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Abstract

One of the main problems faced by automatic speech recognition is the variability of

the testing conditions. This is due both to the acoustic conditions (different trans-

mission channels, recording devices, noises etc.) and to the variability of speech

across different speakers (i.e. due to different accents, coarticulation of phonemes

and different vocal tract characteristics). Vocal tract length normalisation (VTLN)

aims at normalising the acoustic signal, making it independent from the vocal tract

length. This is done by a speaker specific warping of the frequency axis parame-

terised through a warping factor. In this thesis the application of VTLN to multi-

party conversational speech was investigated focusing on the meeting domain. This

is a challenging task showing a great variability of the speech acoustics both across

different speakers and across time for a given speaker. VTL,the distance between

the lips and the glottis, varies over time. We observed that the warping factors esti-

mated using Maximum Likelihood seem to be context dependent: appearing to be

influenced by the current conversational partner and being correlated with the be-

haviour of formant positions and the pitch. This is because VTL also influences the

frequency of vibration of the vocal cords and thus the pitch.In this thesis we also

investigated pitch-adaptive acoustic features with the goal of further improving the

speaker normalisation provided by VTLN.

We explored the use of acoustic features obtained using a pitch-adaptive analy-

sis in combination with conventional features such as Mel frequency cepstral coef-

ficients. These spectral representations were combined both at the acoustic feature

level using heteroscedastic linear discriminant analysis(HLDA), and at the system

level using ROVER. We evaluated this approach on a challenging large vocabulary

speech recognition task: multiparty meeting transcription. We found that VTLN

benefits the most from pitch-adaptive features. Our experiments also suggested that

combining conventional and pitch-adaptive acoustic features using HLDA results in

a consistent, significant decrease in the word error rate across all the tasks. Combin-

ing at the system level using ROVER resulted in a further significant improvement.

Further experiments compared the use of pitch adaptive spectral representation with

the adoption of a smoothed spectrogram for the extraction ofcepstral coefficients.

It was found that pitch adaptive spectral analysis, providing a representation which

is less affected by pitch artefacts (especially for high pitched speakers), delivers fea-
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tures with an improved speaker independence. Furthermore this has also shown to

be advantageous when HLDA is applied. The combination of a pitch adaptive spec-

tral representation and VTLN based speaker normalisation in the context of LVCSR

for multiparty conversational speech led to more speaker independent acoustic mod-

els improving the overall recognition performances.
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Chapter 1

Introduction

Automatic speech recognition aims to mimic the human capabilities of perceiving

speech using a machine. First attempts in this direction date back to the 1950’s,

when a speaker dependent system for isolated speech recognition was built at Bell

Laboratories (Davis et al., 1952). In this system formant trajectories were used as a

reference pattern to identify the best matching digit. At that time speech recognition

systems were only able to recognise small vocabularies of 10–100 words in isolated

mode (i.e. the speaker had to pause between words to make the system understand

what he was saying).

In the 1960’s some of the most important techniques such as filter bank anal-

ysis and dynamic programming were introduced. But it was not until the 1970’s

that the adoption of Linear Predictive Coding (LPC) and especially pattern recogni-

tion techniques enabled the development of medium vocabulary (100–1000 words)

continuous speech recognition systems. For example the useof graph search was in-

troduced by representing speech as a network of words (Lowerre and Reddy, 1976).

The first language modeling techniques were also used for thedevelopment of the

IBM speaker dependent dictation system VAT (Voice ActivatedTypewriter) (Jelinek

et al., 1975). Furthermore at the same time AT&T developed a speaker independent

voice dialing system using speaker clustering algorithms,where the number of dif-

ferent realisations for each word across a wide user population was determined.

The 1970’s and 1980’s saw the development of one of the more substantial

breakthroughs in speech recognition: Hidden Markov Models(HMMs) (Poritz,

1988; Rabiner, 1989). This technology, pioneered by the IBM, IDA laboratoraties

1
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and CMU (Baum, 1972; Ferguson, 1980; Bahl et al., 1983), saw one of its first

applications even earlier in the Dragon system, developed in the 1970s by Baker

(1975). HMMs are doubly stochastic models consisting of a set of hidden states.

They include an underlying statistical model (a Markov chain), which is not observ-

able, characterising the probabilistic relationship between the states, and a second

process aimed at generating the sequence of observations associated to the hidden

states. These statistical models enabled the integration of acoustic modeling and

language modeling in a consistent framework, allowing to build the first large vo-

cabulary continuous speech recognisers.

In the 1990’s techniques to make the flexible HMM infrastructure more robust

were investigated. Some of these technologies aimed at reducing the mismatch

between training and testing conditions: such as the Maximum Likelihood Linear

Regression (MLLR) family (Legetter and Woodland, 1994; Galesand Woodland,

1996; Digalakis et al., 1995) and Maximum a Posteriori (MAP)adaptation (Gau-

vain and Lee, 1994) techniques. These approaches were applied both to adapt the

recogniser to specific speakers or to specific acoustic domains.

The use of speaker normalisation techniques such as Vocal Tract Length Nor-

malisation (VTLN), aiming to normalise for the speaker’s specific vocal tract length,

was also wide spread in the 1990’s (Cohen et al., 1995; Wegmannet al., 1996; Eide

and Gish, 1996; Zhan and Waibel, 1989; Hain et al., 1999), although one of the first

applications of VTLN dates back to 1977 when it was used in a vowel recognition

system (Wakita, 1977).

Together with these technology evolutions, the application fields of speech recog-

nition have also changed quite significantly over time. Several research advance-

ments were driven by the speech recognition evaluations runby NIST. These eval-

uations aim at benchmarking the performances of the best ASRsystems (Fiscus

et al., 2007). In the early 1990s speech recognition systemswere evaluated on con-

strained tasks such as the resource management (continuousmilitary style speech)

or read speech data such as the Wall Street Journal task. Automatic transcription

of Broadcast News has been investigated since the late 1990s.Recently the speech

recognition community has started investigating more challenging tasks such as

conversational telephone speech, and multiparty meeting speech recognition. These

tasks present an increasing number of challenges. Weintraub et al. (1996) com-
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pared the recognition of spontaneous conversational speech to the recognition of

read speech under similar testing conditions (same microphones, acoustics and tran-

scription) finding that speaking style has a tremendous effect on the performances

of an LVCSR system: the word error rate (WER) on read speech was half of that ob-

served on spontaneous speech. Multiparty meeting speech recognition is therefore a

rather challenging task, being at the moment the “most difficult actively researched

domain for speech to text systems” (Fiscus et al., 2007). It is an extremely inter-

esting task because it represents one of the most natural communication scenarios

where humans freely interact without constraints.

Spontaneous speech is characterised by an increased speaker variability. Eske-

nazi (1993) compared the characteristics of read and spontaneous speech, point-

ing out that conversational speech typically shows more frequent deletion of con-

sonants, wider formant space (F1/F2), smaller F0 range, shorter ungrammatical

pauses, and higher variability from a phonologic point of view.

The main goal of this thesis is the investigation of speaker normalisation in the

context of spontaneous speech recognition (particularly in multiparty meetings), in

order to minimise the mismatch between acoustic models and training data.

1.1 Speaker normalisation

Automatic Speech Recognisers (ASR) are complex and compositesystems con-

sisting of a number of components which should all work in harmony in order to

provide a good overall performance. Different components,which at a first sight

look far apart in the processing chain, may have an influence on the behaviour of all

the other building blocks. One first example is the influence of the segmentation of

the acoustic signal on all the other blocks of the speech recogniser, influencing the

way in which the language model will act, the normalisation and adaptation, and of

course the decoding. Another example is the fact that normalisation and adaptation

operate in a complementary way, trying on one hand to reduce the mismatch be-

tween acoustic features and acoustic models (normalisation), and on the other hand

trying to make the acoustic models more suitable for a particular speaker (adapta-

tion). Moreover the choice of the acoustic features has a primary effect on the entire

ASR system, and in particular on the normalisation and adaptation behaviour.
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Adaptation and normalisation techniques attempt to make the acoustic models

and the features more suitable for the target testing conditions they have been ap-

plied to. These techniques allow the adaptation of the models from one acoustic

domain to another or from one speaker to another. In particular, speaker variability

is one of the main problems in current speaker independent ASR due to the presence

of different speaking styles, accents and speaker characteristics (vocal tract length

and shape). Vocal tract configuration has a substantial effect on the observed spec-

trum: for example, a typical female speaker exhibits formant frequencies around

20-25% higher than those of a male speaker. Vocal Tract Length Normalization is a

state of the art technique which normalizes for inter-speaker variability. It is based

on the speaker-specific warping of the frequency axis, parameterized by a scalar

warp factor. This factor is typically estimated using Maximum Likelihood, that is

maximizing the probability of a given speech recognition output given the acoustics

(vocal tract length normalized features) and the acoustic models. This approach

results in improved recognition accuracies, but also in incorporating in the optimi-

sation variables other than the sole vocal tract length. Ourmost general question is

to

investigate how VTLN may be applied to multiparty conversations and
to discover what are the unique characteristics of this conversational
domain from the speaker normalisation point of view.

Initial experiments, on the use of ML VTLN in the meeting domain, reported

a substantial improvement in accuracy (Garau et al., 2005).Investigating the be-

havior of the VTLN warping factors we have shown that unique stable estimates

are not usually observed in dialogues. Instead warping factors appear to be influ-

enced by the context of the meeting, in particular the current conversational partner.

These results are consistent with predictions made by the psycholinguistic interac-

tive alignment account of dialogue, when applied at the acoustic and phonological

levels. Pickering and Garrod (2004) argued that, during a dialogue, production and

comprehension are coupled so that two speakers can be seen toalign at different

levels: developing the same expressions to refer to particular objects, aligning in ar-

ticulation, converging in accents and speech rates. The estimated warping factors of

two interlocutors are typically non-aligned at the start ofa meeting, but can be seen

to align (or at least evolve through phases of alignment) as the meeting progresses. It
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is therefore evident that VTLN, when applied with a maximum likelihood approach,

is normalising for VTL variability during speech production (Dusan, 2005b).

Our second question, which arises from our preliminary investigations, is a dual

one:

(1) to find acoustic features which are more suitable for normalisation
and in particular for VTLN, (2) to isolate the primary function of VTLN
(which is to normalise for the speaker specific vocal tract length) from
the other normalisation effects, such as channel normalisation and the
overall reduction of the mismatch between acoustic featuresand mod-
els.

To answer these questions, we investigated novel approaches for speech sig-

nal processing which should be able to exploit a better time-frequency resolution,

obtaining thus a more speaker independent feature representation. In the next sec-

tion we will highlight our main efforts towards finding a morespeaker independent

speech representation by investigating the use of a pitch adaptive spectral represen-

tation based on STRAIGHT (Kawahara et al., 1999).

1.2 Contribution

In our preliminary experiments about the use of VTLN on multiparty meetings, we

found that VTLN warping factors estimated using ML exhibited significant variabil-

ity over time (Garau et al., 2005). This is consistent with the variation of pitch over

time due to the variation of the larynx position. Therefore we investigated the use of

a spectral representation which is less pitch-dependent inconjunction with VTLN.

This study is based on the use of the pitch adaptive STRAIGHT spectral representa-

tion instead of the conventional short time Fourier transform for the computation of

Mel Frequency Cepstral Coefficients (MFCCs) and MF-Perceptual Linear Predic-

tion (PLP) coefficients. The spectral analysis of STRAIGHT uses a fundamental pe-

riod adaptive window which gives equivalent resolution both in time and frequency

domains; followed by an adaptive smoothing of the time-frequency representation.

Therefore the resulting pitch adaptive spectral representation allows to extract pitch

normalised features.

Experiments were performed on three large vocabulary tasks: WSJCAM0, Con-

versational Telephone Speech (CTS), and the multiparty meeting domain both for
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the close talking (individual headsets) and the multiple distant microphone tasks.

This set of experiments allowed us to benchmark the use of pitch adaptive features

on a wide range of speaking styles, channel and acoustic conditions. WSJCAM0 is

a fairly simple task consisting of read speech using a close-talking microphone in a

quiet environment. CTS and the meeting domain are more challenging, involving

spontaneous conversational speech. They are particularlyuseful in studying the ef-

fect of a pitch adaptive representation, because this domain is known to have richer

prosodic variation. Moreover, CTS involves telephone speech which is subject to

a bandpass filter that partly obscures the pitch; while the multiparty meetings were

recorded in reverberant conditions with overlapping speech. On the meeting task

the situation is further complicated when multiple distantmicrophones are used to

record the conversation, and beamforming algorithms are applied to the recorded

signals.

Experimental results showed that not only pitch adaptive features provide com-

parable results to conventional features and are particularly beneficial when VTLN

is adopted, but their combination using HLDA and ROVER techniques provides

consistent relative improvements across all different tasks (3–9% relative word er-

ror rate reduction).

The complementarity between conventional and STRAIGHT derived features

was also further analysed by using separately the pitch adaptive and the smoothing

part of STRAIGHT. In this experiments it was found that most of the complemen-

tarity is given by the pitch adaptive module. Pitch adaptivefeatures also manifested

increased speaker independence making them definitely moresuitable features for

speaker normalisation (one of our initial aims).

1.3 Thesis Structure

This thesis can be subdivided in two parts: a background one where the speech

recognition problem and speaker normalisation are introduced, and an experimen-

tal part where we describe both the techniques and the experiments developed to

answer the main research questions of this thesis. Both partshave a special fo-

cus on multiparty meetings. The experimental part can be subdivided in chapter 5

which deals with the study of the relationship between vocaltract length and the
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fundamental frequency (and their changes due to the variation in larynx position),

and chapter 6 and 7 which mainly study the use of a pitch adaptive spectral repre-

sentation in conjunction with VTLN to deal with the effect ofthe fundamental fre-

quency manifested as harmonic lines, therefore making the spectrum more speaker

normalised (more speaker independent). More precisely:

• In chapter 2 we will present an overview of a HMM based speech recognition

system showing feature extraction techniques.

• Chapter 3 will provide a background on speaker adaptation andnormalisation,

with particular attention to vocal tract length normalisation.

• Chapter 4 will describe the data and the main tools used in the experiments

of this thesis focusing on meeting recognition (corpora, dictionary, language

models, preprocessing, speaker adaptation and normalisation, and the NIST

evaluations).

• In chapter 5 experiments on the use of VTLN for spontaneous speech recog-

nition (conversational telephone speech and multiparty meetings) will be de-

scribed and the behaviour of VTLN warping factors in the multiparty meeting

domain will be analysed.

• In chapter 6 experiments on the use of STRAIGHT derived pitch adaptive fea-

tures in conjunction with VTLN will be outlined on three large vocabulary

continuous speech recognition tasks: WSJCAM0, CTS and meetings.

• A deeper experimental analysis on the use of STRAIGHT is presented in chap-

ter 7.

• Finally chapter 8 summarises the main achievements of this research dis-

cussing the theoretical implications and the main findings.





Chapter 2

Automatic Speech Recognition

Overview

2.1 Introduction

The problem of Automatic Speech Recognition (ASR) is finding the most probable

sequence of words given the observed acoustics. The waveform is first processed by

the feature extraction module to extract meaningful information in the form of the

acoustic vectorsO = o1,o2, ...,oT. Then decoding is performed to find the sequence

of wordsW = w1,w2, ...,wN which most likely generates the observation sequence

O. More precisely we want to solve the equation:

W∗ = argmax
W

P(W|O) = argmax
W

P(O|W)P(W) (2.1)

whereP(O|W) is the probability of the acoustic measurements of the observation

O given the hypothesised sequence of wordsW and it is referred to as the acoustic

model. The sequence of wordsW can be represented either by word units or by the

concatenation of sub-word units such as phonemes. The choice of the speech units

will be outlined in more detail in section 2.2.1.P(W) is the a priori probability of

the sequence of wordsW defined by language modeling.

9
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2.1.0.1 N-gram language modeling

The language model estimates the probability of the sequence of wordsP(W). The

most common language model form are N-grams. N-grams model the probability

of the wordswi by conditioning it to the n-1 preceding words: more specifically the

probabilityP(wi|wi−1,wi−2, ...,wi−n+1) is modelled. For n=1 we have unigrams, for

n=2 bigrams and for n=3 trigrams and so on. The N-gram probabilities are estimated

by counting the sequences of n words in text corpora. Moreover the language model

probability of a sequence of N words is computed by:

P(W) =
N

∏
i=1

P(wi|wi−1,wi−2, ...,wi−n+1). (2.2)

where the joint distributionP(w1,w2, ...,wN) is factorised as a chain product of

conditional probabilities in the formp(wi |wi−1, ...,wi−n+1). Trigrams or at most

fourgram language models are typically employed by large vocabulary continuous

speech recognition (LVCSR) systems. This is because increasing the order of the

language model results in requiring larger amounts of training data and a good trade

off must be reached. Moreover the search space to find the mostprobable word

sequence grows with the language model order.

2.2 Acoustic Modeling

2.2.1 The Speech Units Choice: context-dependent models

The choice of speech units plays a leading role in acoustic modeling. According to

Lee (1990), in order to make an appropriate choice, two important characteristics

should be fulfilled: consistency and trainability. The units should be consistent in

the sense that multiple occurrences of the same unit should have a similar acoustic

realisation. The trainability property requires a sufficient number of training exam-

ples.

Traditionally for small vocabulary systems, such as digit recognition, entire

words have been adopted as base units. This is the most intuitive choice and it

also presents several advantages, for example the capability of modeling context

effects between adjacent phonemes within the same word, andthe fact that there is

no need for a pronunciation dictionary. Because of these advantages they are in fact
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the best choice when sufficient data are available. The drawbacks of using words

as speech units are: the linear increase of the necessary training data as well as

the memory usage when the dictionary size increases, and theneed of training new

models when a new word is added to the recognition system.

For LVCSR systems, where many words need to be modelled and there are not

enough examples to train separate models for each word, usually sub-word units are

adopted, such as phonemes (monophones). Phonemes have the advantage of requir-

ing few data for training (the number of phonemes in English is only around 45).

However their main problem is that they assume complete context independence

between phonemes and this is unfortunately not true.

Thus context-dependent models were introduced to model phones in context

(Schwartz et al., 1985). Both the right and the left context should be considered:

for left biphones we only consider the left context and for right biphones we only

consider the right context, while we consider both at the same time using triphones.

Triphones are the best choice from a consistency point of view and are often adopted

in LVCSR systems. For continuous speech it is also crucial to model transitions

between words, thus not only context-dependent phoneme models such as word-

internal triphones (which only model the context inside words) but also cross-word

triphones (modeling the context across adjacent words too)are adopted. An exam-

ple of the pronunciation labels for monophones, word-internal triphones and cross-

word triphones for the utterance “How are you doing” is shownin figure 2.1.sil

represents silence andsp represents short pauses and the context dependent pho-

netic models have been represented following the Hidden Markov Model Tool Kit

(HTK Young et al. (2006)) notation. For examplel-ph+r is an occurrence of the

phonemeph with the left context represented byl- and the right context represented

by +r .

The main problem of context-dependent models is trainability: if we consider

for example triphones with a pronunciation dictionary of 45phones there is a num-

ber of 453 possible combinations and some of these may not even be seen in the

training sets. Techniques which aim to address this trainability issue are described

in section 2.2.3.
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Monophones:

sil hh aw sp
aa r sp y
uw sp           d uw
ih ng sp sil

Triphones Word-Internal:

sil hh+aw hh-aw sp
aa+r aa-r sp y+uw
y-uw sp            d+uw         d-uw+ih
uw-ih+ng ih-ng sp sil

Triphones Cross-Word:

sil sil-hh+aw hh-aw+aa sp
aw-aa+r aa-r+y sp r-y+uw
y-uw+d sp uw-d+uw      d-uw+ih
uw-ih+ng ih-ng+sil sp sil

Figure 2.1: An example of the labels of monophones, word-internal and cross-word

triphones for the utterance “How are you doing”

2.2.2 Hidden Markov Models

Acoustic modeling involves finding a way of estimating the likelihood of the ob-

served sequenceO given a certain word sequenceW: P(O|W). In most of the

state-of-the-art ASR systemsP(O|W) is modelled using Hidden Markov Models

(HMMs). These models are a natural choice for modeling speech which has a tem-

poral structure represented by a sequence of acoustic observations. HMMs, intro-

duced by Baum (1972), are defined as stochastic finite state automata consisting of

a sequence of statesS with transitions for each timet from statesi to statesj with

probability asi ,sj generating a sequence of observationsO. In practice while the

observation sequenceO is known, the state sequenceS is unknown or hidden, this

is why they are called Hidden Markov Models. More explicitlythe assumptions

required by HMMs can be defined as follows:

• the Markovian assumption: a statesj is only conditioned on the previous state
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Figure 2.2: An example of a 3 state left-to-right HMM system

si (and it is independent on all the other states);

• the observation at timet is only dependent on the state which generated it

(and it is independent of all the other observations);

• the stationarity property: the parameters of HMMs are fixed over time;

• discrete hidden states are considered;

• finally we assume continuous observations (parameterised by the acoustic

feature vectors).

In our experiments we adopted cross-word triphone units with a 3 state left to

right topology, shown in figure 2.2. In this topology only three states are emitting,

while the entry and the exit states are simply used to connectmodels together such

that phonemes are joined to form words, and words are joined to form utterances.

The representation presented in the figure is that adopted bythe HTK (Young et al.,

2006), which was used for the experiments in this thesis.

Adopting an HMM with a state sequence{s1,s2, ...,sT}, the acoustic modeling

probabilityP(O|W) can be extended as follows:

argmax
W

P(O|W) = argmax
wN

1

p(oT
1 |wN

1 ) = max
sT
1 :wN

1

T

∏
t=1

p(ot|st ;w
N
1 )p(st |st−1;wN

1 ) (2.3)
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p(ot|st ;wN
1 ) are the emission probabilities andp(st |st−1;wN

1 ) are the transition prob-

abilities. A continuous observation HMM (Rabiner, 1989) canbe defined through a

parameter model setλ which consists of a transition matrixA, an initial state prob-

ability vectorπ, and an observation probability distribution for each state bsj (ot).

The transition matrixA is defined asA = {ai j = P(q(t +1) = sj |q(t) = si)} andπ
is given byπi = P(q1 = si) wheresj are the individual states andq(t) is the state at

time t. The emission probabilitiesbsj are continuous probability density functions

usually approximated by a mixture of Gaussian distributions:

bsj (ot) =
M

∑
m=1

{c j,mN (µj,m,Σ j,m;ot)} = (2.4)

=
M

∑
m=1

{c j,m
1

√

(2π)n
∣
∣Σ j,m

∣
∣

e−
1
2(ot−µj,m)TΣ j,m

−1(ot−µj,m)}

wherec j,m are the mixture weight coefficients of themth mixture in statej,

µj,m are the mean vectors andΣ j,m are the covariance matrices of the multivariate

gaussian distributionN andn is the dimensionality of the observation vectorot.

Following Ferguson (1980) Rabiner’s tutorial on HMMs (Rabiner, 1989) defines

the 3 fundamental problems of HMMs as follows:

• evaluation: finding a way to efficiently computeP(O|λ), the probability of

the observation sequenceO = o1,o2, ...,oT given the parameter model setλ

• decoding: finding the optimal state sequences1,s2, ...,sT given the observa-

tion sequenceO and the modelλ

• learning: estimating the parameters of the modelλ which maximise the like-

lihood of the observation sequence of the training dataO (i.e. maximising

P(O|λ)).

2.2.2.1 The evaluation problem

The easiest solution to the so called “evaluation” problem is to account for every

possible state sequence{s1,s2, ...,sT} given theT observation vectors multiplying

all the transition probabilities and emission probabilities:

P(O|λ) = ∑
s1,s2,...,sT

πs1bs1(o1)as1,s2bs2(o2)...asT−1,sT bsT (oT). (2.5)
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This can be interpreted as follows: the system is initially in states1 with probability

πs1 and generates the observationo1 with probability bs1(o1); at time t = 2 the

system goes in states2 with probabilityas1,s2 and generates the observationo2 with

probabilitybs2(o2) and so on until the last state of the sequencesT is reached.

Unfortunately this approach is computationally unfeasible because it isO(2 ·
T ·NT). Therefore a more efficient iterative solution has been proposed which is

known as the forward-backward algorithm originally introduced by Baum et al.

(1970). The forward part of the algorithm (which is the only part used to estimate

the total likelihoodP(O|λ)), starts from the observation that the probability of being

in statesj and having observed the sequenceo1,o2, ...,ot given the modelλ can be

computed as the sum of the forward probabilities of all possible predecessor states

si weighted by the transition probabilityasi ,sj and the emission probabilitybsj (ot).

The total likelihood is therefore given by:

P(O|λ) =
N

∑
i=1

αT(si) (2.6)

where the forward probabilityαt(sj) is computed as in figure 2.4.

2.2.2.2 The decoding problem

The decoding problem can be seen as finding the maximum likelihood state se-

quence given the observations and the acoustic modelλ. This problem can be solved

similarly to the forward algorithm, but here instead of the sum over all possible state

sequences we aim to find the state sequence corresponding to the maximum proba-

bility (Viterbi, 1967; Forney, 1973).

The partial likelihood of the state sequence at timet ending at statesj is given

by:

δt( j) =

{

πsj bsj (o1) 1≤ j ≤ N if t = 1

maxi=1,...,N
[
δt−1(i)asi ,sj

]
bsj (ot) 1≤ j ≤ N if 2 ≤ t ≤ T

(2.7)

and the optimal state sequence and correspondent probability is given by:

q∗T = argmax1≤i≤N δT(i), P∗
T = max1≤i≤N δT(i). (2.8)

The token passing algorithm (Young et al., 1989) can be used to trace back the

most likely state sequence. This algorithm stores the information of each partial



16 Chapter 2. Automatic Speech Recognition Overview

path (the probability and the traceback information) in a structure called a token.

For continuous speech the token is propagated through a network of multiple par-

allel hypotheses: this is built using both the information provided by the language

model (which gives possible word sequences) and the pronunciation of the words

contained in the dictionary. The search network can be builtstatically prior to de-

coding as in Mohri et al. (1998), or dynamically integratingthe building process

into the decoding as in Odell et al. (1994). Finding the most likely state sequence

can be computationally expensive. In particular for large vocabulary speech recog-

nition the hypothesis network can be large, especially whencross-word models and

bigram or trigram language models are used. Therefore various approaches have

been developed to reduce the computation effort. These are generally referred to

as pruning. One of the most common pruning techniques is the beam pruning. For

each frame the most likely partial path is found and its likelihood is used as the top

of the beam of fixed width. Then the tokens having a likelihoodfalling outside the

beam are pruned out. Unfortunately search errors may occur if the correct hypothe-

sis is pruned out, thus it is important to choose carefully the beam width in order to

achieve a good trade off between computational requirements and accuracy.

