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Abstract

One of the main problems faced by automatic speech recogmétthe variability of
the testing conditions. This is due both to the acoustic itmmd (different trans-
mission channels, recording devices, noises etc.) andetodahability of speech
across different speakers (i.e. due to different acceptsticulation of phonemes
and different vocal tract characteristics). Vocal tracigidn normalisation (VTLN)
aims at normalising the acoustic signal, making it indegemndom the vocal tract
length. This is done by a speaker specific warping of the faqu axis parame-
terised through a warping factor. In this thesis the appboaof VTLN to multi-
party conversational speech was investigated focusing@meeting domain. This
is a challenging task showing a great variability of the spescoustics both across
different speakers and across time for a given speaker. YAE_distance between
the lips and the glottis, varies over time. We observed taitarping factors esti-
mated using Maximum Likelihood seem to be context dependgyearing to be
influenced by the current conversational partner and bemnglated with the be-
haviour of formant positions and the pitch. This is becau$e ¥lso influences the
frequency of vibration of the vocal cords and thus the pitchthis thesis we also
investigated pitch-adaptive acoustic features with thed gbfurther improving the
speaker normalisation provided by VTLN.

We explored the use of acoustic features obtained usingh-pdaptive analy-
sis in combination with conventional features such as Maidiency cepstral coef-
ficients. These spectral representations were combinddabdhe acoustic feature
level using heteroscedastic linear discriminant analit$iDA), and at the system
level using ROVER. We evaluated this approach on a challgrigiige vocabulary
speech recognition task: multiparty meeting transcriptidVe found that VTLN
benefits the most from pitch-adaptive features. Our expErtmalso suggested that
combining conventional and pitch-adaptive acoustic fiestusing HLDA results in
a consistent, significant decrease in the word error ratesa@ll the tasks. Combin-
ing at the system level using ROVER resulted in a furtheriBgant improvement.
Further experiments compared the use of pitch adaptiveargbespresentation with
the adoption of a smoothed spectrogram for the extractiarepstral coefficients.
It was found that pitch adaptive spectral analysis, promjdi representation which
is less affected by pitch artefacts (especially for highhed speakers), delivers fea-



tures with an improved speaker independence. Furtherrh@é&as also shown to
be advantageous when HLDA is applied. The combination ofcd gidaptive spec-
tral representation and VTLN based speaker normalisatitimel context of LVCSR
for multiparty conversational speech led to more speakipendent acoustic mod-
els improving the overall recognition performances.
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Chapter 1
Introduction

Automatic speech recognition aims to mimic the human cditiabiof perceiving
speech using a machine. First attempts in this directioa datk to the 1950’s,
when a speaker dependent system for isolated speech recogmas built at Bell
Laboratories (Davis et al., 1952). In this system formaajettories were used as a
reference pattern to identify the best matching digit. At time speech recognition
systems were only able to recognise small vocabularies-afd@words in isolated
mode (i.e. the speaker had to pause between words to makgsteensunderstand
what he was saying).

In the 1960’s some of the most important techniques suchtas liiank anal-
ysis and dynamic programming were introduced. But it was mtit the 1970’s
that the adoption of Linear Predictive Coding (LPC) and egilggpattern recogni-
tion techniques enabled the development of medium vocab(1@0—-1000 words)
continuous speech recognition systems. For example the&f gsaph search was in-
troduced by representing speech as a network of words (tevaad Reddy, 1976).
The first language modeling techniques were also used fatdbhelopment of the
IBM speaker dependent dictation system VAT (Voice Activalgdewriter) (Jelinek
etal., 1975). Furthermore at the same time AT&T developgzkalser independent
voice dialing system using speaker clustering algorithmigre the number of dif-
ferent realisations for each word across a wide user papolatas determined.

The 1970’s and 1980's saw the development of one of the mdvstautial
breakthroughs in speech recognition: Hidden Markov ModEISIMs) (Poritz,
1988; Rabiner, 1989). This technology, pioneered by the IBM laboratoraties

1



2 Chapter 1. Introduction

and CMU (Baum, 1972; Ferguson, 1980; Bahl et al., 1983), saw biits @rst
applications even earlier in the Dragon system, developetieé 1970s by Baker
(1975). HMMs are doubly stochastic models consisting oftaobéidden states.
They include an underlying statistical model (a Markov aaivhich is not observ-
able, characterising the probabilistic relationship kestwthe states, and a second
process aimed at generating the sequence of observatiendaed to the hidden
states. These statistical models enabled the integratiasaustic modeling and
language modeling in a consistent framework, allowing tibdbtine first large vo-
cabulary continuous speech recognisers.

