewrite rules consist of a substitution pair plus surrounding phonetic context. Limiting the context size will lead to more robust estimations of the phonetic variation. The following list of variation patterns should illustrate the process, whereby the format is given as:

left context / base-phone / right context \rightarrow replaced phone.

EY / T / IX	\longrightarrow	DX
DH / AH / WB ⁵	\longrightarrow	AX
IX / NG / WB	\longrightarrow	N
WB / AE / N	\longrightarrow	EΗ
N / S / M	\longrightarrow	Z
T / IX / NG	\longrightarrow	AE
D / IX / L	\longrightarrow	IY
WB / IX / R	\rightarrow	AY

Table 4.6: Patterns of phone variation.

Decision trees are an elegant technique for representing these patterns. Briefly, decision trees are binary trees augmented with questions in each node to select the branch. For the purposes here, the questions pertain to phonetic

 $^{^5{\}rm The}$ /WB/ symbol indicates a word boundary. Depending on whether /WB/ occurs in the left or right context, a start or end of word is marked.

context. A way to induce *generalisability* is to constrain the phonetic context in the decision tree to phone clusters. These phone clusters can be obtained by a data driven method, or phonetic knowledge may be used to design the groups. The decision trees in these experiments used phone clusters grouped according to place and manner of articulation.

Given the basic components of decision trees, an algorithm for constructing the tree is needed. The approach chosen here is a divisive clustering procedure. This involves several iterations over a list of active nodes, as the following scheme illustrates:

```
root = Node()
nodes = NodeLst()
root.addSamples(TrainingData)
nodes.add(root)
while root.complexityCost() < threshold :
    node = nodes.findBest()
    node.split()
    nodes.add(node.leftChild)
    nodes.add(node.rightChild)
    nodes.del(node)
root.saveTree(filename)</pre>
```

As the reader may have noticed, an important issue when building a decision tree is still missing: What is the best node to split? In other words, what is the optimisation criterion? Predicting the correct pronunciation variant can be reduced to a classification problem, thus we want to minimise the classification error. Let us assume we have a list $\{(l_i, c, r_i, s_i) : i < i\}$ N_x of pronunciation patterns attached to a node n_x for the base-phone c. Furthermore, the conditional probabilities $P(s_i|c)$ can be estimated from the training data. The entropy may serve as an optimisation criterion because the negative probabilistic "uncertainty" can be interpreted as the purity of a node. However, optimising an entropy criterion does not necessarily translate to minimal classification errors. In [Johnson et al. 2002], the authors report that the Gini-Index has a better correlation to the classification error on a text categorisation task. Buntine and Niblett [Buntine & Niblett '92] found similar classification results for entropy and Gini-Index based tree generators. Their results are based on an experimental evaluation of several optimisation criteria performed on a suite of various artifical classification tasks.

1. Entropy : $E(n_x) = -\sum_{i=1}^{N_x} P(s_i|c) * \log(P(s_i|c))$

2. Gini-Index :
$$G(n_x) = 1 - \sum_{i=1}^{N_x} P(s_i|c) * P(s_i|c)$$

A split of a node into two subtrees can be scored by measuring the gain of these criteria. If a node n_x is partitioned into two subtrees x_1 and x_2 , an Entropy based splitting score would look like:

$$H(n_x, x_1, x_2) = P(x_1) * E(x_1) + P(x_2) * E(x_2) - P(n_x) * E(n_x)$$

A similar one can be obtained for the Gini-Index. In speech recognition, the entropy criterion is often used for clustering tasks, while the Gini-Index occurs frequently in the data mining community as a criterion for the CART algorithm [Breiman et al. '84].

Pruning is an essential part of the tree construction since it ensures that the tree fit unseen test data. Two thresholds are defined to control the model complexity. The maximum depth limits the tree growing and a minimum sample count is used to avoid unreliable parameter estimations. The pruning has an effect on the leaf's uniqueness. Leafs with $G(n_x) > 0$ will occur depending on the pruning parameter. To apply the tree to pronunciation generation, there are basically two options to deal with this situation. First, dictionary entries including probabilities for all possible substitutions can be generated. This will, however, increase the word confuseability significantly. Therefore, only the pronunciation pattern with the highest probability $P(s_i|c)$ will be selected for further processing.

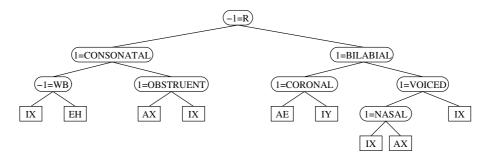


Figure 4.3: Pronunciation decision tree for /IX/.

Figure 4.3 shows the pronunciation decision tree for /IX/. The vowel /IX/ will be substituted by /EH/, /AX/, /IY/, or /AE/ depending on the context.

Questions about right phonetic context are written as "1=...", whereas "-1=..." are used for left context.

Recognition Experiments

This section describes recognition experiments using the newly trained dictionaries. The basis dictionary already contains some pronunciation variants. The experimental setup is identical to the setup used for the transition probabilities in section 4.1.

dictionary	variants per base-form
baseline	1.41
full expanded	3.72
Gini-Index	1.69
Entropy	1.65

Table 4.7: Dictionary size.

Two optimisation criteria for the decision tree were investigated: Entropy distance and Gini-Index. The trained decision trees resulted in 12% new pronunciations. The fully expanded dictionary was also used as a contrast experiment. The number of pronunciation variants are compared in table 4.7 and the corresponding error rates are summarised in table 4.8.

dictionary	error rate	
_	normal	hyper
baseline	24.3%	38.7%
full expanded	25.8%	40.2%
Gini-Index	24.4%	38.6%
Entropy	24.4%	38.8%

Table 4.8: Pronunciation Modelling.

The decision tree optimised with the Gini-Index gives modest improvements on the hyperarticulated part of the test set $(38.7\% \rightarrow 38.6\%)$. This change in error rate is not significant. The error rates hardly changed for

normal and hyper-clear speech. The contrast experiment with the fully expanded dictionary shows a significant increase in errors. This is actually not surprising, since 3.7 variants per base-form on average produce a much higher confuseability of the vocabulary words in the search space.

4.3 Separate Acoustic Model Sets

On our path to investigate which knowledge sources in an ASR system are causal for the poor recognition performance at hyperarticulation, we examine in this section the observation models. In chapter 3, we showed that the hyperarticulated speech has significant differences at the likelihood level (table 3.3). So, there is evidence that the observation models do not fit with hyperarticulated speech.

The approach chosen here for reducing the data-model mismatch consists of training separate acoustic models for each speaking mode. As a result, the decoder has to deal with two model sets, one for normal speech and one for hyperarticulated speech. The first question is how to derive mode dependent models and, secondly, how to decide which model is used when. The model selection can be done before decoding or after decoding. The later option requires more computational resources since two decoding runs are necessary, but it has the advantage that the hypotheses can be compared directly.

Experimental Setup

The SWB corpus was used to train acoustic models for the initial experiments in chapter 3. These acoustic models make use of more than 288,000 Gaussians defining 10,000 context dependent HMM states. For the meeting recognition project, acoustic models trained on multiple domains were investigated [Soltau et al. 2002b]. Similar acoustic modeling techniques were used both for the meeting and the SWB system. It turned out, however, that the "meeting" models are better in conjunction with adaptation on the HSC-normal data. This data was originally collected to reduce a possible channel or domain mismatch. MLLR regression classes were estimated on two hours of speech data.

As shown in table 4.9, the SWB models have a lower error rate than the meeting models before adaptation. Nevertheless, the adaptation is more effective for the meeting models, resulting in an error rate of 18.9% for nor-

Adapt on	SWB n	nodels	Meeting	models	
HSC-normal	normal	hyper	normal	hyper	
no	25.6%	41.6%	32.7%	46.3%	
yes	21.9%	36.8%	18.9%	29.9%	

Table 4.9: Comparison of Meeting with SWB models and supervised adaptation (results in word error rate).

mal speech and 29.9% for hyperarticulated speech. These results can be attributed to the fact that the SWB models have about 50% more model parameters to estimate. Experiments confirmed this hypothesis. As a consequence, the adapted meeting models will serve as a baseline for all further experiments.

Generating Specialised Models

MLLR regression classes were estimated using the training data HSC-normal, HSC-hyper, or both parts. The regression tree is pruned based on the occurrence statistics. The meeting models were then transformed by these trees to the new acoustic models.

Acoustic Models	ls error rate	
	normal	hyper
adapted on HSC-normal	18.9%	29.9%
adapted on HSC-hyper	18.7%	25.2%
shared models	18.1%	26.7%

Table 4.10: Model specialisation for normal and hyperarticulated speech.

The recognition performance for each of this model sets is shown in table 4.10. The use of hyperarticulated training data gives an error reduction from 29.9% to 25.2%. On the other hand, if only one set of models is required to reduce the computational load, the shared models have an error rate of 26.7% on hyperarticulated speech. This is a significant improvement over the "normal" models, but 1.5% worse than the special models for hyperarticulated speech.

Model Selection

Focusing now on the question of how to select the right models, we start with two "cheating experiments" to evaluate what would be the maximal improvement we can obtain.

selection criterion	error	rate
	normal	hyper
database info	18.1%	25.2%
oracle	16.8%	23.1%

Table 4.11: Model selection using an oracle.

In the first case, it is assumed that all word repetitions are uttered in a hyper-clear speaking mode. That means the dialogue state needs to be given. Secondly, an oracle selecting the models with respect to the error rate is used. It simply selects the output that produces a lower error rate by aligning the hypotheses with the reference. This oracle reduces the error rate to 16.8% for normal speech and 23.1% for hyperarticulated speech and is the best that can be obtained using model selection. The relative error reduction using an oracle is similar for normal speech (18.1% \rightarrow 16.8% = 7.2%) and hyperarticulated speech (25.2% \rightarrow 23.1% = 8.3%). This means that the database information for hyperarticulated speech is as correct as for normal speech. In other words, classifying all word repetitions as being hyperarticulated does not introduce additional errors on this corpus.

The experiments above were "cheating experiments" which used information about the test set. Real model selection cannot use such information, obviously. If real-time operation is not required, decoding runs with both model sets can be performed and the selection is based on the likelihood of the hypotheses. The setup using shared models is the baseline for comparison. As shown in table 4.12, normal speech does no profit from the model selection, while the performance on hyperarticulated speech improves from 26.7% to 24.8%. The disadvantage of this setup is that two decoding runs are required.

A model selection prior to the decoding run would reduce the computational overhead significantly. To that end, pitch and speaking rate were investigated for selecting the models prior to the decoding run.

acoustic models	error	rate
	normal	hyper
shared models	18.1%	26.7%
likelihood selected models	18.0%	24.8%

Table 4.12: Specialised models: likelihood selection.

1. Speaking Rate

The speaking rate was estimated as described in chapter 3. Prior to the decoding run, the *mrate* score is extracted from the audio signal. If the score is lower than a predefined threshold, the utterance is treated as being hyperarticulated. The threshold was optimised on a cross-validation set.

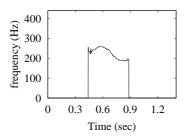
2. Pitch Average

The average fundamental frequency is used in an analogous manner. The pitch tracker extracts the F0 values before decoding. Since the absolute values are not meaningful in the context of hyperarticulated changes, the F0 values are compared with their counterparts obtained in the normal speaking mode. This means that the classification is based on the F0 differences between the normal and repeated utterances. This approach requires that the dialogue state is given.

3. Pitch Contour

Despite the average fundamental frequency, the pitch contour can provide a clue for the speaking mode. An example for different pitch contours is shown in figure 4.4. Analogous to the F0 average, the dialogue state needs to be given. As we reported in [Soltau & Waibel 2000b], the pitch contour is described for this purpose as a sequence of rising and falling segments. Only the direction of the gradients is considered, but not their absolute values. A change of the speaking mode is assumed when the sequences of rising and falling segments do not match.

The results for the different selection methods are summarised in table 4.13. The average F0 values do not contain meaningful information for selecting the appropriate set of acoustic models. The speaking rate based selection performs best and gives an error reduction from 26.7% to 24.9%



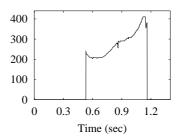


Figure 4.4: Pitch contour for the word *Leonard*, spoken normally (left) and hyperarticulated (right).

for hyperarticulated speech. On the other hand, this gain comes along with a performance degradation for normal speech. Summarised: if the computational load is not an important aspect, the likelihood criterion is the best choice for model selection. Comparing the adapted meeting models with the specialised models, an error reduction from 18.9% to 18.0% for normal speech and from 29.9% to 24.8% for hyperarticulated speech is achieved. This means that model specialisation and selection reduces the error rate at hyperarticulated speech successfully.

acoustic models	error rate			
	normal	hyper		
shared models	18.1%	26.7%		
speaking rate selected models	18.5%	24.9%		
pitch average selected models	18.1%	26.3%		
pitch contour selected models	18.1%	25.5%		

Table 4.13: Specialised models: speaking rate and pitch based selection.

4.4 Hyperarticulation in Context Decision Trees

One important observation in chapter 3 has not been considered so far in the context of model specialisation. The analysis of the phone durations, as well as the formant frequencies, has shown that hyperarticulated changes occur as phone dependent effects in a temporal and spectral domain. For example, the phone duration is increased by 44% for plosive, but only 16% for vowels. Significant changes of the formants are observed for /AE/ but not for /AH/. This point was not taken into account while generating specialised models, as discussed in the last section. The regression classes were built independently of any phone dependent effects. What is therefore wanted is a data-driven method to decide which models are affected by hyperarticulation and will therefore need special treatment. The fundamental difference is that the complete set of models does not need to be separated into normal and hyperarticulated parts. Only the models which are affected in a hyper-clear speaking mode need a mode dependent parameter. Two questions need to be addressed:

1. Splitting criterion

Let us first define two labeled training sets N_p and H_p of normal and hyperarticulated speech for a phone p. We further denote corresponding cross-validation data as \tilde{N}_p and \tilde{H}_p . The question is now whether it is better to share the data N_p and H_p and train one model m_{nh} or to train two models m_n and m_h for each data set. The likelihood for \tilde{N}_p and \tilde{H}_p can serve as a criterion.

$$\mathcal{L}_1 = \log P(\tilde{N}_p|m_{nh}) + \log P(\tilde{H}_p|m_{nh})$$

$$\mathcal{L}_2 = \log P(\tilde{N}_p|m_n) + \log P(\tilde{H}_p|m_h)$$

It should be noted that an increase of model parameters will not necessarily increase \mathcal{L}_1 or \mathcal{L}_2 since the likelihoods are measured on a cross-validation set [Rogina '97]. We can, therefore, split a model into a normal and a hyperarticulated part if $\mathcal{L}_2 > \mathcal{L}_1$.

2. Training procedure

The splitting into normal and hyperarticulated models can be embedded into the clustering procedure for the polyphone models [Soltau & Waibel 2000a] and [Fügen & Rogina 2000]. The training procedure consists of two steps. In the first step, probability density functions are trained for each phonetic context and speaking mode. In the second step, a set of questions will be evaluated finding the best

split with respect to the likelihood according to the phonetic context or speaking mode. Starting with context and hyper-clear independent root nodes, all possible splits will be scored and children nodes will be generated. Thus, questions about the phonetic context will compete with questions about the hyperarticulated speaking mode. If a phone in a certain context is not affected by hyperarticulation, phonetic questions will probably obtain better scores and an undesired data split into the normal and hyperarticulated parts will not occur. This ensures that exactly these phones will use separate models for normal and hyperarticulated speech, which indeed exhibit differences across the speaking mode.

Experimental Setup

This approach obviously makes it necessary to train a set of models completely from scratch since the decision trees will change. Furthermore, the training data for normal and hyperarticulated speech need to be balanced. The clustering procedure would otherwise tend to bias phonetic questions. This is one of the drawbacks of this approach. The meeting data can, therefore, not be used in this setup. Instead, a new system was conventionally trained on the HSC database only. Besides the different training data, the same acoustic modeling techniques were applied in both setups. The HSC trained model set will serve as the baseline for the tree generation experiments. The phonetic context size is one phoneme, e.g. the resulting models are generalised tri-phones.

Results

In a first experiment, the conventionally trained system is compared against the adapted meeting models. The error rate on hyperarticulated speech for the HSC system is as good as for the adapted meeting models. A significant performance degradation, however, occurs for normal speech. Nevertheless, the HSC models provide a good performance for hyperarticulated speech and serve as a baseline.

The experiments in table 4.14 were conducted using only phonetic context questions as usual. In the next experiment, hyperarticulated questions were integrated into the clustering procedure. An excerpt of the tree is shown in figure 4.5. Questions "-1=?" will ask about the left context, "0=?" about

acoustic models	error	rate
	normal	hyper
adapted meeting models	18.9%	29.9%
trained on HSC	23.0%	29.8%

Table 4.14: Comparison of adapted meeting models with HSC models.

the centre- phone, and "1=?" about the right context. Left/right branches correspond to no/yes answers. The root node is completely independent of context and speaking mode. All available data were used for training the root. For each question, including hyperarticulation, the node is split into two children and the likelihood on the corresponding cross-validation set is computed. The best question will be used to enlarge the tree. In this example, the first node splits the root according to the word boundary flag. All nodes after the third tree level at the right branch depend on hyperarticulation.

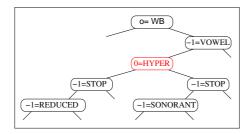


Figure 4.5: Excerpt from the decision tree for Z.

questions	error rate				
	normal hype				
phonetic context	23.0%	29.8%			
+ hyperarticulation	23.3%	27.1%			

Table 4.15: Tree generation with hyperarticulated questions.

A comparison between the conventional tree generation and the clustering, including hyperarticulated questions, is given in table 4.15. An error

reduction from 29.8% to 27.1% for hyperarticulated speech is achieved. A minor degradation is, however, observed for normal speech. In this new decision tree, 15% of all nodes do depend on the speaking mode. This confirms also that only certain speech states are affected by hyperarticulation. It should be noted that the number of parameters is the same for both trees.

phone class	hyperarticulated questions
vowels	3.5%
consonants	20.8%
- nasals	23.8%
- plosives	21.6%
- fricatives	24.6%
- approximants	9.8%

Table 4.16: Splits relating to manner of articulation.

In the next examination, we analysed which phones are mainly separated into a normal and a hyperarticulated part. To that end, the number of leaves was counted for each base phone and each speaking mode. It seems, that the acoustic space of vowels does not change in an error recovery mode in contrast to consonants. Only 3.5% of the vowel models depend on the hyperarticulated speaking mode, in contrast to more than 20% of the consonants. This result is not surprising if we keep the analysis of phone durations and formant frequencies from chapter 3 in mind. Additionally, the experiments on modeling vowel confusions as pronunciation variants in the previous sections led only to minor improvements (from 38.7% to 38.6%, see table 4.8).

phone class	hyperarticulated questions
bilabial	8.0%
labiodental	0.0%
alveolar	24.3%
retroflex	0.0%
velar	41.7%

Table 4.17: Splits relating to place of articulation.

The distribution of hyperarticulation dependencies regarding place of ar-

4.5. SUMMARY 67

ticulation is shown in table 4.17. Mainly, alveolar and velar sounds exhibit acoustic changes in a hyper-clear speaking mode. The distribution of hyper-articulated changes fits the observed duration changes: for example, bilabial sounds have a 44% long duration in a hyperarticulated speaking mode, but labiodental sounds show an increase of 17% only (see table 3.6).

4.5 Summary

As we have seen in this chapter, there are a couple of issues regarding hyperarticulated phonotactics. Duration modeling is one important aspect for compensating hyperarticulated effects. Significant improvements were achieved by introducing phone and speaker dependent transition probability functions. Starting with an error rate of 41.4%, training of phone and speaker dependent transition models led to an improved error rate of 36.5%. These improvements are in agreement with the results of the error analysis in the previous chapter.

Treating hyperarticulation as a dictionary problem did not lead to a major error reduction. The figures 3.3, 3.4, and 3.5 help to explain the situation for vowels. These figures suggest that hyper-clear speech exhibits a drift of formant frequencies. Dictionary learning can only be successful for compensating hyper-clear speech if the hyperarticulated realisation of a phone corresponds to any canonical phone model.

Otherwise, replacements in the pronunciation dictionary cannot reduce the mismatch between data and models. Now, the spectrum changes observed in the above mentioned figures do not support this point. The formant frequencies for the hyperarticulated vowels do not correspond to "standard" vowel values for normal speech. A similar picture can be drawn from the tables 4.4 and 4.5: the phone confusion matrices computed by comparing the likelihoods of the models, given the data, do not show strong evidence that humans simply substitute phones in a hyper-clear speaking mode. All these facts together explain why generating hyperarticulated pronunciation variants does not improve recognition performance.

In summary, only certain phones are affected by hyperarticulation. By extending phonetic context decision trees with dynamic questions about hyperarticulation, we achieved an error reduction of 9% relative. Despite this improvement on hyperarticulated speech, the adapted meeting models provide a better performance for normal speech. Overall, the decision tree using

hyperarticulated questions led to improvements, but did not outperform the "separate model" approach. The best model selection has an error rate of 18.0% on normal speech and 24.8% on hyperarticulated speech. Integrating hyperarticulation into the decision tree led to a performance of 23.3% for normal speech and 27.1% for hyperarticulated speech.

Chapter 5

The Articulatory Vector Space

This chapter shows that canonical phoneme models are inadequate for representing hyperarticulated sounds. Articulatory vector spaces provide an alternative framework to pure phone based models. Hyperarticulated effects can be described as changes of articulatory properties. The articulatory vector space allows the definition of an elegant representation of changes in a hyperclear speaking mode. We introduce the concept of contrastive attributes, which explains hyperarticulation as an inversion of those attributes which discriminate between the spoken and the recognised word. This allows the definition of translation vectors for modeling hyperarticulated changes from a canonical pronunciation and therefore allows the prediction of hyperarticulated effects. The phenomena of hyperarticulation can then be interpreted as a warping of trajectories in an articulatory vector space. This chapter starts with a brief introduction into articulatory phonetics and explains how articulatory features can be used for a hyper-clear speaking mode. It reports on experiments conducted to detect articulatory properties as well as on recognition experiments for hyperarticulated speech. Furthermore, an analysis of translation vectors between true and recognised words confirms the concept of contrastive attributes.