Although the main goal of recognition is to find the most likely word sequence

(equation 2.1) it is possible to find the N best hypothesised word sequences just by

storing the the N best tokens in each state, instead of only the best one. This is

useful especially for large vocabulary speech recognitionsystems, since it allows

to perform multiple rescoring passes. In this way higher order language models or

different acoustic models can be used without having to solve equation 2.1 again

from scratch. The N best hypotheses are usually stored in a compact form through

word lattices (Richardson et al., 1995). A word lattice consists of a set of nodes,

representing start and end points of words, and a set of arcs representing word hy-

potheses along with the acoustic and language model scores.A more compact rep-

resentation of word lattices are the so called confusion networks (Mangu et al.,

2000), where nodes do not represent points in time but only impose word sequence

constraints. More in detail confusion networks represent all possible hypothesised

word sequences, transforming the lattice space into slots each having a set of word

hypotheses represented by arcs. In figure 2.3 we show a comparison of word lattices

and confusion networks. Confusion networks are also useful for word error minimi-
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Figure 2.3: Word lattice and confusion network examples

sation when the output of multiple systems is combined (Evermann and Woodland,

2000; Fiscus, 1997).

2.2.2.3 The learning problem: acoustic model parameter estim ation

The problem of estimating all the model parameters consistsin finding theλ pa-

rameter model set which best represents the data observed inthe training dataset.

There are 2 main optimisation criteria: Maximum Likelihood(ML) and Maximum

Mutual Information (MMI).

Maximum likelihood criteria aim to maximise the probability of a given obser-

vation OW belonging to a given word sequenceW given a parameter model set

λ:

Ltot = P(O|W,λ). (2.9)

To solve this maximisation problem there are no analytic solutions, instead iterative

procedures such as Baum Welch or gradient techniques are used. To describe the

Baum Welch algorithm we shall first introduce the backward part of the forward-
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Figure 2.4: An illustration of the forward-backward algorithm

backward algorithm. The backward probability is defined as the probability of ob-

servingot+1,ot+2, ...,oT given that the system is in statesi at timet and it is defined

as in figure 2.4.

Then the Baum Welch algorithm defines a variableξt(i, j) as the probability

of being in statesi at timet and in statesj at timet + 1 given the model and the

observation sequence, and can be estimated as:

ξt(i, j) = P(qt = si,qt+1 = sj |O,λ) =
αt(i)asi ,sj bsj (ot+1)βt+1( j)

∑N
i=1∑N

j=1αt(i)asi ,sj bsj (ot+1)βt+1( j)
(2.10)

as illustrated in figure 2.4.

A variableγt(i) is also defined as the probability of being in statesi at timet

given the observation sequence and the model:

γt(i) =
N

∑
j=1

ξt(i, j). (2.11)

Then if we sum over timeξt(i, j) we obtain the total expected number of transitions
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from si to sj and if we sum over timeγt(i) we obtain the total number of transitions

to statesi so that the model parameters can be estimated as:

π̂i = γ1(i); âi,j =
∑T−1

t=1 ξt(i, j)

∑T−1
t=1 γt(i)

; b̂j (ot) =
∑T

t=1 ot
γt( j)

∑T
t=1γt( j)

. (2.12)

Now denoting the current model asλ = {A,B,π} and the re estimated model as

λ̂ = {Â, B̂, π̂}, we can iteratively replaceλ with λ̂ and apply again the estimation

formulas above increasing the probability of the observation sequenceO until con-

vergence is reached. The same solution could be obtained by maximising Baum’s

auxiliary function:

Q(λ, λ̂) = ∑
Q

P(Q|O,λ) logP(O,Q|λ̂) (2.13)

overλ which was proved to increase the likelihood so that:P(O|λ) ≤ P(O|λ̂).

In speech recognition, since the observations are continuous signals, continuous

observation densities are used in the HMMs and the emission probabilities are de-

fined as in 2.4. Therefore we need to estimate the mixture weightsc j,m, the mean

vectorµ̂j ,m and the covariance matrix̂Σ j,m. It can be shown that the reestimation of

the mixture densities coefficients can be expressed by the following formulas:

ĉ j,m =
∑T

t=1γt( j,m)

∑T
t=1∑M

m=1γt( j,m)
, (2.14)

µ̂j,m =
∑T

t=1γt( j,m) ·ot

∑T
t=1γt( j,m)

, (2.15)

Σ̂ j,m =
∑T

t=1γt( j,m) · (ot − µ̂j ,m)(ot − µ̂j ,m)T

∑T
t=1γt( j,m)

(2.16)

whereγt( j,m) is the probability of being in statesj at timet with themth mixture

component. This can be estimated using the current set of parametersλ and given

by:

γt( j,m) =
αt( j)βt( j)

∑N
j=1αt( j)βt( j)

c j,mN (µ̂j,m, Σ̂ j,m;ot)

∑M
m=1{c j,mN (µ̂j,m, Σ̂ j,m;ot)}

. (2.17)

Equation 2.14 can be interpreted as the ratio between the number of times the

system is in statesj and occupies the mixturem and the total number of times the

system is in statesj , and in a similar way the estimated meanµ̂j,m is given by a
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mean of the observations weighted by the occupancy probability of statesj with the

mth mixture.

As mentioned above the model parameters can also be estimated using discrim-

inative MMI training instead of ML. In this thesis only ML techniques have been

adopted, therefore a extensive discussion of MMI theory will not be provided here.

For an in-depth description of discriminative training techniques the reader may

refer to Povey (2003). Maximum mutual information is a discriminative training

criterion which maximises the ratio of the probability of the observation sequence

given the acoustic model corresponding to the correct word sequenceλWc and the

probability of the observation sequence given any acousticmodel (corresponding

both to correct and incorrect word sequencesλWr ). The MMI criterion is given by:

F = argmax
λ

log

(
P(O|λWc)

∑R
r=1P(O|λWr )

)

. (2.18)

In practice in LVCSR systems lattices are generated recognising the training data

and the MMI criterion is optimised on the alternative hypotheses contained in the

lattices.

2.2.3 State Tying

As we mentioned in section 2.2.1 the most widely used speech units for LVCSR

are cross-word triphones. Even if they have the advantage ofbeing a consistent

representation they show trainability problems due to the number of possible tri-

phones occurring in speech. In the next paragraph we will provide an example of

the amount of data needed to train a cross-word triphone HMM system.

In the English language we can consider 45 phonemes, therefore the total num-

ber of triphones would be 453 (that is over 90000); of these only around 60000 can

occur in practice due to the phonotactic constraints of the language. Typically 16

mixture components, 39 dimensional feature vectors and diagonal covariance ma-

trices are used. For each state we would have(39∗2+1)∗16= 1262 parameters.

With a 3 state topology for each triphone we would have a totalof 3876 parameters,

for a total of 232 million parameters. Therefore modeling somany speech units

would require a large amount of data and unfortunately this is not always possible.

Moreover some of the triphones may be not well represented inthe training data or

they may not occur at all.
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Various techniques were developed to address the data sparsity problem of tri-

phones. In Schwartz et al. (1985) the use of a weighted combination of all the possi-

ble models (monophones, biphones with the left and the rightcontext and triphones)

was proposed. In this work the weights are determined according to several factors:

the position of the phoneme, the type of model and the number of available train-

ing samples. However this technique does not exploit the fact that some triphones

are similar and more specifically some phones have the same effect on neighbouring

phones. In Lee (1990) the context effect is therefore automatically generalised: sim-

ilar triphones are iteratively clustered together using a bottom-up procedure (where

similar triphones are only merged when this results in an improvement).

For the experiments reported in this thesis a method called tree-based state tying

or clustering was used (Young et al., 1994). This method tiestogether those states

which are acoustically similar so that the data coming from similar states are pooled

together and lead to more reliable parameter estimates. Phonetic decision trees are

used to choose which states may be tied. These are basically binary trees where each

node corresponds to a yes/no phonetic question: first of all adifferent tree is built

for each monophone state, and all states for this given monophone are in the root

node, then the states are recursively split according to thequestions until the tree

leaf nodes are reached and the states sharing the same leaf nodes are tied together

and will share the same model parameters. The main advantageof this technique

is that even unseen triphones can be modelled by simply finding the correspondent

leaf nodes.

2.3 Feature Extraction

2.3.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) are one of the most widely used

type of acoustic features (Davis and Mermelstein, 1980). A block diagram of their

extraction is shown in figure 2.5.

The first block, the pre-emphasis filter, is a high pass filter which aims to em-

phasise high frequencies to which the human ear is more sensitive and it has the

effect of a 6 dB/octave gain increase, making the average speech spectrum more
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Figure 2.5: MFCC extraction block diagram
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flat. The pre-emphasis filter is defined by:

H(z) = 1− a
z

0≤ a < 1 (2.19)

In all the experiments of this thesisa = 0.97.

The pre-emphasis block is followed by the Hamming windowingblock. This is

a necessary step to compute the Short Time Fourier Transform(STFT) where the

Fast Fourier Transform (FFT) of the speech signal is computed using a time sliding

window (assuming that the signal is stationary). The duration of the window is

typically set to 25 msecs and the shift is 10 msecs. A smoothing window is used

to reduce the edge effect and it is usually a Hamming window, aparticular type of

Hanning window having the lowest possible peak to side lobe level in the frequency

domain (approximately 43dB), and given by the formula:

wH(n) = 0.54−0.46cos

(
2π(n−1)

N−1

)

(2.20)

whereN is the total number of the window samples andn is the sample index. This

window, having a bell shape in the time domain, has the desirable effect of favoring

the speech samples towards the centre of the window. The correct trade-off between

the window’s duration and the frame length needs to be chosen: to capture rapid

dynamics of the spectrum on one side we would need a short window in time, and

at the same time a small frame length, in order to have a sufficient resolution in

time; on the other side choosing a high overlap of windows would allow to reduce

the noise generated by a particular placement of the window,but at the same time

would give a too smooth speech representation, obscuring the true variations in the

signal (Picone, 1993).

On each of the windowed signal frames the magnitude of the FFT, a compu-

tationally efficient version of the Discrete Fourier Transform (DFT), is computed.

Psychoacoustic experiments have shown that the perceptionof sound frequency is

not linear but approximately logarithmic. This was demonstrated by studying the

auditory system capability of discriminating frequency components of a complex

sound through auditory masking. This is also referred to as frequency resolution or

selectivity and represents the ability of distinguishing overlapping tones at differ-

ent frequencies. The cochlea may be viewed as a set of auditory filters placed on

the basilare membrane each of them centred on a particular frequency. According
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to Fletcher’s studies (Fletcher, 1940) the human auditory frequency resolution is

approximately in a logarithmic scale. Similarly the critical bandwidths, defined as

the frequency range in which two sounds are not perceived independently, increase

approximately logarithmically with frequency.

The most commonly used frequency warping functions defined in the literature

are the Bark scale and the Mel scale. Davis and Mermelstein (1980) used Mel

scaling for the implementation of MFCCs which is defined as:

fM = 2595log10

(

1+
f

700

)

. (2.21)

This is approximately linear up to 1000Hz and logarithmic beyond; the critical

bandwidth is given by:

BW = 25+75

[

1+1.4

(
fM

1000

)2
]0.69

. (2.22)

In practice the power spectrum is passed through a Mel Filterbank. Then the log-

arithm of each filter output is computed to take into account the fact that the hu-

man loudness perception (the perceived intensity) increases logarithmically with

the sound intensity.

Finally the Discrete Cosine Transform (DCT), having the desirable effect of

decorrelating and compressing the mel scale filter log energies, is performed:

cmel(n,m) =
1
R

R−1

∑
l=0

log(Emel(n, l))cos

(
2π
R

lm

)

(2.23)

whereR is the total number of Mel filters,l is the Mel filter index andm is the cep-

stral coefficient index; the DCT as it is expressed in equation2.23 is equivalent to

computing the inverse Fourier transform of the logarithm ofthe Mel spectrum. Typ-

ically the first 12 cepstral coefficients are computed since higher order coefficients

tend to be noisy and less informative.

2.3.2 Perceptual Linear Predictive Coefficients

Perceptual Linear Predictive analysis was introduced by Hermansky (1990) with the

aim of making Linear Predictive (LP) analysis more consistent with the perceptual

properties of the human auditory system. In this section we will introduce Herman-

sky’s implementation of PLPs and at the same time we will outline the differences
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of the latter with HTK’s implementation (which was in fact used in the experiments

presented in this thesis).

A block diagram of Hermansky’s PLPs extraction can be seen infigure 2.6. Sim-

ilarly to MFCCs the first step is the analysis through a Hamming window, described

in the previous section, followed by the computation of the power spectrum using

the |FFT|2. To take into account the human ear frequency resolution thespectrum

is warped along the frequency axis using a Bark scale filterbank with a frequency

rescaling given by:

fB = 13arctan(0.76f )+3.5arctan( f/7500). (2.24)

However in the HTK implementation a Mel scale filterbank is used, and the

features are therefore often referred in the literature as MF-PLPs (Woodland et al.,

1997).

While for the MFCCs the magnitude of the filters output was log compressed,

for the PLPs, according to Robinson and Dadson’s study of human perception of

sound intensity, the equal-loudness curve is used (Robinsonand Dadson, 1956). On

top of this a cubic-root amplitude compression is performed, which emulates the

non linear relation between the intensity and the perceivedloudness of sound.

Spectral all-pole modeling is then performed and finally cepstral coefficients are

extracted applying the DCT. The all-pole modeling theory (Quatieri, 2001) basically

starts from the observation that the transfer function model from the glottis to the

lips, consisting on the glottal flowG(z), the vocal tractV(z) and the radiation load

R(z) can be expressed as:

H(z) = AG(z)V(z)R(z) =
A

1−∑p
k=1akz−k

(2.25)

whereA represents the loudness of the sound andG(z), V(z) andR(z) are all rep-

resented by all-pole functions. The basic assumption behind the methods for the

estimation of the filter coefficientsak is the so calledautoregressive modelwhich

states that each speech samples(n) can be represented as a linear combination of

the past speech samples:

s̃(n) =
p

∑
k=1

aks(n−k) (2.26)

where theak are the linear prediction coefficients (LPC). The LPCs are computed

so that the prediction error given by the difference of the observed samples(n) and
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the predicted value ˜s(n) is minimised. It can be demonstrated that this is equivalent

to solving the equation:

Rna = rn

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(2.27)

whereRn is a Toeplitz matrix andrn(τ) is the short time autocorrelation function

of s(n). The linear predictive coefficients could therefore be calculated by matrix

inversion but a more computationally efficient method called Levinson recursion

(Levinson, 1947) can be adopted.

In practice during PLPs computation the inverse DFT is applied to the Bark

scaled spectrogram (Mel scaled spectrogram in the MF-PLPs case) and then the

autocorrelation function is used for the LPC analysis.
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Figure 2.6: PLP extraction according to Hermansky (1990)





Chapter 3

Speaker adaptation and

normalisation

3.1 Speaker Adaptation vs Speaker Normalisation

The accuracy of an ASR system can be significantly improved bymatching the

training and testing conditions. Unfortunately in practice this is hardly possible and

more general speaker and domain independent systems, able to cope with different

testing conditions, are built. These systems are subsequently adapted to the par-

ticular task on which they are tested. Possible sources of the acoustic mismatch

include: speaker variability in terms of speaking styles, accents and physiological

characteristics such as vocal tract length, different kinds of transmission channels,

different type of microphones and the presence of differentnoises.

The mismatch between acoustic models and testing data couldbe simply avoided

by training acoustic models on the same kind of data as the testing data: for example

training speaker dependent or gender dependent models or ifthe mismatch is due to

the acoustic channel, training a system on the same kind of data as the testing ones,

i.e. on data affected by the same kind of noises. Of course theadoption of these

kind of techniques may be impossible because, to build speaker dependent models,

we would need a large amount of data for each speaker. Moreover this assumes to

have the same speakers for training and testing, and this is unacceptable in the vast

majority of real applications. Moreover in a real world application we would like to

be able to deal with unseen testing conditions.

29
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To deal with the mismatch between the acoustic modelλ and the testing data

Xtest two main approaches were developed:

• normalisation: the acoustic data are normalised in order toadapt them to the

model both during training and testing making them independent for example

of speaker specific characteristics or of the transmission channel;

• adaptation: the model parameters are adapted to the acoustic data we want to

recognise (to represent them more appropriately).

Figure 3.1 summarises the adaptation and normalisation processes and their in-

teraction. In this figure the mismatch of the training dataXTrain and the testing

dataXTest is reduced in two ways: on the left side of the graphXtrain andXTest are

normalised in the feature space; on the right side the acoustic model parameters

of λTrain are modified to better match the acoustic dataX both for the training data

XTrain (performing adaptive training) and the test dataXTest(adaptive recognition) to

the model space. The two processes are also combined by applying adaptive train-

ing on the normalised acoustic featuresX̃Train obtainingλ̃ which is both adapted

and normalised.

In normalised acoustic modeling we try to cope with speaker specific vocal tract

length effects or channel specific effects for example, by normalising both training

and testing data during signal analysis, in order to reduce the mismatch between

training and testing. In fact normalising only one of them would leave some mis-

match between acoustic models and testing data. Vocal TractLength Normalisation

(VTLN) is an example of speaker normalisation techniques and will be introduced

in section 3.3.2. Other examples of normalisation techniques aiming mainly to nor-

malise for the transmission channel are Cepstral Mean and Variance Normalisation

(section 3.4.3) and techniques aiming more specifically at speaker normalisation

such as the use of the Mellin transform and Wavelet based spectral representations

(outlined respectively in section 3.4.1 and 3.4.2).

The adaptation approach modifies the acoustic model parameters in order to re-

duce the mismatch betweenXTest andλTrain transformingλTrain into λTest. There

are two main techniques to do this: the Maximum A Posteriori (MAP) adaptation

(Gauvain and Lee, 1994) (outlined in section 3.2.1) and the Maximum Likelihood
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Figure 3.1: Normalisation and Adaptation (based on Pitz (2005))

Linear Regression family of techniques (Legetter and Woodland, 1994, 1995; Di-

galakis et al., 1995; Gales and Woodland, 1996) (outlined insection 3.2.2).

3.2 Adaptation Techniques

3.2.1 MAP Techniques

MAP estimation differs from ML estimation in the fact that for ML the parameter

setλ is assumed to be fixed but unknown while for MAPλ is not fixed but is a

random variable drawn by a prior distributionp(λ); in practice for MAP givenT

observation vectorsO = {o1,o2, ...,oT}:

λMAP = argmax
λ

p(λ|O) = argmax
λ

p(O|λ)p(λ) (3.1)

where:λ is assumed to be a random variable from spaceΛ with a probability density

function (pdf) p(λ|O); p(λ) is the priorpdf of λ defined as informative if it is

known what the parameters are likely to be. If the prior is notinformative the MAP

objective function reduces to the ML part only.
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As an informative prior, in the case of speaker adaptation, we can choose the

parameters of the speaker independent modelλSI. Then the modification of the

speaker independent meansµSI
j,m can be performed by maximum likelihood methods

using the adaptation data for each speaker, for each statej and mixturemas follows:

µ̂j,m =
Nj,m

Nj,m+ τ
µad

j,m+
τ

Nj,m+ τ
µSI

j,m (3.2)

whereNj,m is the occupation likelihood of the adaptation data defined as:

Nj,m =
T

∑
t=1

γt( j,m) (3.3)

being γt( j,m) the state occupancy at time t, andµad
j,m the mean of the observed

adaptation data computed as:

µad
j,m =

∑T
t=1γt( j,m)ot

∑T
t=1γt( j,m)

(3.4)

andτ is a parameter used to weight the a priori knowledge of the adaptation data.

The advantage of MAP adaptation techniques is that increasing the amount of

adaptation data the system converges to a speaker dependentone while the disad-

vantage is that the adaptation can be performed only on the parameters which cor-

respond to the symbols observed in the adaptation data. Unfortunately for LVCSR

systems adapting all the parameters would require enormousamounts of adaptation

data. Nevertheless it is possible to use the MLLR adapted models as a prior yielding

in this way a larger improvement.

3.2.2 MLLR Techniques

MLLR techniques compute a set of linear transformations of the means and the

variances of a Gaussian mixture HMM system, maximising the likelihood on the

adaptation data. Speech sounds are grouped into regressionclasses using a regres-

sion class tree so that they share the same transform. The mean and variance linear

transformations can be expressed by:

µ̂= Aµ+b (3.5)

Σ̂ = HΣH (3.6)
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whereA is ann× n transformation matrix,b is a bias vector andH is ann× n

covariance transformation matrix.

In practice it is not feasible to estimate at the same time themean transformA

and the variance transformH. Thus we first consider the mean transform estimation

problem alone. If we define an auxiliary variableξSI = [1 µSIT ] we can estimate one

transformT = [b A] so that:

µ̂ad = T ξSI. (3.7)

Then the MLT transform can be estimated by maximising the likelihood of the

observed acousticso1:T given the speaker independent acoustic model parameters

µSI andΣSI, the transformT and the word sequencew1:N:

TML = argmax
T

p(o1:T |µSI,ΣSI,T;w1:N) (3.8)

where the transcriptionw1:N can be either the output of a previous recognition pass

(unsupervised adaptation) or a true manual transcription (supervised adaptation).

This optimisation is carried out by maximising an auxiliaryfunction:

Q(λ, λ̂) = ∑
s1:T w1:N

p(o1:T |w1:N,λ) logp(o1:T |w1:N, λ̂) (3.9)

wheres1:T is the state sequence andλ̂ is the updated model parameter set of the op-

timisation iteration. The variance transformationH is also estimated by expectation

maximisation. It was found that the mean adaptation gives greater improvements

than the variance adaptation (Gales and Woodland, 1996). The advantage of the

MLLR technique is that it requires less adaptation data compared to MAP. How-

ever given a sufficient amount of training data, MAP performsbetter than a pooled

Gaussian transformation approach since it works at the component level.

3.2.2.1 Constrained MLLR

Constrained MLLR (CMLLR) is a special case of MLLR where the transform ap-

plied to the means is the same applied to the covariance matrices (Gales and Wood-

land, 1998):

µ̂= Aµ+b, (3.10)

Σ̂ = AΣA. (3.11)
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It can also be shown that this is equivalent to a linear transformation of the features

so that:

ôt = Aot +b. (3.12)

The fact that CMLLR can be directly applied to the feature space has obvious com-

putational advantages (since transforming the acoustic model parameters could be

in some cases rather computationally expensive). Furthermore CMLLR is partic-

ularly effective when adopted in a speaker adaptive training (SAT) fashion where

the CMLLR transforms are estimated for each speaker in the training set and new

acoustic models are trained on the adapted features.

While the combination of VTLN and MLLR seems to achieve additive improve-

ments, it was observed that no further word error rate reductions are obtained when

VTLN is applied in conjunction with CMLLR with respect to using CMLLR alone

(Üebel and Woodland, 1999). In Pitz and Ney (2005) it was also shown that VTLN

could be considered a restriction of CMLLR when cepstral coefficients are used

(since for these features VTLN frequency warping is equivalent to a linear transfor-

mation of the cepstral coefficients).

3.3 Vocal Tract Length variability

Vocal tract length is defined as the distance between the lipsand the glottis. The

configuration of vocal tract has a substantial effect on the observed spectrum: for ex-

ample, a typical female speaker exhibits formant frequencies around 20-25% higher

than those of a male speaker. From infancy to adult age VTL grows both according

to the body size and in a different measure according to the sex. Infants have the

larynx in the standard, higher, mammalian position, but between the third month

and the third year the larynx goes down to the throat, giving rise to a phenomenon

known as the larynx descent. Then as children grow up there isa steady increase of

VTL with body growth but there is no significant difference inVTL between boys

and girls until puberty.

During puberty there is a second larynx descent only for males (Fitch and Giedd,

1999). It was argued that this is the main reason which leads to sex differences in

vocal tract length. This confirmed Fant’s theory that males have a disproportionately

longer VTL than females (Fant, 1966).
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VTL is highly correlated with body size but there is another component due

to sex differences, although this is only true after puberty. Fitch (1994) also argued

that the difference between boys and girls voices (before puberty) can only be due to

behavioral and not anatomical differences. In fact boys seem to be able to protrude

their lips in order to lower their speech formants to imitateadult males. This is

because human listeners are able to use the acoustics of a speaker’s voice as a cue

for its body size estimation, and speakers are able, at leastto a certain extent, to

modify their speech acoustics by increasing their VTL usingmechanisms such as

that of protruding their lips by tensing the obicularis orismuscle on one end, and by

lowering the larynx using the laryngeal strap muscles on theother end.

Another factor which influences the acoustics of speech is Glottal Pulse Rate

(GPR), mainly determined by mass and length of the vocal folds(perceived as voice

pitch). This cue too has proved to be quite important in the differentiation of speech

acoustics according to sex because of the growth of human cartilages during puberty

in males due to increased testosterone.

According to Smith and Patterson (2005) both VTL and GPR influence the per-

ception of speaker’s size and sex. In this study they scaled five English vowels

pronounced by a male speaker by re-synthesizing them with different GPR and

VTL values using the toolkit STRAIGHT (Kawahara et al., 1999). First of all a GPR

independent spectral envelope of the signal was produced using a spectral repre-

sentation based on the adoption of a pitch adaptive window. Then GPR scaling is

realised through expansion and contraction of the time axiswhile VTL scaling is

accomplished by compressing or expanding the speech envelope linearly along a

linear frequency axis. These scaled versions with different combinations of GPR-

VTL were presented to a group of listeners which had to judge for sex and age. They

found that listeners make consistent judgements and both VTL and GPR changes

influence them but VTL alone is strong enough to change speaker size judgements

even with a steady GPR, while regarding sex and age there is a strong interaction

between GPR and VTL. Irino and Patterson (2002) argue that human listeners are

in fact able to segregate the information about VTL and VT shape using some kind

of normalisation.
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3.3.1 The effect of VTL on speech acoustics

The source/filter theory of speech explains the dependence of speech acoustics on

VTL (Quatieri, 2001). The basic principle can be explained by approximating the

vocal tract shape with a uniform lossless acoustic tube (which is a reasonable ap-

proximation at least for open vowels such as /aa/) with the closed end represented

by the glottis and the open end represented by the lips. Such awave-guide possesses

uniformly spaced resonant frequencies, expressed by the following relationship:

Fk =
c

4L
(2k−1) k = 1,2,3, ... (3.13)

wherec is the sound speed andL is the uniform tube length. So formant positions

are (according to this approximation) inversely proportional to the length of the

vocal tract so that a change of the scale by a factor ofα−1 results in a scaling of the

frequency axis by a factorα.