In the 1990’s techniques to make the flexible HMM infrastmuetmore robust
were investigated. Some of these technologies aimed atireglthe mismatch
between training and testing conditions: such as the Maxirhikelihood Linear
Regression (MLLR) family (Legetter and Woodland, 1994; Gaed Woodland,
1996; Digalakis et al., 1995) and Maximum a Posteriori (MAEpaptation (Gau-
vain and Lee, 1994) techniques. These approaches wereayoih to adapt the
recogniser to specific speakers or to specific acoustic dmnai

The use of speaker normalisation techniques such as Voaeat Tength Nor-
malisation (VTLN), aiming to normalise for the speaker’ssific vocal tract length,
was also wide spread in the 1990’s (Cohen et al., 1995; Wegetzain 1996; Eide
and Gish, 1996; Zhan and Waibel, 1989; Hain et al., 1999)patjh one of the first
applications of VTLN dates back to 1977 when it was used inveel@ecognition
system (Wakita, 1977).

Together with these technology evolutions, the applicdiiEds of speech recog-
nition have also changed quite significantly over time. &mwesearch advance-
ments were driven by the speech recognition evaluation®yudiST. These eval-
uations aim at benchmarking the performances of the best #f8Rms (Fiscus
et al., 2007). In the early 1990s speech recognition systesns evaluated on con-
strained tasks such as the resource management (contimiidasy style speech)
or read speech data such as the Wall Street Journal taskmatitotranscription
of Broadcast News has been investigated since the late 1B@@ently the speech
recognition community has started investigating more lehging tasks such as
conversational telephone speech, and multiparty meepiegch recognition. These
tasks present an increasing number of challenges. Wemetal. (1996) com-
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pared the recognition of spontaneous conversational bpeethe recognition of
read speech under similar testing conditions (same micmogs) acoustics and tran-
scription) finding that speaking style has a tremendouseffe the performances
of an LVCSR system: the word error rate (WER) on read speech vifasf iaat ob-
served on spontaneous speech. Multiparty meeting speeatpéion is therefore a
rather challenging task, being at the moment the “most diffectively researched
domain for speech to text systems” (Fiscus et al., 2007) #ni extremely inter-
esting task because it represents one of the most naturahgnitation scenarios
where humans freely interact without constraints.

Spontaneous speech is characterised by an increased ispaadbility. Eske-
nazi (1993) compared the characteristics of read and speows speech, point-
ing out that conversational speech typically shows morguieat deletion of con-
sonants, wider formant space (F1/F2), smaller FO rangateshongrammatical
pauses, and higher variability from a phonologic point efi

The main goal of this thesis is the investigation of speakemalisation in the
context of spontaneous speech recognition (particularipultiparty meetings), in
order to minimise the mismatch between acoustic modelsraidrtg data.

1.1 Speaker normalisation

Automatic Speech Recognisers (ASR) are complex and commmgtems con-
sisting of a number of components which should all work inni@my in order to
provide a good overall performance. Different componentsch at a first sight
look far apart in the processing chain, may have an influenca@behaviour of all
the other building blocks. One first example is the influenidd® segmentation of
the acoustic signal on all the other blocks of the speeclgraser, influencing the
way in which the language model will act, the normalisatiod adaptation, and of
course the decoding. Another example is the fact that nasatadn and adaptation
operate in a complementary way, trying on one hand to recheenismatch be-
tween acoustic features and acoustic models (normalmgatod on the other hand
trying to make the acoustic models more suitable for a padeicspeaker (adapta-
tion). Moreover the choice of the acoustic features hasmagi effect on the entire
ASR system, and in particular on the normalisation and adi@pt behaviour.
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Adaptation and normalisation techniques attempt to mag&etioustic models
and the features more suitable for the target testing dongithey have been ap-
plied to. These techniques allow the adaptation of the nsofilem one acoustic
domain to another or from one speaker to another. In paaticspeaker variability
Is one of the main problems in current speaker independeRtd\f to the presence
of different speaking styles, accents and speaker chaisttie (vocal tract length
and shape). Vocal tract configuration has a substantiadtedfethe observed spec-
trum: for example, a typical female speaker exhibits fortrfeequencies around
20-25% higher than those of a male speaker. Vocal Tract badgtmalization is a
state of the art technique which normalizes for inter-speakriability. It is based
on the speaker-specific warping of the frequency axis, petenzed by a scalar
warp factor. This factor is typically estimated using Maxim Likelihood, that is
maximizing the probability of a given speech recognitiotpar given the acoustics
(vocal tract length normalized features) and the acoustdets. This approach
results in improved recognition accuracies, but also imiporating in the optimi-
sation variables other than the sole vocal tract length.@ast general question is
to

investigate how VTLN may be applied to multiparty convérsatand
to discover what are the unique characteristics of this cosatonal
domain from the speaker normalisation point of view.