5.1 Articulatory Phonetics

The goal of this section is to give a *functional* view of the phonation process, particularly with regard to hyperarticulated speech. In order to understand how humans change the way they produce sounds in an error recovery mode,

it is necessary to address the questions, what are the essential components of the speech production process and how do they work. As this section covers only those topics in articulatory phonetics that are relevant to understanding hyperarticulated phenomena, more detailed information about phonetics is available in [Ladefoged '75] by Peter Ladefoged.

Basically, there are three major processes involved in producing speech sounds. These processes describe the *airstream*, the *phonation*, and the movements in the vocal tract (*oro-nasal* process). Fant's source filter model [Fant '60] interprets these processes as a system of linear, time shift invariant components.

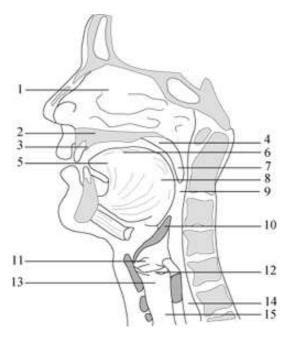


Figure 5.1: Organs of the human speech production: (1) Nasal cavity, (2) Hard palate, (3) Alveolar ridge, (4) Soft palate (Velum), (5) Tip of the tongue (Apex), (6) Dorsum, (7) Uvula, (8) Radix, (9) Pharynx, (10) Epiglottis, (11) False vocal cords, (12) Vocal cords, (13) Larynx, (14) Esophagus, and (15) Trachea, from [Lemmetty '99].

1. The Airstream Process

The airstream process describes how sounds are produced and manipulated by the source of air. The *pulmonic egressive* mechanism is based

on the air being exhaled from the lungs while the pulmonic ingressive mechanism produces sounds while inhaling air. However, ingressive sounds occur rather rarely. Besides these pulmonic sounds, a closure of the glottis leads to the so-called glottal airstream mechanism. There are ejective and implosive glottal sounds, depending on whether the air is directly pushed outward or whether the glottis will be lowered. A special sound is the glottal stop produced by the trapping of air by the glottis.

2. The Phonation process

The phonation process itself is based on the vocal chords. *Voiced* consonants are produced by narrowing the vocal chords. The Bernoulli effect leads to a fast cycle of opening and closing of the glottis. Depending on the length of the vocal chords, the frequency of this process can be in the range of 120-230 Hz. On the other hand, an open glottis leads to *unvoiced* consonants. In that case, air passes without obstruction through the glottis.

3. The Oro-nasal process

¿From a technical point of view, the vocal tract can be described as a system of cavities. The major components of the vocal tract are illustrated in figure 5.1. The vocal tract consists of three cavities: the *oral* cavity, the *nasal* cavity, and the *pharyngeal* cavity. These components provide a mechanism for producing speech sounds by obstructing air. Several articulators can be moved in order to change the vocal tract characteristic.

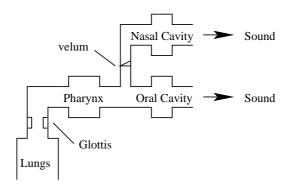


Figure 5.2: Vocal tract as a system of cavities.

The sounds depend on how the air is being modified and on the place of the modifiers. This system results in a classification scheme for consonants that groups sounds according to *place* and *manner* of articulation.

Place of Articulation

There are several points in the vocal tract where the air stream can be modified. The *articulators* are lips, teeth, tongue, dorsum, soft and hard palate, uvula, and glottis. These articulators are depicted in 5.1. The modification of the air stream involves a pair of articulators defining the place of articulation. This results in the following sound groups:

place		phones	5	articulators
alveolar	/t/	/d/	/n/	tongue and alveolar ridge
bilabial	/p/	/b/	/m/	lips
glottal	/?/	/h/		glottis
labiodental	/f/	/v/		lips and teeth
interdental	/T/	/D/		teeth
retroflex	/r/			tongue tip and soft palate

Table 5.1: Consonantal place of articulation.

Manner of Articulation

The sounds can also be distinguished according to the manner of articulation. The vocal tract allows various ways to modify or obstruct air.

- 1. Plosives: /p/ /b/ /t/ /d/ /k/ /g/ Plosive sounds are produced by a complete oral closure. A re-opening of the vocal tract leads to a burst.
- 2. Nasals: /m/ /n/ Nasal sounds are also produced by a closure of the vocal tract. However, the velum is in the lower position. The air stream is affected both by the oral and the nasal cavity.
- 3. Fricatives : /f//v//s//z/The vocal tract is constricted but there is not a complete closure. This

results in turbulent air which is then modified by the vocal tract resonators.

4. Approximants: /r/ l/ /j/ /w/
In contrast to fricatives, the air flow is here rather smooth for approximants and the vocal tract is less constricted than for fricatives.

The degree of constriction is a major factor in describing the manner of articulation. Sounds produced by obstructing the air stream are called *obstruents*. Their counterparts are called *sonorants*.

Voicing

The place and manner of articulation are not sufficient enough for defining speech sounds. For example, /p/ and /b/ are both bilabial plosives. But the phone /b/ is a voiced sound while /p/ is voiceless. As explained above, the phonation process determines whether a sound will be voiced. The International Phonetic Association (IPA) [International Phonetic Association '99] established an inventory of sounds and provides a classification scheme based on place, manner, and voicing. The following table contains the official IPA phone chart.

abial	Labia	odental	De	ntal	Alve	colar	Postal	veolar	Retr	oflex	Pala	atal.	Ve	lar	Uve	ılar	Phary	ngeal	Glo	etal
b					t	d	36		t	þ	c	£	k	g	q	G			3	
m		ŋ	The second			n				η		ŋ		ŋ		N				
В						r				4				HILE		R				
			ď			ſ				τ		1				II.				
β	f	v	θ	ð	s	Z	l	3	Ş	Z,	ç	j	X	Y	χ	R	ħ	٢	h	f
					ł	ß														
		υ				ı				Ł		j		щ						
						1	i is			l		λ		L						

Figure 5.3: pulmonic consonants, [International Phonetic Association '99].

Vowels

So far, we have discussed consonantal sounds only. There is a similar classification scheme for vowels. Vowels are *voiced* sounds in almost all languages. The Japanese language is one of the languages having voiceless vowels between voiceless consonants. The characteristic features of vowels are produced in the oral cavity. There are basically three parameters used to characterize vowels:

- 1. Vertical position of the tongue

 There are three possible values for this attribute: low, middle, and high.
- 2. Horizontal position of the tongue

 The tongue can be in a front, central, or back position.
- 3. Lips rounding Rounded lips are used to produced sounds like /u/ or /o/ while unrounded lips are characteristic for sounds like /a/ or /i/.

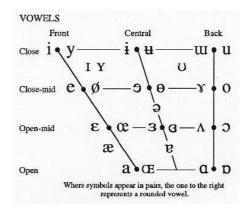


Figure 5.4: vowels, [International Phonetic Association '99].

5.2 Articulatory Modelling for ASR - a Review

There are several attempts for using articulatory phonetics in systems for automatic speech recognition (ASR). Ellen Eide [Eide 2001] used articulatory attributes to enhance the front-end of a speech recogniser. She trained a classifier based on Gaussian mixture models for the attributes. The output of these classifiers is then combined with the cepstral observation vector to form the front-end. The extended front-end was used to train new acoustic models. She observed an error reduction of up to 25% on car audio data. Li Deng [Deng '98] developed a framework based on neural networks and the extended Kalman filter. The Kalman filter was used to model the temporal structure of speech units, while the neural network induced a nonlinearity in the system. In the same work, he proposed the concept of trended HMM, whereby polynomials serve as trend functions describing the temporal structure of vocal tract resonances. Kirchhoff developed in her thesis [Kirchhoff '99] an approach using articulatory information for robust speech recognition. She used neural networks for classifying attributes and a second classifier to combine the attribute scores to a phone score. Furthermore, these scores can be combined on the HMM state level with a traditional system [Kirchhoff et al. 2000]. This is a similar approach to that used in the "multi-stream"-community, where different feature streams are used for computing acoustic scores. For example, streams can be used to model cepstral features and their delta's and delta-delta's separately [Rogina & Waibel '94]. The same stream technique can be used to build acoustic models with articulatory attributes. Metze proposed in [Metze & Waibel 2002] articulatory attributes with corresponding anti-attributes to form a flexible stream architecture. His approach achieved an error reduction of 15% on a dictation task, and 7% on a spontaneous scheduling task. The potential use of articulatory attributes for speaker adaptation is explored in [Metze & Waibel 2003]. The approach is based on the selection of speaker dependent attributes. The use of articulatory attributes to compensate for hyperarticulated effects is investigated in [Soltau et al. 2002a].

5.3 Hyperarticulation - Warping in an Articulatory Domain

As discussed in the first section, it is possible to obtain a complete description of phones by composites of attributes. More particularly, these attributes can represent multi-value structures such as place and manner of articulation or binary features such as voicing or rounding of lips. Moreover, multi-value attributes can be broken down into sets of binary attributes, e.g. manner of articulation can be described by the binary attributes plosive, nasal, fricative, and approximant. This transformation will obviously induce a correlation between the attributes¹. On the other hand, switching to binary attributes allows the creation of a unified view of hyperarticulated effects in an articulatory domain.

Algebraic Representation of Articulatory Attributes

Before we start to highlight the advantages of articulatory attributes in the context of hyperarticulation, it is necessary, or at least desirable, to establish a formalism for representing these units. Although a sort of phonological similarity measure is used in the form of a set of questions to generate the context decision tree, there is basically no inherent structure inside the set of phones used for ASR. Therefore, the algebraic term *set* is the adequate name for describing phones.

Coming now to the articulatory attributes, let us first introduce an abbreviation for the composites of articulatory attributes: CAA. A CAA can be seen as an element of a vector space V spanned over the articulatory attributes. The neutral element is a vector representing the absence of all attributes - corresponding to silence. A natural choice of the additive operation would be the binary OR relation. This choice would, however, conflict with one of the axioms for Abelian groups: For each element x there must exist an element y with $x \oplus y = e$, whereby e denotes the neutral element. This axiom cannot be fulfilled by a binary OR, whereas a concatenation of an addition and modulo function defines a valid associative

¹At this point of time it should be noted that articulatory attributes will not be used to enhance the front-end. In that case, this transformation step would conflict with the diagonal assumption for covariance modeling, even for semi-tied full covariances or similar approaches.

operation for groups. More interesting is the scalar operation \otimes . function \otimes maps a CAA v using a scalar α to a new CAA v'. This provides a framework for activating or deactivating certain attributes for a CAA. As we will see, a sequence of such scalar operations can be used for describing hyperarticulated effects. Having a more or less descriptive definition of the structure, a more formal definition follows now: An ordered set \mathcal{A} of attributes

$$\mathcal{A} = \{\alpha_1, ..., \alpha_n\}$$

allows to define a scalar field K

$$\mathbb{K} = 2^{\mathcal{A}} = \{ (x_1, ..., x_n) | x_i \in Z_2 \}$$

and finally a vector space defined by an Abelian group (V, \oplus) over \mathbb{K} together with a scalar operation \otimes :

$$V = \mathbb{K}$$

$$\oplus : V \times V \to V$$

$$x \oplus y = (x_1 + y_1, ..., x_n + y_n)$$

$$\otimes : \mathbb{K} \times V \to V$$

$$\alpha \otimes x = (\alpha_1 \wedge x_1, ..., \alpha_n \wedge x_n)$$

It should be noted that we used the fact that each field \mathbb{K} itself can be extended to a vector space V. Therefore, the scalar operation \otimes works in the same domain as the vector operation \oplus . Remembering that \oplus was defined via the + operation in Z_2 , it is easy to show that the tuple $(\mathbb{K}, V, \oplus, \otimes)$ satisfies the definition of a vector space. The reader may ask why we did not choose the vector space as $V' = 2^{\mathcal{A}}$ over a field $\mathbb{K}' = \mathcal{A}$ which would be more common. The disadvantage of such a definition is the scalar operation, or more exactly the domain $\mathbb{K}' \times V'$. This "trick" of choosing $V = \mathbb{K}$ allows both \oplus and \otimes to operate in the same domain. Moreover, the neutral element according to the \oplus operation can be interpreted as silence.

Basis Elements

The neutral element of V with respect to \oplus is denoted by e = (0, ..., 0). The inverse \bar{x} of an element x has the property of $x \oplus \bar{x} = e$. This requires setting $\bar{x} = x$. It is straightforward to show that $x \oplus x = e$ and additionally $e \oplus x = x$. The neutral element with respect to \otimes is set as E = (1, ..., 1), therefore $E \otimes x = x$.

A family $B = (b_i)_{i \in I}$ of vectors $b_i \in V$ forms a basis of V, if each vector $v \in V$ can be represented as a linear combination of b_i with respect to the operations \oplus and \otimes . Choosing $(b_i)_j = \delta_{ij}$ provides a basis enabling the creation of all elements in V, whereby δ denotes the Kronecker operator.

The basis elements are important vectors for describing hyperarticulated effects. These vectors can be used to represent a flipping of articulatory attributes. The operation $b_i \oplus x$ will exactly invert the attribute a_i of the vector x thanks to the modulo property of \oplus . Having a CAA v representing a canonical phone and v' produced in a hyperarticulated speaking mode, it is possible to describe the changes between v and v' as a sequence of \oplus operations using the basis elements b_i .

Metric

A metric of the articulatory vector space defines a similarity score. If all dimensions are treated as equivalent, an appropriate definition is given as follows:

$$|v| = \sum_{i} v_i$$

The distance of two vectors is, therefore, the sum of required basis elements for moving from one vector to another.

Correspondence between Phones and Articulatory Attributes

What is still missing is the discussion of the relationship between phones and CAAs. As discussed earlier, the inherent structure of phones and CAAs is different. Thus, a function mapping CAAs to phones will not be able to conserve the structure. In mathematical language, this function can not be considered to be a homomorphism. Despite the structure information,

there exists a CAA for each phone but not every CAA has a corresponding phone. What we can define is a partial function $f: P \to V$ to map phones to CAA's. This function f is injective but not surjective:

$$\forall u, v \in P : f(u) = f(v) \Rightarrow u = v$$

$$f(P) \neq V$$

The inverse function $f^{-1}: V \to P$ is not a partial function: the domain of f^{-1} is constrained on f(P), whereby $f(P) \subset V$. This shows already that the vector space V provides a richer language for describing acoustic events compared to the set P.

After the development of this mathematical formalism to describe articulatory attributes, it is time for an illustration of the above definitions using an example. The word doubts would be represented in a P domain as the following sequence : $/D//AW/^2/T//S/$. A sufficient³ set of articulatory attributes would cover the following elements:

$$\mathcal{A}_{place} = \{alveolar, bilabial, interdental\}$$
 $\mathcal{A}_{manner} = \{plosive, fricative\}$
 $\mathcal{A}_{vowel} = \{front, round\}$
 $\mathcal{A}_{global} = \{consonantal, voiced\}$
 $\mathcal{A} = \mathcal{A}_{place} \cup \mathcal{A}_{manner} \cup \mathcal{A}_{vowel} \cup \mathcal{A}_{global}$

The field \mathbb{K} consists of all possible combinations of elements in \mathcal{A} . The word doubts would, therefore, be represented as a vector sequence: $v_1v_2v_3v_4$, whereby the following definitions are used:

$$v_1 = (1, 0, 0, 1, 0, \cdot, \cdot, 1, 1)$$

$$v_2 = (\cdot, \cdot, \cdot, \cdot, \cdot, 1, 1, 0, 1)$$

$$v_3 = (0, 0, 1, 1, 0, \cdot, \cdot, 1, 0)$$

²The unit /AW/ denotes a diphthong describing a gliding vowel sound normally represented by two adjacent vowels.

 $^{^{3}}$ sufficient in the context of describing the word doubts.

$$v_4 = (1, 0, 0, 0, 1, \cdot, \cdot, 1, 0)$$

The dimensions correspond to the ordered list of attributes \mathcal{A} , e.g. the first dimension contains information about alveolar. For example, the vector v_1 corresponds to a sound with the activated attributes alveolar, plosive, voiced, and consonantal. Deactivated attributes are indicated by 0, and a dot tag is used for irrelevant attributes. This example demonstrates some of the advantages of representing acoustic units in the vector space V. The transition from one vector to the next vector is not an abrupt change, but some dimensions are not affected. For example, the consonantal attribute does not change from v_3 to v_4 . In the P domain, the same transition would be represented as a change from one element to a completely different element.

Disambiguating Errors: Contrastive Attributes

As we have seen in chapter 3, hyperarticulation is not a global effect. For example, the influence of hyperarticulation depends on the phone identity. It is desirable to analyse these effects with a finer granularity in order to understand the underlying principles of hyperarticulated speech.

The formalism developed in the previous section allows us now to model these effects with a much finer granularity. This section will introduce the idea of **contrastive attributes** which are a key concept for describing changes occurring while disambiguating recognition errors. A contrastive attribute is an attribute in the context of a word error which can be used to discriminate between the true and the recognised token. In a hyperarticulated speaking mode, such a contrastive attribute can be inverted to stress the mis-recognised part of the word. The following example should illustrate this process:

Again, we have the word doubts, but we add a silence unit at the end: /D//AW//T//S//SIL/. Let us now suppose that the word doubt was recognised, e.g. the recognised phone sequence is /D//AW//T//SIL/. In the vector space V, we have the vector sequences $doubts = v_1v_2v_3v_4v_5$ and $doubt = w_1w_2w_3w_4$.

Let us now perform an alignment between both vector sequences. The first part of the sequences are identical. The interesting part of this example starts at v_4 and w_3 respectively. Keeping in mind that v represents the observation and w the hypothesis, the observable variables belonging to v_3

		place			manner		vowel		global	
	alv	vel	int	plo	fri	fro	rnd	con	voi	
$doubts = v_1v_2v_3v_4v_5$										
v_1	1	0	0	1	0	•	•	1	1	
v_2				•		1	1	0	1	
v_3	0	0	1	1	0	•	•	1	0	
v_4	1	0	0	0	1	•	•	1	0	
v_5	0	0	0	0	0	0	0	0	0	
$doubt = w_1 w_2 w_3 w_4$										
w_1	1	0	0	1	0	•	•	1	1	
w_2				•		1	1	0	1	
w_3	0	0	1	1	0	•	•	1	0	
w_4	0	0	0	0	0	0	0	0	0	

Table 5.2: Contrastive Attributes: doubts vs. doubt.

and v_4 have to be mapped to the CAA w_3 . This is actually a little bit oversimplified, since segmentation issues are ignored so far. The vectors v_3 and w_3 are identical. The question that needs to be addressed is what would be a reaction to disambiguate v_4 and w_3 . The formalism developed so far allows a characterisation of the changes between v_4 and w_3 as follows:

$$v_4 = w_3 \oplus b_1 \oplus b_3 \oplus b_4 \oplus b_5$$

It should be noted that the basis vectors b_i do not represent the presence of articulatory attributes themselfes in context of \oplus operations, but the **inversion** of attributes with respect to a certain CAA. Taking w_3 as the recognised token and v_4 as the reference token, a hyperarticulated effect can be modeled by a translation vector *hyper* as follows:

$$w_3 = v_4 \oplus hyper hyper = b_1 \oplus b_3 \oplus b_4 \oplus b_5$$

We used here the fact that the inverse element is identical to the element itself. The vector hyper can only be interpreted in the context of the "starting point" w_3 . Decoding the vector components leads to the following in the articulatory domain:

- 1. deactivate alveolar
- 2. activate interdental
- 3. deactivate plosive
- 4. activate fricative

We can now *predict* what kind of changes will occur during hyperarticulation. In order to correct the mis-recognised word *doubt*, a hyperarticulated variant of *doubts* will exhibit *activated* attributes for interdental and fricative. On the other hand, attributes for alveolar, plosive, and voiced will be deactivated. To demonstrate that these predications will also actually occur in real utterances, we will anticipate some results from section 5.5.

Let an utterance u be represented as a sequence of observable feature vectors $o_1...o_t$, whereby t denotes the length of the utterance in terms of number of frames. The probability density functions for $P(o_t|a)$ are modeled by mixtures of Gaussian densities. The pdf's are used for defining the conditionals for the articulatory attributes a. In the same way, anti-models are available, e.g. $P(o_t|\bar{a})$. The models are trained in a speaker and speaking mode independent fashion. The conditionals are used to define a distance function:

$$\Delta(o_t, a) = \log P(o_t|a) - \log P(o_t|\bar{a})$$

Figure 5.5 shows two curves. The solid line represents the word doubts in a normal speaking mode. In a hyperarticulated speaking mode, the same word doubts results in the $\Delta(o_t, a)$ -curve shown by the dashed line. Both words were uttered by the same speaker. The hyperarticulated variant arose as a reaction resolving the recognition error doubts vs. doubt in the framework of the dialogue system described in section 3.2.

The input features o_t were computed with a front-end consisting of a filterbank analysis, inverse cosine transform, cepstral liftering, channel and speaker normalisation, linear discriminant analysis, and semi-tied full covariances. The models are trained via the Baum-Welch re-estimation procedure. An incremental growing of Gaussians approach was applied as well. The full SWB corpus was used to train the models. It should be noted that there is only one set of models: the GMMs are independent of the speaking mode.