3.3.2 Vocal Tract Length Normalisation in ASR

The first application of VTLN, dating back to the 1970’s, reflects the computational

power of the time. In an early vowel identification work Wakita (1977) proposed a

method for vowel normalisation which consisted of reestimating formant positions

for every vowel asF̂i = l
lR

Fi = αFi wherel is the estimated VTL for that particular

vowel andlR is the reference length. He found that, representing the vowel spaces

in terms of theF1−F2, F1−F3 andF2−F3 planes, the distributions of each vowel

resulting from normalisation were more compact.

Cohen et al. (1995) introduced this technique in LVCSR systemsreporting that

a linear warping of the frequency axis could compensate for differences in VTL,

resulting in a speech recognition system with a reduced worderror rate (WER).

Over the past 10 years VTLN has become a standard normalisation technique

in speaker independent speech recognition, proving particularly effective in the do-

main of conversational telephone speech (CTS) (Lee and Rose, 1996; Hain et al.,

1999; Welling et al., 2002) since this task has long turn sections and the reliable

estimation of VTL is not a problem.

In recent speech recognition systems the mismatch due to VTLvariability was

taken into account by scaling the frequency axis of the observed spectrum with a
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warping functiongα:

f 7−→ f̂ = gα( f ). (3.14)

We can classify the various methods used for speaker normalisation in the liter-

ature in two ways:

• by the kind of frequency warping used

• by the method used to estimate the warping factor.

The various frequency warping functionsgα which can be adopted will be dis-

cussed in section 3.3.3 while the warping factors estimation methods will be de-

scribed in section 3.3.4. There are 2 main methods for the estimation of warping

factors: approaches based directly on speech features and the so-called maximum

likelihood methods, outlined in section 3.3.4.1 and 3.3.4.2 respectively.

3.3.3 VTLN Frequency Warping functions

Several different warping functions were investigated, including:

• linear warping functions (Eide and Gish, 1996; Zhan and Waibel, 1989; Well-

ing et al., 2002) in the form:

f̂ = α f (3.15)

or, as a generalisation, piecewise linear functions where different warping fac-

torsα are defined for different frequency bandwidths (shown in figure 3.2(a)).

• non linear warping functions or power functions for exampleEide and Gish

(1996) (figure 3.2(b)):

f̂ = α
3 f

8000 f (3.16)

or (figure 3.2(c)) (Molau et al., 2000):

f̂ =

(
f
fN

)α
fN (3.17)

where fN is the Nyquist frequency. Alternatively a bilinear transform was

used (Zhan and Waibel, 1989; McDonough, 1998; Dognin, 2004)(figure

3.2(d)):

f̂ = f +2arctan
(1−α)sin f

1− (1−α)cosf
(3.18)
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Figure 3.2: Frequency warping functions: (a) piecewise linear, (b) non linear used

by Eide and Gish (1996) (eq. 3.16), (c) power function (eq. 3.17), and (d) bilinear

function (eq. 3.18)

Piecewise and bilinear frequency warping ensure thatgα( fN/2) = fN/2 while

this is not true for warping functions 3.16 and 3.17.

Very few comparisons between ASR performances due to the useof different

warping functions have been reported in the literature. Molau et al. (2000) com-

pared the use of a piece-wise linear with a power function anda combination of

both. They found that in their system the piecewise linear function performed

slightly better than the other two. In fact a piece-wise linear warping function is a

common choice for many systems. Zhan and Westphal (1997) compared piecewise

linear and nonlinear warping reporting no significant difference in performances.

Eide and Gish (1996) compared linear warping (f = α f ) with nonlinear observing

slightly better performances using nonlinear.
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An example of how Mel Frequency Cepstral Coefficients (MFCC) can be com-

puted with a piecewise linear frequency warping function can be seen in Fig. 3.3.

In practice frequency warping can even be incorporated in Mel-scaling by varying

the spacing and width of the Mel-spaced filters (Lee and Rose, 1996).

3.3.4 Warping Factors Estimation Methods

3.3.4.1 Signal Based Techniques

Signal based approaches attempt to estimate the warping factor directly from the

acoustic signal, usually from formant positions (Eide and Gish, 1996; Claes et al.,

1997).

For example Eide and Gish (1996) estimated warping factors as the ratio of the

median third formant value for a particular speaker and the median ofF3 for all

the speakers in the training set. Here theF3 values to be included in the median

computation were filtered using a criterion based on the voicing probability, theF1

value, and of course theF3 range. The improvement reported in speech recognition

for the Switchboard task was about 10% relative WER reductionin the case of

non-linear warping when both the test set and the train set were normalised.

Wegmann et al. (1996) used a piecewise linear frequency warping and the warp-

ing factors were selected using a generic voiced speech model. This model is a

single probability distribution and is obtained with an iterative procedure alternat-

ing the estimation of the best warping factor for each training speaker and the use

of the warped data to train a new model until the average scoreper speaker against

the generic speech model was minimised. This method has the advantage of not re-

quiring a first pass decoding as ML does (as will be seen in the next section) but at

the same time it does not use formant positions directly as inEide and Gish (1996).

3.3.4.2 Maximum Likelihood Methods

In ML approaches (Lee and Rose, 1996; Hain et al., 1999; Welling et al., 2002) the

speaker-specific warp factorα is usually obtained by maximising the likelihood of

the normalised acoustic observationXα, given a transcriptionW and an acoustic
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Figure 3.3: Front-end for VTLN for MFCC computation where the piece-wise linear

warping is just an example of one of the possible frequency warping
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modelλ, so that the following equation has to be solved:

α = argmax
α

(P(Xα|W,λ)). (3.19)

Since:

P(Xα|W,λ) =
∫

p(Xα|W,λ)dXα =
∫

p( fα(X)|W,λ)

∣
∣
∣
∣

∂ fα(X)

∂X

∣
∣
∣
∣
dX (3.20)

(where fα(X) is the transformation applied to the acoustic observation and in par-

ticular to the features) it follows that the probability density function ofX given a

warping factorα, a modelλ and a transcriptionW can be expressed by the following

relationship:

p(Xα|W,λ) = p( fα(X)|W,λ)

∣
∣
∣
∣

∂ fα(X)

∂X

∣
∣
∣
∣

dX
dXα (3.21)

where the middle term is the Jacobian determinant of the transformation. This fac-

tor has to be taken into account when the probabilities for different values of the

warping factors need to be compared such as in the case of ML approaches. The

importance of the Jacobian is connected to its dependence onα. Many works have

neglected it (i.e. Lee and Rose (1996); Zhan and Waibel (1989); Welling et al.

(2002)), mainly because its effect was believed to be small.Furthermore it is quite

difficult to estimate the Jacobian if the frequency warping is performed directly dur-

ing signal analysis because the transform functionfα between non normalised and

normalised features needs to be estimated. Pitz (2005) analysed the effect of the

Jacobian determinant for VTLN. Pitz proved that VTLN is equivalent to a linear

transformation of the MFCC feature vectors so thatXα can be expressed as:

Xα = fα(X) = AX (3.22)

whereA is a transformation matrix and the determinant of the Jacobian is just the

determinant ofA. Given this assumption he found that although taking into account

the Jacobian has a substantial effect on the distribution ofthe computed warping

factors, in the case of piecewise linear frequency warping the Word Error Rate of

the resulting ASR system does not seem to be particularly influenced.

According to equation 3.19 a transcription is needed in order to estimate warp-

ing factors. During testing, in order to obtain a preliminary transcription, a simple

two pass approach can be adopted (Welling et al., 2002; Hain et al., 1999). A first
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pass decoding with non-normalised models and features is performed in order to use

the transcription for warping factor estimation, and finally a second pass decoding

with normalised models and features is done.

Hain et al. (1999) presented a technique to train normalisedmodels where an it-

erative procedure which alternates frequency warping factors estimation and train-

ing passes is used. The use of normalised models helps to reduce even more the

mismatch between testing data and acoustic models.

Lee and Rose (1996) addressed the problem of ML efficiency using a maximum

likelihood approach during training and a mixed approach during testing. For train-

ing they basically subdivided the training set in two subsets, an alignment setA and

a training setT; then they first train a model using the setT and then find the op-

timal warping factor for each speaker inA using that model; subsequently the sets

are swapped and the process is repeated until the warping factors do not change sig-

nificantly from one iteration to another. Finally a new normalised model is trained

using all the normalised training data.

Lee and Rose pointed out that a two pass approach for testing isnot ideal from an

efficiency point of view because it requires two decoding passes. In fact they used

a different procedure to estimate the warping factors in thetesting phase. After the

warping factor estimation on the training data they pooled all the data with the same

α and trained for each warping factor a GMMθ using the unnormalised acoustic

vectors. Then during testing the unnormalised acoustic vectors were scored against

each GMM model to find the bestα according to the following equation:

α̂ = argmax
α

P(X|θα). (3.23)

In this way no first pass decoding is needed and at the same timethe estimation is

independent from formant tracking.

Molau et al. (2000) compared performances obtained estimating warping factors

with a two pass procedure and Lee and Rose’s more efficient approach reporting that

there is no significant degradation in WER using the latter. Inother words Lee and

Rose’s approach seems to have performances comparable to thetwo pass proce-

dures without requiring any transcription at all for the estimation of the warping

factors.

Although the ML approach is computationally expensive, it is robust and consis-

tent with the overall optimisation of the speech recogniser, since it maximises the
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likelihood—something not guaranteed by signal based approaches. Furthermore,

the estimation of formant positions relies on voiced segments only and this can be

challenging with conversational natural speech (Zhan and Waibel, 1989) because it

requires an accurate alignment or a good probability of voicing estimation, whereas

ML does not have the same requirement.

Only few works report comparisons between ML and signal based approaches

performances. For example Zhan and Westphal (1997) investigated the estimation

of warping factors computing them simply as:

αs =
F̄k,s

F̄k
k = 1,2,3 (3.24)

whereF̄k,s is the mean formantFk for a speakersandF̄k is the mean formant for the

whole training corpus. This was compared to ML estimation aswell. Although ML

seems to give the best performances in average none of the twomethods seem to be

consistently better for all speakers.

Estimatingα by ML increases the matching score with the acoustic models,thus

making the warping factor very model dependent. Moreover, the estimated warping

factor is stable only when a considerable amount of data is available. This is well

matched to tasks such as CTS where homogeneous speaker sides are available for

every speaker, but it is an issue to be addressed for domains such as meetings or

broadcast news (Kim et al., 2004a; Garau et al., 2005), wherethe amount of data

per speaker varies consistently.

ML estimation of VTLN warping factors only indirectly normalises the spec-

trum to account for VTL: there are other factors (such as systematic pronunciation

variation) which may also be normalised by spectral warping.

Furthermore Miguel et al. (2005, 2008) pointed out that using a unique warp-

ing function for every utterance (which is the minimum entity for which a warping

factor can be estimated using ML techniques) is not appropriate because not all pho-

netic events have the same spectral variation as a consequence of vocal tract shape

differences. Therefore they propose to expand the bi-dimensional trellis (HMM

state space and observation space), adopted by Viterbi decoders, including a third

dimension with all the N possible frequency warping factors. This augMented stAte

space acousTic dEcoder (MATE) allows to have a different frequency warping for

every frame with the added constraint of a smoothed transition between adjacent
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frames. A second constraint is set on the HMM non-speech models so that the ob-

servation vectors associated to them cannot be “warped”. Using this technique they

get an improvement compared to “classic” VTLN. One of the biggest advantages

of this approach is that it works in a single decoding pass, differently from ML

VTLN which requires two passes. It has to be mentioned that the experiments they

performed were on small vocabulary tasks (digits) and extending a LVCSR decoder

would be challenging from a computational point of view.

3.4 Other Speaker Normalisation methods

Most of the works on VTLN simply applied frequency warping tothe magnitude

spectrum right before Mel frequency scaling is performed inthe classical MFCC

computation as depicted in figure 3.3. However finding a representation of speech

independent of the VTL effect could be more appropriate thanpost-hoc frequency

warping. In fact, both in the case of ML and parametric estimate, the warping factor

values are context dependent and influenced by noise, makingit difficult to obtain

a reliable estimate.

In this context experiments were performed both using speech representations

based on the Scale transform of the spectrogram (Umesh et al., 1999), making,

in theory, the spectrogram independent on the VTL, and adopting a wavelet anal-

ysis (Mertins and Rademacher, 2005) instead of a time-frequency representation,

such as the short time Fourier transform. We shall also outline other widely used

speaker/channel normalisation techniques such as CepstralMean and Variance Nor-

malisation (which aim to normalise for the transmission channel as well as for the

speaker).

3.4.1 Mellin transform derived spectral representations

The Mellin transform applied to a spectrum has the property to make it insensitive

to the scaling of the frequency (Irino and Patterson, 2002).This transform was

mainly used in pattern recognition for image processing andradar and sonar signal

processing because of its scale invariance property.
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The Mellin transform of a functionf (t) is expressed by the relation:

S(p) =
∫ ∞

0
f (t)t p−1dt (3.25)

and it can be proved that if two functionsf (t) andg(t) exist such thatf (t) = g(kt)

wheret >= 0 andk is a non zero constant, the Mellin transforms of the two func-

tions have the following relationship:

Sg(p) = k−pSf (p) (3.26)

Sg andSf have the same magnitude apart from a scale factor|k−p|. It is hypothesised

that the Mellin transform is similar to human processing of vowels segregating scale

information from the actual structure information (Irino and Patterson, 1999).

In particular if p = − jc +
1
2

, then the Mellin transform is termed the Scale

transform (Umesh et al., 1996), while ifp = − jc we have:

D( f (t)) = S(− jc) =
∫ ∞

0
f (t)t− jc−1dt = (3.27)

=
∫ ∞

0
f (t)

e− jc ln t

t
dt =

∫ ∞

−∞
f (t)e− jc ln td(ln(t)) .

First from this formulation it can be noticed that a scaling transformation does not

change the magnitude but just brings a phase transformation. Second it can be seen

that the Mellin transform is just a Fourier transform of the exponentially resampled

continuous time signal (Irino and Patterson, 2002; Sena andRocchesso, 2004). The

actual resampling can be obtained by interpolation or, if signals sampled at a higher

frequency rate are available, it would be possible to downsample according with the

exponential axis.

The use of the Mellin transform for speech recognition feature extraction was

investigated by Chen et al. (1998). In this work Mellin derived features were ob-

tained applying a modified version of the Mellin transform tothe log spectrum and

then using the Discrete Cosine Transform (DCT) to decorrelatethe Mellin spec-

trum. The modified Mellin transform is expressed by:

SM(p) = p·S(p). (3.28)

With these features they obtained a relative error reduction of 26% with respect

to MFCC. Moreover they found a significant reduction in the standard deviation
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of the WER due to the fact that the features are not any more speaker dependent.

Unfortunately this approach was not compared with standardVTLN techniques.

The use of the scale transform was investigated by Umesh et al. (1999) who

derived scale-cepstrum features as the Scale transform of the logarithm of the mag-

nitude of the spectrum. These features were compared with mel-cepstrum features,

resulting in a better separability for vowels, but no ASR results were reported.

Irino and Patterson (2002) have suggested that VTL information can be ex-

tracted directly, and have proposed an auditory-inspired transform which separates

VTL size from shape information. This account was supportedby some recent per-

ceptual experiments (Smith et al., 2005), which provide evidence for the hypothesis

that the auditory system automatically normalises for VTL when processing speech

or other vocalised sounds. They applied the Mellin transform to the so called Sta-

bilised Auditory Image (SAI), a particular kind of spectralanalysis based on the

use of a “gammachirp” auditory filterbank, resulting in the so called Mellin Images

(MI) which allowed to extract the shape information associated with a given vowel

class across different VTLs (Irino and Patterson, 2002).

3.4.2 Wavelet based methods

The use of the wavelet transform to obtain vocal tract lengthinvariant features was

investigated by Mertins and Rademacher (2005) where these features were also

compared and combined both with conventional MFCCs and scale transform de-

rived features. The combination, performed using linear discriminant analysis ap-

plied on the concatenated feature vectors, gave improved accuracy on a phoneme

classification task. The wavelet transform of a continuous time signalx(t) is defined

by:

Wx(t,s) =
1√
s

∫ ∞

−∞
x(t)ψ∗

(
τ− t

s
dτ

)

(3.29)

whereψ(t) is the mother wavelet ands is the scaling parameter. It can be demon-

strated that the wavelet transform of a linearly frequency warped signalxα(t) =
1√
(α)

x( t
α) is related to the wavelet transform ofx(t) by:

Wxα(t,s) = Wx

( t
α

,
s
α

)

(3.30)
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which in the log(s) domain is basically a translation by log(α) and when a Fourier

transform is applied translates in a phase factor which has no effect on the magni-

tude but only a time scaling effect:

Fα(t,µ) = e− jµ log(α)F
( t

α
,µ

)

(3.31)

A wavelet transform has also been investigated for ASR cepstral coefficient

extraction by Wassner and Chollet (1996) because of its property of yielding an

optimal time-scale resolution, since on one side it provides good time and poor

frequency resolution at high frequencies and on the other side good frequency res-

olution and poor time resolution at low frequencies.

3.4.3 Cepstral Mean and Cepstral Variance Normalisation

Cepstral Mean Normalisation (CMN) and Cepstral Variance Normalisation (CVN)

(Molau et al., 2003) are two normalisation techniques whichaim to reduce the dis-

tortions due to the transfer channel through which the speech signal is transmitted.

The effect of the channel (assuming a linear time-invariantone) can be seen as a

filter h(t) in the time domain which is convoluted to the input signalsi(t). In the

frequency domain this translates in a multiplication such that:

so(t) = h(t)∗si(t) (3.32)

So(ω) = H(ω) ·Si(ω) (3.33)

During feature extraction (i.e. of MFCCs) the logarithm is usually performed

on the Mel spectrum before the DCT is applied. Thus the multiplication of the

channel transfer function in the frequency domain is transformed into a summation.

Therefore channel compensation is performed by subtracting the mean over time

of the cepstral coefficients (which in fact represents the channel effect) from the

cepstral coefficients. This is what is called CMN. It is also useful to normalise the

variance of the cepstral coefficients by CVN especially in noisy conditions.

Moreover the channel effect can be actually subdivided in one part due to the

transmission channelC(ω) and another one due to the current speaker who uttered

the speechV(ω), thus the transfer function can be expressed asH(ω) =C(ω) ·V(ω)

and CMN and CVN normalise both for the speaker and the channel effects. It
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was also found that best results are obtained when CMN is performed at a speaker

granularity rather than on a per utterance basis (especially when short sentences

were uttered) (Westphal, 1997).

Another widely used approach is histogram normalisation (Molau et al., 2001,

2003; Hilger and Ney, 2006; Haverinen and Kiss, 2003; Droppoet al., 2005). This

techniques aims to reduce the mismatch between the distribution of the test data

and that of the training data. It is assumed that enough data for the estimation of the

distribution are available. In this technique the test dataare linearly transformed as

in the following equation:

Ỹ = P−1
train(Ptest(Y)) (3.34)

wherePtrain is the cumulative distribution function (CDF) of the training data and

Ptest is the CDF of the test data whileY andỸ are the test data respectively before

and after the histogram normalisation. When the amount of available data is not

sufficient to estimatePtest, quantile based histogram normalisation can be adopted

(Hilger and Ney, 2006), which basically uses an approximated CDF independent

from the amount of data available. In Molau et al. (2003) it was shown that CMN,

histogram normalisation and VTLN are complementary and they can be used to-

gether to reach the best performances especially in noisy conditions.

3.5 Conclusions

In this chapter the main techniques of adaptation (MAP and MLLR) and normali-

sation (VTLN, CMN and CVN, histogram normalisation, and Mellin and Wavelet

transform based methods) were outlined with a particular focus on VTLN. Nor-

malisation and adaptation techniques aim both at reducing the mismatch between

the training and the testing conditions. Normalisation techniques mainly act on

the acoustic data by normalising it with respect to the acoustic channel (CMN and

CVN) or speaker specific characteristics such as vocal tract length (VTLN). Adap-

tation techniques on the other hand act on the acoustic modelparameters, modifying

them with the goal of reducing the mismatch between the acoustic models and the

specific testing data. In the particular case of CMLLR the adaptation can be per-

formed either on the acoustic model parameters or equivalently on the acoustic data

themselves, making this technique an hybrid between normalisation and adaptation.
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In this thesis we focused on the investigation of speaker normalisation tech-

niques such as VTLN performing our experiments in conjunction with CMN and

CVN in the context of large vocabulary conversational speech. While experiments

using MAP and MLLR were not considered in this thesis (being these adaptation

techniques), experiments on the use of CMLLR were not performed because, as

mentioned in section 3.2.2.1, it was found byÜebel and Woodland (1999) that no

further improvements are found when CMLLR is performed in conjunction with

VTLN.





Chapter 4

Automatic Speech Recognition of

multiparty meetings

4.1 Introduction

Meetings are a rather unconstrained domain for automatic speech recognition, due

to the high variability in terms of: acoustic conditions; speaking style; overlapping

between speakers; speaker accent, age, and gender; and topics. The meeting type

may also vary quite consistently: they can be both in the formof a lecture where

a single speaker presents a particular topic to a small/large audience and a little

discussion may follow, or a conference where people meet around a table to discuss

several topics. This variety makes meetings an interestingdomain for each step of

the speech recognition process.

Recording conditions are the main challenge for the preprocessing step. During

meetings users are confined within a meeting room but acoustic conditions may

vary from one room to another (or even in the same room) because of the position of

speakers, microphones and even the furniture arrangement.Besides reverberation

and noise, both vocal sounds (e.g. cough, breath, and cross-talk) and non-vocal

sounds (such as noise from laptops or from the street) constitute a serious problem.

The number, the positions and the quality of the microphonesmay differ.

Most of the available meeting corpora were recorded both using Independent

Headset Microphones (IHM) and Multiple Distant Microphones (MDM). While

ASR on IHM is relatively more constrained, the presence of vocal and ambient

51
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noise, reverberation and crosstalk1 poses challenging problems. These are even

more accentuated for the MDM condition which offers other challenges as well.

On the MDM condition the exact location and configuration of the microphones is

unknown. Moreover in this domain the speech segments need tobe attributed to

a given speaker in order to apply speaker normalisation and adaptation techniques.

All these issues are addressed by the preprocessing part of the ASR usually referred

to as the front-end. The U.S. National Institute of Standards and Technology (NIST)

set MDM as the main testing condition for its Rich Transcription of meetings eval-

uations (NIST, 2004). The use of unobstrusive distant microphones for meeting

recording and transcription is in fact a challenging but interesting domain because

users prefer not to wear headset microphones.

Another important issue for meeting speech recognition is the relatively limited

availability of data for this specific domain. Extensive corpora of conversational

telephone speech (CTS) are available and they have proven to be rather useful to

reach low word error rates for Large vocabulary Continuous Speech Recognition

(LVCSR) systems (Evermann et al., 2005). For this reason many systems for the

meeting domain are adapted from models trained using CTS data(Stolcke et al.,

2004; Hain et al., 2005c, 2007a). In fact CTS recordings have similarities to meeting

data being natural conversational speech.

Meetings can feature a large variety of topics and rather rich vocabularies thus

the acquisition of suitable data for Language Modeling (LM)is also a relevant task.

Moreover conversational speech is rather rich in hesitations, backchannel and fillers

and fully unconstrained in terms of style and lexical register. Therefore sourcing

large amounts of natural conversational speech for the LM training can be a chal-

lenging task.

Meetings offer an interesting domain from a speaker adaptation and normalisa-

tion point of view too. Speaker variability includes:

• speaking style, mostly affecting the language model;

• a wide range of accents, including native and non native speakers (with a

sparse distribution of native languages) and various dialectal inflections af-

fecting the pronunciation and therefore the acoustics as well;

1Sometimes evident in low quality microphone recordings such as for example when lapel mi-
crophones are used.
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• wide demographics (age and gender) which heavily affect speech acoustics;

• large variation in the amount of speech available for each individual speaker.

Adaptation techniques such as MLLR and MAP can be used to tackle speaker’s

variation in pronunciation and articulation, while speaker normalisation techniques

such as VTLN can be applied to normalise for the speaker specific vocal tract length.

These techniques have proven to be particularly effective in the meeting domain

especially when applied during training and testing.

Building a state-of-the-art large vocabulary speech recognition system targeted

on meeting data is a rather challenging task which requires asignificant effort both

in terms of human and computational resources. This chapterwill outline the vari-

ous components of such a system taking as example the infrastructure I have con-

tributed to develop as a member of the AMI ASR team. My key contributions to

this system were in speaker normalisation and adaptation, however the whole sys-

tem was the result of an extensive multi-site team-working effort involving a close

collaboration between 8-10 researchers specialised on different sub-fields over the

course of several years (Hain et al., 2005c,a,b, 2006, 2007b). During this time we

also participated to the NIST meeting recognition evaluations in 2005, 2006 and

2007.

The overall structure of this chapter is as follows: in section 4.2 a description

of the corpora used for training and testing meeting speech recognition systems

will be provided, while in section 4.5 the NIST meeting evaluations will be briefly

described; section 4.3 will outline the structure of an LVCSRsystem for meet-

ing recognition and the various blocks will be briefly introduced in the following

subsections; the approaches used for the development of theAMI ASR dictionary

will be introduced in section 4.3.1; the data and the methodologies used for lan-

guage modeling in the AMI ASR system will be outlined in section 4.3.2; auto-

matic segmentation and MDM preprocessing will be outlined in section 4.3.3 and

4.3.4 respectively; acoustic modeling techniques adoptedfor the AMI ASR system

development, with particular attention to the approaches used in this thesis, will be

reported in section 4.3.5 with a brief overview of speaker normalisation and adapta-

tion techniques; section 4.4 will introduce the ASR system combination techniques

used in the experiments of chapter 6 and 7.
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4.2 Data Resources

The experiments presented in this thesis were performed on three domains using

the Wall Street Journal corpus WSJCAM0, conversational telephone speech and

meeting data. Although the kind of speech provided by the WSJCAM0 corpus, be-

ing read clean speech, is far from meetings from a language modeling and acoustic

modeling point of view, it provides a large vocabulary domain with a good trade

off to perform experiments on new acoustic features in a reasonable time. As men-

tioned in section 4.1 conversational telephone speech, providing a large amount of

conversational speech is an interesting domain both on its own and in order to ex-

ploit CTS models to adapt them to the meeting domain, which is our main interest.

4.2.1 The WSJCAM0 corpus

The WSJCAM0 corpus, recorded at Cambridge University in 1993, consists of na-

tive British English read speech (Robinson et al., 1995). Sentences were selected

from the Wall Street Journal (WSJ0) text corpus and recorded in an acoustically iso-

lated room with head-mounted microphones (sampled at 16 kHz). The training part

of this corpus (sitr) consists of 7861 utterances, corresponding to around 15hours

of speech, spoken by 39 female and 53 male speakers. We testedon the 20 000

words “open vocabulary” task development set (sidt20a) which has 10 female and

10 male speakers.