Initial experiments, on the use of ML VTLN in the meeting domaeported
a substantial improvement in accuracy (Garau et al., 200B)stigating the be-
havior of the VTLN warping factors we have shown that unigtable estimates
are not usually observed in dialogues. Instead warpingfacppear to be influ-
enced by the context of the meeting, in particular the ctigenversational partner.
These results are consistent with predictions made by $ehpnguistic interac-
tive alignment account of dialogue, when applied at the sitoand phonological
levels. Pickering and Garrod (2004) argued that, duringabbdue, production and
comprehension are coupled so that two speakers can be sakgnat different
levels: developing the same expressions to refer to péatiobjects, aligning in ar-
ticulation, converging in accents and speech rates. Timaa&std warping factors of
two interlocutors are typically non-aligned at the staraaheeting, but can be seen
to align (or at least evolve through phases of alignmenti@agteeting progresses. It
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is therefore evident that VTLN, when applied with a maximukelihood approach,
is normalising for VTL variability during speech produgtigDusan, 2005b).

Our second question, which arises from our preliminarystigations, is a dual
one:

(1) to find acoustic features which are more suitable for ndrsagion
and in particular for VTLN, (2) to isolate the primary funatiof VTLN
(which is to normalise for the speaker specific vocal tracgtainfrom
the other normalisation effects, such as channel norm@disaand the
overall reduction of the mismatch between acoustic featanesmod-
els.

To answer these questions, we investigated novel appredohepeech sig-
nal processing which should be able to exploit a better firaguency resolution,
obtaining thus a more speaker independent feature repatisen In the next sec-
tion we will highlight our main efforts towards finding a maspeaker independent
speech representation by investigating the use of a pitaptae spectral represen-
tation based on RAIGHT (Kawahara et al., 1999).

1.2 Contribution

In our preliminary experiments about the use of VTLN on npatty meetings, we
found that VTLN warping factors estimated using ML exhiditegnificant variabil-
ity over time (Garau et al., 2005). This is consistent with ¥ariation of pitch over
time due to the variation of the larynx position. Thereforeinvestigated the use of
a spectral representation which is less pitch-dependasdnjunction with VTLN.
This study is based on the use of the pitch adaptiveASGHT spectral representa-
tion instead of the conventional short time Fourier transféor the computation of
Mel Frequency Cepstral Coefficients (MFCCs) and MF-Perceptundr Predic-
tion (PLP) coefficients. The spectral analysis dRBIGHT uses a fundamental pe-
riod adaptive window which gives equivalent resolutionfbiottime and frequency
domains; followed by an adaptive smoothing of the time-fiatcy representation.
Therefore the resulting pitch adaptive spectral repregiemt allows to extract pitch
normalised features.

Experiments were performed on three large vocabulary t&8&ICAMO, Con-
versational Telephone Speech (CTS), and the multipartyingedomain both for
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the close talking (individual headsets) and the multipkadit microphone tasks.
This set of experiments allowed us to benchmark the use di pidaptive features
on a wide range of speaking styles, channel and acoustigtemrsd WSJCAMO is
a fairly simple task consisting of read speech using a dakk#&g microphone in a
quiet environment. CTS and the meeting domain are more cigatig, involving
spontaneous conversational speech. They are particulselyl in studying the ef-
fect of a pitch adaptive representation, because this dom&nown to have richer
prosodic variation. Moreover, CTS involves telephone spe®aich is subject to
a bandpass filter that partly obscures the pitch; while thiéijpauty meetings were
recorded in reverberant conditions with overlapping shed&an the meeting task
the situation is further complicated when multiple distami¢rophones are used to
record the conversation, and beamforming algorithms apéieapto the recorded
signals.

Experimental results showed that not only pitch adaptiatuies provide com-
parable results to conventional features and are partigidaneficial when VTLN
Is adopted, but their combination using HLDA and ROVER teghes provides
consistent relative improvements across all differerk448—9% relative word er-
ror rate reduction).

The complementarity between conventional artR&GHT derived features
was also further analysed by using separately the pitcht&dagnd the smoothing
part of STRAIGHT. In this experiments it was found that most of the complemen-
tarity is given by the pitch adaptive module. Pitch adapf@atures also manifested
increased speaker independence making them definitely sndeble features for
speaker normalisation (one of our initial aims).

1.3 Thesis Structure

This thesis can be subdivided in two parts: a background dmerevthe speech
recognition problem and speaker normalisation are intedyand an experimen-
tal part where we describe both the techniques and the expets developed to
answer the main research questions of this thesis. Both pavts a special fo-
cus on multiparty meetings. The experimental part can bdiguaed in chapter 5
which deals with the study of the relationship between vaeadt length and the
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fundamental frequency (and their changes due to the \amiati larynx position),
and chapter 6 and 7 which mainly study the use of a pitch agappectral repre-
sentation in conjunction with VTLN to deal with the effecttbe fundamental fre-
guency manifested as harmonic lines, therefore makingpéetsim more speaker
normalised (more speaker independent). More precisely:

e In chapter 2 we will present an overview of a HMM based speechgnition
system showing feature extraction techniques.

e Chapter 3 will provide a background on speaker adaptatiomardalisation,
with particular attention to vocal tract length normalisat

e Chapter 4 will describe the data and the main tools used inxpergnents
of this thesis focusing on meeting recognition (corporatidnary, language
models, preprocessing, speaker adaptation and nornnatisand the NIST
evaluations).

e In chapter 5 experiments on the use of VTLN for spontaneoesd@precog-
nition (conversational telephone speech and multipartgtimgs) will be de-
scribed and the behaviour of VTLN warping factors in the mpaltty meeting
domain will be analysed.