Discussing now the figure 5.5, it can be seen that both curves are quite similar in the first half of the figure. The main changes occur actually in

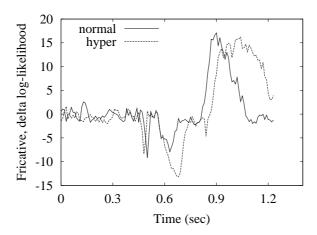


Figure 5.5: $\Delta(o_t, a)$ for attribute *Fricative* while pronouncing doubts, normally and hyperarticulated.

the range of 0.9 to 1.2 seconds. The $\Delta(o_t, a)$ -scores are much higher for the hyperarticulated word. In other words, the likelihood for being a fricative is increased in this area. This observation agrees perfectly with the theory of contrastive attributes in the vector space V. The concept of contrastive attributes led to the prediction that some attributes will be activated and deactivated in order to resolve recognition errors. Representing doubts and doubt as sequences of CAA's in the vector space V (see table 5.2) resulted in the prediction that the fricative attribute will be activated in a hyperclear speaking mode. On a phone level, this change can be interpreted as emphasising the missing /S/ sound.

Continuing with a second example, the figure 5.6 shows the $\Delta(o_t, a)$ scores for the plosive attribute. The data for this figure were extracted in the same way as described for the previous figure. The context is the same word confusion doubts vs. doubt and the utterances are the same as well. The dashed curve represents the hyperarticulated word, while the solid line shows the data obtained in a normal speaking mode. Similar to the first example, the changes occur in the last third. The $\Delta(o_t, a)$ -scores in the hyper-clear speaking mode are now much smaller than for normal speech. That means that the likelihood for being a plosive attribute is decreased. This observation is consistent with the predictions. The hyper vector describing the changes between w_3 and v_4 did predict a deactivated plosive attribute. On a phone

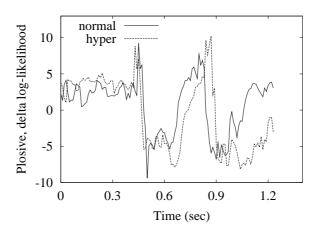


Figure 5.6: $\Delta(o_t, a)$ for attribute *Plosive* while pronouncing *doubts*, normally and hyperarticulated.

level, this change can be interpreted as de-emphasising the /T/ sound. The /T/ sound was actually not wrong, but the /T/ was not the final phone in doubts. To indicate there is another phone after /T/, the plosive attribute will be deactivated.

In summary, an algebraic representation of articulatory attributes was presented in this section. The phenomenon of hyperarticulation can be described as a warping in an articulatory vector space. The concept of contrastive attributes leads to predictions regarding which attributes will be activated or deactivated in order to react to recognition errors. Examples of word confusions reinforce the concept of contrastive attributes.

5.4 Statistical Modeling of Acoustic Events

So far, we indicated why articulatory attributes could provide a better framework for modeling hyperarticulated speech than pure phone based models. The next point is to discuss how articulatory attributes can contribute to a better recognition performance. The question that arises now is, therefore, how we can find a way from CAA's to observable features. There are several requirements: On a very abstract level, the models should capture exactly those features that are relevant for the problem. Task invariant features

should not reach the model level. A further principle for designing information systems is that similar information should be processed in a similar way [Vapnik '98]. Additionally, there must exist efficient training methods for estimating model parameters, and we should not overlook the fact that an efficient decoding algorithm is needed for searching for the best hypothesis with respect to the models.

Temporal Structure

The temporal structure of a word or a whole utterance can be considered as a trajectory in the vector space V. There are several ways for describing such a multi-dimensional trajectory, such as:

- 1. polynomial : $p(x) = \sum_{i} \alpha_i x^i$
- 2. recursion : $Z(k + 1) = \Phi Z(k) + U + W(k)$
- 3. sequence of sampling points

The first thing noted is, if we want to model words using CAA's, the temporal structure does not change compared to a traditional phone based approach. As a consequence, if a word is traditionally modeled as a sequence of phones $p_1...p_n$, then a corresponding representation in the vector space V could consist of $v_1...v_n$. These vectors can be interpreted as data points describing a trajectory in the vector space V. This would lead us to option three. This approach is quite related to the polynomial proposal. Whether a polynomial is represented as a number of coefficients or as a sequence of sampling points is only a technical question, but it does not change the modeling power.

Li Deng proposed in [Deng '98] a state-space model which is parameterised as a recursive state equation. This concept features a great flexibility and offers an alternative way for representing trajectories. But as mentioned before, there are several requirements for the models. One of them is the need of efficient training and decoding algorithms. To estimate the parameters for the recursive equation, an extended Kalman filter approach was chosen in [Deng '98]. This led to different optimisation criteria for the temporal structure and the emission probabilities. Secondly, plugging in these models into a viterbi decoder will create a series of questions.

Recapitulating the experiments on duration and pronunciation modeling in chapter 4, there is no indication that segments are inserted or deleted in a hyper-clear speaking mode. Hyper-clear speech exhibited longer segments, but the number of segments did not change. This suggests that it is valid to represent the temporal structure of hyperarticulated speech as a sequence of sampling points. Therefore, the temporal structure will be represented as a linear sequence of vectors and the sequence length corresponds to the number of phones for a given word. Thus, the example word doubts would look like this:

$$\begin{pmatrix}
1 \\
0 \\
0 \\
1 \\
0 \\
\cdot \\
\cdot \\
1 \\
1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\cdot \\
\cdot \\
\cdot \\
\cdot \\
1 \\
1 \\
0 \\
1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 \\
0 \\
1 \\
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
1 \\
0 \\
1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1 \\
0 \\
0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1 \\
0
\end{pmatrix}$$

$$\mathbf{D} \quad \mathbf{AW} \quad \mathbf{T} \quad \mathbf{S}$$

Emission Probabilities

The remaining problem is to find a model which computes conditional probabilities $P(o_t|\lambda, v)$ for elements v of the vector space V. The underlying model parameters are denoted by λ . The vector representation of the CAA's suggests separating the conditionals accordingly. The emission probabilities will, therefore, be computed using two levels of conditionals:

- 1. conditionals $P(o_t|\gamma, a)$ for articulatory attributes a
- 2. conditionals $P(o_t|\lambda, v)$ for $v \in V$

The advantage of this approach is the introduction of parameter sharing across the vectors v. The model parameters γ for an attribute α will be shared between those vectors relying on the same attribute α . The next section will explain in detail how the conditionals $P(o_t|\lambda,a)$ can be estimated using conventional training data. The interesting problem is how to obtain

 $P(o_t|\lambda, v)$ based on $P(o_t|\gamma, a)$. Assuming conditional independence, one way to define the probability functions would be:

$$P(o_t|\lambda, v) = \prod_i P(o_t|\gamma_i, v[i])$$

Now, some practical aspects will prevent us from using this definition as it is. In fact, a weighting factor w_i may be introduced to stress certain dimensions. Going to a log-domain to fit the dynamic range, we can define a score-function g instead:

$$g(o_t|v) = \sum_{i} w_i log P(o_t|\gamma_i, v[i])$$

It is obvious that introducing weighting factors will manipulate the probability mass:

$$\int \sum_{i} P(x|\gamma_i, v[i])^{w_i} dx \neq 1$$

Introducing constraints, such as $\sum_i w_i^K = L$ with constants K and L [Hernando '97] will not solve that problem. In fact, the function $g(o_t|v)$ is not a probability density function (pdf) in the log domain. There are two components in a speech recogniser where this non-pdf might have consequences. From a decoding point of view, the viterbi algorithm attempts to find the best hypothesis with respect to the acoustic and language models. In general, it does not matter if the scores rely on a pdf or not. Independent of the optimisation criterion, the decoder searches for the word sequence with the best score.

From a training point of view, the parameter γ_i can be estimated by optimising the ML criterion, since the conditionals $P(o_t|\gamma_i, v[i])$ are valid pdf's. On the other hand, the weighting factors w_i cannot be estimated by maximising the training likelihood. After a few transformation steps, maximising the Kullback-Leibler form would be equal to maximising a sum as:

$$f(w) = \sum_{i} w_i * k_i$$

with some dimension dependent terms k_i . These terms contain the likelihoods for $P(o|\gamma_i, v[i])$, whereby

$$P(o|\gamma_i, v[i]) \le P(o|\gamma_j, v[j]) \Rightarrow k_i \le k_j$$
.

It is trivial to show that solving that problem would end up in setting $w_i = 1$ for i with the highest likelihood. A second problem will arise, if state dependent weights are used. Since the probability mass is not equal to 1.0 anymore, the acoustic scores of different states cannot be compared. The decoding engine would, therefore, not be able to find the best word sequence.

Since there is not a maximum likelihood solution available, determining the weighting factors consists of a grid search minimising the error rate on a cross-validation set.

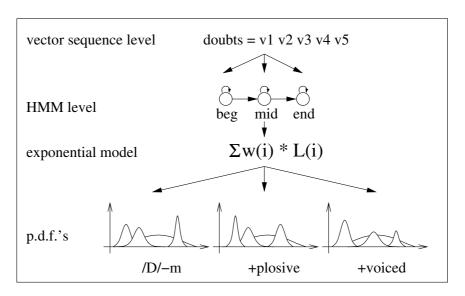


Figure 5.7: Acoustic models for vector elements (example *doubts*).

The overall architecture for computing acoustic scores is depicted in figure 5.7. As shown in this graph, the phones are not completely replaced by CAA's. For example, to compute the acoustic score for the middle state of /D/, the conditionals for /D/-m, +plosive, and +voiced will be computed. The traditional set of context dependent density functions for phonemes remain in this structure. Therefore, the stream weights balance the phoneme models and the articulatory attribute models. This structure allows for plugging in articulatory models in existing traditional phoneme based models.

The acoustic score computation relies on multiple pdf's which are combined on the log-likelihood level L(i).

What is not shown in this graph, but in fact is used, are anti-models. The absence of an attribute needs to be modeled, since the vector space representation is based on activated and deactivated attributes. For example, table 5.2 contains deactivated attributes. Suppose an acoustic score for a plosive needs to be computed. Then the probability density functions for all dimensions of the vector space must be evaluated. For any non-plosive attribute, the corresponding pdf must describe the absence of this attribute. Therefore, for each attribute, an anti-model is trained on all data not belonging to this attribute⁴. This allows us to describe the presence and absence of attributes using corresponding probability density functions. That means if there is a set $\mathcal{A}_{pos} = \{a_1...a_n\}$ of attributes, a second set $\mathcal{A}_{neg} = \{\bar{a}_1...\bar{a}_n\}$ is used as well. The field \mathbb{K} is therefore constructed as $\mathbb{K} = 2^{\mathcal{A}_{pos} \cup \mathcal{A}_{neg}}$.

5.5 Detection of Articulatory Properties

The overall picture of the system structure is now introduced. The next step is clarifying the details of how to obtain the conditionals $P(o_t|\lambda, v[i])$. There are basically three issues: the input feature space, labeled training data, and classifier topology.

Feature Space

As a general note to avoid confusion about the terminology, the term vector here occurs in different contexts, since there are two vector spaces. The articulatory vector space is denoted by V and is used on the model building level. From a preprocessing point of view, the input features o_t are vectors in the vector space as defined by the front-end.

Given the raw audio data, the input features o_t are transformed in order to eliminate problem invariant information. The essential point is to use the same front-end as for the phone models. As depicted in figure 5.7, the 0th dimension contains the acoustic scores from the phone models. Due to the drift of the total probability masses, it is crucial to ensure that the acoustic scores are comparable across the coefficients. Variance normalisation techniques have, for instance, a high impact on the average acoustic scores

⁴This small detail will significantly increase the training time (sic).

and, therefore, on the probability mass, since the density family is typically based on diagonal covariances⁵.

Training Data

There are several speech corpora available which come together with word transcripts. What is needed to train the conditionals $P(o_t|\lambda, v[i])$, are transcripts on an articulatory attribute level. For each feature vector o_t the corresponding set of attributes needs to be determined. There are multiple assignments possible. For example, a feature vector o_t can be assigned to the plosive class, the voiced class, and the non-vowel class at the same time. There are basically two ways for addressing the problem of training data. The first, and by far more expensive way, makes use of X-ray images [Thimm & Luettin '99]. This allows us to localise the positions of several articulators, such as tongue or jaw. An alternative way is converting the word transcripts. Using the function $f: P \to V$ as defined in the previous section, labeled training data can be obtained as follows:

1. phone alignments

The phone alignments, or more exactly state alignments, can be computed via the viterbi algorithm using the word transcript and a set of acoustic models. Alternatively, a forward-backward algorithm can be used to generate a list of phones with their posteriori's for each frame.

2. map phones to articulatory attributes

The phone alignments are then converted to a set of alignments for each articulatory attribute.

The second approach has the advantage that much more training data are available since any speech corpus can be used, but it requires that the mapping function is appropriately defined. Additionally, asynchronous changes of attributes are completely ignored. This is, however, also ignored by the vector representation itself. Thus, the decoding engine processes articulatory attributes in a synchronous way anyway, independently of whether or not the models were trained with asynchronous data.

⁵As the reader may have noticed, this section discusses a few engineering questions which are theoretically not necessary to consider here. The goal of this thesis is, however, also to show that error reductions are achievable. To that end, some practical aspects need to be addressed as well.

Density family

Gaussian mixture densities provide a well known instrument to model the conditionals $P(o|\gamma, \alpha)$. The same "similar acoustic score"-argument leads to diagonal covariances. The parameterisation is therefore:

$$P(o|\gamma,\alpha) = \sum_{i} \lambda_{i} \frac{e^{-\frac{1}{2}(o-\mu)^{-1}diag(\Sigma)^{-1}(o-\mu)}}{\sqrt{(2\pi)^{n}det(diag(\Sigma))}}$$

Experimental Setup

The front-end is identical to the setup described in section 3.3. The dimension of the feature vectors is 42. The density functions have a variable number of Gaussians due to the "merge&split"-training. The maximum number of components was set to 48. Three training corpora were investigated. The SWB corpus contains more than 280 hours of conversational telephony speech. The second corpus consists of the first part of the recordings collected with the simulated dialogue system. This database serves as a contrast experiment for the hyperarticulated training data since the set of training speakers are identical. Table 3.1 contains the details for the database for normal and hyperarticulated speech. The test set is the same as used in the previous experiments.

The set of articulatory attributes consists of plosive, nasal, fricative, lateral, approximant, bilabial, labial, labiodental, alveolar, velar, glottal, consonant, voiced, vowel. The likelihood is computed using the corresponding models and anti-models for each frame. The performance is measured as the binary classification accuracy averaged over the number of frames.

Results

The results for the detection experiments are split into three tables 5.3, 5.4, and 5.5. The experimental setup allows comparisons of the performance across attributes, speaking style, and training corpus.

attribute	SWB corpus		HSC-n	ormal	HSC-hyper	
	normal	hyper	normal	hyper	normal	hyper
plosive	90%	83%	91%	85%	92%	88%
nasal	88%	82%	93%	87%	93%	90%
fricative	95%	92%	93%	91%	92%	91%
lateral	85%	77%	89%	80%	89%	81%
approximant	90%	85%	88%	82%	87%	85%

Table 5.3: Detection accuracy for manner of articulation attributes.

attribute	SWB corpus		HSC-n	ormal	HSC-hyper		
	normal	hyper	normal	hyper	normal	hyper	
labial	83%	80%	88%	83%	86%	83%	
bilabial	84%	78%	87%	83%	88%	85%	
labiodental	90%	84%	80%	72%	78%	72%	
alveolar	88%	86%	87%	84%	88%	85%	
velar	82%	77%	81%	75%	84%	80%	
glottal	84%	79%	83%	81%	81%	86%	

Table 5.4: Detection accuracy for place of articulation attributes.

attribute	SWB corpus		HSC-n	ormal	HSC-hyper	
	normal	hyper	normal	hyper	normal	hyper
voiced	96%	96%	92%	92%	86%	83%
consonant	96%	93%	87%	83%	88%	85%
all	85%	81%	86%	81%	85%	83%

Table 5.5: Detection accuracy for global attributes.

Discussion

Differences between Attributes

The most adequate comparison between the classification performance of attributes can be done by analysing the fourth column. In that case, we have matched training and test conditions. The models were trained using the normal portion of the HSC training set and evaluated using the normal portion of the HSC test set. The average classification accuracy over all attributes is 86% (table 5.5). If no prior information is used, the performance by chance would be 50%. The statistical models are able to detect articulatory attributes with an acceptable accuracy. The detection performance for manner of articulation varied between 88% for approximants and 93% for fricatives and nasals. The classification performance for place of articulation is more inexact according to table 5.4. It should be noted that the results are based on a binary classification. It does not matter, therefore, how many attributes belong to place or manner or articulation.

Differences between Speaking Modes

The classification performance can be analysed across the speaking modes by comparing the fourth with the fifth column. The classification accuracy is 5% worse on hyperarticulated speech over all attributes. The impact of hyperarticulation on the detection accuracy is more or less equal for all attributes.

Differences Between Training Corpora

The first thing noted is that the detection accuracy for normal speech is Independent of the training corpus. The models trained of SWB have 85% on average, training with HSC-normal give 86%, and 85% is also obtained by estimating the parameters on HSC-hyper. The channel mismatch for the SWB models (8kHz, telephony speech) does not seem to degrade the detection accuracy. By comparing the fifth and the seventh columns, it can be seen that hyperarticulated training data improves the performance from 81% to 83%. In particular, velar and glottal sounds profit, from these data. On the other hand, the classification whether a sound is voiced or not becomes significantly worse.

5.6 Speech Recognition with Vector Models

In this section, the potential of vector models for reducing recognition errors for hyperarticulated speech will be examined. The acoustic score computation for the vector models was already discussed in section 5.4. Given the "acoustic score computer", an efficient decoding engine is needed to search for the string with the best score. As mentioned before, it is not necessary that these scores are real probabilities. The IBIS decoder [Soltau et al. 2001a] is a viterbi decoder based on the concept of linguistic polymorphism. The search network is constructed in a way that isomorphic subgraphs are eliminated. The vector models can just be plugged in the IBIS decoder and the corresponding acoustic scores will be used for the search process.

Experimental Setup

Two questions need to be addressed to define the experimental setup. The first question is which phone models should be used to serve as a baseline. Secondly, which set of attributes should be used to define the vector space.

Phone Models

The experimental setup for model separation in chapter 4 used adapted meeting models as a starting point. A comparison between the SWB and the meeting models has shown (see table 4.9) that the SWB models have lower error rates than the meeting models before adaptation. After adaptation, however, the meeting models give significantly better results. The adaptation is more effective for the meeting models, resulting in an error rate of 18.9% for normal speech and 29.9% for hyperarticulated speech. These results can be attributed to the fact that the SWB models have about 50% more model parameters to estimate. Consequently, the adapted meeting models will be used to set a baseline for validating the vector model concept since they provide a "harder" baseline.

Vector Space Basis

The vector space is partitioned into four sub-spaces. For each basis vector, a model and an anti-model is trained. For the full space (manner+place+vowel+global), the space is spanned by 19 basis elements as

Space	Basis
manner	plosive, fricative, lateral, approximant
place	alveolar, bilabial, glottal, labiodental, interdental, retroflex
vowel	high, mid, low, front, central, back, round
global	voiced, consonantal

Table 5.6: Basis Elements.

shown in table 5.6. The total number of Gaussians is for that case 1216. The number of additional parameters needed for the vector models is, therefore, only a small fraction compared to the phone models.

Results

A separate system was built for each of this sub-spaces in a first step investigating the capabilities of each attribute group. The baseline is the phone based model set. The full vector space uses all attributes.

acoustic models	coustic models Speaking Sty	
	normal	hyper
phone based models	18.9%	29.9%
manner based vector models	17.3%	22.2%
place based vector models	17.5%	22.3%
vowel based vector models	17.4%	22.4%
global based vector models	18.2%	23.2%
full vector space	17.8%	21.5%

Table 5.7: Recognition experiments with vector models (results in word error rates).

Discussion

The results in table 5.7 demonstrate the advantages of vector models for hyperarticulated speech. The error rate is reduced from 29.9% with the phone models to 21.5% with the full vector space. This is an improvement

of more than 28% relative. Moreover, this improvement on hyperarticulated speech does not cost performance for normal speech. The phone based models have an error rate of 18.9% for normal speech but the vector models achieve 17.8%.

The performance for the sub-vector spaces is surprisingly good. The vector space formed by manner of articulation gives most of the gain. This suggests that only a limited number of contrastive attributes are needed to correct a recognition error. The hyperarticulated translation vector is projected down to a sub-space, but the remaining components are sufficient enough for resolving the word confusion. There is no indication that one of these sub-spaces is more important than another for compensating hyperarticulation. The results for all sub-spaces are comparable.

5.7 Analysis of Contrastive Attributes

The concept of contrastive attributes introduced above leads to predictions of changes in the articulatory vector spaces. Examples in section 5.3 support this theory. In this section, an analysis of the contrastive attributes will be presented to answer the question whether the predictions really occur in a hyper-clear speaking mode.

In a first step, the predictions need to be computed. To that end, the phone sequences of the confused words were aligned. For example, if *doubts* was uttered and *doubt* was recognised, a dynamic programming technique is used to align the sequences /D/ /AW/ /T/ /S/ and /D/ /AW/ /T/. The alignment procedure produces a set of insertions, deletions, and substitution pairs. The phone substitutions will then be represented in the articulatory vector space to obtain the difference vectors as explained in section 5.3. This alignment is performed for all utterances in the test set. A set of predictions about attribute changes is extracted for each phone unit in each utterance. It should be noted that not all phone occurrences have associated predictions, e.g. correct phone alignment does not produce any predictions. For those phones with predictions, there are 3.5 predicted attribute changes on average.

The statistical models for articulatory attributes can now be used to examine if the predicted changes do occur. As mentioned earlier, models and anti-models are used. Thus, the score function for an attribute a is given by:

$$\Delta(o_t, a) = \log P(o_t|a) - \log P(o_t|\bar{a})$$

For each pair of normal and hyperarticulated utterances, the conditional probabilities for the attributes can be computed and $\Delta(o^H, a) - \Delta(o^N, a)$ gives the score difference between the hyperarticulated and normal data for an attribute a. The time alignments are obtained by the viterbi algorithm on the true transcripts. The scores are normalised by the number of frames, e.g. a longer duration of a hyperarticulated attribute does not change the score.

attributes changed as predicted	51.2%
attributed changed in the wrong direction	14.8%
attributes did not change	34.0%
at least one correct prediction per phone	78.6%

Table 5.8: Predictions of contrastive attributes.