4.2.2 Conversational Telephone Speech data

CTS is one of the richest domains for large vocabulary speech recognition providing

rather large amounts of training data, including: the Switchboard–1 (Godfrey et al.,

1992) and Switchboard–2 corpora which were originally recorded by Texas Instru-

ments and LDC respectively and consist of two-sided telephone conversations by

speakers from around the U.S. on various topics; Switchboard Cellular, mainly fo-

cused on GSM cellular phone calls; in the Call Home corpus speakers called family

members or close friends (this corpus has been collected forvarious native lan-

guages such as: American-English, Egyptian-Arabic, Spanish, German, Mandarin

and Japanese) ; and finally Fisher (Cieri et al., 2004), the largest one, including
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Dataset nameAll - Tot. (F/M) Switchboard–1 Switchboard–2Call Home

ctstrain04277h(145h/132h) 248h(126h/122h) 15h(8h/7h) 14h(11h/3h)

ctstrain04sub 71h(37h/34h) 56h(29h/27h) 8h(4h/4h) 7h(4h/3h)

Dataset nameAll - Tot. (F/M) Switchboard–1 Switchboard–2 Cellular

NIST hub5 eval01 6h 2h 2h 2h

Table 4.1: CTS dataset statistics

2000 hours of speech from a variety of accents and English proficiency and a large

variability in topics and speakers (shorter conversationswere preferred compared to

Switchboard and Call Home).

In this thesis experiments on the Conversational Telephone Speech task were

performed training on two different sets. The larger set, defined asctstrain04, con-

sists of a total of 277 hours of speech, and the smaller one, a subset of the former,

consists of a total of 71 hours of speech (all sampled at 8 kHz). Both sets have a

good balance between female and male speakers (as can be observed in table 4.1

where the amount of speech for female and male speakers has been indicated in red

and blue respectively). Moreover both sets comprise data from 3 different subsets:

Switchboard–1, Switchboard–2 and Call Home English, all consisting of two-sided

telephone conversations from different areas of the UnitedStates. While the exper-

iments on CTS described in chapter 5 were performed training on ctstrain04, those

described in chapter 6, were based on thectstrain04sub.

Our test set for the CTS task is the NIST Hub5 Eval01 evaluationset2 con-

sisting of approximately 6 hours of speech in total, equallydistributed between

Switchboard–1 (SW1), Switchboard–2 (S23) and Switchboard-cellular (Cell), com-

prising 60 male and 60 female speakers.

4.2.3 Multiparty meeting data

In the following sections the most relevant corpora for the automatic speech recog-

nition of meetings will be described.

2http://www.nist.gov/speech/tests/ctr/h5_2001/index. htm
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4.2.3.1 The two phases of the NIST meeting room corpus

The NIST meeting corpus was collected in the NIST Meeting Data Collection Lab-

oratory in two phases (Garofolo et al., 2004; Mitchel et al.,2006). While the first

phase consists of 15 hours of meetings all recorded in a conference configuration

(using a single conference table), the second phase consists of 20 hours of speech

recorded in two other configurations as well: classroom in the form of lectures

where the student tables are placed opposite to the teacher’s table, and discussion

configuration where four tables are configured in a U shape. Moreover for both

phases they recorded both video and audio with 5 cameras and 200 microphones

respectively. Speakers wore both a headset and a lapel microphone, 4 microphones

were placed on the table and 3 microphone arrays consisting of 59 microphones

were positioned on the walls.

Speakers were chosen with a reasonable balance both betweennative and non-

native English speakers and between male and female speakers. They recorded both

real meetings (those which would have happened anyway) and scenario ones (where

an artificial task was assigned to the participants) and the nature of the meetings

varied quite significantly ranging from formal and structured meetings such as staff

meetings to very interactive and collaborative meetings such as interactive game

playing meetings.

4.2.3.2 The ICSI meeting corpus

This collection of 75 meetings (72 hours of speech), was recorded at the Interna-

tional Computer Science Institute in Berkeley (Janin et al., 2003) with an average

of 6 participants per meeting (maximum 10). The recording settings, audio only,

consist of an individual headset microphone for each participant and six tabletop

distant microphones of various quality (from omni-directional to a PDA), four of

which were arranged in a staggered line on the table.

These meetings are weekly group meetings which would have occurred anyway

on technical topics such as natural language processing (Even Deeper Understand-

ing meetings), the ICSI meeting corpus (the Meeting Recorder meetings), robust

speech recognition (the Robustness meetings), and internetarchitectures and net-

working (the Network Services group meetings). They also offer a variety of native
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and non-native speakers with various proficiency levels. This meeting collection

has become one of the most studied data resources for meetingspeech recognition.

4.2.3.3 The ISL meeting recordings

This is a collection of 100 meetings (approximately 100 hours of which about 50%

of the data has been transcribed) collected at the Interactive System Labs of CMU,

Pittsburgh. They had 3–8 participants with an average of 6 per meeting (Burger

et al., 2002). Each speaker wore a lavalier microphone and they also used table

microphones. Acoustic conditions were not particularly good in these meetings

because the room was subdivided by two carpeted walls from the rest of a large

room (which was in fact a lab). Three video cameras were placed in the room as

well.

The most interesting feature of this corpus is the variety ofmeeting scenarios:

project/work planning, work meetings where a specific project is discussed; military

block parties where military personnel performs strategicexercises pretending to be

in combat; sessions where the meeting group was given a particular game-like task;

chatting where people where left free to chat, gossip and discuss common interests;

and discussion where a particular topic was assigned to the group in the form of

journal articles, video documentaries etc. These meetingsconsist of native and

non-native speakers covering a wide age range.

4.2.3.4 The AMI meeting corpus

The AMI meeting corpus (Carletta et al., 2005)3 consists of a multimodal collec-

tion of 100 hours of meetings recorded in three instrumentedmeeting rooms at

Edinburgh, IDIAP and TNO. The recording settings were similar across all these

rooms which were instrumented with a set of synchronised devices, including lapel

and headset microphones for each participant, an 8-elementcircular microphone

array placed at the table centre, 6 video cameras (4 close-up, 1 for each participant,

and 2 room-view), and capture devices at the data projector,the white board, and

the handwritten notes of each participant (using digital pens).

This corpus is subdivided into scenario (about two thirds) and non scenario

3The annotated corpus is freely available fromhttp://corpus.amiproject.org
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meetings: the scenario ones are elicited meetings where a product development

project has to be brought from kick-off to completion and consist of series of 4

meetings (project kick-off, functional design, conceptual meetings and detailed de-

sign meetings) where each of the 4 participants plays a prescribed role (project man-

ager, marketing manager etc); the non scenario meetings arereal meetings with 3–5

participants. Furthermore the annotation of the corpus includes several levels: or-

thographic transcriptions, dialogue acts, summarisation, head and hand movements,

and focus of attention.

4.2.3.5 Other resources

Other meeting corpora (which were not used in the experiments of this thesis) in-

clude the M4 meeting data, the VACE multimodal meeting corpusand the CHIL

seminar data. The M4 meeting data (McCowan et al., 2003), recorded in the IDIAP

smart meeting room, consists of 5 hours of multichannel audio-visual meeting data.

These meetings were recorded in a similar setup to the AMI meetings: each par-

ticipant wore a lapel microphone and an eight-element circular microphone array

was also placed in the center of a rectangular table. Moreover 3 closed circuit tele-

vision cameras were placed on the walls. These 4 people meetings were scripted

in the sense that the sequence of meeting actions (such as forexample monologue,

discussion, presentation, and note-taking) has been pre-generated using an ergodic

Markov model.

The VACE corpus (Chen et al., 2006), recorded at the Air Force Institute of

Technology, is a collection of wargames and military meetings with 6 participants.

Sensors included headset microphones for each speaker, a set of tabletop micro-

phones and a stereo calibrated camera pair for each participant.

Finally the CHIL data were collected in the context of the Computers in the

Human Interaction Loop European project (Chu et al., 2005; Mostefa et al., 2007)

in the Smart Room at the University of Karlsruhe, Germany. This corpus consists of

5 hours of technical seminars (12 in total) given by studentswith a variety of English

fluency. They were recorded using both close talking and far field microphones (2

linear 8 channel microphone arrays and one 64-channel Mark III microphone array)

and they were also provided to NIST for the Rich Transcriptionevaluations.
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Dataset nameAll - Tot. (F/M) ICSI NIST ISL AMI

icsinistislami05106h(28h/78h) 67h(14h/53h) 13h(5h/8h) 9h(5h/4h) 16h(3h/13h)

rt04seval 99 min 25 min 24 min 26 min 24 min

Table 4.2: Meeting data statistics

4.2.3.6 Meeting training data

For meetings the training set adopted in this thesis, which was the same used for

the AMI-ASR systems in the NIST RT05 and RT06 evaluations (Hain et al., 2007b;

Fiscus et al., 2006), consisted of a total of over 100 hours ofconversational meeting

speech (sampled at 16 kHz) from four corpora of multiparty meeting recordings:

67 hours from the ICSI corpus, 13 hours from the NIST corpus, 9 hours from the

CMU-ISL corpus and 16 hours from the AMI corpus, with 115 male and 49 female

speakers. More detailed statistics about this data can be seen in table 4.2 where it

can be also noticed that unfortunately there is an unbalanced distribution of female

and male speakers.

4.3 ASR/LVCSR infrastructure

Figure 4.1 shows the overall training process of an LVCSR system. The first block

in the acoustic modeling part is preprocessing. This step (described in more de-

tail in section 4.3.3 and particularly for MDM preprocessing in section 4.3.4) has

different functionalities during training and testing. During training it consists es-

sentially in the use of speech enhancement techniques such as echo cancellation,

noise cancellation and beamforming to improve the quality of the speech acoustic

signal (manual segmentation is used in this phase). During testing preprocessing

also involves automatic segmentation.

Acoustic features are extracted from the enhanced signal and normalised using

cepstral mean and variance normalisation. The type of features used in the AMI

ASR system is discussed in section 4.3.5. Acoustic featuresare used together with

the manual segmentation (the utterance boundaries), the normalised transcription

and the dictionary to train acoustic models using standard procedures. First mono-

phone models are trained, then tied-state cross-word models are bootstraped by
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initialising them from monophones, and then more accurate tied cross word mod-

els can be trained by initialising from cross-words. This procedure can be iterated

until convergence of the WER on the development set. More sophisticated acoustic

modeling approaches such as speaker adaptive training wereused in the AMI ASR

system and are described in section 4.3.5.

During text normalisation the transcription is transformed in a consistent form

reducing lexical variability. This is achieved by: removing the eventual punctuation,

converting everything to the same spelling , and unifying words such as numbers

and acronyms. Text normalisation is also the first step to generate the word list of the

AMI ASR pronunciation dictionary, described in more detailin section 4.3.1. Sep-

arate dictionaries are generated for testing and training.While for testing the word

list of the data used for language model training is adopted,for training the word

list from the reference transcription is used. Language model training is performed

separately using a large amount of data coming from various sources, by training

separate language models for each data resource and then using linear interpolation

to combine them as outlined in section 4.3.2.

On top of the baseline training process shown in figure 4.1 speaker normalisa-

tion and adaptation techniques are also a rather important part of the AMI ASR sys-

tem: for example VTLN is performed both during training and testing as is speaker

adaptation (further details will be provided in 4.3.5).

Figure 4.2 shows the first baseline steps of the testing process for a meeting

speech recognition system. Similarly to the training process, during testing the

preprocessing is performed to enhance the speech signal. Since for testing, in a

fully automatic system, the segmentation of the waveform inutterances is unknown,

the segment boundaries are estimated applying speech activity detection techniques

(see section 4.3.3) on the enhanced speech signals. Featureextraction follows the

same procedures used during training. Finally the decodingstep uses the acoustic

and language models and the dictionary to produce an automatic transcription.

4.3.1 Dictionary

The design of a pronunciation lexicon is an important and critical aspect of a large

vocabulary speech recognition system. An extensive overview of pronunciation

modeling for LVCSR can be found in Fossler-Lussier (2003). Two main meth-
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Figure 4.1: General flowchart of the AMI ASR system training including both acoustic

and language modeling
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Figure 4.2: Baseline decoding flowchart

ods can be adopted: knowledge based approaches where linguistic observations

are included in the model, and data-driven approaches wherephonetic patterns are

discovered in the corpora. Knowledge based methods can include both the compi-

lation of the pronunciation dictionary by hand or the use of Letter To Sound (LTS)

rules. Data-driven approaches, on the other hand, are automatic and may use phone

recognisers to produce the most likely phonetic sequence.

To take advantage of both knowledge based and data-driven techniques, hy-

brid approaches have been proposed which automatically learn pronunciation rules

from a training dictionary (which is usually hand made). Onepossibility is to use

Classification and Regression Trees (CART), a particular kind of decision trees, but

machine learning techniques such as neural networks may also be used. For CART

the goal is to find some features which best describe the contexts which mostly in-

fluence the phone realisation. These features are defined by aset of questions which

recursively subdivide the training data in two groups.
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The AMI ASR dictionary (Hain et al., 2005c) starting point isbased on the

Unysin accent-independent keyword lexicon (Fitt, 2000). This relies on the use

of “keysymbols” which enable the generation of pronunciations for a number of

accents. In the AMI ASR dictionary, pronunciations were mapped to the Gen-

eral American Accent since this was the most present in our training data. The

use of Unisyn leaves a number of out of vocabulary (OOV) pronunciations. To

facilitate human intervention to produce these missing pronunciations, hypotheses

pronunciations have been generated using a CART based LTS system (trained on

the base Unisyn dictionary). The automatically generated pronunciations where

then checked and corrected manually by the members of the AMIASR team. The

AMI ASR dictionary generation process is therefore a mixed approach which uses

knowledge based techniques (the Unisyn lexicon), a hybrid approach such as CART

to automatically create OOV pronunciations, and finally manual correction of the

automatically generated pronunciations.

4.3.2 Language Modeling

Language modeling resources for conversational speech aresparse, since the tran-

scription of natural conversations is an expensive process. On the other hand train-

ing an N-gram language model requires a large amount of text which should be as

similar as possible to the target recognition task. To deal with sparse training data

a baseline general purpose language model can be adapted with a small amount

of domain specific data, or the domain specific training corpus can be augmented

with out–of–domain data. For ASR of conversational speech the second approach

has proved to be the most effective: Hain et al. (1999) used Broadcast News data

to obtain a CTS language model while Bulyko et al. (2003, 2007) and Wan and

Hain (2006) investigated the use of data collected from the web to build language

models for meeting speech recognition. In both cases language models trained on

in–domain data were interpolated with those trained on out–of–domain data so that,

for a trigram case, the language model probabilities are computed as a weighted

sum of the probabilities of the individual language modelsl :

P(wi|wi−1,wi−2) = ∑
l

λl Pl (wi |wi−1,wi−2) (4.1)
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where the interpolation weights are usually estimated maximising the likelihood on

a small held-out set.

As mentioned in section 4.2.3 meeting data covers a wide range of topics and

conversational registers (from reporting to problem solving to more informal di-

alogues). Therefore the choice of the out of domain data is rather delicate: web

data is usually collected by performing web search queries with the most frequent

n-grams in the in–domain language model and then selecting arestricted number

of pages by perplexity filtering, that is retaining only the pages having a perplex-

ity (measured with an in domain language model) which is lower than a certain

threshold.

In this thesis we performed ASR experiments on the WSJCAM0, on CTS and

on meeting recordings. For the first task the standard MIT Lincoln Labs 20k Wall

Street Journal trigram language models were used (Paul and Baker, 1992). For

the CTS experiments, language models were trained on Switchboard, Call Home,

Fisher, ICSI meetings and web data resources, while for the meeting language

model training AMI, NIST and ISL meetings were also used (Hain et al., 2005c).

4.3.3 Preprocessing and automatic segmentation

Automatic segmentation is a crucial step in the preprocessing of an ASR system. It

consists of automatically finding the time boundaries of thesentences which have

to be recognised and it is also referred to as Speech ActivityDetection (SAD). Even

in the independent headset microphone task, the presence ofcross-talk and vocal

noises makes it infeasible to adopt threshold based techniques. Therefore most

SAD systems simply consist of GMM/HMM based classifiers trained on various

kind of features: typically MFCCs, PLPs, kurtosis etc. The AMIASR system (Hain

et al., 2005b) automatic segmentation consists in a Multi Layer Perceptron (MLP)

classifier trained on PLPs as well as kurtosis. Another important preprocessing step

is echo cancellation performed in the form of adaptive LeastMean Square (LMS)

echo cancellation (Hain et al., 2005a).
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4.3.4 Multiple distant microphone preprocessing

In the multiple distant microphone condition speech has to be recognised using

multiple audio signals captured by a set of microphones withan unknown geom-

etry. Directly applying ASR to each of these signals would beproblematic4 be-

cause there would be too much overlap between different sounds, including speech

coming from different speakers and ambient noises. Insteadthe set of available mi-

crophones constitutes a microphone array and techniques toincrease the sensitivity

in the direction of the desired signal and decrease it in the noise signal direction

can be used. The sensitivity in a specific direction is definedby the microphone

array directivity pattern also known as the array response.Beamforming techniques

(McCowan, 2001) aim to achieve a particular shaping and steering of the directivity

pattern and they can be seen as a spatial filter. The directivity pattern for a linear

equally spaced array of identical microphones depends on the number of the array

elementsN, on the distance between the elementsd and on the frequencyf and has

the form of a sinc function of the angleφ of arrival to the array:

Dir ( f ,φ) =
n=N−1

2

∑
n=−N−1

2

wn( f )ej 2π f
c ndcos(φ) (4.2)

wherewn is the weight of the nth element. AsN increases the amplitude of the side

lobes decreases and asd increases the width of the main lobe (called beam width)

decreases making the array more directive for a certain angle φ.

Furthermore, equivalently to the Nyquist theorem in the frequency domain, the

spacial sampling theorem states that: in order to prevent spatial aliasing in the di-

rectivity pattern of the array, the distanced between the microphones should be

d <
λmin

2
(4.3)

whereλmin is the minimum wave length and is equal toc/ fmax(wherec is the speed

of propagation for acoustic waves, approximately 330 m/secin air). Therefore if

we have a fixedd then:

fmax<
c

2d
. (4.4)

4Under the unrealistic assumption that each microphone can be strictly assigned to the closest
speaker
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So when the array geometry is fixed we can expect spatial aliasing for frequencies

over a thresholdfmax. In practice for those frequencies the side lobes become larger

and therefore the array shows a high sensitivity even for unwanted directions.

Moreover the directivity or “spatial selectivity” varies according to the fre-

quency. For a linear array the beam width is wider at lower frequencies and nar-

rower at higher frequencies so that we can say that the array is less directive at lower

frequencies.

One of the most used beamforming techniques is delay and sum.This technique

basically combines the output ofN microphones. First of all the time delay of

arrival Di of the signalyi recorded by the microphonei with respect to a reference

microphoney1 is estimated. Then the delayed signalsyi(t +Di) are summed as can

be seen in figure 4.3. When the delay varies over time, as it is inmeeting recordings

where speakers are free to move around, the beamformed signal is:

z(t) =
1
N

N

∑
i=1

yi(t +Di(t)) (4.5)

and it can be shown that the directivity pattern is:

Dir ( f ,φ, t) =
N

∑
i=1

e− j2π f Di(t) =
N

∑
i=1

e− j 2π f (i−1)dcos(φ(t))
c (4.6)

whereDi(t) = (i −1)dcos(φ(t))/c. The time delayDi(t) can be estimated by cross

correlation techniques. In particular in the presence of uncorrelated noises the most

commonly used technique is the Generalised Cross Correlationmethod (Knapp and

Carter, 1976). The estimation of the time delay allows in practice to do sound source

localisation because the angle of arrivalφ is directly related to the time delay.

A more general class of beamforming is filter and sum (of whichdelay and sum

is a sub-class) where the received signals are first filtered and then summed, and the

filters are frequency dependent:

y( f ) =
N

∑
n=1

wn( f )xn( f ). (4.7)

The AMI meetings were recorded using 8 element circular microphone arrays.

This configuration is particularly interesting for meetingrecordings because it pro-

vides a uniform (360o) distribution of all possible locations of the speakers (Moore

and McCowan, 2003). Moreover the directivity pattern of circular arrays shows
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Figure 4.3: Delay and sum beamforming

good discrimination between speakers separated by at least45o, making this con-

figuration suitable for up to 8 participant meetings (McCowanet al., 2005).

The AMI ASR system uses the so called superdirective implementation of delay

and sum beamforming with some additional preprocessing steps. First a gain cali-

bration by the normalisation of each channel with the maximum amplitude level is

performed, because it would not be possible to apply delay and sum on acoustic sig-

nals with different dynamic ranges; second Wiener filtering, a technique to reduce

(additive) stationary noise, is applied to each distant channel (where the noise esti-

mation is performed on theM lowest energy frames); then the energy scaling factor

and the delay of each channel is estimated by generalised cross correlation with

respect to a given reference channel; finally the beamformerfilters for each frame,

used to perform delay and sum beamforming (Hain et al., 2005a), are estimated by

means of the delay and scaling factor parameters from the previous step.

4.3.5 Acoustic Modeling

Both in the AMI ASR system and in the experiments of this thesisacoustic mod-

els are phonetic decision tree clustered Hidden Markov Models with left–to–right

three–state topology and Gaussian mixture model (GMM) output distributions, trai-

ned using the Hidden Markov Model ToolKit (HTK) software (Young et al., 2006).
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The overall training and decoding structure used in this thesis experiments was that

developed for the AMI-ASR system (Hain et al., 2005a).

In the AMI ASR system the baseline acoustic models were trained using stan-

dard Maximum Likelihood Estimation (MLE) techniques, on the first 12 HTK Mel

Frequency Perceptual Linear Prediction (MF-PLP) coefficients with the inclusion of

the zeroth cepstral coefficientc0 and first and second derivatives (therefore yielding

39–dimensional feature vectors). Moreover Cepstral Mean and Cepstral Variance

Normalisation have been applied on a per channel basis, being therefore not only

speaker specific but also channel specific.

CTS models for the AMI ASR system are trained on the full 270 hours training

setctstrain04. Since the amount of meeting data is rather limited comparedto the

CTS domain, and it was found that adapting from CTS to the meeting domain is

beneficial (Stolcke et al., 2004), in the AMI ASR system we experimented with

adapting from the CTS domain as well. The CTS models are Narrow Band (NB) in

the sense that they have been trained on a limited bandwidth between 125 Hz and

3800 Hz, because of the telephone channel band pass effect.

In the AMI ASR system a procedure was developed to adapt the NBCTS mod-

els to the Wide Band (WB) meeting data5. Maximum Likelihood Linear Regression

transforms from NB to WB are used as input transforms to adapt the NB CTS mod-

els to the WB meeting domain using Maximum a Posteriori (MAP) adaptation. Us-

ing this procedure it was found that the models adapted from CTS performed better

than those trained on meeting data only (Hain et al., 2005b).Given the mismatch

between the IHM and the MDM condition, in the AMI ASR system two different

sets of models were trained for the two tasks, using acousticdata from the two do-

mains. In particular the MDM acoustic models were trained onthe beamformed

acoustic signals.

The AMI ASR system is a multi-pass system consisting of several recogni-

tion steps with increasing degree of complexity. In the following steps the system

makes use of more complex techniques, both on the feature extraction part, where

Smoothed Heteroscedastic Linear Discriminant (SHLDA) andposterior features are

used, and in the adaptation part, making use of MLLR, Constrained MLLR (CM-

5Meeting audio files are sampled at 16kHz and it has been shown that using the full bandwidth
is beneficial
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LLR) in a Speaker Adaptive Training (SAT) fashion, and embedded training VTLN.

The VTLN embedded training procedure, described in more detail in chapter 5,

involves the alternation of warping factors estimation andtraining passes until the

WER in the development set stabilises (which should correspond to the convergence

of the warping factor values of the training set as well).

On top of VTLN embedded training, SAT techniques are also used by estimat-

ing CMLLR transforms in the training set and using then the CMLLR transformed

speaker adapted features to train a new acoustic model.

4.4 ASR system combination

Different acoustic representations have different strengths and weaknesses for ASR.

Approaches to combine multiple representations, at the feature, model and system

level, have proven to be effective to reduce the word error rate. Feature combina-

tion may be carried out directly at the feature vector level by concatenating feature

vectors, followed by a dimension reducing transform such aslinear discriminant

analysis (LDA) or heteroscedastic LDA (HLDA) (Burget, 2004a), indirectly at the

model level (Kirchhoff et al., 2000; Zolnay et al., 2007), oras a postprocessing

procedure applied to the outputs of multiple recognizers (Fiscus, 1997).

The simplest form of direct feature combination involves the concatenation of

the acoustic feature vectors. This approach has a number of drawbacks including a

substantial increase in the dimensionality of the feature space to be modelled, and

the presence of strong correlations between components in the concatenated vec-

tor, which can cause problems for acoustic models based on diagonal covariance

Gaussians. Both these problems are addressed through the useof dimension re-

ducing, decorrelating transforms such as LDA, HLDA and principal components

analysis (PCA). PCA estimates a global transform, and was found to be much less

well-suited to the task compared with LDA and HLDA which allow the decorrelat-

ing transforms to be estimated on a per-class (or per-state)basis (Burget, 2004a).

Schl̈uter et al. (2006) have observed that numerical problems canarise when esti-

mating LDA transforms from a concatenation of strongly correlated feature vectors,

and that model-based transforms are less susceptible to this problem.

Zolnay et al. (2007) have demonstrated that discriminant feature-level combina-
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tion may be nested successfully inside a model-based combination approach, and

this has resulted in reduced word error rates for two LVCSR tasks, VerbMobil-II

and the European Parliamentary Plenary Sessions corpus. More recent work by this

group, involving the investigation of auditory-inspired features from a gammatome

filterbank, have indicated that a system level combination using ROVER (Fiscus,

1997) results in a significant reduction in word error rate (Schlüter et al., 2007).

4.4.1 LDA/HLDA

In our experiments and in the AMI ASR framework, feature-level combination was

performed using HLDA (a generalisation of LDA), a procedurethat enables the

derivation of a linear projection that decorrelates concatenated feature vectors, and

performs a dimensionality reduction. In both HLDA and LDA, each feature vector

that is used to derive the transformation is assigned to a class. Since one of the

goals of these techniques is to improve the discrimination between the classes used

during decoding, HLDA/LDA classes are typically HMM statesor mixture compo-

nents. The class assignment is usually performed using Viterbi alignment. We have

chosen to use HLDA in our experiments because this techniquehas proven to yield

better performances than LDA, this being motivated by the HLDA ability to handle

heteroscedasticity (Kumar and Andreou, 1998) (the property of having a different

covariance matrix per class).