¢ In chapter 6 experiments on the use aRBIGHT derived pitch adaptive fea-
tures in conjunction with VTLN will be outlined on three la&gocabulary
continuous speech recognition tasks: WSJCAMO, CTS and meeting

e A deeper experimental analysis on the useTRAGHT is presented in chap-
ter 7.

e Finally chapter 8 summarises the main achievements of #dsearch dis-
cussing the theoretical implications and the main findings.






Chapter 2

Automatic Speech Recognition

Overview

2.1 Introduction

The problem of Automatic Speech Recognition (ASR) is findirgrtiost probable
sequence of words given the observed acoustics. The wavesdirst processed by
the feature extraction module to extract meaningful infation in the form of the
acoustic vector® = 01,0y, ...,07. Then decoding is performed to find the sequence
of wordsW = wq,Wo, ...,wn Which most likely generates the observation sequence
O. More precisely we want to solve the equation:

W* = argmaxP(W|O) = argmaxP(O|W)P(W) (2.1)
w w

whereP(O|W) is the probability of the acoustic measurements of the ohsien

O given the hypothesised sequence of woMsnd it is referred to as the acoustic
model. The sequence of worldé can be represented either by word units or by the
concatenation of sub-word units such as phonemes. Theechbtbe speech units
will be outlined in more detail in section 2.2.P(W) is the a priori probability of
the sequence of word&' defined by language modeling.

9
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2.1.0.1 N-gram language modeling

The language model estimates the probability of the sequeiwordsP(W). The
most common language model form are N-grams. N-grams mbdedrobability
of the wordsw; by conditioning it to the n-1 preceding words: more spedifjdhe
probability P(w; [wi_1,Wi_2, ...,Wi_n+1) is modelled. For n=1 we have unigrams, for
n=2 bigrams and for n=3 trigrams and so on. The N-gram prdéibabiare estimated
by counting the sequences of n words in text corpora. Momgbedanguage model
probability of a sequence of N words is computed by:

N
P(W) = [!P(Wi Wi 1,Wi—2,...,Wi_ns1). (2.2)

where the joint distributiorP(wy,wsy, ...,wy) is factorised as a chain product of
conditional probabilities in the fornp(w;|wi_1,...,Wj_n+1). Trigrams or at most
fourgram language models are typically employed by largekalary continuous
speech recognition (LVCSR) systems. This is because inagdse order of the
language model results in requiring larger amounts ofitmgidata and a good trade
off must be reached. Moreover the search space to find the pnolsable word
sequence grows with the language model order.

2.2 Acoustic Modeling

2.2.1 The Speech Units Choice: context-dependent models

The choice of speech units plays a leading role in acoustaetiiay. According to
Lee (1990), in order to make an appropriate choice, two itambrcharacteristics
should be fulfilled: consistency and trainability. The srshould be consistent in
the sense that multiple occurrences of the same unit shaurel d similar acoustic
realisation. The trainability property requires a sufintisumber of training exam-
ples.

Traditionally for small vocabulary systems, such as digitagnition, entire
words have been adopted as base units. This is the mosivatahioice and it
also presents several advantages, for example the capaibilinodeling context
effects between adjacent phonemes within the same wordharfect that there is
no need for a pronunciation dictionary. Because of theseradgas they are in fact
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the best choice when sufficient data are available. The drakg#bof using words
as speech units are: the linear increase of the necessamypgraata as well as
the memory usage when the dictionary size increases, ame#teof training new
models when a new word is added to the recognition system.

For LVCSR systems, where many words need to be modelled areldhe not
enough examples to train separate models for each word)yisub-word units are
adopted, such as phonemes (monophones). Phonemes hagheahtage of requir-
ing few data for training (the number of phonemes in Englsbrly around 45).
However their main problem is that they assume completeezbimdependence
between phonemes and this is unfortunately not true.