The table 5.8 contains the results for how often contrastive attributes are correctly predicted. A wrong prediction does not necessarily mean that the predictor models were not able to detect the attribute change. Instead, it is also possible that the attribute change did not occur. For example, there are 3.5 predicted changes per phone on average, and it might also be possible that humans use only a limited number of attribute changes for disambiguation between the true and misrecognised word. Keeping this in mind, the results can be interpreted only as a correlation between predicted and observed changes and not as an indicator of the correctness of the predictor models.

The results in table 5.8 show that 51.2% attribute changes occured as predicted. Furthermore, at least one attribute change per phone is correctly predicted in 78.6% of all phone occurrences. In other words, the probability for observing a contrastive attribute in a hyper-clear speaking mode is 78.6%. More details are summarised in the tables 5.9 and 5.10. The prediction is very similar for all place and manner attributes. Only glottal sounds exhibit significantly less predicted changes.

Given the predictions, a recognition experiment can be performed by enforcing the contrastive attributes. The idea is to increase or decrease the weighting factors of the contrastive attributes in the acoustic score computation. This recognition run is a kind of "cheating experiment" since the

attribute	Prediction Probability
plosive	53.4%
nasal	53.0%
fricative	48.1%
lateral	50.6%
approximant	50.7%

Table 5.9: Predictions of contrastive manner of articulation attributes.

attribute	Prediction Probability
labial	55.8%
bilabial	55.3%
labiodental	52.7%
alveolar	53.4%
velar	59.2%
glottal	38.9%

Table 5.10: Predictions of contrastive place of articulation attributes.

contrastive attributes are obtained by an alignment of the confused words. The baseline is the system with the full vector space. The result of this experiment is shown in table 5.11. The error rate improves from 21.5% to 17.0% on the hyperarticulated data. The results on the normal data are only depicted for comparison reasons, but this experiment does not have an effect on those data. Instead of using true transcripts to obtain contrastive attributes, hypotheses from the corresponding normal utterances can be used. In this case, the experiment is no longer a "cheating experiment". As shown in table 5.11, enforcing attributes based on hypotheses leads to a recognition performance of 19.4% error rate. This is an improvement of 9.8% relative.

The analysis presented in this section gives evidence that changes due to a hyper-clear speaking mode can be explained by the concept of contrastive attributes. There is a correlation between the observed and the predicted attribute changes. Enforcing contrastive attributes improves the recognition performance significantly.

Contrastive Attributes	Speaking Style	
	normal	hyper
full vector space	17.8%	21.5%
enforced attributes (ref)	17.8%	17.0%
enforced attributes (hyp)	17.8%	19.4%

Table 5.11: Enforcing contrastive attributes (results in word error rate).

5.8 Vector Models and Model Selection

So far, hyperarticulated training data are not used in the context of articulatory vector spaces. This is remarkable because this means that hyperarticulation can be compensated mostly without collecting special training data.⁶ However, hyperarticulated training data are available for conducting training experiments. Model selection techniques as reported in chapter 4 made efficient use of such training data and led to significant error reduction.

In this section, we integrate the methods from chapter 4 into the articulatory vector space. Since the vector models rely on Gaussian mixture models, we can apply the same model separation technique as presented in chapter 4. The full vector space as described above is used for this experiment. Four combinations were investigated: phone vs. vector models and with or without model selection. The results are shown in table 5.12. The interesting numbers in table 5.12 are the error rates for hyperarticulated speech. The model selection for vector models does not work as well as for the phone models. Only a minor improvement from 21.5% to 20.8% is achieved by the selection of vector models. This is a rather small gain reduction compared to the phone models, where the error rate is decreased from 29.9% to 24.8%. It seems that recognition errors compensated by the articulatory vector space build a super-set of what model selection is able to repair. In summary, training data helps to compensate hyperarticulation as long as the model structure is not changed and invalid model assumptions can be "repaired" to a certain extent by collecting data. The vector models themselves led to significantly better error rates even without using hyperarticulated training data. Thus, using more appropriate models seems to be advantageous over

⁶Moreover, collecting hyperarticulated training data exhibits more difficulties compared to normal data collection procedures, since a special speaking mode is sought.

an approach based on fixing wrong model assumptions by collecting training data.

model	Phone 1	models	Vector	models
selection	normal hyper		normal	hyper
no	18.9% 29.9%		17.8%	21.5%
yes	18.0% 24.8%		17.5%	20.8%

Table 5.12: Vector models and model selection (results in word error rates).

5.9 Utterance Combination

Model selection via a likelihood criterion can be viewed as combining the output from different recognition runs: the same utterance is decoded several times with different acoustic models. This approach can be extended as follows. We use here the fact that the hyperarticulated utterance is indeed a repetition of the word sequence spoken previously. This fact suggests combining the decoding output from the normal and the corresponding hyperarticulated utterance. This means that the additional knowledge provided by the hyperarticulated variant might be used to improve the recognition of the normal utterance. This is a different strategy than in all previous experiments. All previous experiments were conducted so as to understand and to compensate hyperarticulated speech. In contrast, utterance combination attempts to improve the recognition of normal speech by using additional information provided by hyperarticulated speech.

The approach chosen is technically speaking simple and is based on a majority voting strategy. Both the normal and the corresponding hyperarticulated utterance will be decoded with two acoustic model sets. The model sets are the same as used in the previous section for model selection. This means that four hypotheses are available for each normal utterance. The final output will be selected by a majority voting without confidences.

The results are shown in table 5.13. The baseline setup uses the vector models with model selection. The error rate is measured on the normal data. The utterance combination makes use of the normal and the corresponding hyperarticulated utterance to determine the output for the normal utterance. The recognition performance is improved by 12.7% relative, namely

Utterance combination	Vector models
no	17.5%
yes	15.3%

Table 5.13: Utterance combination (results in word error rates on normal speech).

from 17.5% to 15.3%. It should be noted that this result is quite important with respect to human friendly human-computer speech interfaces. A hyperarticulated repetition can be used to improve the recognition performance significantly.

5.10 Summary

In summary, we have shown in this chapter how articulatory attributes can be used for recognition of hyperarticulated speech. The main items are:

- 1. Hyperarticulation occurs on a sub-phonetic level.
- 2. The articulatory vector space can be used as a framework for representing articulatory changes.
- 3. Contrastive attributes explain hyperarticulated variations in an articulatory domain. In 78% of all phone occurrences, at least one attribute changes as predicted by the means of contrastive attributes.
- 4. Articulatory vector models reduce drastically the recognition errors for hyperarticulated speech. A relative error reduction of 28% is achieved.
- 5. Model selection does not lead to a major error reduction in the context of articulatory vector spaces. Recognition errors compensated by the articulatory vector space build a super-set of what model selection is able to repair.
- 6. Utterance combination leads to a significant error reduction for normal speech. The additional use of corresponding hyperarticulated utterances resulted in an improvement of 12%.

Chapter 6

A perception study

In chapter 3 we discussed the definition of the term hyperarticulation. We chose the pragmatic, problem-oriented approach. The solution is based on the observation that hyperarticulation occurs as a natural reaction for humans facing recognition errors. The intention when using hyperarticulation is to disambiguate the spoken or intended word from the (mis-)recognised word. We also raised the question of how this approach fits human perception of hyperarticulation. In other words, the question is, how do humans judge the degree of hyperarticulation in our database. This question can be answered by conducting a perception study, which is presented in the following sections.

The data of the perception study serve also to validate the central statements of this thesis from a user point of view as opposed to more abstract criteria, such as word error rate:

- 1. Hyperarticulation is a huge problem for automatic speech recognition. The error rate increases significantly wherever hyperarticulated speech occurs.
- 2. The use of hyperarticulated training data reduces the error rate by a certain amount but is not able to solve the problem.
- 3. The articulatory vector space compensates for hyperarticulation. Acoustic models based on composites of articulatory attributes reduce the error rate for hyperarticulated speech drastically.

6.1 Experimental Setup

The experimental setup for the perception study follows [Shriberg et al. '92] and [Hirschberg et al. '99], in which the data's degree of hyperarticulation was labeled independently by two expert human labelers, who were familiar with acoustics and phonetics. Both were native speaker of English. The labeling procedure allowed breaks to split the process into multiple sessions. This was necessary since the whole procedure took about 4-5 times real-time.

The turns were presented in random order to neutralise any prior information for the classification. The random order ensured that the labeler had no information whether the turn had been recorded in error-repair mode or not, which would provide information about the amount of hyperarticulation to be expected.

To further improve the reliability of the procedure, the labeler were allowed to replay the turn as often they want. No discussion or information exchange was allowed between labelers during the perception study, to ensure they were labeling the data independently.

Figure 6.1: Perception Study: User Interface

The user interface for the perception study is depicted in picture 6.1. As indicated in the figure, there are three possible choices: "Not hyperarticulated", "some hyperarticulated", and "hyperarticulated". This scale is the same as used in the studies by [Shriberg et al. '92] and [Hirschberg et al. '99]. The instructions for the labeler included a description of typical characteristics for hyperarticulation, such as phonological features, slower speaking rate, increased pitch, intonation, or loudness.

6.2. RESULTS 105

6.2 Results

To avoid confusion for the different classes and categories, the naming convention applied in the following tables is: The term 'category' refers to the "error-repair" mode as described in chapter 3. There are two categories, 'normal' and 'hyper'. The term 'class' refers to the labels used for the perception study. There are three classes as described in the previous section, which are assigned the numerical values 0 ("not hyper"), 1 ("some hyper"), and 2 ("hyper").

Raw Data

The results of the perception study are summarised in the following table. Table 6.1 contains the raw data, i.e. the statistics for each class and labeler.

	class 0	class 1	class 2
labeler 1	775	803	1018
labeler 2	1332	662	602

Table 6.1: Counts for each class and labeler

Interlabeler Agreement

Before we can *use* the data of the perception study we have to *validate* the data of the perception study themselves. Pearson's correlation coefficient can be used to measure whether both labeler assign the scores to the utterances in a consistent way. The following values are obtained:

$$\mu_{normal} = 0.524, \quad t_{normal} = 20.81$$
 (6.1)

$$\mu_{hyper} = 0.823, \quad t_{hyper} = 54.97 \tag{6.2}$$

Therefore, the correlation between the labelers is significant at $\alpha = 0.01$.

Scores per category

We now can compare the labelers' scores with respect to the categories 'normal' and 'hyper', which refer to the "error-repair" mode. The arithmetic

average of class scores is defined as the overall score by combining the scores from each labeler. The following values are obtained:

$$\mu_{normal} = 0.48 \tag{6.3}$$

$$\mu_{hyper} = 1.25 \tag{6.4}$$

These results confirm that the data collected in the error-repair mode exhibit a high degree of hyperarticulation with respect to human perception. The labelers also perceived a small degree of hyperarticulation for the data collected in the normal mode.

6.3 Validation

Statement 1

The first statement to validate is: Hyperarticulation is a huge problem for automatic speech recognition. The error rate increases significantly at hyperarticulated speech.

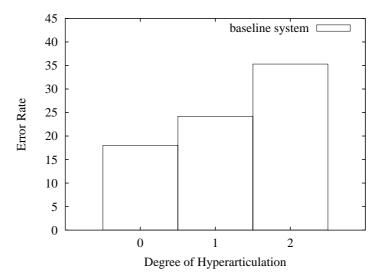


Figure 6.2: Baseline system: error rates with respect to human perception

Table 6.2 shows that the error rate increases drastically with an increasing degree of hyperarticulation. The number of recognition errors has more than doubled at degree 2 compared to degree 0.

107

Statement 2

The second statement to validate is: The use of hyperarticulated training data reduces the error rate to a certain amount, but is not able to solve the problem.

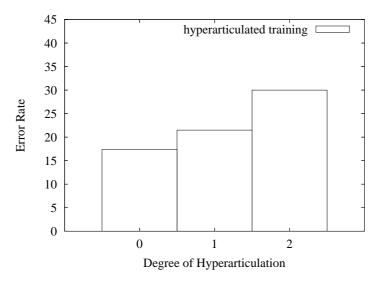


Figure 6.3: Training with hyperarticulated data: error rates with respect to human perception

Comparing the system after training with hyperarticulated data to the baseline system, we observe improved recognition of hyperarticulated utterances. However, the error rate is still much worse at degree 2 (30.0%) compared to degree 0 (17.4%).

Statement 3

The third statement to validate is: The articulatory vector space compensates for hyperarticulation. Acoustic models based on composites of articulatory attributes reduce the error rate for hyperarticulated speech drastically.

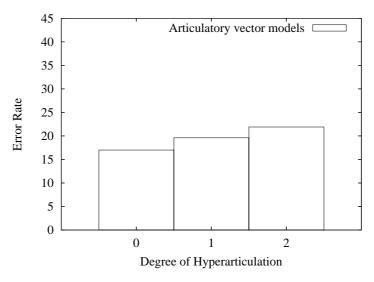


Figure 6.4: Articulatory vector models: error rates with respect to human perception

We observe a drastic improvement for hyperarticulated utterances. The error rate improves from 30.0% to 21.9% when using articulatory vector models. These numbers are in line with results in chapter 5.

Therefore, the central hypotheses outlined at the beginning of this chapter, which were derived through numerical analysis of standard criteria in ASR such as word error rate, have been confirmed by the outcome of the perception study.

Chapter 7

Investigations on Portability

All of the experiments described in the last chapters were conducted on a single corpus. Multiple training corpora were used, but all techniques were evaluated on the database for normal and hyperarticulated speech (HSC, table 3.1). In this chapter, experimental results are reported on other corpora, validating the concepts and algorithms developed for compensating hyperarticulated speech. In the first section, the techniques are validated on a different language. In the second section, the SUSAS (speech under simulated and actual stress) corpus is used to extend the work to other speaking modes.

7.1 Transfer to Other Languages

In this section, a comparison of hyperarticulated effects in English and German is given. The German corpus was obtained using a similar procedure as described in section 3.2. The recordings were collected with a simulated dialogue system. The subjects were seated in front of a computer and were asked to correct previous recognition errors. The subjects were not told that the system was a simulation only. Since the same setup was used for both data collections, a comparison of hyperarticulated effects across different languages is possible without the danger of uncontrolled side effects. The size of the German corpus is slightly larger than the English one.

A test set of 20 speakers is available, which consists of around 2 hours of speech (table 7.1). The baseline recogniser is derived from the Verbmobil-II evaluation system. Details of this system can be found in

	speaker	utterances		speech	
		normal	hyper	normal	hyper
train	61	5901	7309	154 min	235 min
test	20	1926	2374	47 min	72 min
all	81	7827	9683	202 min	307 min

Table 7.1: German Corpus for normal and hyperarticulated speech.

[Soltau et al. 2001b]. The system features state-of-the art acoustic modeling techniques and achieved first ranks in a series of ASR evaluations on the Verbmobil task. Initial experiments show a significant performance degradation for hyperarticulated speech on the German corpus.

Language	test set		
	normal hyper		
German	20.4%	27.1%	
English	18.9%	29.9%	

Table 7.2: Performance degradation at hyperarticulated speech for German and English.

For further experiments, we partitioned the test set into 4 sub-groups according to the error rate. An error rate change of more than 5% was considered as a significant change. The sub-groups are summarised in the table 7.3. A significantly worse recognition performance was observed for 12 out of 20 speakers. For two speakers, a significant improvement was observed, while for six other speakers non-significant changes were observed.

Phone Duration

An analysis of the phone durations gave results similar to those for the English corpus. The phone duration increased significantly. Furthermore, there is a correlation between phone duration and error rate as shown in table 7.4. Those speakers with a higher error rate in a hyper-clear speaking mode also exhibit 30% higher phone durations. On the other hand, speakers with a better recognition performance do not show higher phone durations.

speaker group	spk	speaking mode		Δ WER
depending on WER		normal	hyper	
significantly better	2	27.5%	20.4%	-7.1%
significantly worse	12	18.1%	28.6%	+10.5%
slightly better	3	18.6%	17.5%	+1.1%
slightly worse	3	20.7%	23.1%	-2.4%

Table 7.3: Sub test groups partitioned according to error rate changes

speaker group	increased duration				
depending on WER	voiced	unvoiced	plosives		
significantly better	3.9%	-0.4%	-4.2%		
significantly worse	25.7%	31.2%	24.4%		
slightly better	8.2%	3.9%	15.2%		
slightly worse	17.9%	22.4%	17.3%		

Table 7.4: Phone durations versus error rate

Pitch

To analyse the effect of pitch, a T-Test was performed using a quantile of $\alpha=0.05$. The test set was partitioned into three groups with respect to the F0 mean. The table 7.5 indicates a relation between an increased F0 mean and higher error rates. These results confirm those reached on the English corpus.

F0	speaker	speaking	Δ WER	
		normal hyper		
increasing	8	18.8%	29.3%	10.5%
decreasing	6	17.5%	18.6%	1.1%
changed not	6	22.2%	26.4%	4.2%

Table 7.5: Word error rate as a function of F0 changes

Model Selection

In the next experiment, the model selection was validated on the German corpus. A separate set of acoustic models was generated for each speaking mode using a regression tree of linear transforms. A likelihood criterion is used to select the appropriate model set. A comparison of the results for the German and English corpus is shown in table 7.6.

Language	Gerr	nan	English		
	normal	hyper	normal	hyper	
shared models	19.7%	25.7%	18.9%	29.9%	
model selection	18.5%	22.0%	18.0%	24.8%	

Table 7.6: Model Selection: Comparison of German and English

The relative improvement for model selection on the German corpus (13.4%) is smaller than for the English corpus (17.5%). However, the improvements on both corpora are significant.

Articulatory Vector Space

The articulatory vector space for the German language is constructed in a way similar to that for the English corpus. Manner of articulation is modeled by 5 dimensions (plosive, fricative, lateral, vibrant, nasal), and the place of articulation occupies four dimensions (labial, glottal, labiodental, velar). A separate attribute is used to distinguish diphthongs. The vowel dimensions are the same as for English. The vector models lead to significant improvements on hyperarticulated speech for both languages. The relative error reduction is 19.8% for German and 28.1% for English.

Language	Gerr	nan	English		
	normal	hyper	normal	hyper	
phone models	19.7%	25.7%	18.9%	29.9%	
vector models	16.5%	20.6%	17.8%	21.5%	

Table 7.7: Articulatory Vector Space: Comparison of German and English

Model Selection in an Articulatory Vector Space

The next experiment investigates the use of model selection in an articulatory vector space. Analogous to phone models, vector models can be separated into normal and hyperarticulated sub-sets. The experimental results in the table below show differences for German and English.

model	Gern	nan	English		
selection	normal hyper		normal	hyper	
no	16.5%	20.6%	17.8%	21.5%	
yes	16.4%	16.9%	17.5%	20.8%	

Table 7.8: Selection of vector models: Comparison of German and English

The gains from model selection and vector models are fully additive on the German corpus. The selection of phone models led to a 14.4% error reduction, vector models alone gave 19.8%, and all together there was a 34.2% error reduction (from 25.7% to 16.9%) on the German corpus. Moreover, the performance for normal and hyperarticulated speech was now nearly balanced.

Utterance Combination

To complete the experiments on hyperarticulated speech for German, the portability of utterance combination was investigated. Utterance combination was introduced in the previous chapter to combine knowledge from normal and hyperarticulated speech. It is based on a four-fold majority voting scheme. Both the normal and the corresponding hyperarticulated utterance will be decoded using two acoustic model sets. This means that four hypotheses are available for each normal utterance. The two model sets are the same as in the previous experiment (table 7.8).

Utterance Combination	German	English
No	16.4%	17.5%
Yes	14.0%	15.3%

Table 7.9: Utterance combination for German and English.

As shown in table 7.9, utterance combination reduces the error rate significantly for both languages. The relative improvement is 14.6% for German and 12.5% for English. The better results for German can be attributed to a smaller gap in recognition performance between normal and hyperarticulated speech for German (16.4% for normal, 16.9% for hyper) compared to English (17.5% for normal, 20.8% for hyper).

It can be concluded that hyperarticulation occurs both in German and English and has similar effects. Articulatory vector spaces, model selection, and utterance combination gave significant improvements on hyperarticulated speech for both languages.

7.2 Transfer to Other Speaking Modes

The SUSAS (speech under actual and simulated stress) corpus [Hansen et al. '98] allows for studying variations across different speaking styles and emotions. The database contains multiple domains, such as talking styles, stress under workload, and psychiatric analyses. There are multiple domains:

• Talking style domain

Data from the talking style domain were collected by the Lincoln Laboratory. The speaking modes are : slow, fast, soft, loud, angry, and question. The vocabulary consists of 35 aircraft communication words. The selected words are typically difficult to recognise, e.g. six-fix, white-wide, three-thirty, and eight-eighty. There were nine subjects. Each word was produced 28 times by each subject. The total number of tokens was 8820.

• Stress under workload

The vocabulary and the speakers are the same as for the talking style domain. The task consists of a "response to a marginally stable, single-pole system". The degree of instability can be adjusted to create different levels of workload. The corpus contains also some data for investigating the Lombard effect.

More details about the corpus can be found in [Hansen et al. '98]. Despite the small vocabulary, the big advantage is that the corpus allows for

investigations across different speaking modes since the test speakers and vocabulary are identical for all speaking modes. These speaking styles exhibit changes in duration, pitch, intensity, and spectrum [Hansen '96].

Since the vector models are designed to capture articulatory changes in different speaking modes, we investigate the effectiveness of our approach on the SUSAS corpus.