Hunt (1979) proposed the use of LDA to improve discrimination between syl-

lables. Given an dimensional feature vectorx the goal of LDA is to find a linear

transformationθT
p : ℜn → ℜp with p ≤ n such as to projectx in a p dimensional

space according toyp = θT
px. The transform is chosen in order to maximise the be-

tween class covarianceΣbc and to minimise the within class covarianceΣwc and it is

computed as the eigenvectors corresponding to the larger eigenvalues ofΣbc×Σ−1
wc.

Then dimensions are therefore those corresponding to the best separation of indi-

vidual classes. In one of its first applications on ASR, LDA wasused in a small

vocabulary continuous speech recognition system (Bahl et al., 1988) to introduce

time information in the feature vectors by appending consecutive feature frames

and using LDA to reduce to a smaller dimension.

The LDA method makes two assumptions: all the classes obey toa multivariate

Gaussian distribution and share the same within class covariance matrix. HLDA
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Figure 4.4: Comparison of LDA and HLDA projection for a 2 to 1 dimensional reduc-

tion case with 2 classes

relaxes the second assumption and it is therefore a generalisation of LDA. An illus-

tration of this principle can be seen in figure 4.4 for a bidimensional case. In this

example the LDA assumption of having the same covariance matrix for each class is

not valid and LDA would project the features in a nuisance dimension, while HLDA

projects the features in the useful dimensions where the classes are better separated.

The HLDA transform computation was derived by Kumar and Andreou (1998)

although the idea of maximum likelihood estimation of the linear transform was

introduced for the first time by Schukat-Talamazzini et al. (1995) where an ML

optimisation of the transform was performed with respect tothe likelihood function

of the overall model. Similarly in Kumar’s work the likelihood of the original data
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xi is maximised finding the optimal transformation matrixA:

logL(x,A) = −nN
2

+
J

∑
j=1

Nj

2
log




(detA)2

(2π)n∏p
k=1akΣ̂( j)

aT
k ∏n

k=p+1akΣ̂aT
k



 , (4.8)

whereΣ̂ andΣ̂( j)
are the global and per class covariance matrix estimates respec-

tively; andN andNj are the total and per class number of training vectors. More-

over in equation 4.8 we assumed to handle with diagonal covariance matrices. Since

the maximisation of equation 4.8 has no closed-form solution, an efficient iterative

algorithm was proposed by Gales (1999). The use of this algorithm on ASR of

TI connected Digits was investigated by Burget (2004a,b) andin our experiments

we used the same implementation. The proposed iterative procedure computes the

transform matrixA, by periodically reestimating individual rows as follows:

âk = ckG
(k)−1

√

N

ckG(k)−1cT
k

(4.9)

whereci is theith row vector of co-factor matrixC= |A|A−1 for the current estimate

of A and

G(k) =







J

∑
j=1

γ j

akΣ̂( j)
aT

k

Σ̂( j)
k≤ p

N

akΣ̂aT
k

Σ̂ k > p.

(4.10)

γ j is the number of training feature vectors belonging to thejth class.

A restriction of HLDA whenp = n was investigated by Gopinath (1998), and

it is referred to as Maximum Likelihood Linear Regression Transform (MLLT) or

diagonalisation transform because it has the effect of transforming the features in a

space where the assumption of diagonal covariance matricesis more valid. More-

over when MLLT is applied on top of LDA or HLDA consistent improvement can

be seen (Saon et al., 2000b).

The main characteristic which sets apart HLDA from LDA is theassumption

of a different covariance matrix for each class. In LDA the within class covariance

matrix is approximately the weighted sum of the individual HLDA class covariance

matrices. A minimum amount of in–class data is necessary to find reliable esti-

mates for the individual HLDA covariance matrices. Therefore, in order to avoid
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data sparsity, the type of classes used to estimate the HLDA transformation matri-

ces should be carefully considered. In the experiments reported in this thesis we

experimented with two possible classes choices (see section 6.4): in the first case

we used classes corresponding to the HMM triphone states of our models and in the

second case we used Gaussian mixture componenents of monophone models6. The

class assignment has been achieved by performing Viterbi alignment.

To exploit the advantages of both LDA and HLDA, Smoothed HLDA(SHLDA),

a technique which estimates the per class covariancesΣ( j) as a weighted sum of the

estimated per class covariance and the within class covariance, was introduced in

Burget (2004b). For SHLDA the estimate of the class covariance matrix is given

by:

Σ̆( j) = αΣ̂( j) +(1−α)Σwc (4.11)

whereΣ̆( j) is the smoothed estimate of the covariance matrix of class j,Σwc is the

within class covariance matrix used in the LDA transform estimation andα is the

smoothing factor and it is between 0 (pure LDA) and 1 (pure HLDA).

4.4.2 System-level combination

In addition to feature-level combination in the experiments of this thesis we also

explored the use of system-level combination using ROVER (Fiscus, 1997), a tech-

nique to combine the output of multiple speech recognition systems. In ROVER,

the transcriptions are first compared by aligning them usingdynamic programming

to minimise the number of substitutions, deletions and insertions. This alignment

depends on the word sequence chosen as the reference.

The multiple alignments are then combined using a voting approach, performed

either by choosing the most frequently recognised hypothesis (majority voting) or

by selecting the hypothesis with the highest confidence score (maximum confidence

score voting). The choice of the voting criteria is not limited to these two tech-

niques and any approach able to disambiguate between multiple transcriptions can

be adapted (Hillard et al., 2007). It is also possible to obtain a lower bound on the

word error rate achievable by ROVER, by using an oracle combination in which the

closest available word sequence to the correct transcription is selected. A disadvan-

6Monophone models are estimated as part of the triphones training process
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tage of ROVER is the need to train and use for decoding each system separately, in

contrast to HLDA which requires a single decoding pass.

A generalisation of the ROVER algorithms aligns confusion networks (a partic-

ular lattice representation outlined in section 2.2.2.2) instead of the 1-best hypothe-

ses (Evermann and Woodland, 2000), hence taking into account multiple hypothe-

ses from the same system at the same time and yielding therefore better results.

4.5 Testing Conditions: the NIST Rich Transcription

Meeting Evaluations

The NIST meeting recognition evaluations, which have been run since 2002, give

the opportunity to the participants to evaluate and comparethe performances of their

speech recognition systems in a competitive environment. Moreover their main goal

is to improve automatic transcriptions making them more useful both for humans

and machines. Although they comprise several tasks such as speaker activity detec-

tion and diarisation (“who spoke when”) our main interest inthis thesis is focused

in the Speech To Text (STT) task.

NIST RT evaluations have a number of different acoustic conditions as well, the

main ones are:

• independent headset microphone (IHM): requiring that, using a separate head-

set microphone signal for each meeting participant, the systems provide a

separate transcription for each speaker;

• multiple distant microphones (MDM): multiple distant microphone signals

are provided and the systems should output a single transcription stream com-

prising all the words said during the meeting.

We conducted experiments using both conditions, training separate acoustic

models for each condition. For the MDM task, the speech has tobe recognised

from the output of a certain number of microphones, of unknown position, placed

in the meeting room. The geometry of the microphone positionvaries depending

on the site where the data was collected.
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In this thesis we used as a testing set for the meeting systems, the NIST Rich

Transcription Spring 2004 evaluation set7, which is composed of about 90 minutes

excerpted from 8 meetings (11 minutes each) recorded in fourdifferent data col-

lection sites (CMU, ICSI, LDC and NIST). While all speakers had anoise cancel-

ing head mounted microphone, the number of multiple distantmicrophones varies

according to the meeting room; in particular the CMU data had one distant micro-

phone only. Moreover these meetings contain a total of 31 unique speakers (some

of the speakers participated in more than 1 meeting) of which18 were male and 13

were female speakers.

In this work the performances for the MDM condition are reported for the non-

overlapping segments only while for the IHM condition all segments are recognised.

Moreover the manual segmentation is used unless otherwise stated.

7http://www.nist.gov/speech/tests/rt/rt2004/spring/





Chapter 5

VTLN in meetings

5.1 Introduction

In this chapter we will describe a set of baseline experiments concerning the appli-

cation of VTLN to multiparty conversational speech. The aimof these experiments

is to assess the effectiveness of VTLN with respect to the multiparty meeting do-

main and its particular characteristics from a speaker normalisation point of view.

The experimental setup for the application of VTLN is described in section 5.2.

First we report on experiments performed on the conversational telephone speech

domain, a task where several successful VTLN applications have been reported

(Hain et al., 1999, 2005d). Here the presence of distinct speaker sides1 and the

availability of several minutes of speech for each speaker,enabled stable estima-

tions of the warping factors. These experiments are described in section 5.3.

A larger set of experiments was performed in the multiparty meeting domain.

The experimental setup and baseline VTLN results on meetingdata are outlined

in section 5.4. The stability of the estimated speaker-specific warping factors was

investigated, both for the same speaker across different meetings, and across time

for the same speaker within a single meeting. The length of a speaker’s vocal tract

depends on the lips and the larynx positions, therefore, since this varies across time

during speech production (Dusan, 2005b), we did not find stable estimates for the

warping factors. We have investigated the relationship of the frequency warping

1For CTS data the two speakers share the same communication channel but their speech is
recorded separately providing distinct speaker sides or speaker turns

77
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factor to the addressee of the current speaker (in section 5.4.1 and 5.4.2), the formant

positions (in section 5.4.3) and the quality of the transcriptions used for the warping

factor estimation (see section 5.4.4).

A final set of analysis experiments on the AMI corpus investigated the rela-

tionship between warping factor values and recognition improvements (see section

5.5).

5.2 VTLN experimental setup

In this section we describe our application of VTLN. A maximum likelihood ap-

proach was adopted, using a piecewise linear frequency warping similar to those

illustrated in Fig. 5.1 (Hain et al., 1999; Young et al., 2006). Given the warping

factorα and the lower and upper cutoff frequenciesfL and fU , the warping function

is in general defined in three regions (as shown in the left of Fig. 5.1), with the con-

straints that the minimumfmin and the maximumfmax frequencies (i.e. the lower

and upper frequencies of the speech signal bandwidth) should be kept unvaried in

the frequency warped space, as follows:

fwarped=







aU · ( forig −cU)+ cU
α forig > cU

forig
α cL ≤ forig ≥ cU

aL · ( forig − fmin)+ fmin forig < cL

(5.1)

where the frequenciescL andcU shown in figure 5.1 are defined as:

cL =
2· fL
1+ 1

α
, (5.2)

cU =
2· fU
1+ 1

α
. (5.3)

The angular coefficients of the first and the third regionsaL andaU are computed

as:

aL =
cL
α − fmin

cL − fmin
, (5.4)

aU =
fmax− cU

α
fmax−cU

. (5.5)

In particular in the experiments presented in this thesisfL = fU so that the warp-

ing function is defined by two regions as shown in the right part of figure 5.1.
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Figure 5.1: Piecewise linear frequency warping functions: on the left the general

case and on the right the particular case adopted in the experiments of this thesis

where the lower cutoff frequency fL is equal to the upper cutoff frequency fU

The warping factorα is estimated using a Brent search technique based on

quadratic interpolation2, since the log-likelihood’s trend for a given transcription

tends to have a parabolic shape in function of the warping factor value.

VTLN was applied both during training and testing. For training we used an

iterative procedure with the following steps, figure 5.2 shows a block diagram of

this method, (Hain et al., 1999):

1. warping factorsα are estimated using a non-normalised model and normalised

features are computed using the estimated warping factors;

2. a training pass is performed (adopting the single pass retraining technique

(Young et al., 2006) starting from non-normalised models followed by a few

Baum Welch iterations, typically four are sufficient);

3. the warping factors are estimated again using the acoustic models trained in

2Brent’s method is an algorithm combining the bisection method, the secant method and inverse
quadratic interpolation, aiming to find the minimum of a parabolic curve.
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Figure 5.2: Block diagram of the iterative VTLN training procedure

the previous pass and normalised features are computed another time using

the estimated warping factors;

4. another training pass is performed: similar to step 2 but starting from the

normalised models of the previous pass;

5. steps 3 and 4 are repeated until the WER on the development data set sta-

bilises.

This iterative procedure allows warping factors to converge, resulting inαs

in the range between 0.8 and 1.2, with the distribution of warping factors for fe-

male speakers decreasing to less than 1, and the distribution for males increasing to

greater than 1. This behaviour is due to the fact that as the iterative VTLN training

proceeds the acoustic models, being trained on features which are better speaker

normalised, can better match the normalised acoustic data providing therefore an

improved estimate of the warping factors (usually smaller values for female speak-

ers and higher values for male speakers). The iterative VTLNtraining approach

aims at improving the reliability of the estimated warping factor, iteration after it-

eration. Thus the distributions of the warping factors for male and female speakers

tend to be increasingly separated until convergence is reached.

For testing a two pass decoding procedure was adopted as follows, in figure 5.3

a diagram representation of this method can be seen, (Welling et al., 2002; Hain
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Figure 5.3: Block diagram of the two pass VTLN decoding procedure

et al., 1999):

1. decoding is performed using non-normalised features andmodels;

2. warping factors are estimated using normalised models and the preliminary

transcription of the previous pass;

3. normalised acoustic features are computed and used for decoding with the

normalised acoustic models trained using the iterative procedure.

It is possible to perform a VTLN test only procedure where thewarping factors

are estimated using non-normalised models in step 2. However the resulting WERs

would be higher. Moreover the same models were used for warping factor esti-

mation and for decoding having 16 mixtures per state of the HMMs. Welling et al.

(2002) suggested that using low complexity acoustic modelsfor warping factor esti-

mation yields better performances. However this research direction was considered

out of the scope of this thesis.
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5.3 CTS Experiments

Experiments on the Conversational Telephone Speech task were conducted training

on thectstrain04set consisting of around 270 hours of speech from Switchboard

and Callhome and testing on the NIST eval01 set (both described in section 4.2.2).

As features we used CMN and CVN normalised MF-PLPs and we trained cross-

word clustered acoustic models. The trigram language models used were those

trained by the AMI ASR team as described in section 4.3.2.

For VTLN we used a piecewise frequency warping function where the values

of the lower cutoff frequencyfL and the upper cutoff frequencyfU (see figure 3.3)

were both set to 3400Hz. The iterative VTLN training technique described in the

previous section was used yielding the results shown in table 5.1 which shows the

WER for the baseline system without adaptation, the WER using VTLN during test-

ing only, and the results for each of the 4 iterations and after training from scratch

using the normalised features of the 4th pass. From the baseline to the 4th iteration

after training from scratch a relative improvement of around 9% was obtained. The

improvements in terms of WER are consistent with the stabilisation of the warping

factor distributions after 4 passes as can be observed in figure 5.4. The warping

factors distribution tends to shift towards values smallerthan 1 for females and

towards values larger than 1 for males. This incremental separation between the

warping factor distributions for male and female speakers is due to the fact that

the acoustic models improve after each iteration (being trained on features which

are better speaker normalised), therefore providing more accurate estimates of the

warping factors.

5.4 Meetings Experiments

We also applied VTLN to multiparty conversations in a meeting environment. Suc-

cessful applications of VTLN have been reported on conversational telephone speech

tasks, where there are distinct speaker sides and usually several minutes of speech

per speaker (Hain et al., 1999). However in the case of meetings the amount of

speech data per speaker can vary significantly, making it difficult to obtain stable

estimates of the VTLN warping factor.
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(h) 4th pass males

Figure 5.4: Warping factor distributions of the training set for each VTLN iteration for

females and males in the CTS domain
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Tot Sub Del Ins SW1 S23 Cell F M

No Adapt 37.2 24.2 8.8 4.2 30.1 38.0 43.0 36.7 37.6

Test only 36.4 23.6 8.5 4.3 29.5 36.5 42.6 36.1 36.7

1st pass 35.7 22.9 8.9 3.8 29.1 35.4 42.2 35.0 36.4

2nd pass 35.0 22.5 8.8 3.7 28.5 34.6 41.4 34.2 35.8

3rd pass 34.5 22.0 8.7 3.7 27.7 34.2 40.9 33.6 35.3

4th pass 34.2 22.0 8.6 3.6 27.5 34.2 40.5 33.3 35.1

4th TFS 34.1 22.1 7.9 4.2 27.6 34.6 39.8 33.8 34.5

Table 5.1: VTLN CTS results on eval01 training on the full ctstrain04 set, from top

to bottom: WER without any adaptation or normalisation, test only VTLN, 1st pass

VTLN, 2nd pass VTLN, 3rd pass VTLN, 4th pass VTLN and 4th pass VTLN Trained

From Scratch (TFS). The testing set consists of approximately 6 hours of speech in

total, equally distributed between Switchboard–1 (SW1), Switchboard–2 (S23) and

Switchboard-cellular (Cell).

We performed a first set of experiments using the ICSI meetingscorpus de-

scribed in section 4.2.3.2 (Janin et al., 2003). We used 70 ofthe 75 ICSI meetings

as training data. For testing we used the ICSI portions of the NIST Spring 2004

Meetings Evaluation development and evaluation sets, referred to as RT04sdev and

RT04seval, respectively (NIST, 2004). Each of these test sets contains 10 min-

utes of two different meetings, with 12 different speakers in RT04sdev and 15 in

RT04seval (described in more detail in section 4.5).

As mentioned in section 4.3.5 in the meeting domain best results are obtained

by adapting the acoustic models from the conversational telephone domain where

more data are available. Therefore as a starting point we used the acoustic mod-

els described in the previous section trained on 270 hours ofCTS data using the

VTLN iterative procedure. The resultant models were then MAP adapted to the

meeting domain using 70 of the 75 ICSI meetings. VTLN trainingwas performed,

starting from the MAP adapted models, using the iterative procedure described in

section 5.2. Each intermediate model was evaluated on both test sets (using a bi-

gram language model and a vocabulary of 50k words), and the results are shown in



5.4. Meetings Experiments 85

RT04sdev RT04seval

(ICSI) (ICSI)

noVTLN 27.0 34.2

VTLN 1 24.6 31.6

VTLN 2 24.5 31.2

VTLN 3 24.9 32.1

VTLN 4 24.4 31.3

VTLN 5 24.3 31.0

Table 5.2: Speech recognition results of VTLN experiments (% WER) on meetings,

training on 70 ICSI meetings and testing on the ICSI part of the RT04sdev and

RT04seval sets for five successive training passes of the iterative procedure.

table 5.23. Moreover Cepstral Mean Normalisation (CMN) and Cepstral Variance

Normalisation (CVN) were performed both during training andtesting where the

mean and variance was calculated over a complete channel forevery speaker per

meeting (Hain et al., 1999). Only two VTLN training passes were required for the

convergence of the distribution of the warping factors, although after convergence

some small ripples in the WER could be observed.

Another set of acoustic models for meetings was also trainedstarting both from

baseline acoustic models which were CTS MAP adapted to the meeting domain

using the full meeting training set described in section 4.2.3.6, and models trained

on meeting data only. We refer to these models respectively as CTS-INIA and INIA,

since they were trained using ICSI, NIST, ISL and AMI data (Hain et al., 2005c).

Recall that in the CTS domain the warping function was chosen such that both the

lower and the upper cutoff frequencies (fL and fU respectively) are set to 3400Hz.

Since the meeting data was sampled at 16kHz, we experimentedwith two warping

functions: one usingfL = fU = 3400Hzand the other usingfL = fU = 7200Hz. For

both configurations we trained both CTS-INIA and INIA models,resulting in four

model sets.

These models were tested on the whole eval set of the full NIST2004 meeting

evaluation data and results are reported in table 5.3. Threepasses of the VTLN

3Different warping factors were estimated for those speakers that occurred in both sets.
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TOT F M CMU ICSI LDC NIST

noVTLN INIA 40.6 39.6 41.1 45.2 26.0 54.9 33.5

noVTLN CTS-INIA 40.0 39.4 40.4 44.5 25.6 53.4 34.4

INIA 3400 38.4 37.1 39.0 43.6 23.3 52.1 31.8

INIA 7200 38.6 37.4 39.2 43.6 23.2 53.0 32.0

CTS-INIA 3400 37.7 36.5 38.3 42.7 22.6 50.7 32.4

CTS-INIA 7200 38.3 37.9 38.6 43.0 23.1 51.7 33.5

Table 5.3: Results of CTS-INIA and INIA baseline and VTLN models (on the NIST

2004 meeting transcription evaluation set) where 3400 and 7200 indicate the fL = fU

values in Hertz in the piece-wise linear frequency warping functions

iterative training procedure were performed and trigram language models were used

for decoding.

It can be noticed that choosing a value forfL = fU = 3400Hzgives the best im-

provement together with the use of CTS adapted models which remain consistently

the best models even after the application of VTLN.

5.4.1 Warping Factors Behavior Analysis

The amount of data per speaker in each meeting varies considerably with a mini-

mum of 3 seconds to a maximum of more than 1 hour of speech per speaker per

meeting with an average utterance duration of about 2.4 seconds in the training set.

This aspect of the meeting data affects the reliability of the VTLN warping factor

estimates. Figure 5.5 shows the distribution of the number of utterances per speaker.

It can be seen that about a third of the speakers have less thana hundred utterances

per meeting.

Figure 5.7 illustrates (for a few selected speakers) how theestimated warping

factor depends on the number of utterances from which it is estimated. More pre-

cisely the set of utterances was extended from 2 to 5, 10, 20, ... , 600; i.e. each

time the previous subset was augmented by selecting at random some additional

utterances (from the same speaker). This behaviour is seen for most speakers. Here

CMN and CVN were also performed using different amounts of data. The ML esti-
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Figure 5.5: Distribution of the number of utterances per speaker (per meeting) for

the ICSI training dataset

mate for the VTLN warping factor needs about twenty utterances before it begins to

stabilise. Moreover in our experiments we computed a different warping factor for

every speaker for every meeting and we observed that the estimated warping factors

vary across different meetings. This is also shown in figure 5.6 where every vertical

line goes from the minimum estimated warping factor value tothe maximum and

the point in the middle corresponds to the mean.

If the estimated warping factors do indeed correspond to normalising for vari-

ability in VTL between speakers, then we would expect their estimates to be more

stable. This variability is highlighted if we compute the warping factor as a moving

average across ten utterances (figure 5.8).

Multiparty meetings are characterised by a rich speaker turn structure, and we

have investigated the influence of this on the warping factorestimates. In partic-

ular, we have investigated the dependence of the warping factor estimated for a

speaker given the speaker that they are addressing. Accurate labelling of which

participant(s) each utterance is addressed to is rather labour intensive—and can be

difficult from an audio-only recording of a meeting (such as the ICSI meetings used

in this experiment). We have made the approximation that a speaker speaking at a

given time is addressing the most recent speaker (not including backchannel-type

utterances).
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Figure 5.6: Warping factor variation across different meetings

For each utterance of each speaker we estimated a local warping factor using

that utterance and the previous nine utterances. Our first question was whether the

distribution of the warping factor for speaker A (w f(A)) has a dependence on the

previous speaker. We used a hypothesis testing procedure todo this, where the

null hypothesisH0 is that the mean value of the warping factor of speakerA given

that s/he spoke after speakerB is equal to the global warping factor value for A

computed using all the data for that meeting. The probability to acceptH0 has been

computed asP(t) with:

t =
w f(A)−µ(w f(A|B))

σ(w f(A|B))√
n

(5.6)

whereµ(w f(A|B)) is the mean warping factor of A after B,σ is the standard devia-

tion andn is the number of data (utterances) considered.

We studied eight meetings from the ICSI training dataset taken from different

meeting types (Janin et al., 2003) and in a way that some of thespeakers were

present in more than one meeting. Using the Student t-test (p= 0.05) we found that

for 84% of the speaker pairs the mean warping factorµ(w f(A|B)) was significantly
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Figure 5.7: Trend of the warping factor values using different amount of utterances

for the estimation

different from the global warping factor forA. Thus it appears that the turn taking

process has some influence over warping factors. We also performed an unpaired t-

test on the distributions of the warping factors ofA|i andA| j for every speakeri 6= A

and j 6= A with i 6= j. Here the null hypothesisH0 is that the mean warping factor of

A|i andA| j is the same. At 5% significance we found that in 78% of the casesthe

means of the two distributions were significantly differentand we could reject the

null hypothesis. Therefore we could hypothesise a possiblereason could be that a

given speakerA will speak differently according to whom they are addressing and

that the ML estimate of the warping factor could take this into account. This would

be inline with the psycholinguistic theories on dialogue which will be described in

section 5.4.2.

We performed a speech recognition experiment computing forevery speaker

a different warping factor for every possible speaker turn.We tested on a set of
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5 complete meetings from the ICSI corpus, referred to asamieval (Hain et al.,

2005c), which were excluded from the training. We compared normalising with

a global warping factor per speaker with normalising with warping factors condi-

tioned on the previous speaker. These experiments indicated that the WER obtained

without VTLN (32.6%) was improved by both global speaker warping (27.1%)

and speaker-conditioned warping (28.0%), but no improvement was found using

speaker-conditioned warp factors compared to the use of theglobal warping fac-

tors.

5.4.2 A possible interpretation of the Warping Factors tren d

Figure 5.8 (bottom) plotsw f(i| j) and w f( j|i) against time. It shows the local

warping factor estimated for speakerme003for utterances following utterances by

speakerme012and vice versa (me012afterme003) for theBED003ICSI meeting.

This figure may be segmented in a sequence of intervals: segments where the two

warping factor sequences show a similar behaviour (aligned) and segments where

the warping factor dynamics are nonaligned. A similar structure can be also ob-

served for the fundamental frequency F0 (figure 5.8, top) which plots the mean F0

value for each utterance.

A possible explanation of this structure could be a psycholinguistic account of

dialogue, referred to as theinteractive alignment model(Pickering and Garrod,

2004). In this account of dialogue it is argued that linguistic comprehension and

production representations are shared between interlocutors in a dialogue“making

use of each others choices of words, sounds, grammatical forms, and meanings”

(Garrod and Pickering, 2004). This is referred to asalignmentand it is argued

that it occurs at many levels: phonetic, phonological, lexical, syntactic and seman-

tic. Interactive alignment is manifested at these different levels within a dialogue,

for example the use of similar syntactic structures, lexical repetitions, and common

pronunciations. Krauss and Pardo (2006) have suggested that alignment in dialogue

may be clearly observed at the phonological level and have presented preliminary

evidence based on the vowel space (in terms of the first two formants) of interlocu-

tors in two party dialogues. Their results suggest that the parties in a dialogue align

at the phonological level as initially divergent pronunciations converge as the dia-

logue progresses. Kakita (1996) has presented evidence of the convergence of F0
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Figure 5.8: Trend of the warping factor of two speakers: me012 after me003 and

me003 after me012

between parties in a dialogue.