Thus context-dependent models were introduced to modetigshin context
(Schwartz et al., 1985). Both the right and the left contexiusth be considered:
for left biphones we only consider the left context and fghtibiphones we only
consider the right context, while we consider both at theesame using triphones.
Triphones are the best choice from a consistency point of aiel are often adopted
in LVCSR systems. For continuous speech it is also crucial edehtransitions
between words, thus not only context-dependent phonemelsisdch as word-
internal triphones (which only model the context inside dg)rbut also cross-word
triphones (modeling the context across adjacent wordsaimadopted. An exam-
ple of the pronunciation labels for monophones, word-imétriphones and cross-
word triphones for the utterance “How are you doing” is shawfigure 2.1.sil
represents silence arsgd represents short pauses and the context dependent pho-
netic models have been represented following the Hidderkdlavodel Tool Kit
(HTK Young et al. (2006)) notation. For examgh+r is an occurrence of the
phonemeh with the left context represented by and the right context represented
by +r.

The main problem of context-dependent models is trairtgbiif we consider
for example triphones with a pronunciation dictionary ofpt®mnes there is a num-
ber of 45 possible combinations and some of these may not even be iséke i
training sets. Techniques which aim to address this trdityaissue are described
in section 2.2.3.
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Monophones:
sil hh aw sp
aa r sp y
uw sp d uw
ih ng sp si |
Tri phones Wird-Internal:
sil hh+aw hh- aw sp
aa+r aa-r sp y+uw
y- uw sp d+uw d- uwti h
uw- i h+ng i h-ng sp sil
Tri phones Cross-Wrd:
si | si | - hh+aw hh- awtaa sp
aw aa+r aa-r+y sp r-y+uw
y- uw+d sp uw d+uw d- uwti h
uw- i h+ng i h-ng+si | sp si |

Figure 2.1: An example of the labels of monophones, word-internal and cross-word

triphones for the utterance “How are you doing”

2.2.2 Hidden Markov Models

Acoustic modeling involves finding a way of estimating theelihood of the ob-
served sequend® given a certain word sequen®®: P(O|W). In most of the
state-of-the-art ASR systen®¥O|W) is modelled using Hidden Markov Models
(HMMs). These models are a natural choice for modeling dpedtich has a tem-
poral structure represented by a sequence of acousticvaliseis. HMMs, intro-
duced by Baum (1972), are defined as stochastic finite statenatd consisting of
a sequence of stat&uwith transitions for each timefrom states to states; with
probability as 5, generating a sequence of observati@nhs In practice while the
observation sequende2 is known, the state sequeng8as unknown or hidden, this
is why they are called Hidden Markov Models. More explicithe assumptions
required by HMMs can be defined as follows:

¢ the Markovian assumption: a stages only conditioned on the previous state
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Figure 2.2: An example of a 3 state left-to-right HMM system

s (and it is independent on all the other states);

¢ the observation at timeis only dependent on the state which generated it
(and it is independent of all the other observations);

¢ the stationarity property: the parameters of HMMs are fixeer dime;
e discrete hidden states are considered;

e finally we assume continuous observations (parameterigetthéb acoustic
feature vectors).

In our experiments we adopted cross-word triphone unite wi8 state left to
right topology, shown in figure 2.2. In this topology onlydlkrstates are emitting,
while the entry and the exit states are simply used to cormedels together such
that phonemes are joined to form words, and words are joiméorin utterances.
The representation presented in the figure is that adoptéueldy TK (Young et al.,
2006), which was used for the experiments in this thesis.

Adopting an HMM with a state sequen¢s;, s, ..., St }, the acoustic modeling
probability P(O|W) can be extended as follows:

.
argwmaP(O|W>:argma>©(OIIW’f)=rp_% p(ot|s; W) p(sts-1wh) (2.3)

wh S Wy t=
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p(ot|s;W)') are the emission probabilities apts |s—1; wY') are the transition prob-
abilities. A continuous observation HMM (Rabiner, 1989) bardefined through a
parameter model satwhich consists of a transition matri, an initial state prob-
ability vectorm, and an observation probability distribution for eachestaf(ox).
The transition matriA is defined a®\ = {a; = P(q(t+ 1) = sj|q(t) =s)} andm
is given byt = P(01 = 5) wheres; are the individual states amyit) is the state at
timet. The emission probabilitiels;, are continuous probability density functions
usually approximated by a mixture of Gaussian distribigion

M
bs;(0t) = {Cj.mA (Hjm Zjm0t)} = (2.4)

m=1

1

Z{ij /—21'[ %

wherecjm are the mixture weight coefficients of tmath mixture in statej,

e 2O Wm) T Zim(O—Him) )

Hj m are the mean vectors aig , are the covariance matrices of the multivariate
gaussian distribution/ andn is the dimensionality of the observation vectgr

Following Ferguson (1980) Rabiner’s tutorial on HMMs (Raljri®89) defines
the 3 fundamental problems of HMMs as follows:

e evaluation: finding a way to efficiently compulO|A), the probability of
the observation sequen@e= 0,0y, ..., 07 given the parameter model set

e decoding: finding the optimal state sequesges, ..., st given the observa-
tion sequenc® and the modeA

e learning: estimating the parameters of the madedich maximise the like-
lihood of the observation sequence of the training datd.e. maximising
P(O[A)).