Experimental Setup

The SWB system [Soltau et al. 2003] is used as a baseline, since the SUSAS data are sampled at 8 kHz which fit the SWB models. This system features several acoustic normalisation and adaptation techniques, as well as crossword contexts and penta-phone models. The parameters were trained using a mixing-up procedure. Furthermore, a maximum mutual information criterion was applied. Phone dependent semi-tied full covariances are used as well. The phone models make use of more than 288,000 Gaussian densities.

The vector models were built as described in the previous chapter. The full vector space is used and the models are trained on the SWB corpus. The basis of the vector space consists of: plosive, fricative, lateral, approximant, alveolar, bilabial, glottal, labiodental, interdental, retroflex, high, mid, low, front, central, back, round, voiced, and consonantal. No training was performed on the SUSAS corpus. The total number of Gaussians for attribute modeling is 1,216. The number of additional parameters needed for the vector models is, therefore, only a small fraction compared to the phone models.

Results

The results are summarised in table 7.10. The categories neutral, slow, fast, soft, angry, loud, and question belong to the first domain of the SUSAS corpus. Moderate (c50) and high (c70) workload stress and the Lombard category originate from the second domain.

Discussion

There is clear evidence that the vector models perform substantially better than the phone models on most of the categories, in particular for speech under workload stress and slow speech. No special optimisation was performed

style	phone models	vector models	improvement
neutral	7.0%	6.6%	6.7%
slow	22.5%	18.4%	18.2%
fast	12.5%	12.4%	0.8%
soft	10.6%	9.7%	8.5%
loud	21.1%	22.2%	-5.2%
angry	28.3%	25.9%	8.5%
question	9.7%	8.9%	8.2%
stress (c50)	8.4%	7.0%	16.6%
stress (c70)	7.0%	6.0%	14.3%
Lombard	12.2%	11.7%	4.1%

Table 7.10: Comparison of phone and vector models on the SUSAS corpus (error rates).

for these categories, e.g. the setup is identical to the one for hyperarticulated speech. The results confirm the effectiveness of the vector models with articulatory attributes.

Chapter 8

Conclusions

We showed in this thesis that it is important to examine how automatic speech recognition is being used for real world applications. Humans switch to a hyper-clear speaking mode as a natural reaction to resolve word confusions in a dialogue system. Current state-of-the-art acoustic modeling techniques fail to capture hyperarticulated effects due to invalid model assumptions. Therefore, hyperarticulation causes an increased word error rate contrary to the user's expectations. To allow more natural human-to-machine interactions, automatic speech recognition systems must be able to deal with such effects.

To understand why hyperarticulated speech is hard to recognise, we analysed the unique features of this speaking mode. The acoustic-articulatory space of hyperarticulated speech differs from canonical speech, particularly with respect to phone duration, pitch contour, and formant frequencies. As a consequence, the characteristics of hyperarticulated speech will not be covered by the parameters of canonical phone models. The results of the analysis indicate that hyperarticulated effects occur on a sub-phonetic level in an articulatory domain. Therefore, standard acoustic modeling techniques using phones as base units cannot compensate for such effects.

This thesis has presented novel techniques for compensating for hyperarticulated effects in automatic speech recognition. The error rate was reduced by more than 28% using acoustic models based on an articulatory vector space. The vector model consists of probability density functions for each dimension. An exponential combination of the underlying function leads to a score function for the speech events. The articulatory vector space allows the definition of an elegant representation of changes in a hyper-clear speaking

mode. The concept of contrastive attributes explains hyperarticulation as an inversion of those attributes which discriminate between the spoken and the recognised word. This allows us to define a translation vector for modeling hyperarticulated changes from a canonical pronunciation and therefore allows the prediction of hyperarticulated effects. The phenomena of hyperarticulation can then be interpreted as a warping of trajectories in an articulatory vector space. These composites of articulatory and phonetic units can be trained via the Baum-Welch algorithm maximising the training likelihood. The articulatory models can be trained on shared data from different phones and therefore allow a better estimation of speaking mode invariant speech characteristics.

Another important outcome of this thesis is that hyperarticulated speech provides additional knowledge for improving the recognition of normal speech. A combination of normal with corresponding hyperarticulated utterances results in a significant error reduction. The utterance combination is based on a majority voting scheme using multiple utterances and models. The error decreased from 17.5% to 15.3%, a relative improvement of 12.5%. It should be noted that this result is quite important with respect to human-friendly human-computer speech interfaces. A hyperarticulated repetition can be used to improve the recognition performance significantly.

In further experiments, we investigated the efficient use of hyperarticulated training data. Model selection triggered by a likelihood criterion achieved an error reduction of 17%. However, articulatory vector models outperformed model selection significantly. Invalid model assumptions cannot be "repaired" by using hyperarticulated training data. Furthermore, we investigated the use of speaking mode dependent decision trees to capture hyperarticulated effects. These decision trees were trained on normal- and hyper-articulated data. Based on a maximum likelihood criterion, acoustic models can be specialised to a certain speaking style. These experiments showed that models related mainly to the place of articulation were separated into speaking style dependent sub-models. An error reduction of 9% was obtained by these specialised acoustic models.

In order to investigate the capabilities of the compensation techniques, we extended the experiments from English to other languages and speaking styles. On both German and English, similar performance degradations were observed in a hyperarticulated speaking mode. Pitch, formants, and phone durations exhibit similar changes. The articulatory vector space for German is constructed using the same procedure as for English. The vector models

achieved significant improvements on both languages. Experiments on the SUSAS database (speech under simulated and actual stress) confirmed the effectiveness of the developed modeling techniques for several other speaking modes, such as speech under stress, or emotional speech.

Future Work

Although many questions regarding hyperarticulation and articulatory attributes are addressed in this thesis, several extensions of this work are possible. First, hyperarticulation might also occur in different scenarios. In this thesis, we investigated hyperarticulated effects in the context of error recovery strategies. The effects may vary to a certain extent across different scenarios. For example, an analysis of hyperarticulation in different speaking styles was presented in [Köster 2001], where hyperarticulated effects for words, sentences, and dialogues were studied.

Another interesting question is whether hyperarticulated speech can lead to improved automatic speech recognition. Hyperarticulated speech improves the intelligibility for humans as was demonstrated in [Picheny et al. '86] for hearing impaired people. Therefore, hyperarticulated speech might have the potential to produce lower error rates also for automatic speech recognisers, if the contrast between normal and hyperarticulated speech was useful for achieving improvements. The experiment with enforcing contrastive attributes in chapter 5 suggests that contrastive attributes indeed contain additional information.

From a mathematical point of view, it is not satisfying to work with non-probability density functions in the articulatory vector space. It can not be guaranteed that the probability mass of the combined PDFs sum up to one. A mass normalisation based on fixed weights is not sufficient. What is needed is an integrated solution for estimating the weights and the normalisation. A reliable procedure for weight estimation would also be beneficial for speaker adaptation. For example, the potential use of attribute selection for speaker adaptation was studied in [Metze & Waibel 2003]. Weight estimation in combination with context and mode dependent attributes would provide a more powerful framework for modeling of speech events.

Appendix A

Phoneset

PHONES @ +AH +CL +GE +GH +H# +LS +MU +PA +UH +UM AA AE AH AO AW AX

AXR AY B CH D DH DX EH ER EY F G HH IH IX IY JH K L M N NG OW

P R S SH SIL T TH UH UW V W Y Z

NOISES +AH +CL +GE +GH +H# +LS +MU +PA +UH +UM

HUMAN-NOISES +AH +GH +H# +LS +UH +UM

SILENCES SIL

CONSONANT P B F V TH DH T D S Z SH CH JH K G HH M N NG R Y W L ER DX AXR

CONSONANTAL PBFVTH DHT DSZSHCHJHKGHHMNNG DX

OBSTRUENT P B F V TH DH T D S Z SH CH JH K G

SONORANT M N NG R Y W L ER AXR DX

SYLLABIC AY EY IY AW OW EH IH AO AE AA AH UW UH IX AX ER AXR

VOWEL AY EY IY AW OW EH IH AO AE AA AH UW UH IX AX

DIPHTHONG AY EY AW OW

CARDVOWEL IY IH EH AE AA AH AO UH UW IX AX

VOICED B D G JH V DH Z M N NG W R Y L ER AY EY IY AW OW EH IH AO AE

AA AH UW UH DX AXR IX AX

UNVOICED P F TH T S SH CH K

CONTINUANT F TH S SH V DH Z W R Y L ER

DEL-REL CH JH

LATERAL L

ANTERIOR PTBDFTHSSHVDHZMNWYLDX

CORONAL T D CH JH TH S SH DH Z N L R DX

APICAL T D N DX
HIGH-CONS K G NG W Y
BACK-CONS K G NG W

LABIALIZED R W ER AXR

STRIDENT CH JH F S SH V Z

SIBILANT S SH Z CH JH

BILABIAL P B M W

LABIODENTAL F V

LABIAL PBMWFV

INTERDENTAL TH DH

ALVEOLAR-RIDGE T D N S Z L DX

ALVEOPALATAL SH CH JH

ALVEOLAR T D N S Z L SH CH JH DX

RETROFLEX R ER AXR

PALATAL Y

VELAR K G NG W

GLOTTAL HH ASPIRATED HH

STOP PBTDKGMNNG

PLOSIVE P B T D K G

FLAP DX NASAL M N NG

FRICATIVE F V TH DH S Z SH HH

AFFRICATE CH JH APPROXIMANT RLYW LAB-PL ΡВ ALV-PL T D K G VEL-PL P T K VLS-PL VCD-PL B D G F V LAB-FR DNT-FR TH DH ALV-FR SH

VLS-FR F TH SH VCD-FR V DH

ROUND AO OW UH UW AW OW HIGH-VOW IY IH UH UW IX

MID-VOW EH AH AX LOW-VOW AA AE AO FRONT-VOW IY IH EH AE CENTRAL-VOW AH AX IX

BACK-VOW	AA	ΑO	UH	UW
TENSE-VOW	ΙY	UW	ΑE	

LAX-VOW IH AA EH AH UH

ROUND-VOW AO UH UW REDUCED-VOW IX AX REDUCED-CON AXR

REDUCED IX AX AXR LH-DIP AY AW OW EY MH-DIP BF-DIP AY AW OW Y-DIP AY EY W-DIP AW OW ROUND-DIP AW OW LIQUID-GLIDE L R W Y W-GLIDE UW AW OW W

 $\begin{array}{ccc} \text{LIQUID} & & \text{L R} \\ \text{LW} & & \text{L W} \end{array}$

Y-GLIDE IY AY EY Y LQGL-BACK L R W

Appendix B

Training Data

2481	2482	2483	2484	2485	2486	2487	2488	2489	2490
2491	2492	2493	2494	2495	2496	2497	2498	2499	2500
2501	2502	2503	2504	2505	2506	2507	2508	2509	2510
2511	2512	2513	2514	2515	2516	2517	2518	2519	2520
2521	2522	2523	2524	2525	2526	2527	2528	2529	2530
2531	2532	2533	2534	2535	2536	2537	2538	2539	2540
2541	2542	2543	2544	2545	2546	2547	2548	2549	2550
2551	2552	2553	2554	2555	2556	2557	2558	2559	2560
2561	2562	2563	2564	2565	2566	2567	2568	2569	2570
2571	2572	2573	2574	2575	2576	2577	2578	2579	2580
2581	2582	2583	2584	2585	2586	2587	2588	2589	2590
2591	2592	2593	2594	2595	2596	2597	2598	2599	2600
2601	2602	2603	2604	2605	2606	2607	2608	2609	2610
2611	2612	2613	2614	2615	2616	2617	2618	2619	2620
2621	2622	2623	2624	2625	2626	2627	2628	2629	2630
2631	2632	2633	2634	2635	2636	2637	2638	2639	2640
2641	2642	2643	2644	2645	2646	2647	2648	2649	2650
2651	2652	2653	2654	2655	2656	2657	2658	2659	2660
2661	2662	2663	2664	2665	2666	2667	2668	2669	2670
2671	2672	2673	2674	2675	2676	2677	2678	2679	2680
2681	2682	2683	2684	2685	2686	2687	2688	2689	2690
2691	2692	2693	2694	2695	2696	2697	2698	2699	2700
2701	2702	3683	3684	3685	3686	3687	3688	3689	3690
3691	3692	3693	3694	3695	3696	3697	3698	3699	3700
3701	3702	3703	3704	3705	3706	3707	3708	3709	3710

3711	3712	3713	3714	3715	3716	3717	3718	3719	3720
3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
3731	3732	3733	3734	3735	3736	3737	3738	3739	3740
3741	3742	3743	3744	3745	3746	3747	3748	3749	3750
3751	3752	3753	3754	3755	3756	3757	3758	3759	3760
3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
3771	3772	3773	3774	3775	3776	3777	3778	3779	3780
3781	3782	3783	3784	3785	3786	3787	3788	3789	3790
3791	3792	3793	3794	3795	3796	3797	3798	3799	3800
3801	3802	3803	3804	3805	3806	3807	3808	3809	3810
3811	3812	3813	3814	3815	3816	3817	3818	3819	3820
3821	3822	3823	3824	3825	3826	3827	3828	3829	3830
3831	3832	3833	3834	3835	3836	3837	3838	3839	3840
3841	3842	3843	3844	3845	3846	3847	3848	3849	3850
3851	3852	3853	3854	3855	3856	3857	3858	3859	3860
3861	3862	3863	3864	3865	3866	3867	3868	3869	3870
3871	3872	3873	3874	3875	3876	3877	3878	3879	3880
3881	3882	3883	3884	3885	3886	3887	3888	3889	3890
3891	3892	3893	3894	3895	3896	3897	3898	3899	3900
3901	1461	1462	1463	1464	1465	1466	1467	1468	1469
1470	1471	1472	1473	1474	1475	1476	1477	1478	1479
1480	1481	1482	1483	1484	1485	1486	1487	1488	1489
1490	1491	1492	1493	1494	1495	1496	1497	1498	1499
1500	1501	1502	1503	1504	1505	1506	1507	1508	1509
1510	1511	1512	1513	1514	1515	1516	1517	1518	1519
1520	1521	1522	1523	1524	1525	1526	1527	1528	1529
1530	1531	1532	1533	1534	1535	1536	2677	2678	2679
2680	2681	2682	2683	2684	2685	2686	2687	2688	2689
2690	2691	2692	2693	2694	2695	2696	2697	2698	2699
2700	2701	2702	2703	2704	2705	2706	2707	2708	2709
2710	2711	2712	2713	2714	2715	2716	2717	2718	2719
2720	2721	2722	2723	2724	2725	2726	2727	2728	2729
2730	2731	2732	2733	2734	2735	2736	2737	2738	2739
2740	2741	2742	2743	2744	2745	2746	2747	2748	2749
2750	2751	2752	2753	2754	2755	2756	2757	2758	2759
2760	2761	2762	2763	2764	2765	2766	2767	2768	2769
2770	2771	2772	2773	2774	2775	2776	2777	2778	2779
2780	2781	2782	2783	2784	2785	2786	2787	2788	2789

2790	2791	2792	2793	2794	2795	2796	2797	2798	2799
2800	2801	2802	2803	2804	2805	2806	2807	2808	2809
2810	2811	2812	2813	2814	2815	2816	2817	2818	2819
2820	2821	2822	2823	2824	2825	2826	2827	2828	2829
2830	2831	2832	2833	2834	2835	2836	2837	2838	2839
2840	2841	2842	2843	2844	2845	2846	2847	2848	2849
2850	2851	2852	2853	2854	2855	2856	2857	2858	2859
2860	2861	2862	2863	2864	2865	2866	2867	2868	2869
2870	2871	2872	2873	2874	2875	2876	2877	2878	2879
2880	2881	2882	2883	2884	2885	2886	2887	2888	2889
2890	2891	2892	2893	2894	2895	2896	2897	2898	2899
2900	2901	2902	2903	2904	2905	2906	2907	2908	2909
2910	2911	2912	2913	2914	2915	2916	2917	2918	2919
2920	2921	2922	2923	2924	2925	2926	2927	2928	2929
2930	2931	2932	2933	2934	2935	2936	2937	2938	2939
2940	2941	2942	2943	2944	2945	2946	2947	2948	2949
2950	2951	2952	2953	2954	2955	2956	2957	2958	2959
2960	2961	2962	2963	2964	2965	2966	2967	2968	2969
2970	2971	2972	2973	2974	2975	2976	2977	2978	2979
2980	2981	2982	2983	2984	2985	2986	2703	2704	2705
2706	2707	2708	2709	2710	2711	2712	2713	2714	2715
2716	2717	2718	2719	2720	2721	2722	2723	2724	2725
2726	2727	2728	2729	2730	2731	2732	2733	2734	2735
2736	2737	2738	2739	2740	2741	2742	2743	2744	2745
2746	2747	2748	2749	2750	2751	2752	2753	2754	2755
2756	2757	2758	2759	2760	2761	2762	2763	2764	2765
2766	2767	2768	2769	2770	2771	2772	2773	2774	2775
2776	2777	2778	2779	2780	2781	2782	2783	2784	2785
2786	2787	2788	2789	2790	2791	2792	2793	2794	2795
2796	2797	2798	2799	2800	2801	2802	2803	2804	2805
2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
2816	2817	2818	2819	2820	2821	2822	2823	2824	2825
2826	2827	2828	2829	2830	2831	2832	2833	2834	2835
2836	2837	2838	2839	2840	2841	2842	2843	2844	2845
2846	2847	2848	2849	2850	2851	2852	2853	2854	2855
2856	2857	2858	2859	2860	2861	2862	2863	2864	2865
2866	2867	2868	2869	2870	2871	2872	2873	2874	2875
2876	2877	2878	2879	2880	2881	2882	2883	2884	2885

2886	2887	2888	2889	2890	2891	2892	2893	2894	2895
2896	2897	2898	2899	2900	2901	2902	2903	2904	2905
2906	2907	2908	2909	2910	2911	2912	2913	2914	2915
2916	2917	2918	2919	2920	2921	2922	2923	2924	2925
2926	2927	2928	2929	2930	2931	2932	2933	2934	2935
2936	2937	2938	4136	4137	4138	4139	4140	4141	4142
4143	4144	4145	4146	4147	4148	4149	4150	4151	4152
4153	4154	4155	4156	4157	4158	4159	4160	4161	4162
4163	4164	4165	4166	4167	4168	4169	4170	4171	4172
4173	4174	4175	4176	4177	4178	4179	4180	4181	4182
4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
4193	4194	4195	4196	4197	4198	4199	4200	4201	4202
4203	4204	4205	4206	4207	4208	4209	4210	4211	4212
4213	4214	4215	4216	4217	4218	4219	4220	4221	4222
4223	4224	4225	4226	4227	4228	4229	4230	4231	4232
4233	4234	4235	4236	4237	4238	4239	4240	4241	4242
4243	4244	4245	4246	4247	4248	4249	4250	4251	4252
4253	4254	4255	4256	4257	4258	4259	4260	4261	4262
4263	4264	4265	4266	4267	4268	4269	4270	4271	4272
4273	4274	4275	4276	4277	4278	4279	4280	4281	4282
4283	4284	4285	4286	4287	4288	4289	4290	4291	4292
4293	4294	4295	4296	4297	4298	4299	4300	4301	4302
4303	4304	4305	4306	4307	4308	4309	4310	4311	4312
4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
4323	4324	4325	4326	4327	4328	4329	4330	4331	4332
4333	4334	4335	4336	4337	4338	4339	4340	4341	4342
4343	4344	4345	4346	4347	4348	4349	4350	4351	4352
4353	4354	4355	4356	4357	4358	4359	0384	0385	0386
0387	0388	0389	0390	0391	0392	0393	0394	0395	0396
0397	0398	0399	0400	0401	0402	0403	0404	0405	0406
0407	0408	0409	0410	0411	0412	0413	0414	0415	0416
0417	0418	0419	0420	0421	0422	0423	0424	0425	0426
0427	0428	0429	0430	0431	0432	0433	0434	0435	0436
0437	0438	0439	0440	0441	0442	0443	0444	0445	0446
0447	0448	0449	0450	0451	0452	0453	0454	0455	0456
0457	0458	0459	0460	0461	0462	0463	0464	0465	0466
0467	0468	0469	0470	0471	0472	0473	0474	0475	0476
0477	0478	0479	0480	0481	0482	0483	0484	0485	0486

0487	0488	0489	0490	0491	0492	0493	0494	0495	0496
0497	0498	0499	0500	0501	0502	0503	0504	0505	0506
0507	0508	0509	0510	0511	0512	0513	0514	0515	0516
0517	0518	0519	0520	0521	0522	0523	0524	0525	0526
0527	0528	0529	0530	0531	0532	0533	0534	0535	0536
0537	0538	0539	0540	0541	0542	0543	0544	0545	0546
0547	0548	0549	0550	0551	0552	0553	0554	0555	0556
0557	0558	0559	0560	0561	0562	0563	0564	0565	0566
0567	0568	0569	0570	0571	0572	0573	0574	0575	0576
0577	0578	0579	0580	0581	0582	0583	0584	0585	0586
0587	0588	0589	0590	5675	5676	5677	5678	5679	5680
5681	5682	5683	5684	5685	5686	5687	5688	5689	5690
5691	5692	5693	5694	5695	5696	5697	5698	5699	5700
5701	5702	5703	5704	5705	5706	5707	5708	5709	5710
5711	5712	5713	5714	5715	5716	5717	5718	5719	5720
5721	5722	5723	5724	5725	5726	5727	5728	5729	5730
5731	5732	5733	5734	5735	5736	5737	5738	5739	5740
5741	5742	5743	5744	5745	5746	5747	5748	5749	5750
5751	5752	5753	5754	5755	5756	5757	5758	5759	5760
5761	5762	5763	5764	5765	5766	5767	5768	5769	5770
5771	5772	5773	5774	5775	5776	5777	5778	5779	5780
5781	5782	5783	5784	5785	5786	5787	5788	5789	5790
5791	5792	5793	5794	5795	5796	5797	5798	5799	5800
5801	5802	5803	5804	5805	5806	5807	5808	5809	5810
5811	5812	5813	5814	5815	5816	5817	5818	5819	5820
5821	5822	5823	5824	5825	5826	5827	5828	5829	5830
5831	5832	5833	5834	5835	5836	5837	5838	5839	5840
5841	5842	5843	5844	5845	5846	5847	5848	5849	5850
5851	5852	5853	5854	5855	5856	5857	5858	5859	5860
5861	5862	5863	5864	5865	5866	5867	5868	5869	5870
5871	5872	5873	5874	5875	5876	5877	5878	5879	5880
5881	5882	5883	5884	5885	5886	5887	5888	5889	5890
5891	5892	2372	2373	2374	2375	2376	2377	2378	2379
2380	2381	2382	2383	2384	2385	2386	2387	2388	2389
2390	2391	2392	2393	2394	2395	2396	2397	2398	2399
2400	2401	2402	2403	2404	2405	2406	2407	2408	2409
2410	2411	2412	2413	2414	2415	2416	2417	2418	2419
2420	2421	2422	2423	2424	2425	2426	2427	2428	2429