The behaviour of the warping factor estimates could be explained with the inter-

active alignment account of dialogue. The estimated warping factors of two inter-

locutors are typically non-aligned at the start of a meeting, but can be seen to align

(or at least go through phases of alignment) as the meeting progresses. In addition to

the length of the vocal tract, there is a well known relationship between the VTLN

warping factor and F0 (Eide and Gish, 1996; Wegmann et al., 1996) (since these

two measures are both influenced by the vocal tract length). It is therefore natural

to think that the same phenomenon observed by Krauss and Pardo (2006) could also

be observed for the VTLN warping factor. Moreover our experiments considering

only 8 of the ICSI meetings provide an initial analysis of the influence of the in-

teractive alignment on the behaviour of warping factors; a wider set of experiments
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(on constrained conversations collected ad hoc) would be helpful to further validate

this theory.

Experiments on the use of a different warping factor per utterance (where warp-

ing factors are computed using a moving window of a given number of utterances)

have been run. The results of these experiments can be seen intable 5.4. We tested

both with a window of 10 and with a window of 5 utterances and weperformed

CMN and CVN using the sentences used to compute the warping factors for that

particular utterance. The models used were the best VTLN CTS-INIA models. Un-

fortunately adopting a moving window for warping factor computation does not

seem to help but it has to be observed that acoustic models where trained using

global warping factors and it may be the case that using the same technique for

warping factor estimation for the training set would make the models match the

testing data better.

TOT F M CMU ICSI LDC NIST

VTLN (global) 37.7 36.5 38.3 42.7 22.6 50.7 32.4

VTLN (moving window: 10 ) 38.6 37.6 39.1 42.7 25.2 51.2 33.0

VTLN (moving window: 5 ) 38.0 37.2 38.4 42.5 23.3 50.6 33.8

Table 5.4: Results (WER) of CTS-INIA VTLN models using a global warping factor

(first row) compared to using a per utterance based warping factor computed with a

moving window of 10 and 5 utterances (second and third rows respectively)

5.4.3 ML estimated warping factor values and formant positio ns

In order to better understand how warping factors estimatedby ML are influenced

by formant positions some experiments have been performed to study their rela-

tionship. To do so the entire ICSI training data set was taken under consideration.

Using forced alignment to find vowel positions and the Snack toolkit4, a mean value

for F0, F1, F2, F3 andF4 for each occurrence of each vowel was computed. Then

the estimated correspondent “global” warping factor has been associated to each of

these occurrences. The analysis was based on MATLAB multiple linear regression

4Available from: www.speech.kth.se/snack/download.html



5.4. Meetings Experiments 93

vowel R(F0) R(F1) R(F2) R(F3) R(F4) R(F0−4)

aa 0.4848 0.5347 0.4223 0.3676 0.3036 0.6854

ae 0.4934 0.5350 0.5713 0.6632 0.4838 0.8003

ah 0.4909 0.3859 0.5685 0.5521 0.4111 0.7287

ao 0.4830 0.3854 0.3333 0.2162 0.3281 0.5962

aw 0.5177 0.6305 0.6076 0.5190 0.3607 0.7873

ax 0.4201 0.1523 0.3438 0.4918 0.3402 0.6088

axr 0.5204 0.1907 0.5039 0.1028 0.2225 0.6677

ay 0.5218 0.3763 0.5867 0.5670 0.4347 0.7809

eh 0.4908 0.5076 0.4807 0.5774 0.4496 0.7467

er 0.5202 0.2398 0.7077 0.1812 0.3474 0.7880

ey 0.5088 0.3455 0.5760 0.5334 0.5139 0.7478

ih 0.4477 0.2890 0.4612 0.6148 0.4920 0.7173

iy 0.5660 0.1513 0.4104 0.4540 0.4859 0.6866

ow 0.5003 0.3277 0.3694 0.4551 0.3689 0.6517

oy 0.6282 0.3343 0.4744 0.5347 0.3629 0.7740

uh 0.5065 0.2549 0.6262 0.4211 0.4633 0.7305

uw 0.5027 0.1202 0.3096 0.4917 0.4609 0.6334

Table 5.5: Correlation results based on phones between ML estimated warping fac-

tors and formant positions

function regressin a way similar to Dusan (2005a) where the correlation between

speaker’s height and formant positions in the TIMIT corpus was studied. The values

of the correlationR for each vowel for every formant and for the combination of all

formants can be seen in the table 5.5. Warping factors are highly correlated with

formant positions altogether for most of the vowels, while correlation with each

formant is smaller.

5.4.4 Experiments on making VTLN faster

As described in section 5.2, the estimation of VTLN warping factors using ML re-

quires a preliminary transcription. Thus VTLN decoding is performed in two passes
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with the first one obtaining the preliminary transcription.Therefore we performed

some experiments to evaluate if it is feasible to use a heavier pruning during the first

decoding pass, in order to speed-up the process.

We reported the results of these experiments in figure 5.9: the main graph re-

ports the WER of the first decoding in function of the beam searching log probabil-

ity threshold for pruning where we also reported the real time factor (RTF) in red for

each point; in the table on the right we report the root mean square error (RMSE)

between the warping factors estimated using transcriptions of various quality (ob-

tained with various pruning thresholds)5; in the table of results (in the middle of

figure 5.9) the second pass decoding WER using features normalised with the warp-

ing factors estimated with the various quality transcriptions was reported. We mea-

sured a difference in the warping factor value estimated using various transcription

qualities, observing RMSEs ranging from 0.016 between the most pruned and the

less pruned system (B and E) and 0.0001 between the less pruned systems (E and

D). Even so the WER after decoding was basically the same on allexperiments,

meaning that the quality of the first pass transcription doesnot exert a substantial

influence on the second pass decoding result.

5.5 AMI meeting experiments

We also performed some VTLN experiments within a joint effort of the AMI ASR

team for the automatic transcription of the entire AMI corpus. For these experi-

ments the corpus was transcribed using a five–fold cross-validation technique (it

was subdivided in five parts and acoustic models were trainedon four parts and

tested on the fifth part iteratively). An initial decoding was performed using non

normalised acoustic models and MF-PLP features, then warping factors were esti-

mated for the entire corpus and a system was trained and tested on VTLN HLDA

MF-PLP features (that is 13 VTLN MF-PLP cepstral coefficients with ∆s,∆∆s and

∆∆∆s dimensionality projected from 52 to 39 dimensions using HLDA). Further-

more the same experiment was performed on close talking microphones using both

manual and automatic segmentation. On the manual segmentation task we obtained

5System B provided a WER of around 60% with an RTF of 11.27, whilesystem A provided a
WER of almost 90% with an RTF of 10, therefore given the negligeable decrease in RTF compared to
the large increase in WER, the ouput of system A was not considered for warping factor estimation.
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Figure 5.9: Speeding up VTLN: on the left graph the WER of the first pass in function

of the pruning decoding setting HRPRUNE (beam searching log probability thresh-

old) with the corresponding real time factors (RTF) in red; in the table on top of

the graph WERs after VTLN using the correspondent transcriptions obtained from

the first pass decoding; on the right root mean square errors between the warping

factors estimated using various transcription qualities

an overall reduction in WER from 43.2% to 39.4%.

This experiment was an excellent opportunity to look at somestatistics of the

warping factor behaviour since it was performed on a large amount of data. The

correlation between the WER improvement from the non-normalised to the VTLN

HLDA system was investigated. The change in WER is plotted against the warping

factor value in figures 5.10(a) and 5.10(b) for female and male speakers respectively.

Not surprisingly we can notice that the more the warping factor is smaller than 1

(in the case of female speakers) or larger than 1 (in the case of male speakers) the

larger reduction in WER is obtained.

Finally we looked at the comparison of warping factors computed using the

manual transcription and those computed using the first passautomatic transcription

using manual segmentation which were also compared to the warping factor values

estimated using the automatic segmentation. In table 5.6 wereport the root mean

square error between the warping factors estimated in thesethree configurations.
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Figure 5.10: WER improvement vs warping factor values for the AMI corpus from a

non-normalised system to a VTLN system with HLDA where r indicates the correla-

tion coefficient, p is the statistical level of significance and quadratic regression lines

along with the 95% confidence intervals were plotted using a statistics toolkit.
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RMSE manual segm. manual segm. automat. segm.

manual transcr. automat. transcr. automat. transcr.

man. segm. ——- 0.0115 0.0116

man. transcr.

man. segm. 0.0115 ——- 0.0026

automat. transcr.

automat. segm. 0.0116 0.0026 ——-

automat. transcr.

Table 5.6: RMSE between warping factors computed using the manual transcription,

the automatic transcription using manual segmentation and the automatic transcrip-

tion using the automatic segmentation

It can be noticed that while using the automatic transcription (instead of the true

manual transcription) there is a small difference in the estimated warping factors,

there is not such a difference between the use of the automatic segmentation and

the manual segmentation. However in section 5.4.4 we noticed that such small

differences in the estimated warping factors do not affect the performances when

they are used for the second pass of decoding (also observed by (Welling et al.,

2002).

5.6 Conclusions

In this chapter we have studied the application of ML VTLN to multiparty conversa-

tions. We have found consistent improvements both in the conversational telephone

speech and in the meeting domain (observing a relative WER reduction for both

tasks of around 8%). Moreover we have studied the behaviour of the warping fac-

tors during multiparty conversations, finding that:

• The warping factor estimated for the current speaker is influenced by the con-

versational situation.

• Given the same speaker multiple ML VTLN frequency warping factors are

found for different conversations (meetings) and within the same meeting



98 Chapter 5. VTLN in meetings

across time. We can hypothesise that this could be related tothe phonological

alignment observed by Krauss and Pardo (2006).

• The warping factor is also highly correlated with the fundamental frequency

F0 and the higher order formants.

The correlation of warping factors with formant positions and with F0 motivated

the experiments described in the next chapter about the use of a pitch adaptive spec-

tral representation in conjunction with VTLN.



Chapter 6

Pitch adaptive spectral

representations

6.1 Introduction

Frequency warping factors are known to be correlated with the fundamental fre-

quency (Wegmann et al., 1996; Eide and Gish, 1996; Faria and Gelbart, 2005)

being both influenced by the vocal tract length. It is therefore of interest to ex-

plore the use of a pitch-adaptive analysis. As it will be discussed in section 6.2,

pitch-synchronous and pitch-adaptive representations were investigated in the con-

text of speaker recognition (Ezzaidi and Rouat, 2000; Kim et al., 2004b; Zilca et al.,

2003) and for small vocabulary ASR in the presence of noise (Ghulam et al., 2004;

Bozkurt and Couvreur, 2005). However, investigation of pitch-adaptive representa-

tions for LVCSR has been rather limited.

In this chapter the use of spectral representations derivedfrom STRAIGHT, a

pitch-adaptive analysis developed by Kawahara et al. (1999), reviewed in section

6.3, is explored. This analysis results in a smoothed time-frequency representa-

tion from which it is possible to extract MFCCs and MF-PLP cepstral coefficients.

These pitch-adaptive acoustic representations are combined with conventional rep-

resentations both at the feature level using heteroscedastic linear discriminant anal-

ysis (HLDA, section 4.4.1) and at the decoding level using the ROVER technique

to combine the outputs of multiple decodings (see section 4.4.2).

The combination of multiple acoustic feature streams has the potential to im-

99
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prove the accuracy of automatic speech recognition (ASR) (Kirchhoff et al., 2000;

Zhu et al., 2004; Zolnay et al., 2007; Schlüter et al., 2007; Hillard et al., 2007). Dif-

ferent acoustic representations have different strengths, and thus will tend to result

in ASR systems that make different errors. The combination of acoustic feature rep-

resentations is a way to exploit complementary informationand to take advantage

of the strengths of particular representations.

In section 6.4 a set of experiments using the combination of conventional and

pitch adaptive spectral representations on three LVCSR tasks is outlined: tran-

scription of dictated newspaper text (WSJCAM0); conversational telephone speech

(CTS) recognition; and transcription of multiparty meetings using both close-talking

and distant microphones. This set of experiments allowed totest the approach in

a range of speaking styles and channel conditions. Although, the WSJCAM0 task

consists of read speech using a close-talking microphone ina quiet environment,

the other two tasks are more challenging. Both are concerned with spontaneous

conversational speech. Moreover, CTS involves telephone speech which is subject

to a bandpass filter that partly obscures the pitch, while themultiparty meetings

were recorded in reverberant conditions with overlapping speakers. The situation

is further complicated for the meeting task when multiple distant microphones are

used to record the speech, and beamforming algorithms are applied to the recorded

signals.

The results of the experiments reported in this chapter suggest that combining

conventional and STRAIGHT-based acoustic features using HLDA results in a con-

sistent decrease in the word error rates.

6.2 Pitch Adaptive Analysis

The short time Fourier transform (STFT) involves the computation of a separate

Fourier transform for each frame of the signal waveform under a sliding window.

This process is affected by the uncertainty principle, which states that it is impos-

sible to have an arbitrary resolution both in time and frequency (Quatieri, 2001).

The effect of this physical law is that the use of a long windowin time (longer than

2 fundamental periods of the signal) leads to a good resolution in frequency and

poorer time resolution, whereas a short window in time leadsto the converse, good
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time resolution at the cost of frequency resolution. For speech, in particular, the

fundamental frequency of the signal varies over time, and ifa fixed size window is

applied, then its effect will be evident on the spectrum, particularly for high pitch

speakers. This effect will be apparent even after the application of a Mel-scaled

filterbank, in which the standard filter bandwidth in the lower frequency region is

usually around 200–300 Hz. This is not broad enough to removethe harmonic

structures for high pitched speakers, usually females, although it is able to provide

a smooth representation for low pitched speakers (males) (Gu and Rose, 2001). This

phenomenon can be observed in the left part of figure 6.1 whichshows the conven-

tional STFT spectrogram computed using a fixed 25 msec lengthHamming window

and the Mel scaling spectrograms derived from it using 48 (figure 6.1(c)) and 24 fil-

ters (figure 6.1(e)) for a high pitched female speaker (chosen for her small warping

factor which in our meeting experiments was 0.837). It can benoticed that the pitch

interference1 which is particularly evident in the narrow-band SFTF spectrogram

can still be seen in the Mel scaling spectrogram with 48 frequency bands and even

with 24 bands (which is the number of filters used commonly in speech recognition

front-ends). On the other hand this effect is filtered out forlow pitched speakers

such as in the example of figure 6.2 (male speaker with a warping factor of 1.16)

where the harmonic lines due to the pitch artefacts are more narrowly spaced and

are therefore smoothed out by the Mel scaling filterbank when24 filters are used.

It is therefore of interest to investigate the use of a pitch-adaptive window that

adapts according to the current estimate of the fundamentalfrequency for the ex-

traction of conventional features such as MFCCs.

In speech synthesis and speech coding, where it is importantto generate the

correct fundamental frequency, pitch-synchronous analyses were well studied (Rao

et al., 2003). The use of pitch-synchronous features has also been investigated for

speaker recognition. Voice source information, as manifest in the pitch, is a speaker-

specific characteristic, and source features derived from apitch-synchronous analy-

sis were proposed as features for speaker recognition by Ezzaidi and Rouat (2000).

In this work the use of pitch synchronous features derived from the Instantaneous

Frequency (IF) and the short term envelope (AM) for speaker identification was

1The term “pitch interference” was used in Kawahara et al. (1999) to describe the influence of
the pitch on the whole spectrogram, although it would be probably more precise to speak about pitch
artefacts and this term will be employed in the rest of this thesis.
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Figure 6.1: On the left: Short Time Fourier Transform and Mel scaling spectrograms

using 24 and 48 filters for a rather high pitched female speaker; on the right: STRA-

IGHT and Mel scale spectrograms for the same speaker
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Figure 6.2: Short Time Fourier Transform and Mel scaling spectrograms using 24

and 48 filters for a low pitched male speaker
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investigated. The signal is first filtered in subbands through a cochlear filterbank.

From the output of each filter the IF and AM are then computed and averaged over

time adopting intervals synchronised to the position of theGlottal Peak and a length

equal to the pitch periodT0 ([0 T0]) and averaged over intervals[T0/2 3T0/4] and

[3T0/4 T0]. In this way multiple measures of the spectral envelope and the instanta-

neous frequency are computed over a single pitch cycle. The performances of the

newly obtained features are compared and combined with those of a system trai-

ned on MFCCs finding that AM, IF and MFCC features are complementary on the

telephone speech corpus SPIDRE (a subset of the Switchboard corpus).

Zilca et al. (2003) proposed a pitch-adaptive analysis, referred to “depitching”,

which attempts to filter out pitch information from the speech signal, by having an

integer number of pitch periods in every frame. The “depitch” procedure consists

in 3 steps: the signal is windowed and LPC (Linear PredictiveCoding) analysis

is performed, then a single pitch cycle is extracted from thecentre of the residual

frame and it is interpolated to cover the duration of the entire frame. Then the in-

terpolated residual is LPC filtered to get a speech signal. MFCCs are then extracted

from the depitched waveform. Although depitched features alone resulted in lower

accuracy for speaker recognition, combining systems usingconventional and de-

pitched MFCCs resulted in a significant improvement, with a more uniform error

distribution across speakers.

The fundamental frequency provides prosodic information and information about

the speaker but, for non-tonal languages, pitch is not used to encode words and

phonemes. Therefore, factoring out the pitch information in speech recognition

should result in a system with a greater speaker independence. Two basic ap-

proaches were reported in the literature: the use of pitch-synchronous or pitch-

adaptive acoustic features, and acoustic models in which the pitch is explicitly mod-

elled as a variable. An example of the latter approach (Stephenson et al., 2002) uses

dynamic Bayesian networks (DBNs) in which the variables corresponding to the

MFCCs are conditioned on the pitch, although this did not result in a significant im-

provement in accuracy. Some improvement on the use of pitch as an auxiliary fea-

ture in conjunction with tandem features was found by Magimai-Doss et al. (2004)

especially in noisy conditions for the OGI numbers database.

Bozkurt and Couvreur (2005) investigated a pitch-synchronous analysis based
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on group delay features (the negative of the differential phase spectrum) extracted

using a window centered at the glottal closure instant, fromwhich a phase spec-

trum was computed. Applying these features to ASR, in combination with MFCCs,

resulted in a significant increase in accuracy over a baseline MFCC system on

the AURORA–2 corpus. Holmes (2000) proposed the use of fixed length excita-

tion synchronous windows for the Mel frequency cepstral coefficients extraction.

These features were tested and compared with “fixed” analysis windows based

features for various window lengths on a digit recognition task, finding a signifi-

cant improvement using a 10 ms excitation synchronous window. An alternative

pitch-synchronous representation, pitch synchronous zero crossing peak-amplitude

(PS-ZCPA), has also shown some promise in reducing errors on noisy speech (the

AURORA–2J corpus) (Ghulam et al., 2004).

Irino et al. (2002) employed the pitch-adaptive STRAIGHT representation, dis-

cussed in the next section, using it as the underlying spectral representation for

the extraction of MFCCs. STRAIGHT-based MFCCs were compared with conven-

tional MFCCs in HMM-based speech recognition on a small Japanese database,

but no significant improvement in accuracy was observed. In this chapter, the use

of STRAIGHT-based acoustic features is explored, in conjunction with speaker nor-

malisation using VTLN, and in combination with conventional MFCC and MF-PLP

features.

6.3 STRAIGHT based features

STRAIGHT (Kawahara et al., 1999) is a vocoder consisting of analysis and synthesis

parts. The spectral analysis of STRAIGHT uses a pitch-adaptive window which

gives equivalent resolution in both time and frequency domains. An interpolation

is then performed on the partial information given by the adaptive windowing. This

is achieved by using a second order B-spline as a smoothing function for surface

reconstruction, constrained on the preservation of quantities such as the energy and

the perceived loudness of the signal. This results in a smoothed time-frequency

representation which is not affected by the artefacts arising from signal periodicity.

In this work STRAIGHT-based MFCCs were derived by replacing the classic

STFT, which typically uses a Hamming window, with the STRAIGHT spectral anal-
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ysis using the following window:

w(t) =
1
τ0

exp(−π(t/τ0)
2) (6.1)

W (ω) =
τ0√
2π

exp(−π(ω/ω0)
2) . (6.2)

This window is ideally Gaussian both in time and frequency and it was chosen by

Kawahara et al. (1999) because of its isometric properties (it is the only smooth non-

zero function which transforms to itself) and its unique property of minimum time-

bandwidth product. The shape of the window depends on the estimated fundamental

frequencyf0 = 1/τ0 = 2π/ω0. If we compare it with a 25 msecs Hamming window:

for f0 ∼= 80Hz they are almost equivalent; while forf0 < 80Hz the pitch adaptive

window gives a better frequency resolution and lower temporal resolution; and for

f0 > 80Hz it provides a better temporal resolution and lower frequency resolution.

The pitch used for the window computation can be estimated using various al-

gorithms: TEMPO, the algorithm for pitch tracking providedin the STRAIGHT

framework (Kawahara et al., 1999), is based on the use of the so-called funda-

mentalnessmeasure, obtained using a wavelet Gabor filter designed to highlight

the fundamental frequency (maximal filter output) and to reject harmonic replicas.

However, other pitch trackers may be used and most of the experiments reported

here employed the RAPT pitch tracking algorithm (Talkin, 1995), implemented as

ESPS getf02, which is based on cross-correlation in the time domain. As discussed

further in section 6.4, although no significant difference between the use of the two

pitch trackers was found when working on clean read speech, get f0 proved to be

more reliable for conversational telephone speech, as wellas being more computa-

tionally efficient.

The STRAIGHT pitch spectrogram of a telephone speech signal is compared with

a conventional STFT spectrogram in figure 6.3. The harmonic structure, visible

in the STFT, is not present in the smoother STRAIGHT spectrogram. The lowest

part of the figure shows the pitch value plotted along with thewidth of the analysis

window in the time domain (measured at 1/3 of the height of the window in number

of samples), illustrating how the spectrogram resolution follows the value of the

fundamental frequency of the signal. A reliable pitch estimate is important, since

2Available from:http://www.speech.kth.se/snack/
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pitch tracking errors such as pitch doubling can lead to a very wide window in the

frequency domain and poor spectral resolution. For unvoiced speech a default value

of about 10ms was used for the window width (measured at 1/3 of the maximum

window amplitude), corresponding to a fundamental frequency of 160 Hz.

Figure 6.3: Example of STFT spectrogram, STRAIGHT spectrogram, f0 and spectral

analysis window width in the time domain for a telephone speech signal, with a

sample rate of 8 kHz.

Figure 6.4 shows a block diagram of the extraction procedurefor STRAIGHT

derived MFCCs. The log STRAIGHT (power) spectrogram is processed through

a Mel scaled filterbank and decorrelated using the discrete cosine transform. A

comparison of the output of the Mel-scaled filterbank for conventional MFCCs and

STRAIGHT derived MFCCs can be observed in figures 6.1 and 6.2 for a high pitched

and a low pitched speaker respectively. It can be noticed that the artefacts of the

pitch, still present in the Mel scaled spectrogram of the conventional features for

the high pitched speaker, is not present in the case of the STRAIGHT derived Mel
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spectrogram which is smoother.

Our STRAIGHT derived MFCCs computation is similar to the feature extraction

process presented in Irino et al. (2002) but here we perform anormal DCT instead

of a warped DCT because we do not require feature inversion. MF-PLPs were

also extracted from the log STRAIGHT spectrogram, by Mel scaling, followed by

equal loudness pre-emphasis, cube root compression and linear predictive cepstral

analysis. Figure 6.5 shows a block diagram of STRAIGHT PLP extraction. In

addition, we employed a VTLN frequency warping procedure, shown in the figures

and described below.

Figure 6.4: A block diagram of STRAIGHT MFCCs extraction with VTLN frequency

warping

The centres of the filters of the Mel scaled filterbank are moved according to a

piecewise linear frequency warping function where different warping factorsα are

defined for different frequency bandwidths (depicted in theVTLN box in figures

6.4 and 6.5) and described in more details in section 3.3.2.

As described in section 5.2 the warping factors are estimated using maximum
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Figure 6.5: A block diagram of STRAIGHT PLPs extraction with VTLN frequency

warping
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likelihood in the acoustic model training process (Hain et al., 1999), such that the

speaker-specific warp factorα is set to maximise the likelihood of the normalised

acoustic observation feature vectorsXα, given a transcriptionW and an acoustic

modelλ (Welling et al., 2002; Hain et al., 1999).

6.4 Experiments

VTLN warping factors attempt to normalise for the variationof the vocal tract

length across different speakers. In our previous experiments about the use of

VTLN on multiparty meetings, described in chapter 5, it was found that VTLN

warping factors estimated using the ML method are not reallyconstant over time.

This variation was partly explained with the fact that warping factors are correlated

with pitch. It is therefore of interest to investigate the use of a spectral representa-

tion which is less dependent on pitch, such as the pitch adaptive representation of

STRAIGHT, in conjunction with VTLN.

STRAIGHT provides a smoother spectral representation conceived forspeech

modification and we expect VTLN, which performs frequency warping, to bene-

fit from this smoother pitch independent spectral representation. The main goal of

the experiments described in the next sections is to investigate ways of applying

and benefiting the most from this representation: focusing on the VTLN speaker

normalisation context and evaluating the proposed approach on a wide range of

tasks corresponding to different challenging acoustical domains. In particular we

expected that high pitched female speakers would benefit themost from a pitch

adaptive representation; in fact for these speakers the Melfilters bandwidths are not

sufficiently wide to smooth the harmonic lines due to pitch artefacts. Conventional

MFCCs are affected by pitch artefacts, while STRAIGHT provides a smoother pitch

adaptive spectral representation, sensitive to pitch tracking errors and sometimes

too smooth and therefore less informative than the conventional STFT. Even if an

absolute improvement over conventional features is desirable overall, we are aware

that the new features have both pros and cons, thus the idea ofcombining them with

conventional features was envisaged from the beginning. Several works in the liter-

ature have shown that, while it is sometimes difficult to get consistent improvements

when new features are introduced, it is often possible to build more robust systems
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combining new and conventional features: this is for example true for gammatone

features (Schlüter et al., 2007), Tandem features (Zhu et al., 2004), and inparticular

for pitch synchronous features (Bozkurt and Couvreur, 2005; Ezzaidi and Rouat,

2000; Zilca et al., 2003).