2.2.2.1 The evaluation problem

The easiest solution to the so called “evaluation” problertoiaccount for every
possible state sequengs:, s, ..., St} given theT observation vectors multiplying
all the transition probabilities and emission probalakti

POA)= > Tiybs (01)as 5,bs,(02).-8sr .50y (OT). (2.5)
$1,8p,...,ST
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This can be interpreted as follows: the system is initiallgtates; with probability
T, and generates the observationwith probability bs, (01); at timet = 2 the
system goes in state with probabilityas, s, and generates the observatmnwith
probability bs, (02) and so on until the last state of the sequesicis reached.

Unfortunately this approach is computationally unfeasibécause it i€(2-
T-NT). Therefore a more efficient iterative solution has been gsed which is
known as the forward-backward algorithm originally intuogd by Baum et al.
(1970). The forward part of the algorithm (which is the ongrtpused to estimate
the total likelihoodP(O|A)), starts from the observation that the probability of being
in statesj and having observed the sequenggoy, ..., 0; given the model can be
computed as the sum of the forward probabilities of all guegpredecessor states
s weighted by the transition probabiligg s, and the emission probability, (o).
The total likelihood is therefore given by:

N

P(O[A) = ZGT(S) (2.6)

where the forward probabilityi; (sj) is computed as in figure 2.4.

2.2.2.2 The decoding problem

The decoding problem can be seen as finding the maximumHdedi state se-
guence given the observations and the acoustic modeiis problem can be solved
similarly to the forward algorithm, but here instead of thensover all possible state
sequences we aim to find the state sequence correspondhmgreakimum proba-
bility (Viterbi, 1967; Forney, 1973).

The partial likelihood of the state sequence at tine&ding at stats; is given
by:

5(j) — { i, bs; (01) | LjsN i t=1
max—1,..n [&-1(i)ass ] bs(0) 1<j<N if 2<t<T

geees

and the optimal state sequence and correspondent praypabdiven by:

Or =argmax i\ Or(i), Pr=max<i<nOr(i). (2.8)

The token passing algorithm (Young et al., 1989) can be usé@dte back the
most likely state sequence. This algorithm stores the in&bion of each partial
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path (the probability and the traceback information) inracttre called a token.
For continuous speech the token is propagated through arebtf multiple par-
allel hypotheses: this is built using both the informationyided by the language
model (which gives possible word sequences) and the praatiort of the words
contained in the dictionary. The search network can be btatically prior to de-
coding as in Mohri et al. (1998), or dynamically integratitig building process
into the decoding as in Odell et al. (1994). Finding the mib&ly state sequence
can be computationally expensive. In particular for largeabulary speech recog-
nition the hypothesis network can be large, especially winess-word models and
bigram or trigram language models are used. Therefore wvaapproaches have
been developed to reduce the computation effort. Theseeareraglly referred to
as pruning. One of the most common pruning techniques isé¢belpruning. For
each frame the most likely partial path is found and its Ihk@bd is used as the top
of the beam of fixed width. Then the tokens having a likelihéadting outside the
beam are pruned out. Unfortunately search errors may otthe correct hypothe-
sis is pruned out, thus it is important to choose carefukkytibam width in order to
achieve a good trade off between computational requiresraend accuracy.

Although the main goal of recognition is to find the most likelord sequence
(equation 2.1) it is possible to find the N best hypothesisediwequences just by
storing the the N best tokens in each state, instead of oelyo#st one. This is
useful especially for large vocabulary speech recognisigstems, since it allows
to perform multiple rescoring passes. In this way higheeotdnguage models or
different acoustic models can be used without having toesetyuation 2.1 again
from scratch. The N best hypotheses are usually stored imga&ct form through
word lattices (Richardson et al., 1995). A word lattice cetssbf a set of nodes,
representing start and end points of words, and a set of epcegenting word hy-
potheses along with the acoustic and language model sedrasre compact rep-
resentation of word lattices are the so called confusiowokis (Mangu et al.,
2000), where nodes do not represent points in time but oniysa word sequence
constraints. More in detail confusion networks represémiassible hypothesised
word sequences, transforming the lattice space into s&mfls kaving a set of word
hypotheses represented by arcs. In figure 2.3 we show a cismpaf word lattices
and confusion networks. Confusion networks are also usefuvérd error minimi-



2.2. Acoustic Modeling 17

WRI
A
' BOOK
LOST . SOME

Figure 2.3: Word lattice and confusion network examples

sation when the output of multiple systems is combined (&e&m and Woodland,
2000; Fiscus, 1997).

2.2.2.3 The learning problem: acoustic model parameter estim ation

The problem of estimating all the model parameters consistimding theA pa-
rameter model set which best represents the data obsertbd training dataset.
There are 2 main optimisation criteria: Maximum Likeliho@dL) and Maximum
Mutual Information (MMI).