2430	2431	2432	2433	2434	2435	2436	2437	2438	2439
2440	2441	2442	2443	2444	2445	2446	2447	2448	2449
2450	2451	2452	2453	2454	2455	2456	2457	2458	2459
2460	2461	2462	2463	2464	2465	2466	2467	2468	2469
2470	2471	2472	2473	2474	2475	2476	2477	2478	2479
2480	2481	2482	2483	2484	2485	2486	2487	2488	2489
2490	2491	2492	2493	2494	2495	2496	2497	2498	2499
2500	2501	2502	2503	2504	2505	2506	2507	2508	2509
2510	2511	2512	2513	2514	2515	2516	2517	2518	2519
2520	2521	2522	2523	2524	2525	2526	2527	2528	2529
2530	2531	2532	2533	2534	2535	2536	2537	2538	2539
2540	2541	2542	2543	2544	2545	2546	2547	2548	2549
2550	2551	2552	2553	2554	2555	2556	2557	2558	2559
2560	2561	2562	2563	2564	2565	2566	2567	2568	2569
2570	2571	2572	2573	2574	2575	2576	2577	2578	2579
2580	2581	2582	2583	2584	2585	2586	2587	2588	2589
2590	2591	2592	2593	2594	2595	2596	2597	2598	2599
2600	2601	2602	2603	2604	2605	2606	2607	2608	2609
2610	2611	2612	2613	2614	2615	2616	2617	2618	2619
2620	2621	2622	2623	2624	2625	2626	2627	2628	2629
2630	2631	2632	2633	2634	2635	2636	2637	2638	2639
2640	2641	2642	2643	2644	2645	2646	2647	2648	2649
2650	2651	2652	2653	2654	2655	2656	2657	2658	2659
2660	2661	2662	2663	2664	2665	2666	2667	2668	2669
2670	2671	2672	2673	2674	2675	2676	7419	7420	7421
7422	7423	7424	7425	7426	7427	7428	7429	7430	7431
7432	7433	7434	7435	7436	7437	7438	7439	7440	7441
7442	7443	7444	7445	7446	7447	7448	7449	7450	7451
7452	7453	7454	7455	7456	7457	7458	7459	7460	7461
7462	7463	7464	7465	7466	7467	7468	7469	7470	7471
7472	7473	7474	7475	7476	7477	7478	7479	7480	7481
7482	7483	7484	7485	7486	7487	7488	7489	7490	7491
7492	7493	7494	7495	7496	7497	7498	7499	7500	7501
7502	7503	7504	7505	7506	7507	7508	7509	7510	7511
7512	7513	7514	7515	7516	7517	7518	7519	7520	7521
7522	7523	7524	7525	7526	7527	7528	7529	7530	7531
7532	7533	7534	7535	7536	7537	7538	7539	7540	7541
7542	7543	7544	7545	7546	7547	7548	7549	7550	7551

7552	7553	7554	7555	7556	7557	7558	7559	7560	7561
7562	7563	7564	7565	7566	7567	7568	7569	7570	7571
7572	7573	7574	7575	7576	7577	7578	7579	7580	7581
7582	7583	7584	7585	7586	7587	7588	7589	7590	7591
7592	7593	7594	7595	7596	7597	7598	7599	7600	7601
7602	7603	7604	7605	7606	7607	7608	7609	7610	7611
7612	7613	7614	7615	7616	7617	7618	7619	7620	7621
7622	7623	7624	7625	7626	7627	7628	7629	7630	7631
7632	7633	7634	7635	7636	7637	7638	7639	7640	7641
7642	0100	0101	0102	0103	0104	0105	0106	0107	0108
0109	0110	0111	0112	0113	0114	0115	0116	0117	0118
0119	0120	0121	0122	0123	0124	0125	0126	0127	0128
0129	0130	0131	0132	0133	0134	0135	0136	0137	0138
0139	0140	0141	0142	0143	0144	0145	0146	0147	0148
0149	0150	0151	0152	0153	0154	0155	0156	0157	0158
0159	0160	0161	0162	0163	0164	0165	0166	0167	0168
0169	0170	0171	0172	0173	0174	0175	0176	0177	0178
0179	0180	0181	0182	0183	0184	0185	0186	0187	0188
0189	0190	0191	0192	0193	0194	0195	0196	0197	0198
0199	0200	0201	0202	0203	0204	0205	0206	0207	0208
0209	0210	0211	0212	0213	0214	0215	0216	0217	0218
0219	0220	0221	0222	0223	0224	0225	0226	0227	0228
0229	0230	0231	0232	0233	0234	0235	0236	0237	0238
0239	0240	0241	0242	0243	0244	0245	0246	0247	0248
0249	0250	0251	0252	0253	0254	0255	0256	0257	0258
0259	0260	0261	0262	0263	0264	0265	0266	0267	0268
0269	0270	0271	0272	0273	0274	0275	0276	0277	0278
0279	0280	0281	0282	0283	0284	0285	0286	0287	0288
0289	0290	0291	0292	0293	0294	0295	0296	0297	0298
0299	0300	0301	0302	0303	0304	0305	0306	0307	0308
0309	0310	0311	0312	0313	0314	0315	0316	0317	0318
0319	0320	0321	0322	0323	0324	0325	0326	0327	0328
0329	0330	0331	0332	0333	0334	0335	0336	0337	0338
0339	0340	0341	0342	0343	0344	0345	0346	0347	0348
0349	0350	0351	0352	0353	0354	0355	0356	0357	0358
0359	0360	0361	0362	0363	0364	0365	0366	0367	0368
0369	0370	0371	0372	0373	0374	0375	0376	0377	0378
0379	0038	0380	0381	0382	0383	0384	0385	0386	0387

0388	0389	0039	0390	0391	0392	0393	0394	0395	0396
0397	0398	0399	0040	0400	0401	0402	0403	0404	0405
0406	0407	0408	0409	0041	0410	0411	0412	0413	0414
0415	0416	0417	0418	0419	0042	0420	0421	0422	0423
0424	0425	0426	0427	0428	0429	0043	0430	0431	0432
0433	0434	0435	0436	0437	0438	0439	0044	0440	0441
0442	0443	0444	0445	0446	0447	0448	0449	0045	0450
0451	0452	0453	0454	0455	0456	0457	0458	0459	0046
0460	0461	0462	0463	0464	0465	0466	0467	0468	0469
0047	0470	0471	0472	0473	0474	0475	0476	0477	0478
0479	0048	0480	0481	0482	0483	0484	0485	0486	0487
0488	0489	0049	0490	0491	0492	0493	0494	0495	0496
0497	0498	0499	0050	0500	0501	0502	0503	0504	0505
0506	0507	0508	0509	0051	0510	0511	0512	0513	0514
0515	0516	0517	0518	0519	0052	0520	0521	0522	0523
0524	0525	0526	0527	0528	0529	0053	0530	0531	0532
0533	0534	0535	0536	0537	0538	0539	0054	0540	0541
0542	0543	0544	0545	0546	0547	0548	0549	0055	0550
0551	0552	0553	0554	0555	0556	0557	0558	0559	0056
0560	0561	0562	0057	0058	0059	0060	0061	0062	0063
0064	0065	0066	0067	0068	0069	0070	0071	0072	0073
0074	0075	0076	0077	0078	0079	0800	0081	0082	0083
0084	0085	0086	0087	8800	0089	0090	0091	0092	0093
0094	0095	0096	0097	0098	0099	1000	1001	1002	1003
1004	1005	1006	1007	1008	1009	1010	1011	1012	1013
1014	1015	1016	1017	1018	1019	1020	1021	1022	1023
1024	1025	1026	1027	1028	1029	1030	1031	1032	1033
1034	1035	1036	1037	1038	1039	1040	1041	1042	1043
1044	1045	1046	1047	1048	1049	1050	1051	1052	1053
1054	1055	1056	1057	1058	1059	1060	1061	1062	1063
1064	1065	1066	1067	1068	1069	1070	1071	1072	1073
1074	1075	1076	1077	1078	1079	1080	1081	1082	0775
0776	0777	0778	0779	0780	0781	0782	0783	0784	0785
0786	0787	0788	0789	0790	0791	0792	0793	0794	0795
0796	0797	0798	0799	0800	0801	0802	0803	0804	0805
0806	0807	8080	0809	0810	0811	0812	0813	0814	0815
0816	0817	0818	0819	0820	0821	0822	0823	0824	0825
0826	0827	0828	0829	0830	0831	0832	0833	0834	0835
00_0			00_0						

0836	0837	0838	0839	0840	0841	0842	0843	0844	0845
0846	0847	0848	0849	0850	0851	0852	0853	0854	0855
0856	0857	0858	0859	0860	0861	0862	0863	0864	0865
0866	0867	0868	0869	0870	0871	0872	0873	0874	0875
0876	0877	0878	0879	0880	0881	0882	0883	0884	0885
0886	0887	8880	0889	0890	0891	0892	0893	0894	0895
0896	0897	0898	0899	0900	0901	0902	0903	0904	0905
0906	0907	0908	0909	0910	0911	0912	0913	0914	0915
0916	0917	0918	0919	0920	0921	0922	0923	0924	0925
0926	0927	0928	0929	0930	0931	0932	0933	0934	0935
0936	0937	0938	0939	0940	0941	0942	0943	0944	0945
0946	0947	0948	0949	0950	0951	0952	0953	0954	0955
0956	0957	0958	0959	0960	0961	0962	0963	0964	0965
0966	0967	0968	0969	0970	0971	0972	0973	0974	0975
0976	0977	0978	0979	0980	0981	0982	0983	0984	0985
0986	0987	0988	0989	0990	0991	0992	0993	0994	0995
0996	0997	0998	0999	7643	7644	7645	7646	7647	7648
7649	7650	7651	7652	7653	7654	7655	7656	7657	7658
7659	7660	7661	7662	7663	7664	7665	7666	7667	7668
7669	7670	7671	7672	7673	7674	7675	7676	7677	7678
7679	7680	7681	7682	7683	7684	7685	7686	7687	7688
7689	7690	7691	7692	7693	7694	7695	7696	7697	7698
7699	7700	7701	7702	7703	7704	7705	7706	7707	7708
7709	7710	7711	7712	7713	7714	7715	7716	7717	7718
7719	7720	7721	7722	7723	7724	7725	7726	7727	7728
7729	7730	7731	7732	7733	7734	7735	7736	7737	7738
7739	7740	7741	7742	7743	7744	7745	7746	7747	7748
7749	7750	7751	7752	7753	7754	7755	7756	7757	7758
7759	7760	7761	7762	7763	7764	7765	7766	7767	7768
7769	7770	7771	7772	7773	7774	7775	7776	7777	7778
7779	7780	7781	7782	7783	7784	7785	7786	7787	7788
7789	7790	7791	7792	7793	7794	7795	7796	7797	7798
7799	7800	7801	7802	7803	7804	7805	7806	7807	7808
7809	7810	7811	7812	7813	7814	7815	7816	7817	7818
7819	7820	7821	7822	7823	7824	7825	7826	7827	7828
7829	7830	7831	7832	7833	7834	7835	7836	7837	7838
7839	7840	7841	7842	0001	0010	0011	0012	0013	0014
0015	0016	0017	0018	0019	0002	0020	0021	0022	0023

0024	0025	0026	0027	0028	0029	0003	0030	0031	0032
0033	0034	0035	0036	0037	0038	0039	0004	0040	0041
0042	0043	0044	0045	0046	0047	0048	0049	0005	0050
0051	0052	0053	0054	0055	0056	0057	0006	0007	8000
0009	4581	4582	4583	4584	4585	4586	4587	4588	4589
4590	4591	4592	4593	4594	4595	4596	4597	4598	4599
4600	4601	4602	4603	4604	4605	4606	4607	4608	4609
4610	4611	4612	4613	4614	4615	4616	4617	4618	4619
4620	4621	4622	4623	4624	4625	4626	4627	4628	4629
4630	4631	4632	4633	4634	4635	4636	4637	4638	4639
4640	4641	4642	4643	4644	4645	4646	4647	4648	4649
4650	4651	4652	4653	4654	4655	4656	4657	4658	4659
4660	4661	4662	4663	4664	4665	4666	4667	4668	4669
4670	4671	4672	4673	4674	4675	4676	4677	4678	4679
4680	4681	4682	4683	4684	4685	4686	4687	4688	4689
4690	4691	4692	4693	4694	4695	4696	4697	4698	4699
4700	4701	4702	4703	4704	4705	4706	4707	4708	4709
4710	4711	4712	4713	4714	4715	4716	4717	4718	4719
4720	4721	4722	4723	4724	4725	4726	4727	4728	4729
4730	4731	4732	4733	4734	4735	4736	4737	4738	4739
4740	4741	4742	4743	4744	4745	4746	4747	4748	4749
4750	4751	4752	4753	4754	4755	4756	4757	4758	4759
4760	4761	4762	4763	4764	4765	4766	4767	4768	4769
4770	4771	4772	4773	4774	4775	4776	4777	4778	4779
4780	4781	4782	4783	4784	4785	4786	4787	4788	4789
4790	4791	4792	4793	4794	0563	0564	0565	0566	0567
0568	0569	0570	0571	0572	0573	0574	0575	0576	0577
0578	0579	0580	0581	0582	0583	0584	0585	0586	0587
0588	0589	0590	0591	0592	0593	0594	0595	0596	0597
0598	0599	0600	0601	0602	0603	0604	0605	0606	0607
0608	0609	0610	0611	0612	0613	0614	0615	0616	0617
0618	0619	0620	0621	0622	0623	0624	0625	0626	0627
0628	0629	0630	0631	0632	0633	0634	0635	0636	0637
0638	0639	0640	0641	0642	0643	0644	0645	0646	0647
0648	0649	0650	0651	0652	0653	0654	0655	0656	0657
0658	0659	0660	0661	0662	0663	0664	0665	0666	0667
0668	0669	0670	0671	0672	0673	0674	0675	0676	0677
0678	0679	0680	0681	0682	0683	0684	0685	0686	0687

0688	0689	0690	0691	0692	0693	0694	0695	0696	0697
0698	0699	0700	0701	0702	0703	0704	0705	0706	0707
0708	0709	0710	0711	0712	0713	0714	0715	0716	0717
0718	0719	0720	0721	0722	0723	0724	0725	0726	0727
0728	0729	0730	0731	0732	0733	0734	0735	0736	0737
0738	0739	0740	0741	0742	0743	0744	0745	0746	0747
0748	0749	0750	0751	0752	0753	0754	0755	0756	0757
0758	0759	0760	0761	0762	0763	0764	0765	0766	0767
0768	0769	0770	0771	0772	0773	0774	3454	3455	3456
3457	3458	3459	3460	3461	3462	3463	3464	3465	3466
3467	3468	3469	3470	3471	3472	3473	3474	3475	3476
3477	3478	3479	3480	3481	3482	3483	3484	3485	3486
3487	3488	3489	3490	3491	3492	3493	3494	3495	3496
3497	3498	3499	3500	3501	3502	3503	3504	3505	3506
3507	3508	3509	3510	3511	3512	3513	3514	3515	3516
3517	3518	3519	3520	3521	3522	3523	3524	3525	3526
3527	3528	3529	3530	3531	3532	3533	3534	3535	3536
3537	3538	3539	3540	3541	3542	3543	3544	3545	3546
3547	3548	3549	3550	3551	3552	3553	3554	3555	3556
3557	3558	3559	3560	3561	3562	3563	3564	3565	3566
3567	3568	3569	3570	3571	3572	3573	3574	3575	3576
3577	3578	3579	3580	3581	3582	3583	3584	3585	3586
3587	3588	3589	3590	3591	3592	3593	3594	3595	3596
3597	3598	3599	3600	3601	3602	3603	3604	3605	3606
3607	3608	3609	3610	3611	3612	3613	3614	3615	3616
3617	3618	3619	3620	3621	3622	3623	3624	3625	3626
3627	3628	3629	3630	3631	3632	3633	3634	3635	3636
3637	3638	3639	3640	3641	3642	3643	3644	3645	3646
3647	3648	3649	3650	3651	3652	3653	3654	3655	3656
3657	3658	3659	3660	3661	3662	3663	3664	3665	3666
3667	3668	3669	3670	3671	3672	3673	3674	3675	3676
3677	3678	3679	3680	3681	3682	1683	1684	1685	1686
1687	1688	1689	1690	1691	1692	1693	1694	1695	1696
1697	1698	1699	1700	1701	1702	1703	1704	1705	1706
1707	1708	1709	1710	1711	1712	1713	1714	1715	1716
1717	1718	1719	1720	1721	1722	1723	1724	1725	1726
1727	1728	1729	1730	1731	1732	1733	1734	1735	1736
1737	1738	1739	1740	1741	1742	1743	1744	1745	1746

1747	1748	1749	1750	1751	1752	1753	1754	1755	1756
1757	1758	1759	1760	1761	1762	1763	1764	1765	1766
1767	1768	1769	1770	1771	1772	1773	1774	1775	1776
1777	1778	1779	1780	1781	1782	1783	1784	1785	1786
1787	1788	1789	1790	1791	1792	1793	1794	1795	1796
1797	1798	1799	1800	1801	1802	1803	1804	1805	1806
1807	1808	1809	1810	1811	1812	1813	1814	1815	1816
1817	1818	1819	1820	1821	1822	1823	1824	1825	1826
1827	1828	1829	1830	1831	1832	1833	1834	1835	1836
1837	1838	1839	1840	1841	1842	1843	1844	1845	1846
1847	1848	1849	1850	1851	1852	1853	1854	1855	1856
1857	1858	1859	1860	1861	1862	1863	1864	1865	1866
1867	1868	1869	1870	1871	1872	1873	1874	1875	1876
1877	1878	1879	1880	1881	1882	1883	1884	1885	1886
1887	1888	1889	1890	1891	1892	1893	1894	1895	1896
1897	1898	1899	1900	1901	1902	1903	1904	1905	1906
1907	1908	1909	1910	1911	1912	1913	6320	6321	6322
6323	6324	6325	6326	6327	6328	6329	6330	6331	6332
6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
6343	6344	6345	6346	6347	6348	6349	6350	6351	6352
6353	6354	6355	6356	6357	6358	6359	6360	6361	6362
6363	6364	6365	6366	6367	6368	6369	6370	6371	6372
6373	6374	6375	6376	6377	6378	6379	6380	6381	6382
6383	6384	6385	6386	6387	6388	6389	6390	6391	6392
6393	6394	6395	6396	6397	6398	6399	6400	6401	6402
6403	6404	6405	6406	6407	6408	6409	6410	6411	6412
6413	6414	6415	6416	6417	6418	6419	6420	6421	6422
6423	6424	6425	6426	6427	6428	6429	6430	6431	6432
6433	6434	6435	6436	6437	6438	6439	6440	6441	6442
6443	6444	6445	6446	6447	6448	6449	6450	6451	6452
6453	6454	6455	6456	6457	6458	6459	6460	6461	6462
6463	6464	6465	6466	6467	6468	6469	6470	6471	6472
6473	6474	6475	6476	6477	6478	6479	6480	6481	6482
6483	6484	6485	6486	6487	6488	6489	6490	6491	6492
6493	6494	6495	6496	6497	6498	6499	6500	6501	6502
6503	6504	6505	6506	6507	6508	6509	6510	6511	6512
6513	6514	6515	6516	6517	6518	6519	6520	6521	6522
6523	6524	6525	6526	6527	6528	6529	6530	6531	6532

6533	6534	6535	6536	6537	6538	6539	6540	0100	0101
0102	0103	0104	0105	0106	0107	0108	0109	0110	0101
0112	0103	0114	0103	0116	0107	0108	0103	0110	0111
0122	0113	0114	0115	0116	0117	0118	0119	0130	0131
0132	0123	0134	0125	0126	0127	0128	0129	0140	0131
0142	0143	0144	0145	0146	0147	0148	0149	0150	0151
0152	0143	0154	0145	0156	0157	0158	0149	0160	0161
0162	0163	0164	0165	0166	0167	0168	0169	0170	0171
0172	0173	0174	0175	0176	0177	0178	0103	0170	0171
0182	0173	0174	0175	0176	0177	0178	0179	0190	0191
0192	0193	0194	0195	0196	0197	0198	0109	0200	0201
0202	0203	0204	0205	0206	0207	0208	0209	0210	0201
0212	0203	0214	0205	0216	0217	0218	0203	0210	0211
0212	0213	0214	0215	0216	0217	0218	0219	0230	0221
0232	0233	0234	0235	0236	0237	0238	0239	0240	0231
0242	0243	0244	0245	0246	0247	0248	0249	0250	0251
0252	0253	0254	0255	0256	0257	0258	0259	0260	0261
0262	0263	0264	0265	0266	0267	0268	0269	0270	0271
0272	0273	0274	0275	0276	0277	0278	0279	0280	0281
0282	0283	0284	0285	0286	0287	0288	0289	0290	0291
0292	0293	0294	0295	0296	0297	0298	0299	0300	0301
0302	0303	0304	0305	0306	0307	0308	0309	0310	0311
0312	0313	0314	0315	0316	0317	0318	0319	0320	0321
0322	0323	0324	0325	0326	0327	0328	0329	0330	0331
0332	0333	0334	0335	0336	0337	0338	0339	0340	0341
0342	0343	0344	0345	0346	0347	0348	0349	0350	0351
0352	0353	0354	0355	0356	0357	0358	0359	0360	0361
0362	0058	0059	0060	0061	0062	0063	0064	0065	0066
0067	0068	0069	0070	0071	0072	0073	0074	0075	0076
0077	0078	0079	0800	0081	0082	0083	0084	0085	0086
0087	8800	0089	0090	0091	0092	0093	0094	0095	0096
0097	0098	0099	5458	5459	5460	5461	5462	5463	5464
5465	5466	5467	5468	5469	5470	5471	5472	5473	5474
5475	5476	5477	5478	5479	5480	5481	5482	5483	5484
5485	5486	5487	5488	5489	5490	5491	5492	5493	5494
5495	5496	5497	5498	5499	5500	5501	5502	5503	5504
5505	5506	5507	5508	5509	5510	5511	5512	5513	5514
5515	5516	5517	5518	5519	5520	5521	5522	5523	5524