In our work in order to exploit the advantages of both conventional and STRA-

IGHT representations, we combined them using HLDA. As mentionedin section

4.4, Schl̈uter et al. (2006) argued that numerical problems could arise when strongly

correlated features are combined with LDA. Although it could be argued that STRA-

IGHT and conventional MFCCs were extracted in a similar way in our experiments,

the correlation of these two feature streams is highly dependent on the window

used in the particular instant of time considered, which on its turn depends on the

pitch. Moreover the interpolation of the STRAIGHT spectrogram to compensate

for pitch errors affects this representation differentiating it from the conventional

STFT anyway. In fact the use of HLDA provides consistent improvements in all

our experiments.

6.4.1 Experimental setup

Baseline acoustic models were trained using conventional MFCCs (computed with

a 25ms window with a 10ms shift); for each domain we also trained models using

STRAIGHT derived MFCCs. For each representation 12 cepstral coefficients plus

the zeroth cepstral coefficient (C0) and first and second derivatives were also com-

puted, resulting in a 39-element feature vector (13 coefficients + 13∆ + 13∆∆). The

acoustic models were state clustered cross-word triphoneswith 16 mixture compo-

nents per state. We also performed VTLN during both trainingand testing, using

an iterative method which alternated the estimation of warping factors and the esti-

mation of acoustic model parameters, described in detail insection 5.2. VTLN was

applied both to the standard MFCC system and to the STRAIGHT derived MFCC

system.

A number of experiments were carried out to determine the sensitivity of the

STRAIGHT-based features to the pitch tracking algorithm that was used. An ini-

tial set of experiments employed the Keele pitch extractionreference corpus (Plante

et al., 1995). This corpus features ten British English speakers reading a phonetically-

balanced story, for which the fundamental frequency groundtruth was obtained
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from a laryngograph signal. The corpus is not large enough tore-estimate the

acoustic models, and it is from a different domain to any of the domains studied

here. Since it consists of British English read speech, we automatically transcribed

the Keele corpus using WSJCAM0 models, described in detail in section 6.4.2,

which are trained on British English read speech. Moreover weused the same lan-

guage model adopted in the WSJCAM0 experiments, the MIT Lincoln Labs 20k

Wall Street Journal trigram language model. The word error rates are rather high

(over 40%) because we have used acoustic and language modelsfrom a different

domain and no development data was available to adapt the models to this new

domain. However it is possible to compare the performance ofrecognizers us-

ing STRAIGHT-based features. Therefore we extracted STRAIGHT derived MFCCs

both using the reference pitch, and the TEMPO and the RAPT pitch trackers, ob-

serving less than 1% difference in word error rate between features using the ground

truth pitch track (43.6%), versus features using the TEMPO or RAPT algorithms

(both 44.7%). Although there is a small improvement in usingthe reference pitch

tracks, we conclude that both of the automatic pitch tracking algorithms offer ac-

ceptable performances. It is likely that training with reference pitch tracks might

result in further improvements, but a database suitable forlarge vocabulary speech

recognition with laryngograph signals is not available.

For this data, and for WSJCAM0, the ASR performance for systemsusing

TEMPO and getf0 was almost identical. For the CTS domain we observed that

get f0 resulted in significantly lower word error rates comparedwith TEMPO (see

table 6.3). Since getf0 also has lower computational demands, we used this pitch

tracker for all our experiments (except where stated).

Figure 6.6 shows a block diagram of the HLDA training process. VTLN features

are extracted separately for conventional and STRAIGHT derived features and they

are CMN and CVN normalised and concatenated. From these feature vectors (78

dimensional in this case) an HLDA transform is trained usingLDA as an initialisa-

tion starting point. Then feature reduction is performed tothe desired dimension (39

in this example) and triphone tied-clustered CMN/CVN HLDA models are trained.
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Figure 6.6: A block diagram of the HLDA training process

6.4.2 WSJCAM0

Our first set of experiments were performed on the WSJCAM0 corpus. As described

in section 4.2.1 we trained on the official set denoted as sitr and tested on the 20 000

words “open vocabulary” task development set (sidt20a). We used the standard

MIT Lincoln labs 20k Wall Street Journal trigram language model (Paul and Baker,

1992).

Table 6.1 shows our baseline results for this corpus. The topfour lines show the

word error rates for the conventional and STRAIGHT-based MFCC systems with

and without VTLN. The conventional system has a lower word error rate than the
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Dimension# mixtures Total FemaleMale

STD MFCCs 39 30352 13.2 12.8 13.5

STRAIGHT MFCCs 39 29440 14.4 13.7 15.2

STD MFCCs + VTLN 39 31312 12.5 12.0 13.0

STRAIGHT MFCCs + VTLN 39 30720 13.0 12.5 13.5

STRAIGHT + STD MFCCs + VTLN 78 39152 15.4 15.2 15.7

Table 6.1: Word error rates on the WSJCAM0 si dt20a dataset along with the

model complexity (total number of mixture components), comparing conventional

and Straight-based MFCCs, with and without VTLN. The combined system (bottom

line) used concatenated feature vectors with no dimension reduction. d is the overall

feature dimension.

STRAIGHT-based system, with the difference between the two reduced by half in

the case of VTLN. The final line of the table shows the baselinefeature combination

experiment, in which the two feature vectors are simply concatenated at each frame,

ending up with a 78-element feature vector. This resulted ina considerable increase

to the word error rate, as might be expected due to the correlations in the resulting

feature vectors. To reduce the correlations within the combined feature vector, and

to reduce the overall dimensionality, we applied HLDA to theconcatenated features.

Table 6.2 summarises the main results of these experiments,in terms of the word

error rates with respect to the reduced dimensionality and the choice of class in the

HLDA.

The upper part of table 6.2 (xwrd) shows the obtained results when the HLDA

statistics were estimated using the states of the cross-word triphone HMMs, a total

of 1 927 classes. The lower part (mono) shows the results obtained using mono-

phone mixture components as classes — 2 208 in total (46 phones, 3 states/phone,

16 gaussians/state). Thexwrd condition is more focused on discriminating between

triphone states, allowing a consistent definition between the HLDA classes and the

acoustic triphone models (used during recognition). On theother hand themono

condition, using mixture components as classes, ensures that the distribution of the

feature vectors corresponding to each class are more gaussian. For each HLDA type

of class, we experimented with different dimension reductions, with the best results
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d # mixtures HLDA content/classes Total Female Male

52 38752 xwrd/states 12.3 11.9 12.8

39 37136 xwrd/states 12.4 12.1 12.7

52 37792 mono/components 12.3 11.9 12.8

39 35472 mono/components 12.1 11.4 12.8

Table 6.2: Error rates and model complexity (number of mixture components) af-

ter combining conventional and STRAIGHT derived MFCCs using HLDA, testing on

WSJCAM0 si dt20a. The xwrd/states condition indicates that the states of cross-

word triphone models are used as HLDA classes; the mono/components condi-

tion indicates that Gaussian components of monophone models are used as HLDA

classes.

being obtained with a reduction from 78 to 39 dimensions. Forcomparison we also

show results for 52 dimensions. The best results were achieved using monophone

state mixture components as classes, yielding 3.2% relative improvement compared

to the baseline standard MFCC system.

6.4.3 Conversational Telephone Speech

The next set of experiments on CTS data, are based on the 72 hourtraining set

described in section 4.2.2 (ctstrain04sub) and on the NIST hub5eval01test dataset.

We used clustered cross-word triphone acoustic models withabout 3 600 tied

states. For this task we conducted several experiments in which we compared the

accuracies of systems using conventional and STRAIGHT derived MFCCs, with and

without cepstral mean and variance normalisation (CMN/CVN),and with and with-

out VTLN. We also compared the use of the TEMPO and getf0 pitch trackers for

STRAIGHT, in this case on systems without normalisation (no CMN/CVN andno

VTLN). We used the same trigram language model in all cases, with a vocabulary of

50 000 words, trained on various additional sources including web data, broadcast

news transcripts and email text (more details can be found insection 4.3.2).

Word error rates for various configurations are shown in table 6.3. The first three

rows show results in the case of no normalisation, includinga comparison between

TEMPO and getf0 pitch trackers for STRAIGHT. Conventional MFCCs result in
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the best performance, and getf0 gives a significant decrease in word error rate of

4% relative compared with TEMPO. We note that telephone speech is significantly

more challenging for pitch tracking owing to the bandpass filtering and other chan-

nel effects (Rabiner et al., 1976). Applying CMN/CVN and VTLN results in a de-

crease in word error rate by over 10% for both conventional and STRAIGHT-based

systems. As in the WSJCAM0 task, the gap between conventional and STRAIGHT-

based systems is considerably reduced when VTLN is applied:the difference in

WER is reduced from 3% to 1.6%. This is evidence that the smoother spectral rep-

resentation offered by STRAIGHT is well-matched to VTLN, which uses frequency

warping to normalise speech to increase speaker independence.

We combined the two normalised systems using HLDA both usingtriphone

states and monophone mixtures as classes. Each combinationyielded an 8% rel-

ative improvement compared to the baseline, a conventionalMFCC system with

VTLN and CMN/CVN. The improvements are consistent for both female and male

speakers and for all the testing subsets. This is a significant result, since the baseline

system is strong, given the training set of 72 hours.

6.4.4 Multiparty Meetings

Our final, and most extensive, set of experiments is in the domain of multiparty

meetings. For this task we trained separate systems for close talking microphones

(IHM) and distant microphones (MDM) on a set of about 100 hours of meet-

ing speech (described in section 4.2.3) and tested on the NIST Rich Transcription

Spring 2004 evaluation data both in the IHM and MDM condition.

We used clustered cross-word triphone acoustic models with16 mixture com-

ponents per state and around 4 400 tied states in total, and trained a set of models

for each condition using VTLN. We used a vocabulary of 50 000 words and a tri-

gram language model trained on web collected data, meeting data and CTS data as

described in section 4.3.2. As for the other tasks we constructed baseline systems

using the conventional and STRAIGHT-based systems independently, then produced

a combined feature stream by concatenation and dimension reduction using HLDA

(using both monophone Gaussian components and cross-word triphone states as

classes). The resulting systems corresponded to a sub-system (denoted as VTLN

enhanced P1) of the state-of-the-art AMI-ASR meeting transcription system (Hain
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# mixturesTOT F M S
W

1

S
23

C
el

l

MFCC (no CMN/CVN) 86288 42.7 41.8 43.636.5 43.3 47.9

STRAIGHT (TEMPO no CMN/CVN) 83018 47.6 46.0 49.140.7 49.0 52.8

STRAIGHT (get f 0 no CMN/CVN) 83296 45.7 44.5 46.940.0 46.6 50.3

MFCC+CMN/CVN+VTLN 85836 37.6 37.0 38.331.8 37.1 43.5

STRAIGHT (get f 0) 84197 39.2 38.2 40.133.6 39.0 44.5

+CMN/CVN+VTLN

MFCC + STRAIGHT (get f 0) 102560 34.6 33.6 35.628.3 34.5 40.5

+CMN/CVN+VTLN+HLDA(xwrd)

MFCC + STRAIGHT (get f 0) 98928 34.7 33.8 35.628.6 34.7 40.5

+CMN/CVN+VTLN+HLDA(mono)

Table 6.3: Word error rates (and model complexity in terms of total number of mix-

ture components) on the CTS NIST Hub5 eval01 data for conventional and STRA-

IGHT derived MFCCs, and their combination using HLDA. TEMPO and get f0 pitch

trackers are compared for Straight features (lines 2–3). Both triphones states and

monophone mixture components are used as HLDA classes for a feature reduction

from 78 to 39 dimensions (lines 6–7). CMN and CVN are cepstral mean and vari-

ance normalisations. Tot: total WER; M: WER for male speakers; F: WER for female

speakers

et al., 2007b) which participated in the NIST RT evaluation 2006, with the differ-

ence that MFCC features were used rather than MF-PLP features. Moreover both

the IHM and MDM models used in the experiments described in this chapter were

trained on meeting data only (there is no MAP adaptation fromthe CTS domain,

which was used for the NIST evaluations).

The results for the IHM condition are shown in table 6.4. The STRAIGHT de-

rived MFCCs result in slightly higher word error rates than conventional MFCCs;

we note that pitch extraction is also challenging in the meeting domain. Lower error

rates are observed for female speakers using STRAIGHT, while for male speakers

lower error rates are observed for conventional MFCCs. Combination of the two

systems using HLDA with monophone Gaussian component classes results in an

absolute reduction in word error rate of 1.8% (5% relative) compared with the base-
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# mixturesTOT F M C
M

U

IC
S

I

LD
C

N
IS

T

MFCC+VTLN (A) 70304 38.4 38.5 38.342.7 23.9 52.1 30.9

STRAIGHT+VTLN (B) 69264 39.3 38.3 39.744.7 24.8 53.1 31.2

MFCC+STRAIGHT 88275 42.1 44.4 41.045.6 28.5 55.4 37.0

+VTLN

MFCC+STRAIGHT 88400 37.3 37.6 37.241.4 23.8 51.9 29.4

VTLN+HLDA xwrd (E)

MFCC+STRAIGHT 83312 36.6 36.3 36.741.0 22.5 51.2 28.5

VTLN+HLDA mono (F)

Table 6.4: Word error rates (and model complexity in terms of number of mixture

components) for meeting transcription (IHM condition) using the RT04seval testing

set. Results are given for baseline systems using conventional and Straight-derived

MFCCs, and for combined feature vectors obtained using HLDA. Tot: total WER; M:

WER for male speakers; F: WER for female speakers.

line conventional MFCCs.

Word error rates for the MDM condition are shown in table 6.5.In this case

there is a 2% absolute difference between the baseline conventional and STRAIGHT

systems, which is larger than for the IHM case. Beamformed signals from distant

microphones have increased additive channel noise, compared with the IHM condi-

tion, leading to less reliable pitch tracking, and hence less reliable estimates of the

pitch-adaptive window in STRAIGHT. However, the combination of the two sys-

tems by HLDA using monophone Gaussian classes results in a substantial decrease

in word error rate of 3.6% absolute (7.3% relative), which isconsistent over the

different subsets.

There is also a large difference between word error rates formale and female

speakers. Beamforming is known to have less directionality at lower frequencies,

while it has some aliasing at higher frequencies. Since, in male voices, information

content and the fundamental frequency is concentrated at lower frequencies, it is

possible that the higher error rate observed results from this limited directionality at

low frequencies and therefore less reliable pitch tracking.
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TOTAL Female Male C
M

U

IC
S

I

LD
C

N
IS

T

MFCC+VTLN 49.5 46.8 50.8 55.7 26.2 60.1 33.1

STRAIGHT+VTLN 51.5 48.6 52.9 57.4 26.2 63.4 34.6

MFCC+STRAIGHT 46.8 42.2 49.1 52.5 24.3 58.1 29.5

VTLN+HLDA xwrd

MFCC+STRAIGHT 45.9 42.7 47.4 50.8 21.3 57.7 30.1

VTLN+HLDA mono

Table 6.5: Word error rates for meeting transcription (MDM condition) using the

RT04seval testing set. Results are given for baseline systems using conventional

and Straight-derived MFCCs, and for combined feature vectors obtained using

HLDA.

6.4.5 Further experiments on meetings

Higher order cepstral coefficients are known to be the most affected by the spec-

tral harmonic components due to the pitch (Irino et al., 2002), hence systems using

conventional MFCCs typically limit their dimensionality to twelve coefficients plus

C0 or the log energy. However, using the smoothed STRAIGHT spectral representa-

tion, which is not affected by spectral harmonics, we shouldbe able to exploit the

information in higher order coefficients. To assess this possibility, we carried out a

set of experiments using both the first 17 and the first 21 cepstral coefficients (plus

C0) and their first and second temporal derivatives, resulting respectively in 51- and

63-dimension acoustic feature vectors. Experiments were performed in the IHM

meeting domain both for the STFT-based MFCCs and our pitch-adaptive MFCCs.

In practice the extraction of higher order cepstral coefficients was carried out by

simply taking the first 17 and the first 21 coefficients output of the DCT block re-

spectively.

The results of these experiments are shown in table 6.6, where we repeat the

results of the 39-dimension systems to facilitate comparison. It is interesting to

observe that the systems based on 21 and 17 STRAIGHT derived MFCCs have a

lower word error rate than both 13, 17 and 21 conventional MFCCbased systems.

In particular the higher order MFCC system yields a greater error rate for female
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speakers (5th row of table 6.6) compared to the higher order STRAIGHT derived

MFCC systems (6th row): this is due to the fact that for high pitched speakers the

Mel filter bandwidths are not sufficiently broad to remove theharmonic structure

which affects the higher order coefficients. On the other hand STRAIGHT derived

features, which are not influenced by pitch harmonics, are able to exploit the infor-

mation of higher order coefficients even for female speakersfor which they perform

significantly better than STFT based features.

As an analysis experiment to have an idea of the contributionof the higher or-

der coefficients, both conventional and derived from STRAIGHT, we concatenated

the first 13 cepstral coefficients derived from the STFT and those from the 14th to

the 21th derived from STRAIGHT and viceversa. The results of these experiments

are shown in the 7th and 8th row of table 6.6. While taking the first coefficients

from the conventional feature stream and those of higher order from the STRAIGHT

derived MFCCs yields even a small improvement compared to the 63 dimensional

STRAIGHT MFCCs alone, the opposite results in a degradation compared toboth

63 dimensional setups. This is what we would expect and confirms that STRAIGHT

derived higher order cepstral coefficients are responsiblefor a significant improve-

ment while those derived from the STFT (being affected by thepitch artefacts the

most) have a negative effect on the performances of the system.

HLDA combination based on monophone gaussians as classes was performed

to combine the best performing systems for STRAIGHT derived and conventional

MFCCs (the 63 dimension systems) reducing from 126 to both 39 and 63 dimen-

sions. As can be seen in the second-last and last row of table 6.6 the best result

is obtained reducing to 63 dimensions (probably because reducing to 39 we throw

away too much information). Moreover the combination of higher dimensional fea-

tures yields a significant 9% relative WER reduction comparedto the baseline 39

dimension conventional MFCCs system.

We also performed some experiments on the use of STRAIGHT for MF-PLP ex-

traction. Here a PLP implementation based on that of HTK (Young et al., 2006) was

used, where the Mel frequency scaling is performed on the STRAIGHT spectrogram.

Similarly to MFCCs, twelve cepstral coefficients plus C0 were extracted along with

their first and second derivatives. WERs of systems based on STRAIGHT derived

MF-PLPs were compared with those of conventional MF-PLPs extracted by HTK
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d # mixt. TOT F M C
M

U

IC
S

I

LD
C

N
IS

T

MFCC+VTLN (A) 39 70304 38.4 38.5 38.342.7 23.9 52.1 30.9

STRAIGHT+VTLN (B) 39 69264 39.3 38.3 39.744.7 24.8 53.1 31.2

MFCC+VTLN 51 78784 37.1 37.9 36.741.8 22.4 51.0 30.7

STRAIGHT+VTLN 51 77184 36.9 36.5 37.141.8 22.6 50.4 30.1

MFCC+VTLN (C) 63 82432 37.1 38.5 36.441.3 22.2 51.5 31.2

STRAIGHT+VTLN (D) 63 81564 36.7 36.4 36.841.0 22.3 50.8 30.0

13 conv. + 39+24 83024 36.4 37.1 36.040.4 22.7 50.1 29.6

8 STRAIGHT MFCCs

13 STRAIGHT 39+24 81456 37.7 39.0 37.142.9 23.3 51.4 30.6

+ 8 conv. MFCCs

MFCC 63 +STRAIGHT 63 39 84304 35.8 35.7 35.839.8 21.8 50.8 27.8

VTLN+HLDA mono

MFCC 63 +STRAIGHT 63 63 99184 34.9 35.8 34.538.7 21.2 48.9 28.5

VTLN+HLDA mono

Table 6.6: Extended dimensionality experiment on RT04seval testing set using VTLN

features for the IHM condition. From top to bottom: conventional MFCCs 39 di-

mensions; STRAIGHT MFCCs 39 dimensions; conventional MFCCs 51 dimensions,

STRAIGHT derived MFCCs 51 dimensions; conventional MFCCs 63 dimensions,

STRAIGHT derived MFCCs 63 dimensions; concatenation of the first 13 conventional

MFCCs and from the 14th to the 21st STRAIGHT MFCCs; concatenation of the first 13

STRAIGHT MFCCs and from the 14th to the 21st conventional MFCCs; combination

of the 63 dimensional systems using HLDA with monophone mixtures as classes

reducing from 126 to 39 and 63 dimensions. The model complexity in terms of total

number of mixture components has also been reported.
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TOT F M C
M

U

IC
S

I

LD
C

N
IS

T

MF-PLP+VTLN (G) 37.4 35.8 38.342.5 23.3 50.8 30.4

STRAIGHT MF-PLP +VTLN (H) 38.4 37.4 38.943.7 24.4 51.9 30.3

MF-PLP+STRAIGHT MF-PLP 36.2 36.0 36.340.0 22.4 51.0 28.5

VTLN+HLDA mono (I)

Table 6.7: MF-PLP experiment on RT04seval testing set using VTLN features for the

IHM condition. From top to bottom: conventional MF-PLPs 39 dimensions; STRA-

IGHT MF-PLPs 39 dimensions; HLDA combination from 78 to 39 dimensions using

monophone mixtures as classes.

and these two feature streams were concatenated and reducedthrough HLDA from

78 to 39 dimensions using monophone mixture components as classes. Results are

shown in table 6.7. Word error rates were somewhat lower bothfor the individual

feature systems and for the combination through HLDA, compared with the MFCC

experiments. The combination by HLDA yields a word error rate reduction of 1.2%

absolute (3.2% relative) compared with conventional PLPs.

6.4.6 ROVER experiments on meetings

To fully exploit the complementarity of conventional and pitch adaptive represen-

tations, we performed combination experiments at the system level using majority

voting ROVER for the IHM condition of the meeting domain. We considered all

the different IHM systems discussed in the previous subsections denoted with an

alphabetic letter. Results are reported in table 6.8, where we also present WERs for

the ROVER oracle to provide a lower bound on the achievable word error rates for

each combination. Results for each individual system are reported in tables 6.4, 6.6

and 6.7, and each of the nine systems is identified by a letter.A andB denote the

conventional and STRAIGHT derived systems for lower order MFCCs, whileC and

D are the same but for higher order MFCCs;E andF are the HLDA combinations of

A andB with monophone Gaussian classes and triphone state classesrespectively;

finally G andH are the MF-PLP systems from conventional and STRAIGHT derived

spectral representations, whileI is their combination using HLDA and monophone
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Gaussian classes.

First of all comparing the combinationsACG (STFT spectral representations)

and BDH (STRAIGHT representations), we observe that while they have similar

accuracies overall, STRAIGHT representations seem to favour female speakers while

male speakers are recognised better by the conventional STFT based features. When

they are merged together inABCDGH the greatest improvement is still maintained

for females.

ROVERing the HLDA system outputs with those of the original ones used for

the combination gives a substantial improvement with respect to the HLDA fea-

ture combinations:ABEF gives a 1.5% improvement compared toE alone, while

ABCDEF is 0.8% better thanABCD; similarly for PLPs,GHI improves the HLDA

combination systemI by 0.8% also. This is of interest because it indicates that

ROVER acts in a complementary way to HLDA, being able to further improve the

already combined systems.

Complementarity between MFCC- and PLP-based systems is more difficult to

exploit than that between conventional and STRAIGHT-based systems. When we

consider the combination of all the MFCC based systemsABCD with the PLP-

based systemsGH, we observe thatABCDGHhas a similar error rate toABCD for

the majority voting experiment, although there was a substantial improvement in the

oracle case. On the other hand, the contribution of the higher order representations

(CD) is evident (around 1% absolute), and occurs consistently when comparing

ABCDEFwith ABEF, ABCDGHwith ABGH, andABCDEFGHIwith ABEFGHI.

Finally the best result is obtained by combining all the available systemsABCDEFGHI,

consistent with Schlüter et al. (2007). This yields a substantial decrease in word er-

ror rate of 2.4% absolute (6.6% relative) compared with the best HLDA systemI

(HLDA combination of PLPs), and 2.9% absolute (7.9% relative) compared with

the best single stream systemD (higher order STRAIGHT derived MFCCs). Over-

all, by combining HLDA and ROVER we were able to reduce the word error rate

by 4.6% absolute (12% relative) compared with the baseline normalised lower order

MFCC system. The oracle results indicate an upper limit of theexploitation of the

complementarity between representations.
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6.4.7 Experiments discussion

STRAIGHT derived features have proven to benefit the most from VTLN (aswe ex-

pected). Unfortunately in most of the experiments they werenot able to outperform

conventional features. Even so there are several exceptions: in particular for high

pitched female speakers, pitch harmonics are still evidentafter Mel scaling in con-

ventional MFCCs, thus pitch adaptive features are able to outperform conventional

features.

The combination of MFCCs and STRAIGHT features through HLDA was suc-

cessful in all the tasks. MFCCs are affected by pitch artefactsbut they are extracted

from a sharper representation, while STRAIGHT features are affected by pitch track-

ing errors, but are smoother and devoid of pitch artefacts. The two spectral repre-

sentations are thus complementary and their combination provides consistent im-

provements. The effect of the smoothing and the pitch adaptive modules will be

separately studied in chapter 7. Pitch tracking errors are more frequent and have

the most influence in telephone speech because of the band-pass filtering channel

effect, in the meeting domain because of the presence of cross-talk, and in case

of beamformed signals because of the decreased directionality at lower frequen-

cies. The telephone line and beamforming effects particularly affect male speakers

(having a lower pitch); this also accentuates the predilection of STRAIGHT towards

high pitched female voices, but this is clearly evident in the WSJCAM0 and in the

IHM meeting domain as well. Nevertheless the combination using HLDA is able to

yield consistent improvements even in more challenging domains (CTS and MDM

meetings), where the actual relative improvement is even larger.

In order to analyse our experiments and to better exploit thecomplementarity

of the pitch adaptive spectral representation, ROVER system combination was also

performed. This is a reasonable experiment when a large number of independent

speech recognition outputs have been made available. Theseexperiments confirmed

the predilection of STRAIGHT systems for female speakers, the importance of the

information contained in higher order coefficients (which can be exploited thanks to

the pitch adaptation of STRAIGHT); and the complementarity of HLDA and ROVER

techniques.
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6.5 Conclusions

We have investigated a pitch adaptive acoustic parameterisation for speech recog-

nition, derived from the STRAIGHT approach to time-frequency analysis, with a

particular focus on speaker normalisation (VTLN) and combination with conven-

tional features using HLDA. We performed experiments on three large vocabulary

domains, using standard data sets and evaluation protocols: WSJCAM0, conver-

sational telephone speech and multiparty meeting transcription, considering both

close-talking and microphone array conditions in the latter domain.