Maximum likelihood criteria aim to maximise the probalyildf a given obser-
vation Oy belonging to a given word sequen@¢ given a parameter model set
A

Liot = P(O|W,A). (2.9)
To solve this maximisation problem there are no analytiotsahs, instead iterative

procedures such as Baum Welch or gradient techniques are Tseatkscribe the
Baum Welch algorithm we shall first introduce the backward pathe forward-
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Figure 2.4: An illustration of the forward-backward algorithm

backward algorithm. The backward probability is definednesgrobability of ob-
servingoi. 1,02, ..., 07 given that the system is in stadeat timet and it is defined
as in figure 2.4.

Then the Baum Welch algorithm defines a variagl@, j) as the probability
of being in states at timet and in states; at timet + 1 given the model and the
observation sequence, and can be estimated as:

L at(i)as,sbs; (0t4-1)Ber1(])
s = P =S, = S O))\ = . _] ) : 210
&(0,1) (=9, G1=5j] ) Zi'\lzlz?':lat(l)as,sjbs,-(0t+1)Bt+1(J) ( )

as illustrated in figure 2.4.
A variabley (i) is also defined as the probability of being in stgtat timet
given the observation sequence and the model:

N
(i) =3 &j). (2.11)
=1

Then if we sum over timé& (i, j) we obtain the total expected number of transitions
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froms tos; and if we sum over timg (i) we obtain the total number of transitions
to states so that the model parameters can be estimated as:

. N TREGLD) . o 1o W(
i =ya(i); auz%“; by ZLTL(_).
i1 Yi(i) -1 Yt(])
Now denoting the current model As= {A,B, 11} and the re estimated model as

(2.12)

A= {A,B,ft}, we can iteratively replack with A and apply again the estimation
formulas above increasing the probability of the obseovasiequenc® until con-
vergence is reached. The same solution could be obtainedakiymsing Baum'’s
auxiliary function:

QAA) = ¥ P(Q|O,\)logP(0,QA) (2.13)
Q

overA which was proved to increase the likelihood so th{O|\) < P(O|5\).

In speech recognition, since the observations are contgsignals, continuous
observation densities are used in the HMMs and the emissaapilities are de-
fined as in 2.4. Therefore we need to estimate the mixturehi®ag m, the mean
vectorfy m and the covariance matrij m. It can be shown that the reestimation of
the mixture densities coefficients can be expressed by tlosving formulas:

A _ Saw(i,m) 214
b z;r:lzm:lyt(jam)7 ( | )
o 2an(.m)-o 2.15
uLm z;ﬁr:lyt(Jvm) ’ ( . )
T . o o T

iLm: Y1 Yt(J.m) - (0t — f,m) (0 — Fj,m) (2.16)

Z;;r:lyt(J ’ m)
wherey(j,m) is the probability of being in statg at timet with the mth mixture
component. This can be estimated using the current set afiers\ and given

by:

c o ae()B()) Cj,mC (P, ms 2j,m; Ot)
WM = o e M e e E T

=10t (1)Be(§) Tm-1{CimAl (Rj,m, Zj,mi00) }
Equation 2.14 can be interpreted as the ratio between théewuai times the

(2.17)

system is in stats; and occupies the mixtun@ and the total number of times the
system is in statg;j, and in a similar way the estimated mefa, is given by a
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mean of the observations weighted by the occupancy pratyatifilstates; with the
mth mixture.

As mentioned above the model parameters can also be esliostey discrim-
inative MMI training instead of ML. In this thesis only ML thoiques have been
adopted, therefore a extensive discussion of MMI theoryvat be provided here.
For an in-depth description of discriminative traininghemues the reader may
refer to Povey (2003). Maximum mutual information is a disgnative training
criterion which maximises the ratio of the probability oetbbservation sequence
given the acoustic model corresponding to the correct wegdience\y, and the
probability of the observation sequence given any acowmstidel (corresponding
both to correct and incorrect word sequenkgs). The MMI criterion is given by:

F =arg maﬂog( RP(O‘)\WC) ) . (2.18)
A > r=1P(OlAw, )
In practice in LVCSR systems lattices are generated reciognike training data

and the MMI criterion is optimised on the alternative hypstes contained in the
lattices.

2.2.3 State Tying

As we mentioned in section 2.2.1 the most widely used speaith for LVCSR
are cross-word triphones. Even if they have the advantadeeiofy a consistent
representation they show trainability problems due to thaler of possible tri-
phones occurring in speech. In the next paragraph we willigeoan example of
the amount of data needed to train a cross-word triphone Hiybvem.