5525	5526	5527	5528	5529	5530	5531	5532	5533	5534
5535	5536	5537	5538	5539	5540	5541	5542	5543	5544
5545	5546	5547	5548	5549	5550	5551	5552	5553	5554
5555	5556	5557	5558	5559	5560	5561	5562	5563	5564
5565	5566	5567	5568	5569	5570	5571	5572	5573	5574
5575	5576	5577	5578	5579	5580	5581	5582	5583	5584
5585	5586	5587	5588	5589	5590	5591	5592	5593	5594
5595	5596	5597	5598	5599	5600	5601	5602	5603	5604
5605	5606	5607	5608	5609	5610	5611	5612	5613	5614
5615	5616	5617	5618	5619	5620	5621	5622	5623	5624
5625	5626	5627	5628	5629	5630	5631	5632	5633	5634
5635	5636	5637	5638	5639	5640	5641	5642	5643	5644
5645	5646	5647	5648	5649	5650	5651	5652	5653	5654
5655	5656	5657	5658	5659	5660	5661	5662	5663	5664
5665	5666	5667	5668	5669	5670	5671	5672	5673	5674
5244	5245	5246	5247	5248	5249	5250	5251	5252	5253
5254	5255	5256	5257	5258	5259	5260	5261	5262	5263
5264	5265	5266	5267	5268	5269	5270	5271	5272	5273
5274	5275	5276	5277	5278	5279	5280	5281	5282	5283
5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
5294	5295	5296	5297	5298	5299	5300	5301	5302	5303
5304	5305	5306	5307	5308	5309	5310	5311	5312	5313
5314	5315	5316	5317	5318	5319	5320	5321	5322	5323
5324	5325	5326	5327	5328	5329	5330	5331	5332	5333
5334	5335	5336	5337	5338	5339	5340	5341	5342	5343
5344	5345	5346	5347	5348	5349	5350	5351	5352	5353
5354	5355	5356	5357	5358	5359	5360	5361	5362	5363
5364	5365	5366	5367	5368	5369	5370	5371	5372	5373
5374	5375	5376	5377	5378	5379	5380	5381	5382	5383
5384	5385	5386	5387	5388	5389	5390	5391	5392	5393
5394	5395	5396	5397	5398	5399	5400	5401	5402	5403
5404	5405	5406	5407	5408	5409	5410	5411	5412	5413
5414	5415	5416	5417	5418	5419	5420	5421	5422	5423
5424	5425	5426	5427	5428	5429	5430	5431	5432	5433
5434	5435	5436	5437	5438	5439	5440	5441	5442	5443
5444	5445	5446	5447	5448	5449	5450	5451	5452	5453
5454	5455	5456	5457	5019	5020	5021	5022	5023	5024
5025	5026	5027	5028	5029	5030	5031	5032	5033	5034

5035	5036	5037	5038	5039	5040	5041	5042	5043	5044
5045	5046	5047	5048	5049	5050	5051	5052	5053	5054
5055	5056	5057	5058	5059	5060	5061	5062	5063	5064
5065	5066	5067	5068	5069	5070	5071	5072	5073	5074
5075	5076	5077	5078	5079	5080	5081	5082	5083	5084
5085	5086	5087	5088	5089	5090	5091	5092	5093	5094
5095	5096	5097	5098	5099	5100	5101	5102	5103	5104
5105	5106	5107	5108	5109	5110	5111	5112	5113	5114
5115	5116	5117	5118	5119	5120	5121	5122	5123	5124
5125	5126	5127	5128	5129	5130	5131	5132	5133	5134
5135	5136	5137	5138	5139	5140	5141	5142	5143	5144
5145	5146	5147	5148	5149	5150	5151	5152	5153	5154
5155	5156	5157	5158	5159	5160	5161	5162	5163	5164
5165	5166	5167	5168	5169	5170	5171	5172	5173	5174
5175	5176	5177	5178	5179	5180	5181	5182	5183	5184
5185	5186	5187	5188	5189	5190	5191	5192	5193	5194
5195	5196	5197	5198	5199	5200	5201	5202	5203	5204
5205	5206	5207	5208	5209	5210	5211	5212	5213	5214
5215	5216	5217	5218	5219	5220	5221	5222	5223	5224
5225	5226	5227	5228	5229	5230	5231	5232	5233	5234
5235	5236	5237	5238	5239	5240	5241	5242	5243	1715
1716	1717	1718	2137	2138	2139	2140	2141	2142	2143
2144	2145	2146	2147	2148	2149	2150	2151	2152	2153
2154	2157	2158	2159	2160	2161	2162	2163	2164	2165
2166	2167	2168	2169	2170	2171	2172	2173	2174	2175
2176	2177	2178	2179	2180	2181	2182	2183	2184	2185
2186	2187	2188	2189	2190	2191	2192	2193	2194	2195
2196	2197	2198	2199	2200	2201	2202	2203	2204	2205
2206	2207	2208	2209	2210	2211	2212	2213	2214	2215
2216	2217	2218	2219	2220	2221	2222	2223	2235	2236
2237	2238	1246	1247	1248	1249	1250	1251	1252	1253
1254	1255	1256	1257	1258	1259	1260	1261	1262	1263
1264	1265	1266	1267	1268	1269	1270	1271	1272	1273
1274	1275	1276	1277	1278	1279	1280	1281	1282	1283
1284	1285	1286	1287	1288	1289	1290	1291	1292	1293
1294	1295	1296	1297	1298	1299	1300	1301	1302	1303
1304	1305	1306	1307	1308	1309	1310	1311	1312	1313
1314	1315	1316	1317	1318	1319	1320	1321	1322	1323

1324	1325	1326	1327	1328	1329	1330	1331	1334	1335
1336	1337	1338	1339	1340	1341	1342	1343	1344	1345
1346	1347	1348	1349	1350	1351	1352	1353	1354	1355
1356	1357	1358	1359	1360	1361	1362	1363	1364	1365
1366	1367	1368	1369	1370	1371	1372	1373	1374	1375
1376	1377	1378	1379	1380	1381	1382	1383	1384	1385
1386	1387	1388	1389	1390	1391	1392	1393	1394	1395
1396	1397	1398	1399	1400	1401	1402	1403	1404	1405
1406	1407	1408	1409	1410	1411	1412	1413	1414	1415
1416	1417	1418	1419	1420	1421	1422	1423	1424	1425
1426	1427	1428	1429	1430	1431	1432	1433	1434	1435
1436	1437	1438	1439	1440	1441	1442	1443	1444	1445
1446	1447	1448	1449	1450	1451	1452	1453	1454	1455
1456	1457	1458	1459	1460	0001	0010	0011	0012	0013
0014	0015	0016	0017	0018	0019	0002	0020	0021	0022
0023	0024	0025	0026	0027	0028	0029	0003	0030	0031
0032	0033	0034	0035	0036	0037	0004	0005	0006	0007
8000	0009	5893	5894	5895	5896	5897	5898	5899	5900
5901	5902	5903	5904	5905	5906	5907	5908	5909	5910
5911	5912	5913	5914	5915	5916	5917	5918	5919	5920
5921	5922	5923	5924	5925	5926	5927	5928	5929	5930
5931	5932	5933	5934	5935	5936	5937	5938	5939	5940
5941	5942	5943	5944	5945	5946	5947	5948	5949	5950
5951	5952	5953	5954	5955	5956	5957	5958	5959	5960
5961	5962	5963	5964	5965	5966	5967	5968	5969	5970
5971	5972	5973	5974	5975	5976	5977	5978	5979	5980
5981	5982	5983	5984	5985	5986	5987	5988	5989	5990
5991	5992	5993	5994	5995	5996	5997	5998	5999	6000
6001	6002	6003	6004	6005	6006	6007	6008	6009	6010
6011	6012	6013	6014	6015	6016	6017	6018	6019	6020
6021	6022	6023	6024	6025	6026	6027	6028	6029	6030
6031	6032	6033	6034	6035	6036	6037	6038	6039	6040
6041	6042	6043	6044	6045	6046	6047	6048	6049	6050
6051	6052	6053	6054	6055	6056	6057	6058	6059	6060
6061	6062	6063	6064	6065	6066	6067	6068	6069	6070
6071	6072	6073	6074	6075	6076	6077	6078	6079	6080
6081	6082	6083	6084	6085	6086	6087	6088	6089	6090
6091	6092	6093	6094	6095	6096	6097	6098	6099	6100

6101	6102	6103	6104	6105	6106	6107	6108	6109	6110
6111	6112	6113	6114	2939	2940	2941	2942	2943	2944
2945	2946	2947	2948	2949	2950	2951	2952	2953	2954
2955	2956	2957	2958	2959	2960	2961	2962	2963	2964
2965	2966	2967	2968	2969	2970	2971	2972	2973	2974
2975	2976	2977	2978	2979	2980	2981	2982	2983	2984
2985	2986	2987	2988	2989	2990	2991	2992	2993	2994
2995	2996	2997	2998	2999	3000	3001	3002	3003	3004
3005	3006	3007	3008	3009	3010	3011	3012	3013	3014
3015	3016	3017	3018	3019	3020	3021	3022	3023	3024
3025	3026	3027	3028	3029	3030	3031	3032	3033	3034
3035	3036	3037	3038	3039	3040	3041	3042	3043	3044
3045	3046	3047	3048	3049	3050	3051	3052	3053	3054
3055	3056	3057	3058	3059	3060	3061	3062	3063	1026
1027	1028	1029	1030	1031	1032	1033	1034	1035	1036
1037	1038	1039	1040	1041	1042	1043	1044	1045	1046
1047	1048	1049	1050	1051	1052	1053	1054	1055	1056
1057	1058	1059	1060	1061	1062	1063	1064	1065	1066
1067	1068	1069	1070	1071	1072	1073	1074	1075	1076
1077	1078	1079	1080	1081	1082	1083	1153	1154	1155
1156	1157	1158	1159	1160	1161	1162	1163	1164	1165
1166	1167	1168	1169	1170	1171	1172	1173	1174	1175
1176	1177	1178	1179	1180	1181	1182	1183	1184	1185
1186	1187	1188	1189	1190	1191	1192	1193	1194	1195
1196	1197	1198	1199	1200	1201	1202	1203	1204	1205
1206	1207	1208	1209	1210	1211	1212	1213	1214	1215
1216	1217	1218	1219	1220	1221	1222	1223	1224	1225
1226	1227	1228	1229	1230	1231	1232	1233	1234	1235
1236	1237	1238	1239	1240	1241	1242	1243	1244	1245
0591	0592	0593	0594	0595	0596	0597	0598	0599	0600
0601	0602	0603	0604	0605	0606	0607	0608	0609	0610
0611	0612	0613	0614	0615	0616	0617	0618	0619	0620
0621	0622	0623	0624	0625	0626	0627	0628	0629	0630
0631	0632	0633	0634	0635	0636	0637	0638	0639	0640
0641	0642	0643	0644	0645	0646	0647	0648	0649	0650
0651	0652	0653	0654	0655	0656	0657	0658	0659	0660
0661	0662	0663	0664	0665	0666	0667	0668	0669	0670
0671	0672	0673	0674	0675	0676	0677	0678	0679	0680

0681	0682	0683	0684	0685	0686	0687	0688	0689	0690
0691	0692	0693	0694	0695	0696	0697	0698	0699	0700
0701	0702	0703	0704	0705	0706	0707	0708	0709	0710
0711	0712	0713	0714	0715	0716	0717	0718	0719	0720
0721	0722	0723	0724	0725	0726	0727	0728	0729	0730
0731	0732	0733	0734	0735	0736	0737	0738	0739	0740
0741	0742	0743	0744	0745	0746	0747	0748	0749	0750
0751	0752	0753	0754	0755	0756	0757	0758	0759	0760
0761	0762	0763	0764	0765	0766	0767	0768	0769	0770
0771	0772	0773	0774	0775	0776	0777	0778	0779	0780
0781	0782	0783	0784	0785	0786	0787	0788	0789	0790
0791	0792	0793	0794	0795	0796	0797	0798	0799	0800
0801	0802	0803	0804	0805	0806	0807	8080	0809	6541
6542	6543	6544	6545	6546	6547	6548	6549	6550	6551
6552	6553	6554	6555	6556	6557	6558	6559	6560	6561
6562	6563	6564	6565	6566	6567	6568	6569	6570	6571
6572	6573	6574	6575	6576	6577	6578	6579	6580	6581
6582	6583	6584	6585	6586	6587	6588	6589	6590	6591
6592	6593	6594	6595	6596	6597	6598	6599	6600	6601
6602	6603	6604	6605	6606	6607	6608	6609	6610	6611
6612	6613	6614	6615	6616	6617	6618	6619	6620	6621
6622	6623	6624	6625	6626	6627	6628	6629	6630	6631
6632	6633	6634	6635	6636	6637	6638	6639	6640	6641
6642	6643	6644	6645	6646	6647	6648	6649	6650	6651
6652	6653	6654	6655	6656	6657	6658	6659	6660	6661
6662	6663	6664	6665	6666	6667	6668	6669	6670	6671
6672	6673	6674	6675	6676	6677	6678	6679	6680	6681
6682	6683	6684	6685	6686	6687	6688	6689	6690	6691
6692	6693	6694	6695	6696	6697	6698	6699	6700	6701
6702	6703	6704	6705	6706	6707	6708	6709	6710	6711
6712	6713	6714	6715	6716	6717	6718	6719	6720	6721
6722	6723	6724	6725	6726	6727	6728	6729	6730	6731
6732	6733	6734	6735	6736	6737	6738	6739	6740	6741
6742	6743	6744	6745	6746	6747	6748	6749	6750	6751

Appendix C

Test Data

1411	1412	1413	1414	1415	1416	1417	1418	1419	1420
1421	1422	1423	1424	1425	1426	1427	1428	1429	1430
1431	1432	1433	1434	1435	1436	1437	1438	1439	1440
1441	1442	1443	1444	1445	1446	1447	1448	1449	1450
1451	1452	1453	1454	1455	1456	1457	1458	1459	1460
1461	1462	1463	1464	1465	1466	1467	1468	1469	1470
1471	1472	1473	1474	1475	1476	1477	1478	1479	1480
1481	1482	1483	1484	1485	1486	1487	1488	1489	1490
1491	1492	1493	1494	1495	1496	1497	1498	1499	1500
1501	1502	1503	1504	1505	1506	1507	1508	1509	1510
1511	1512	1513	1514	1515	1516	1517	1518	1519	1520
1521	1522	1523	1524	1525	1526	1527	1528	1529	1530
1531	1532	1533	1534	1535	1536	1537	1538	1539	1540
1541	1542	1543	1544	1545	1546	1547	1548	1549	1550
1551	1552	1553	1554	1555	1556	1557	1558	1559	1560
1561	1562	1563	1564	1565	1566	1567	1568	1569	1570
1571	1572	1573	1574	1575	1576	1577	1578	1579	1580
1581	1582	1583	1584	1585	1586	1587	1588	1589	1590
1591	1592	1593	1594	1595	1596	1597	1598	1599	1600
1601	1602	1603	1604	1605	1606	1607	1608	1609	1610
1611	1612	1613	1614	1615	1616	1617	1618	1619	1620
1621	1622	1623	1624	1625	1626	1627	1628	1629	1630
1631	1632	1633	1634	1635	1636	1637	1638	1639	1640
1641	1642	1643	1644	1645	1646	1647	1648	1649	1650
1651	1652	1653	1654	1655	1656	1657	1658	1659	1660

1661	1662	1663	1664	1665	1666	1667	1668	1669	1670
1671	1672	1673	1674	1675	1676	1677	1678	1679	1680
1681	1682	1683	1684	1685	1686	1687	1688	1689	1690
1691	1692	1693	1694	1695	1696	1697	1698	1699	1700
1701	1702	1703	1704	1705	1706	1707	1708	1709	1710
1711	1712	1083	1084	1085	1086	1087	1088	1089	1090
1091	1092	1093	1094	1095	1096	1097	1098	1099	1100
1101	1102	1103	1104	1105	1106	1107	1108	1109	1110
1111	1112	1113	1114	1115	1116	1117	1118	1119	1120
1121	1122	1123	1124	1125	1126	1127	1128	1129	1130
1131	1132	1133	1134	1135	1136	1137	1138	1139	1140
1141	1142	1143	1144	1145	1146	1147	1148	1149	1150
1151	1152	1153	1154	1155	1156	1157	1158	1159	1160
1161	1162	1163	1164	1165	1166	1167	1168	1169	1170
1171	1172	1173	1174	1175	1176	1177	1178	1179	1180
1181	1182	1183	1184	1185	1186	1187	1188	1189	1190
1191	1192	1193	1194	1195	1196	1197	1198	1199	1200
1201	1202	1203	1204	1205	1206	1207	1208	1209	1210
1211	1212	1213	1214	1215	1216	1217	1218	1219	1220
1221	1222	1223	1224	1225	1226	1227	1228	1229	1230
1231	1232	1233	1234	1235	1236	1237	1238	1239	1240
1241	1242	1243	1244	1245	1246	1247	1248	1249	1250
1251	1252	1253	1254	1255	1256	1257	1258	1259	1260
1261	1262	1263	1264	1265	1266	1267	1268	1269	1270
1271	1272	1273	1274	1275	1276	1277	1278	1279	1280
1281	1282	1283	1284	1285	1286	1287	1288	1289	1290
1291	1292	1293	1294	1295	1296	1297	1298	1299	1300
1301	1302	1303	1304	1305	1306	1307	1308	1309	1310
1311	1312	1313	1314	1315	1316	1317	1318	1319	1320
1321	1322	1323	1324	1325	1326	1327	1328	1329	1330
1331	1332	1333	1334	1335	1336	1337	1338	1339	1340
1341	1342	1343	1344	1345	1346	1347	1348	1349	1350
1351	1352	1353	1354	1355	1356	1357	1358	1359	1360
1361	1362	1363	1364	1365	1366	1367	1368	1369	1370
1371	1372	1373	1374	1375	1376	1377	1378	1379	1380
1381	1382	1383	1384	1385	1386	1387	1388	1389	1390
1391	1392	1393	1394	1395	1396	1397	1398	1399	1400
1401	1402	1403	1404	1405	1406	1407	1408	1409	1410

6115	6116	6117	6118	6119	6120	6121	6122	6123	6124
6125	6126	6127	6128	6129	6130	6131	6132	6133	6134
6135	6136	6137	6138	6139	6140	6141	6142	6143	6144
6145	6146	6147	6148	6149	6150	6151	6152	6153	6154
6155	6156	6157	6158	6159	6160	6161	6162	6163	6164
6165	6166	6167	6168	6169	6170	6171	6172	6173	6174
6175	6176	6177	6178	6179	6180	6181	6182	6183	6184
6185	6186	6187	6188	6189	6190	6191	6192	6193	6194
6195	6196	6197	6198	6199	6200	6201	6202	6203	6204
6205	6206	6207	6208	6209	6210	6211	6212	6213	6214
6215	6216	6217	6218	6219	6220	6221	6222	6223	6224
6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
6235	6236	6237	6238	6239	6240	6241	6242	6243	6244
6245	6246	6247	6248	6249	6250	6251	6252	6253	6254
6255	6256	6257	6258	6259	6260	6261	6262	6263	6264
6265	6266	6267	6268	6269	6270	6271	6272	6273	6274
6275	6276	6277	6278	6279	6280	6281	6282	6283	6284
6285	6286	6287	6288	6289	6290	6291	6292	6293	6294
6295	6296	6297	6298	6299	6300	6301	6302	6303	6304
6305	6306	6307	6308	6309	6310	6311	6312	6313	6314
6315	6316	6317	6318	6319	6979	6980	6981	6982	6983
6984	6985	6986	6987	6988	6989	6990	6991	6992	6993
6994	6995	6996	6997	6998	6999	7000	7001	7002	7003
7004	7005	7006	7007	7008	7009	7010	7011	7012	7013
7014	7015	7016	7017	7018	7019	7020	7021	7022	7023
7024	7025	7026	7027	7028	7029	7030	7031	7032	7033
7034	7035	7036	7037	7038	7039	7040	7041	7042	7043
7044	7045	7046	7047	7048	7049	7050	7051	7052	7053
7054	7055	7056	7057	7058	7059	7060	7061	7062	7063
7064	7065	7066	7067	7068	7069	7070	7071	7072	7073
7074	7075	7076	7077	7078	7079	7080	7081	7082	7083
7084	7085	7086	7087	7088	7089	7090	7091	7092	7093
7094	7095	7096	7097	7098	7099	7100	7101	7102	7103
7104	7105	7106	7107	7108	7109	7110	7111	7112	7113
7114	7115	7116	7117	7118	7119	7120	7121	7122	7123
7124	7125	7126	7127	7128	7129	7130	7131	7132	7133
7134	7135	7136	7137	7138	7139	7140	7141	7142	7143
7144	7145	7146	7147	7148	7149	7150	7151	7152	7153