In each domain we observed significant reductions in word error rate through

the combination of conventional and STRAIGHT-based features using HLDA. The

resulting systems based on these combined representationswere able to achieve rel-

ative reductions in word error rate of 3.2% on WSJCAM0, 8% on conversational

telephone speech, and for the meeting domain 4.7% for the IHMcondition and 7.3%

for the MDM condition. In both the WSJCAM0 and CTS domains, we found that

STRAIGHT derived features benefit the most from VTLN (because of theirsmoother

representation) particularly for male speakers. VTLN on male speakers lowers the

centers of the Mel filters making the filters width narrower too, thus more able to

capture the thin horizonal spectral lines due to pitch artefacts. For female speakers

the pitch artefacts are even more evident in the conventional STFT representation,

while the pitch adaptive spectral representation makes theformant positions more

evident and therefore easier to catch by the VTLN warped filterbank. Therefore

VTLN on male speech benefits more from a smoother spectrogramshowing even

better improvements than VTLN on female. Note that in general the speakers ben-

efiting the most from the use of a pitch adaptive representation are high pitched

speakers for which the pitch artefacts are more evident.

Moreover experiments on the CTS domain showed that the influence of the pitch

tracker is of importance for STRAIGHT derived feature extraction.

Experiments on the use of pitch adaptive MF-PLPs for the meeting IHM task

showed a 3.2% relative WER improvement when combined with conventional MF-

PLPs using HLDA. On the same task the use of higher order coefficients (20 MFCCs

plus C0) was evaluated both for standard and pitch-adaptive features, finding that

STRAIGHT-based features performed better than conventional features, particularly
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for female speakers. In fact, for STFT derived features, higher order coefficients are

strongly affected by pitch artefacts which is more evident in high-pitched speakers.

Finally ROVER system level combination was applied on top ofHLDA feature level

combination finding that further improvements can be achieved merging the output

of the baseline systems with the correspondent HLDA combined system; therefore

showing that ROVER is complementary to HLDA.

We have explored the use of pitch-adaptive spectral representations in ASR, as

a complement to conventional STFT representations. Extensive experiments over

three standard large vocabulary tasks allow us to conclude that the use of such com-

plementary information, combined using HLDA, provides consistent, significant

reductions in word error rate.





Chapter 7

Experimental analysis of the use of

STRAIGHT in LVCSR

7.1 Introduction

In chapter 6 we used a pitch adaptive spectral representation, STRAIGHT (Kawa-

hara et al., 1999), to perform experiments on three Large Vocabulary Continuous

Speech Recognition (LVCSR) tasks: WSJCAM0, conversational telephone speech

and multiparty meeting data.

STRAIGHT derived features provided substantial improvements in allthe tasks

when combined with conventional MFCCs, suggesting that they are complementary

to the latter.

In this chapter we analyse the individual contribution of each representation

in two ways. First in section 7.2, we decouple the pitch adaptive and smoothing

aspects of STRAIGHT. Experiments performed on the meeting speech recognition

task highlight the importance of using a pitch adaptive spectral analysis and the

benefit of combining it with a conventional fixed window spectral analysis. Second

in sections 7.3 and 7.4, a speaker independence metric was used to compare pitch

adaptive features with conventional features: it was foundthat the pitch adaptive

component of STRAIGHT provides improved speaker independence. Reduced inter-

speaker variability is particularly beneficial when feature combination techniques

such as Heteroscedastic Linear Discriminant Analysis (HLDA) are employed.
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7.2 Decoupling the pitch adaptive and the smoothing

effect of S TRAIGHT

The STRAIGHT spectral analysis has two concurrent effects: on one side a pitch

adaptive window is used for spectral analysis and on the other side smoothing is per-

formed interpolating the partial information provided by the pitch adaptive spectral

analysis itself. In the experiments described in the previous chapter we observed,

both on the WSJCAM0, the CTS and the IHM and MDM meeting conditions, that

for 39 dimensional systems conventional MFCCs outperformed the STRAIGHT de-

rived MFCC systems. Therefore we conducted some experimentsto decouple the

two STRAIGHT effects both on the IHM and the MDM meeting task. To compute

STRAIGHT derived features without the pitch adaptive analysis we just kept the win-

dow’s width fixed (to 80 Hz), and to compute STRAIGHT derived features without

smoothing this step is just skipped in the processing.

Figure 7.1 shows a plot of the spectral contour for one frame of voiced speech

for the short time Fourier transform (STFT), and for STRAIGHT, while figure 7.2

compares the STRAIGHT spectral envelope with that of STRAIGHT using only the

smoothing and STRAIGHT using only the pitch adaptive component. It can be no-

ticed that when the pitch adaptive module of STRAIGHT is used with no smoothing

some harmonics are still present, while using the smoothingpart alone on the other

hand seems to yield a very smooth spectral envelope.

We performed the experiments in the meeting domain in the IHMtask training

and testing using the same data used for the experiments described in the previous

chapter (chapter 6) and described in section 4.2.3.6 and 4.5.

The results of these experiments are reported in table 7.1. First we observe that

the pitch adaptive analysis without smoothing (S2) gives a small but not significant

improvement over conventional MFCCs (M1) and an even larger improvement on

S1 (STRAIGHT derived MFCCs). This is particularly evident for female speakers

while for male speakers there is a substantial improvement especially when com-

pared to purely STRAIGHT derived MFCCs (S1). Smoothing is particularly bad for

male speakers and this is also confirmed by the experiment on the use of the smooth-

ing part only of STRAIGHT without pitch adaptive analysis (S3). The MFCCs ex-

tracted using the smoothing component only of STRAIGHT performed consistently
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Figure 7.1: A comparison of the STFT and STRAIGHT spectral analysis

worse than conventional MFCCs.

We also combined conventional MFCCs with the pitch adaptive only (M1+S2)

and smoothing only (M1+S3) STRAIGHT derived MFCCs using HLDA feature

combination with monophone mixture components as classes reducing from 78 to

39 dimensions. While none of this combinations outperformedthe combination

of conventional and STRAIGHT derived MFCCs (M1+S1) overall, the combination

with pitch adaptive only STRAIGHT derived MFCCs (M1+S2) gave better perfor-

mances for female speakers (for which pitch adaptive analysis is more important).

The combination with smoothing only STRAIGHT derived MFCCs (M1+S3) on the

other hand gave a smaller improvement. This is further evidence that the comple-

mentarity between conventional and STRAIGHT derived MFCCs is arisen from the

use of a pitch adaptive window by the latter.
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Figure 7.2: A comparison of the STRAIGHT spectral analysis with pitch adaptive

only and smoothing only

7.3 Statistical measures of the acoustic features

speaker independence

One of the aims of using a pitch adaptive spectral representation for feature extrac-

tion is to obtain features which have increased speaker independence. Ideally we

would like to have features which only vary across differentclasses and which have

as little as possible variation across different speakers within the same class used

for speech recognition.

Haeb-Umbach (1999) investigated the effectiveness of speaker normalisation

techniques such as CMN and CVN and VTLN proposing to use the LDA objective

function as an effectiveness measure. A similar treatment of the effect of speaker

normalisation techniques was also presented by Saon et al. (2002) where they re-

late VTLN and LDA techniques showing the importance of applying LDA on top
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TOT F M CMU ICSI LDC NIST

MFCC M1 38.4 38.5 38.3 43.7 23.9 52.1 30.9

STRAIGHT MFCC S1 39.3 38.3 39.7 44.7 24.8 53.1 31.2

STRAIGHT MFCC S2 38.2 38.2 38.3 43.4 24.2 51.8 30.7

pitch adapt. only

STRAIGHT MFCC S3 40.1 39.9 40.1 45.1 25.5 55.2 31.3

smoothing only

HLDA 78 to 39 M1 + S1 36.6 36.3 36.7 41.0 22.5 51.2 28.5

mono

HLDA 78 to 39 M1 + S2 36.9 36.1 37.3 41.1 22.0 51.8 30.0

mono

HLDA 78 to 39 M1 + S3 37.3 36.6 37.6 42.1 23.3 50.7 30.2

mono

Table 7.1: Experiment on RT04seval testing set using VTLN features for the IHM

condition. From top to bottom: conventional MFCCs 39 dimensions (M1); STRAIGHT

MFCCs 39 dimensions (S1); STRAIGHT MFCCs 39 dimensions with pitch adaptive

analysis only (no smoothing) (S2); STRAIGHT MFCCs 39 dimensions with smoothing

only (no pitch adaptive analysis) (S3); HLDA combination of M1 and S1, M1 and S2,

M1 and S3 all reducing from 78 to 39 dimensions using monophone mixtures as

classes.

of speaker normalised features (which ideally eliminate completely inter-speaker

variability) in order to achieve better class separabilityusing LDA. The aim of this

section is to summarise the results of these two papers to introduce the analysis we

conducted on STRAIGHT derived features.

Suppose each acoustic feature vectorxi is labelled according to the classj and

the speakers to which it belongs (the association of a particular frame toa classj

can be done automatically by forced alignment). We can definethe corresponding

total number of feature vectorsxi ∈ ( j,s) as N( j,s); therefore the corresponding

mean and variance will be respectively defined as:

µ̂( j,s) =
1

N( j,s)

N( j,s)

∑
i=1

xi
( j,s), (7.1)
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Σ̂( j,s) =
1

N( j,s)

N( j,s)

∑
i=1

(xi
( j,s)− µ̂( j,s))(xi

( j,s)− µ̂( j,s))T . (7.2)

And if N( j) is the total number of feature vectors belonging to classj, the corre-

sponding class specific mean and variance are defined as:

µ̂( j) =
1

N( j) ∑
s∈S

N( j,s)µ̂( j,s), (7.3)

Σ̂( j) =
1

N( j) ∑
s∈S

N( j,s)Σ̂( j,s) + Σ̂BS
( j)

. (7.4)

whereΣ̂BS
( j)

is the between speaker covariance for classj computed as:

Σ̂BS
( j)

=
1

N( j) ∑
s∈S

N( j,s)(µ̂( j,s)− µ̂( j))(µ̂( j,s)− µ̂( j))T . (7.5)

The within-class covariance is therefore due to two distinct components: the vari-

ance due to the classes themselves and the between speaker covariance:

Σ̂wc =
1
N ∑

j∈J
N( j)Σ̂( j) =

1
N ∑

j∈J
∑
s∈S

N( j,s)Σ̂( j,s)

︸ ︷︷ ︸

Σ̂N
wc

+
1
N ∑

j∈J
N( j)Σ̂BS

( j)

︸ ︷︷ ︸

B̂S

(7.6)

whereB̂S is the total between speaker covariance andΣ̂N
wc is the within class covari-

ance matrix we would have if the features were ideally speaker independent. The

total covariancêΣ is given by the sum of the within class covarianceΣ̂wc and the

between class covarianceΣ̂bc which is given by:

Σ̂bc = ∑
j∈J

N( j)

N
(µ̂( j)− µ̂)(µ̂( j)− µ̂)T . (7.7)

The goal of LDA is finding the projectionθ which maximises the across class

covariance and minimises the within class covariance in theprojected space that is:

θ = argmax
θ

|θΣ̂bcθT |
|θΣ̂wcθT |

= argmax
θ

|θΣ̂bcθT |
|θ(Σ̂N

wc+ B̂S)θT |
. (7.8)

As already observed in section 4.4.1 the solution of equation 7.8 can be found by

computing the eigenvectors corresponding to thep largest eigenvalues of̂Σ−1
wcΣ̂bc,

with the product of thep largest eigenvalues corresponding to the LDA objective

function. Saon et al. (2002) argued that, since ideally the between-speaker covari-

ance should be zero for speaker normalised features, the LDAobjective function for
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normalised features should always be higher than that of nonnormalised features.

Unfortunately even using speaker normalisation techniques, the between-speaker

covariance is not completely zero but it makes sense to use the LDA objective func-

tion to measure inter-speaker independence of the features.

Similarly we can also demonstrate that the HLDA objective function measured

on normalised features is larger than that measured on non speaker normalised fea-

tures. In fact we recall that from equation 4.8 HLDA transforms are estimated by

maximising the likelihood of the original data given the estimated statistics with

an objective function inversely proportional both to the total covariancêΣ and the

per class covariance matricesΣ̂( j)
. We have shown that the total covariance ma-

trix Σ̂ = Σ̂bc+ Σ̂wc can be further decomposed into two parts: the covariance that

would be obtained if the features were perfectly speaker normalised, and the be-

tween speaker covariance (equation 7.6). The per class covariance matrixΣ̂( j)

(equation 7.4) can be also split into a class-specific covariance and the between

speaker covariance matrix for the class. Ideally, if the features were completely

speaker normalised, the between speaker covariance would be null and therefore

the likelihood of equation 4.8 would be greater for normalised features compared

to features with some speaker dependence. Unfortunately even using speaker nor-

malisation techniques, the between-speaker covariance isnot completely zero (for

example coarticulation differences are not normalised by VTLN) and the LDA ob-

jective function can be used as a measure of speaker independence of the features.

In Haeb-Umbach (1999) the trace (the sum of the eigenvalues)of the ratio be-

tween the between class covariance matrixΣ̂bc and the between speakers covariance

matrix is used as a measure of speaker normalisation effectiveness (̂Σbc/B̂S). In our

work we applied this measure to compare conventional MFCCs andour STRAIGHT

derived MFCCs from an inter-speaker variability point of view.

7.4 Measuring the speaker independence of S TRA-

IGHT derived features

We adopted the inter-speaker independence measure introduced in Haeb-Umbach

(1999) using Gaussian components of monophone models as classes in order to
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Figure 7.3: Trace measure as a function of the feature dimension measured using

the whole meeting IHM training data
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Figure 7.4: Trace measure as a function of the feature dimension measured using

the whole meeting IHM training data normalised with the trace measure of the MFCC

features
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maintain the same type of classes used in our HLDA combination experiments. We

compared conventional MFCCs, STRAIGHT derived MFCCs without the smooth-

ing, STRAIGHT derived MFCCs without the use of the pitch adaptive window and

STRAIGHT derived MFCCs with both smoothing and the pitch adaptive window

usage. We used the entire meeting IHM corpus (described in section 4.2.3.6) which

contains a total of 115 male and 49 female speakers. The results of this experi-

ment, using 39 dimensional feature vectors (12 cepstral coefficients plus C0 plus∆s

and∆∆s), are shown in figure 7.3 for the whole training set and in figure 7.5 and

7.7 for male and female speakers respectively. In figure 7.4,7.6 and 7.8 the traces

normalised using the trace of the MFCC features are also shownfor better compari-

son. The trend of the trace measure shows 3 large humps due to the different nature

on cepstral coefficients and their first and second derivatives and to the fact that

obviously as lower order cepstral coefficients are more discriminative so are their

correspondent first and second derivatives (the gradient ishigher for lower order

coefficients and their derivatives), while higher order cepstral coefficients are more

noisy and therefore less discriminative; thus they have a correspondent eigenvalue

which is smaller than that of lower order coefficients.

Looking at the magnified lower part of figure 7.3 (which shows the trace trend

for the first 12 cepstral coefficients only) we can observe that STRAIGHT derived

MFCCs using the pitch adaptive windowing but without smoothing show the higher

inter-speaker independence. Pitch adaptive features are more speaker independent

than both conventional MFCCs and smoothing only STRAIGHT derived MFCCs.

STRAIGHT derived features using the pitch adaptive component only are the most

speaker invariant.

Comparing the lower magnified part of figure 7.5 for male speakers and figure

7.7 for female speakers we can observe that they are slightlydifferent: while for

female speakers for lower order cepstral coefficients the trace is lower for conven-

tional MFCCs and this curve is then crossed by the STRAIGHT derived features

without the use of the pitch adaptive window, in the male picture this happens only

for the 10th cepstral coefficient. Most importantly both forfemales and males the

features derived from a pitch adaptive representation showa higher trace and there-

fore evidence of higher speaker independence for the cepstral coefficients them-

selves.
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Figure 7.5: Trace measure as a function of the feature dimension measured using

the male part of the meeting IHM training data
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Figure 7.7: Trace measure as a function of the feature dimension measured using

the female part of the meeting IHM training data
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TOT F M CMU ICSI LDC NIST

MFCC M1 38.4 38.5 38.3 43.7 23.9 52.1 30.9

STRAIGHT MFCC S1 39.3 38.3 39.7 44.7 24.8 53.1 31.2

STRAIGHT MFCC S2 38.2 38.2 38.3 43.4 24.2 51.8 30.7

pitch adapt. only

STRAIGHT MFCC S3 40.1 39.9 40.1 45.1 25.5 55.2 31.3

smoothing only

HLDA 39 to 39 M1 37.6 37.7 37.5 41.7 23.1 53.1 29.5

mono

HLDA 39 to 39 S1 37.4 37.2 37.5 42.3 21.8 53.7 28.6

mono

HLDA 39 to 39 S2 37.1 36.0 37.7 41.8 22.3 52.2 29.3

mono

HLDA 39 to 39 S3 39.6 38.8 40.1 44.2 25.0 55.4 30.7

mono

Table 7.2: Experiment on RT04seval testing set using VTLN features for the IHM

condition. From top to bottom: conventional MFCCs 39 dimensions (M1); STRAIGHT

MFCCs 39 dimensions (S1); pitch adaptive only STRAIGHT MFCCs 39 dimensions

(S2); smoothing only STRAIGHT MFCCs 39 dimensions (S3); HLDA 39 to 39 dimen-

sion projection of M1 (conventional MFCCs); HLDA 39 to 39 dimension projection of

S1 (STRAIGHT derived MFCCs); HLDA 39 to 39 dimension projection of S2;HLDA

39 to 39 dimension projection of S3.

Saon et al. (2002) argued that LDA gives better performanceson more speaker

independent features and we have shown in the previous section (7.3) that this

should be also true for HLDA. To assess this on our STRAIGHT derived features we

applied HLDA directly on the 39 dimensional conventional MFCCs, STRAIGHT

derived MFCCs and STRAIGHT derived MFCCs using the pitch adaptive module

only and the smoothing module only projecting to 39 dimensions (performing in

this way MLLT (Gopinath, 1998)).

The results of this experiment are shown in table 7.2. The improvement obtained

by the use of HLDA is larger for pitch adaptive STRAIGHT derived MFCCs than for



144 Chapter 7. Experimental analysis of the use of STRAIGHT in LVCSR

conventional MFCCs and smoothing only STRAIGHT MFCCs. We hypothesise that

this is due to the better speaker independence of pitch adaptive features as shown

similarly by Saon et al. (2002) for LDA applied on VTLN features.

7.5 Conclusions

In the previous chapter a STRAIGHT based pitch adaptive spectral representation

was successfully applied to extract acoustic features for achallenging LVCSR task,

multiparty conversational speech in the meeting domain. The combination with

conventional MFCCs using HLDA was particularly beneficial yielding consistent

improvements over conventional features alone.

In this chapter the two key components of STRAIGHT, pitch adaptive analysis

and smoothing through interpolation, were studied independently. Experimental re-

sults showed that adopting pitch adaptive features can improve speech recognition

performances. Non smoothed pitch adaptive features outperformed smoothed non

pitch adaptive features, when combined with conventional MFCCs. This improve-

ment is principally due to the adoption of a pitch adaptive representation. The use

of a pitch adaptive representation is particularly beneficial for female speakers, be-

cause for high pitched speakers the Mel filters are not broad enough to remove the

horizontal spectral lines due to the pitch artifacts.

We have also measured the speaker independence of all the features adopted in

this study. Using an LDA based metric we found evidence that the pitch adaptive

features are more speaker independent than conventional MFCCs. We observed that

the improved speaker independence has the desirable effectof making HLDA more

effective and making STRAIGHT derived features more suitable for this technique

than conventional features.



Chapter 8

Conclusions

The main goal of this thesis was studying the application of speaker normalisation

techniques such as VTLN to multiparty conversational speech and in particular mul-

tiparty meetings. Therefore the principal research question I aimed to answer in this

dissertation is:

How can we apply speaker normalisation and in particular VTLN
to multiparty conversational speech?

More specifically this problem has been subdivided in two sub-questions:

1. Which are the most important features of multiparty conversa-
tional speech from a VTLN point of view?

2. Is it possible to improve the conventional feature extraction
methods to obtain features which are better suited for speaker nor-
malisation and thus more speaker independent?

Two main research threads were therefore investigated to answer respectively

the two proposed research questions above recalled. First the application of max-

imum likelihood VTLN to spontaneous conversational speech, with particular at-

tention to multiparty meetings, was investigated finding consistent WER reductions

(8% relative) both on CTS and meeting data. The stability of the warping fac-

tors, parameterising vocal tract length normalisation, was studied both for the same

speaker across different meetings and across time for the same speaker within a

single meeting, finding no stable estimates, even if vocal tract length should be con-

stant at least to a certain extent. Thus we investigated the variability of the warping

factors in connection with the rich speaker turn structure characterising meetings.

145
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This study was conducted looking at the dependence of the warping factor estimated

for a speaker given the current speaker’s addressee. We found that ML estimated

warping factors appear to be influenced by the context and particularly by the cur-

rent conversational partner. It is thus likely that speakers address others according to

whom they are speaking to and that this is reflected in the ML estimate of the warp-

ing factor. We also hypothesised that the behaviour of the warping factor estimates

is in line with the interactive alignment account of dialogue: the estimated warping

factors of two speakers are typically non aligned at the beginning of a meeting but

can be seen to align as the meeting progresses. According to the interactive align-

ment account, during a dialogue two speakers could be seen toalign at multiple

levels: lexical, syntactic, phonological, phonetic and interms of the formant space.

In particular warping factors are known to be highly correlated with pitch (as we

also found in the experiments of this thesis) and the variation of warping factors can

be at least partly explained by a shift in formant frequencies caused by interactive

alignment.

Therefore we investigated the use of pitch adaptive features in the context of

multiparty spontaneous speech in conjunction with VTLN (this is the main second

thread of this thesis). In particular we adopted the pitch adaptive spectral representa-

tion of STRAIGHT for the extraction of acoustic features such as MFCCs and PLPs.

This spectral representation is computed in two steps: firsta pitch adaptive spectral

analysis is performed adopting a window which adapts to the F0 value, second a

smoothing through interpolation of the partial information given by the pitch adap-

tive spectral analysis is performed. For the unvoiced segments the value of the pitch

determining the analysis window width was fixed to a constant(160Hz). One pos-

sible alternative could have been to use an interpolation ofthe pitch contour for this

regions. A recent modification to STRAIGHT (Kawahara, 2007) provides non-zero

pitch trajectories even for unvoiced and silence segments and it would be interesting

to investigate the effect of this on pitch adaptive featuresfor speech recognition.

We also combined conventional and pitch adaptive features using both feature

level combination in the form of HLDA and system level combination in the form

of ROVER. As well as in the meeting domain, both for the close talking and the

distant microphone tasks, we also performed our experiments on the WSJCAM0

corpus (read speech) and conversational telephone speech.
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Results on the use of STRAIGHT derived features have shown that the pitch in-

dependent features achieve performances comparable to those of conventional fea-

tures. In addition they benefit particularly from VTLN and yield especially good re-

sults for female speakers. Combining STRAIGHT derived and conventional features,

both using feature and system combination techniques, we found that the informa-

tion carried is complementary. HLDA feature combination was able to achieve a

consistent relative decrease in the word error rate of 3–9% across all three domains,

with the largest relative reductions being observed on the telephone speech and

distant microphone tasks. A further 8% relative reduction in word error rate was

observed when ROVER combination (using majority voting) was applied to the

meeting transcription task. The success in applying the STRAIGHT spectral repre-

sentation to three different challenging tasks, allowed usto make strong conclusions

about the usefullness of a pitch adaptive representation inthe LVCSR domain, par-

ticularly if used in conjunction with VTLN. Besides providing consistent word error

rate reductions when combined to conventional features, the pitch adaptive features

have proved to be able to benefit the most from VTLN. This demonstrates their

better suitability in conjunction with this technique bothon the WSJCAM0 and the

CTS task.

The complementarity between conventional and STRAIGHT derived features

could be explained as follows: STRAIGHT derived features, given their more ac-

curate representation (independent from the pitch artefacts), provide information

complementary to the conventional STFT derived features. Conventional STFT

features on their turn, because of the sharper spectral envelope of STFT, contain

important information which was smoothed out in the STRAIGHT representation.

We have combined the conventional and STRAIGHT features at the cepstral coef-

ficient level. It would be however possible to combine directly the STFT and the

STRAIGHT spectrograms after the Mel scaling is performed. This couldbe done

in several ways. One possibility is to apply directly HLDA tothe concatenated

Mel spectrograms, skipping the DCT step, since this is believed to be not necessary

when discriminant linear transforms are used (Yu and Waibel, 2000; Saon et al.,

2000a). In this way the two frontends could be integrated at alower level reducing

the computational overload and making the feature extraction process more consis-

tent. Moreover recent works have shown the benefit of system combination through
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cross-adaptation (Giuliani and Brugnara, 2006; Hoffmeister et al., 2007). It would

therefore be possible to use the output of the STRAIGHT derived MFCC system to

adapt through MLLR the conventional MFCC system and viceversa.

Further investigations on meetings, isolating the pitch adaptive from the smooth-

ing component of the STRAIGHT spectral representation, have also shown that when

the two main modules are used separately it is the pitch adaptive part to provide

most of the complementarity with the conventional features. Moreover evidence

of an improved speaker independence due to the pitch adaptive analysis was also

observed.

It is well known that the pitch artefacts, which manifest themself through spec-

tral harmonic lines in the spectrogram, particularly affects higher order coefficients

(Irino et al., 2002). The pitch artefacts can be in fact stillpresent after the Mel Fil-

terbank is applied (especially for high pitched speakers).This is the main reason

why in most of the speech recognition systems only the first 12cepstral coefficients

are used. In our experiments we found that the adoption of a smooth pitch adap-

tive spectral representation enables to use higher order cepstral coefficients even for

high pitched (female) speakers, yielding a significant improvement compared to the

conventional features. In fact in this case STRAIGHT derived MFCCs outperform

conventional MFCCs.

The peculiarities of conversational speech from a speaker normalisation point of

view (our main starting point question) were studied through investigations of the

VTLN warping factor behaviour finding a dependence on the rich meeting speaker

turn structure. It is therefore interesting to take into account the discourse structure

by estimating VTLN parameters depending on the speaker turn. However the re-

lationship between warping factors and speaker turns is notdirect but it is filtered

through the dependence of the formant space on the speaker turns themselves. In

fact warping factors are directly dependent on the formant space which can shift

because of the speaker turn structure (speakers speak differently according to their

current addressee to facilitate the conversation flow adapting even the pitch of their

voice). Therefore we investigated the use of pitch adaptivespectral analysis aim-

ing to find features which are at the same time more suitable for VTLN and more

speaker independent. Not only the adoption of these features provided consistent

word error rate reductions, particularly in the multipartyconversational domain of
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meetings, but we also found evidence of better speaker independence.
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