7154	7155	7156	7157	7158	7159	7160	7161	7162	7163
7164	7165	7166	7167	7168	7169	7170	7171	7172	7173
7174	7175	7176	7177	7178	7179	7180	7181	7182	7183
7184	7185	7186	7187	7188	4360	4361	4362	4363	4364
4365	4366	4367	4368	4369	4370	4371	4372	4373	4374
4375	4376	4377	4378	4379	4380	4381	4382	4383	4384
4385	4386	4387	4388	4389	4390	4391	4392	4393	4394
4395	4396	4397	4398	4399	4400	4401	4402	4403	4404
4405	4406	4407	4408	4409	4410	4411	4412	4413	4414
4415	4416	4417	4418	4419	4420	4421	4422	4423	4424
4425	4426	4427	4428	4429	4430	4431	4432	4433	4434
4435	4436	4437	4438	4439	4440	4441	4442	4443	4444
4445	4446	4447	4448	4449	4450	4451	4452	4453	4454
4455	4456	4457	4458	4459	4460	4461	4462	4463	4464
4465	4466	4467	4468	4469	4470	4471	4472	4473	4474
4475	4476	4477	4478	4479	4480	4481	4482	4483	4484
4485	4486	4487	4488	4489	4490	4491	4492	4493	4494
4495	4496	4497	4498	4499	4500	4501	4502	4503	4504
4505	4506	4507	4508	4509	4510	4511	4512	4513	4514
4515	4516	4517	4518	4519	4520	4521	4522	4523	4524
4525	4526	4527	4528	4529	4530	4531	4532	4533	4534
4535	4536	4537	4538	4539	4540	4541	4542	4543	4544
4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
4555	4556	4557	4558	4559	4560	4561	4562	4563	4564
4565	4566	4567	4568	4569	4570	4571	4572	4573	4574
4575	4576	4577	4578	4579	4580	6755	6756	6757	6758
6759	6760	6761	6762	6763	6764	6765	6766	6767	6768
6769	6770	6771	6772	6773	6774	6775	6776	6777	6778
6779	6780	6781	6782	6783	6784	6785	6786	6787	6788
6789	6790	6791	6792	6793	6794	6795	6796	6797	6798
6799	6800	6801	6802	6803	6804	6805	6806	6807	6808
6809	6810	6811	6812	6813	6814	6815	6816	6817	6818
6819	6820	6821	6822	6823	6824	6825	6826	6827	6828
6829	6830	6831	6832	6833	6834	6835	6836	6837	6838
6839	6840	6841	6842	6843	6844	6845	6846	6847	6848
6849	6850	6851	6852	6853	6854	6855	6856	6857	6858
6859	6860	6861	6862	6863	6864	6865	6866	6867	6868
6869	6870	6871	6872	6873	6874	6875	6876	6877	6878

6879	6880	6881	6882	6883	6884	6885	6886	6887	6888
6889	6890	6891	6892	6893	6894	6895	6896	6897	6898
6899	6900	6901	6902	6903	6904	6905	6906	6907	6908
6909	6910	6911	6912	6913	6914	6915	6916	6917	6918
6919	6920	6921	6922	6923	6924	6925	6926	6927	6928
6929	6930	6931	6932	6933	6934	6935	6936	6937	6938
6939	6940	6941	6942	6943	6944	6945	6946	6947	6948
6949	6950	6951	6952	6953	6954	6955	6956	6957	6958
6959	6960	6961	6962	6963	6964	6965	6966	6967	6968
6969	6970	6971	6972	6973	6974	6975	6976	6977	6978
4795	4796	4797	4798	4799	4800	4801	4802	4803	4804
4805	4806	4807	4808	4809	4810	4811	4812	4813	4814
4815	4816	4817	4818	4819	4820	4821	4822	4823	4824
4825	4826	4827	4828	4829	4830	4831	4832	4833	4834
4835	4836	4837	4838	4839	4840	4841	4842	4843	4844
4845	4846	4847	4848	4849	4850	4851	4852	4853	4854
4855	4856	4857	4858	4859	4860	4861	4862	4863	4864
4865	4866	4867	4868	4869	4870	4871	4872	4873	4874
4875	4876	4877	4878	4879	4880	4881	4882	4883	4884
4885	4886	4887	4888	4889	4890	4891	4892	4893	4894
4895	4896	4897	4898	4899	4900	4901	4902	4903	4904
4905	4906	4907	4908	4909	4910	4911	4912	4913	4914
4915	4916	4917	4918	4919	4920	4921	4922	4923	4924
4925	4926	4927	4928	4929	4930	4931	4932	4933	4934
4935	4936	4937	4938	4939	4940	4941	4942	4943	4944
4945	4946	4947	4948	4949	4950	4951	4952	4953	4954
4955	4956	4957	4958	4959	4960	4961	4962	4963	4964
4965	4966	4967	4968	4969	4970	4971	4972	4973	4974
4975	4976	4977	4978	4979	4980	4981	4982	4983	4984
4985	4986	4987	4988	4989	4990	4991	4992	4993	4994
4995	4996	4997	4998	4999	5000	5001	5002	5003	5004
5005	5006	5007	5008	5009	5010	5011	5012	5013	5014
5015	5016	5017	5018	3902	3903	3904	3905	3906	3907
3908	3909	3910	3911	3912	3913	3914	3915	3916	3917
3918	3919	3920	3921	3922	3923	3924	3925	3926	3927
3928	3929	3930	3931	3932	3933	3934	3935	3936	3937
3938	3939	3940	3941	3942	3943	3944	3945	3946	3947
3948	3949	3950	3951	3952	3953	3954	3955	3956	3957
3928 3938	3929 3939	3930 3940	3931 3941	3932 3942	3933 3943	3934 3944	3935 3945		3936 3946

3958	3959	3960	3961	3962	3963	3964	3965	3966	3967
3968	3969	3970	3971	3972	3973	3974	3975	3976	3977
3978	3979	3980	3981	3982	3983	3984	3985	3986	3987
3988	3989	3990	3991	3992	3993	3994	3995	3996	3997
3998	3999	4000	4001	4002	4003	4004	4005	4006	4007
4008	4009	4010	4011	4012	4013	4014	4015	4016	4017
4018	4019	4020	4021	4022	4023	4024	4025	4026	4027
4028	4029	4030	4031	4032	4033	4034	4035	4036	4037
4038	4039	4040	4041	4042	4043	4044	4045	4046	4047
4048	4049	4050	4051	4052	4053	4054	4055	4056	4057
4058	4059	4060	4061	4062	4063	4064	4065	4066	4067
4068	4069	4070	4071	4072	4073	4074	4075	4076	4077
4078	4079	4080	4081	4082	4083	4084	4085	4086	4087
4088	4089	4090	4091	4092	4093	4094	4095	4096	4097
4098	4099	4100	4101	4102	4103	4104	4105	4106	4107
4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
4118	4119	4120	4121	4122	4123	4124	4125	4126	4127
4128	4129	4130	4131	4132	4133	4134	4135	1916	1917
1918	1919	1920	1921	1922	1923	1924	1925	1926	1927
1928	1929	1930	1931	1932	1933	1934	1935	1936	1937
1938	1939	1940	1941	1942	1943	1944	1945	1946	1947
1948	1949	1950	1951	1952	1953	1954	1955	1956	1957
1958	1959	1960	1961	1962	1963	1964	1965	1966	1967
1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
2038	2039	2040	2041	2042	2043	2044	2045	2046	2047
2048	2049	2050	2051	2052	2053	2054	2055	2056	2057
2058	2059	2060	2061	2062	2063	2064	2065	2066	2067
2068	2069	2070	2071	2072	2073	2074	2075	2076	2077
2078	2079	2080	2081	2082	2083	2084	2085	2086	2087
2088	2089	2090	2091	2092	2093	2094	2095	2096	2097
2098	2099	2100	2101	2102	2103	2104	2105	2106	2107
2108	2109	2110	2111	2112	2113	2114	2115	2116	2117

2118	2119	2120	2121	2122	2123	2124	2125	2126	2127
2128	2129	2130	2131	2132	2133	2134	2135	2136	7189
7190	7191	7192	7193	7194	7195	7196	7197	7198	7199
7200	7201	7202	7203	7204	7205	7206	7207	7208	7209
7210	7211	7212	7213	7214	7215	7216	7217	7218	7219
7220	7221	7222	7223	7224	7225	7226	7227	7228	7229
7230	7231	7232	7233	7234	7235	7236	7237	7238	7239
7240	7241	7242	7243	7244	7245	7246	7247	7248	7249
7250	7251	7252	7253	7254	7255	7256	7257	7258	7259
7260	7261	7262	7263	7264	7265	7266	7267	7268	7269
7270	7271	7272	7273	7274	7275	7276	7277	7278	7279
7280	7281	7282	7283	7284	7285	7286	7287	7288	7289
7290	7291	7292	7293	7294	7295	7296	7297	7298	7299
7300	7301	7302	7303	7304	7305	7306	7307	7308	7309
7310	7311	7312	7313	7314	7315	7316	7317	7318	7319
7320	7321	7322	7323	7324	7325	7326	7327	7328	7329
7330	7331	7332	7333	7334	7335	7336	7337	7338	7339
7340	7341	7342	7343	7344	7345	7346	7347	7348	7349
7350	7351	7352	7353	7354	7355	7356	7357	7358	7359
7360	7361	7362	7363	7364	7365	7366	7367	7368	7369
7370	7371	7372	7373	7374	7375	7376	7377	7378	7379
7380	7381	7382	7383	7384	7385	7386	7387	7388	7389
7390	7391	7392	7393	7394	7395	7396	7397	7398	7399
7400	7401	7402	7403	7404	7405	7406	7407	7408	7409
7410	7411	7412	7413	7414	7415	7416	7417	7418	1000
1001	1002	1003	1004	1005	1006	1007	1008	1009	1010
1011	1012	1013	1014	1015	1016	1017	1018	1019	1020
1021	1022	1023	1024	1025	0810	0811	0812	0813	0814
0815	0816	0817	0818	0819	0820	0821	0822	0823	0824
0825	0826	0827	0828	0829	0830	0831	0832	0833	0834
0835	0836	0837	0838	0839	0840	0841	0842	0843	0844
0845	0846	0847	0848	0849	0850	0851	0852	0853	0854
0855	0856	0857	0858	0859	0860	0861	0862	0863	0864
0865	0866	0867	0868	0869	0870	0871	0872	0873	0874
0875	0876	0877	0878	0879	0880	0881	0882	0883	0884
0885	0886	0887	0888	0889	0890	0891	0892	0893	0894
0895	0896	0897	0898	0899	0900	0901	0902	0903	0904
0905	0906	0907	0908	0909	0910	0911	0912	0913	0914

0915	0916	0917	0918	0919	0920	0921	0922	0923	0924
0925	0926	0927	0928	0929	0930	0931	0932	0933	0934
0935	0936	0937	0938	0939	0940	0941	0942	0943	0944
0945	0946	0947	0948	0949	0950	0951	0952	0953	0954
0955	0956	0957	0958	0959	0960	0961	0962	0963	0964
0965	0966	0967	0968	0969	0970	0971	0972	0973	0974
0975	0976	0977	0978	0979	0980	0981	0982	0983	0984
0985	0986	0987	0988	0989	0990	0991	0992	0993	0994

Bibliography

- Andreou A., Kamm T., Cohen J. (1994). Experiments in Vocal Tract Normalization. In *Proceedings of the CAIP Workshop*, 1994.
- Brandt S. (1975). Datenanalyse. B.I.-Wissenschaftsverlag.
- Breiman L., Friedman J. H., Olshen R. A., Stone C. J. (1984). Classification and Regression Trees. Wadsworth & Brooks/Cole.
- Buntine W., Niblett T. (1992). A further Comparison of Splitting Rules for Decision-Tree Induction. *Machine Learning*, Vol. 8.
- DENECKE M. (2002). Generische Aktionsmuster für aufgabenorientierte Dialogmuster. PhD Thesis, University of Karlsruhe, Germany, 2002.
- DENG L. (1998). A Dynamic, Feature-based Approach to the Interface between Phonology and Phonetics for Speech Modeling and Recognition. Speech Communication, Vol. 30.
- EIDE E. (2001). Distinctive Features for Use In an Automatic Speech Recognition System. In *Proceedings of the Eurospeech*, Aalborg, Denmark, 2001.
- Fant G. (1960). Acoustic Theory of Speech Production. Mouton & Co.
- FINKE M., GEUTNER P., HILD H., KEMP T., RIES K., WESTPHAL M. (1997). The Karlsruhe-Verbmobil Speech Recognition Engine. In *Proceedings of the ICASSP*, Munich, Germany, 1997.
- FÜGEN C., ROGINA I. (2000). Integrating Dynamic Speech Modalities into Context Decision Trees. In *Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, Istanbul, Turkey, 2000.

Gales M.J.F. (1999). Semi-Tied Covariance Matrices for Hidden Markov Models. *IEEE Transactions on Speech and Audio Processing*, Vol. 2.

- Gauvain J., Lee C. (1994). Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains. *IEEE Trans*actions on Speech and Audio Processing, Vol. 2.
- Godfreq J.J., Holliman E., Maxdaniel J. (1992). SWITCHBOARD: Telephone Speech Corpus for Research and Development. In *Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, San Francisco, USA, 1992.
- GOPINATH R. (1998). Maximum Likelihood Modeling with Gaussian Distributions for Classification. In *Proceedings of the International Conference on Spoken Language Processing*, Sydney, Australia, 1998.
- Hansen J., Bou-Ghazale S., Sarikaya R., Pellom B. (1998). Getting Started with the SUSAS: Speech under Simulated and Actual Stress. Technical Report RSPL-98-10, Duke University, Department of Electrical Engineering, 1998.
- Hansen J. (1996). Analysis and Compensation of Speech under Stress and Noise for Robustness in Speech Recognition. *Speech Communications*, Vol. 20(2).
- HERNANDO J. (1997). Maximum Likelihood Weighting of dynamic Speech Features for CDHMM Speech Recognition. In *Proceedings of the Inter*national Conference on Acoustics, Speech and Signal Processing, Munich, Germany, 1997.
- HIRSCHBERG J., LITMAN D., SWERTS M. (1999). Prosodic Cues to Recognition Errors. In *Proceedings of the Automatic Speech Recognition and Understanding Workshop*, Keystone, USA, 1999.
- HIRSCHBERG J., LITMAN D., SWERTS M. (2000). Gernalizing Prosodic Prediction of Speech Recognition Errors. In *Proceedings of the International Conference on Spoken Language Processing*, Beijing, China, 2000.
- HIRSCHBERG J., LITMAN D., SWERTS M. (2001). Identifying User Corrections Automatically in Spoken Dialgue Systems. In *North American*

- Chapter of the Association for Computational Linguistics (NAACL), Pittsburgh, USA, 2001.
- HOLTZAPFEL H., FÜGEN C., DENECKE M., WAIBEL A. (2002). Integrating Emptional Cues into a Framework for Dialoge Management. In *Proceedings of the International Conference on Multimodal Interfaces*, USA, 2002.
- HOLTZAPFEL H. (2003). Emotionen als Parameter der Dialogverarbeitung. Master's thesis, University of Karlsruhe, Germany, 2003.
- Humphries J. (1997). Accent Modelling and Adaptation in Automatic Speech Recognition. PhD Thesis, University of Cambridge, 1997.
- International Phonetic Association (1999). Handbook of the International Phonetic Association. Cambridge University Press.
- Johnson D. E., Oles F. J., Zhang T., Goetz T. (2002). A Decision-Tree-based Symbolic Rule Induction System for Text Categorization. *IBM System Journal, Special Issue on AI*, Vol. 3.
- Kienast M., Paeschke A., Sendlmeier W. (1999). Articulatory Reduction in Emotional Speech. In *Proceedings of the Eurospeech*, Budapest, Hungary, 1999.
- KIRCHHOFF K., FINK G., SAGERER G. (2000). Conversational Speech Recognition using Acoustic and Articulatory Features. In *Proceedings* of the International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, 2000.
- KIRCHHOFF K. (1999). Robust Speech Recognition Using Articulatory Information. PhD Thesis, Universität Bielefeld (Germany), 1999.
- KÖSTER S. (2001). Acoustic-Phonetic Characteristics of Hyperarticulated Speech for Different Speaking Styles. In *Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, Salt Lake City, USA, 2001.
- Ladefoged P. (1975). A Course in Phonetics. Harcourt College.
- LEGGETTER C.J. (1995). Improving Acoustic Modelling for HMMs using Linear Transforms. PhD Thesis, Cambridge University, England, 1995.

LEMMETTY S. (1999). Review of Speech Synthesis Technology. Master's thesis, Helsinki University of Technology, Finland, http://www.acoustics.hut.fi, 1999.

- Levow G. (1998). Characterizing and Recognizing Spoken Corrections in Human-Computer Dialogue. In *Proceedings of the International Conference on Computational Linguistics*, Montreal, Canada, 1998.
- LINDBLOM B., BROWNLEE S., DAVIS B., MOON S.-J. (1992). Speech Transforms. Speech Communication, Vol. 11.
- MEDAN Y., YAIR E., CHAZAN D. (1991). Super Resolution Pitch Determination of Speech Signals. *IEEE Transactions on Signal Processing*, Vol. 39.
- METZE F., WAIBEL A. (2002). A Flexible Stream Architecture for ASR using Articulatory Features. In *Proceedings of the International Conference on Spoken Language Processing*, Denver, USA, 2002.
- METZE, WAIBEL A. (2003). Using Articulatory Information for Speaker Adaptation. In *Proceedings of the Automatic Speech and Recognition Workshop (ASRU)*, St. Thomas, USA, 2003.
- MORGAN N., FOSSLER-LUSSIER E. (1998). Combining Multiple Estimators of Speaking Rate. In *Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, http://www.icsi.berkeley.edu/ftp/global/pub/speech/morgan, 1998.
- OVIATT S. (1998). The CHAM Model of Hyperarticulate Adaptation During Human-Computer Error Resolution. In *Proceedings of the International* Conference on Spoken Language Processing, Sydney, Australia, 1998.
- Pearl J. (1988). Probabilistic Reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.
- PICHENY M., DURLACH N., BRAIDA L. (1986). Speaking Clearly for the Hard of Hearing II: Acoustic Characteristics of Clear and Conversational Speech. *Journal of Speech and Hearing Research*, Vol. 29.
- Picheny M. (1981). Speaking Clearly for the Hard of Hearing. PhD Thesis, Massachusetts Institute of Technology, USA, 1981.

PICKERT J. P. (2000). The American Heritage Dictionary of the English Language. Houghton Mifflin.

- Press W., Flannery B., Teukolsky S., Vetterling W. (1988). *Numerical Recipes in C.* Cambridge University Press.
- Rabiner L. (1978). Digital Processing of Speech Signals. Prentice-Hall.
- ROGINA I., WAIBEL A. (1994). Learning state-dependent Stream Weights for Multi-Codebook HMM Speech Recognition Systems. In *Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, Adelaide, Australia, 1994.
- ROGINA I. (1997). Automatic Architecture Design by Likelihood-Based Context Clustering with Crossvalidation. In *Proceedings of the Eurospeech*, Rhodos, Greece, 1997.
- Shriberg E., Wade E., Price P. (1992). Human Machine Problem Solving Using Spoken Language Systems (SLS): Factors Affecting Performance and User Satisfaction. In *Proceedings of the 5th DARPA Workshop on Speech and Natural Language*, USA, 1992.
- Soltau H., Waibel A. (1998). On the Influence of Hyperarticulated Speech on the Recognition Performance. In *Proceedings of the International Conference on Spoken Language Processing*, Sydney, Australia, 1998.
- SOLTAU H., WAIBEL A. (2000a). Acoustic Models for Hyperarticulated Speech. In *Proceedings of the International Conference on Spoken Language Processing*, Beijing, China, 2000.
- Soltau H., Waibel A. (2000b). Specialized Acoustic Models for Hyperarticulated Speech. In *Proceedings of the International Conference on Acoustics*, Speech and Signal Processing, Istanbul, Turkey, 2000.
- Soltau H., Metze F., Fügen C., Waibel A. (2001a). A One Pass Decoder based on polymorphic linguistic context assignment. In *Proceedings of the Automatic Speech and Recognition Workshop (ASRU)*, Madonna di Campiglio, Italy, 2001.
- SOLTAU H., SCHAAF T., METZE F., WAIBEL A. (2001b). The ISL Evaluation System for Verbmobil-II. In *Proceedings of the ICASSP*, Salt Lake City, USA, 2001.

Soltau H., Metze F., Waibel A. (2002a). Compensating for Hyperarticulation by Modeling Articulatory Properties. In *Proceedings of the International Conference on Spoken Language Processing*, Denver, USA, 2002.

- SOLTAU H., YU H., METZE F., FÜGEN C., PAN Y., JOU S. (2002b). ISL Meeting Recognition. In *Rich Transcription Workshop*, Vienna, USA, 2002.
- SOLTAU H., YU H., METZE F., FÜGEN C., JIN Q., JOU S. (2003). The ISL Evaluation System for RT-03 CTS. In *Rich Transcription Workshop*, Boston, USA, 2003.
- Suhm B. (1998). Multimodal Interactive Error Recovery for Speech User Interfaces. PhD Thesis, University of Karlsruhe, Germany, 1998.
- Thimm G., Luettin J. (1999). Extraction of Articulators in X-Ray Images. In *Proceedings of the Eurospeech*, Budapest, Hungary, 1999.
- Vapnik V. (1998). Statistical Learning Theory. Wiley.
- WOODLAND P., POVEY D. (2002). Large Scale Discriminative Training of Hidden Markov Models for Speech Recognition. Computer Speech and Language, Vol. 6.
- WORDNET (2003). Wordnet, a lexical database for the English language. Internet, http://www.cogsci.princeton.edu.