In the English language we can consider 45 phonemes, therti® total num-
ber of triphones would be 45that is over 90000); of these only around 60000 can
occur in practice due to the phonotactic constraints of aimgliage. Typically 16
mixture components, 39 dimensional feature vectors argbda covariance ma-
trices are used. For each state we would H@@x 2+ 1) « 16 = 1262 parameters.
With a 3 state topology for each triphone we would have a twtaB76 parameters,
for a total of 232 million parameters. Therefore modelingnsany speech units
would require a large amount of data and unfortunately thisot always possible.
Moreover some of the triphones may be not well representdtkitraining data or
they may not occur at all.
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Various techniques were developed to address the datatgpablem of tri-
phones. In Schwartz et al. (1985) the use of a weighted caatibmof all the possi-
ble models (monophones, biphones with the left and the cghitext and triphones)
was proposed. In this work the weights are determined asuptd several factors:
the position of the phoneme, the type of model and the numbavadlable train-
ing samples. However this technique does not exploit thetfet some triphones
are similar and more specifically some phones have the sdeut @h neighbouring
phones. In Lee (1990) the context effect is therefore autically generalised: sim-
ilar triphones are iteratively clustered together usingtdm-up procedure (where
similar triphones are only merged when this results in armravgment).

For the experiments reported in this thesis a method cakeddased state tying
or clustering was used (Young et al., 1994). This methodttigether those states
which are acoustically similar so that the data coming framilar states are pooled
together and lead to more reliable parameter estimatesieflbalecision trees are
used to choose which states may be tied. These are basically frees where each
node corresponds to a yes/no phonetic question: first ofdifferent tree is built
for each monophone state, and all states for this given nfamrapare in the root
node, then the states are recursively split according t@tiestions until the tree
leaf nodes are reached and the states sharing the same diesf ar@ tied together
and will share the same model parameters. The main advaaotdges technique
is that even unseen triphones can be modelled by simply firttie correspondent
leaf nodes.

2.3 Feature Extraction

2.3.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) are one of the madelwiused
type of acoustic features (Davis and Mermelstein, 1980)logkodiagram of their
extraction is shown in figure 2.5.

The first block, the pre-emphasis filter, is a high pass filthiclv aims to em-
phasise high frequencies to which the human ear is moretsenand it has the
effect of a 6 dB/octave gain increase, making the averagechpggectrum more
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Figure 2.5: MFCC extraction block diagram
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flat. The pre-emphasis filter is defined by:
H(z):1-%1 0<a<1 (2.19)

In all the experiments of this thesas= 0.97.
The pre-emphasis block is followed by the Hamming windovbiagk. This is

a necessary step to compute the Short Time Fourier Trang®TiRT) where the
Fast Fourier Transform (FFT) of the speech signal is contpuséeng a time sliding
window (assuming that the signal is stationary). The darabf the window is
typically set to 25 msecs and the shift is 10 msecs. A smogtiindow is used
to reduce the edge effect and it is usually a Hamming windgugrécular type of
Hanning window having the lowest possible peak to side lelsellin the frequency
domain (approximately 43dB), and given by the formula:

Wi (n) = 0.54— 0.46 cos(%) (2.20)

whereN is the total number of the window samples amid the sample index. This
window, having a bell shape in the time domain, has the dasieffect of favoring

the speech samples towards the centre of the window. Theatdrade-off between
the window’s duration and the frame length needs to be chaseoapture rapid

dynamics of the spectrum on one side we would need a shorowimdtime, and

at the same time a small frame length, in order to have a sifticesolution in

time; on the other side choosing a high overlap of windowsld/allow to reduce

the noise generated by a particular placement of the winbdotat the same time
would give a too smooth speech representation, obscurenguk variations in the
signal (Picone, 1993).

On each of the windowed signal frames the magnitude of the BRFEbmpu-
tationally efficient version of the Discrete Fourier Trasrsh (DFT), is computed.
Psychoacoustic experiments have shown that the percegftesund frequency is
not linear but approximately logarithmic. This was demaoatsid by studying the
auditory system capability of discriminating frequencymamnents of a complex
sound through auditory masking. This is also referred toeguency resolution or
selectivity and represents the ability of distinguishingrapping tones at differ-
ent frequencies. The cochlea may be viewed as a set of aydiiters placed on
the basilare membrane each of them centred on a particelgudncy. According
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to Fletcher’s studies (Fletcher, 1940) the human auditmegfency resolution is
approximately in a logarithmic scale. Similarly the cridandwidths, defined as
the frequency range in which two sounds are not perceivesp@adently, increase
approximately logarithmically with frequency.

The most commonly used frequency warping functions defingla literature
are the Bark scale and the Mel scale. Davis and Mermelstei®0j19sed Mel
scaling for the implementation of MFCCs which is defined as:

f
fm = 2595log, <1+ 7—00) . (2.21)

This is approximately linear up to 1000Hz and logarithmigdoel; the critical
bandwidth is given by:
0.69

2
BW = 25+ 75 1+1.4<f—M) ] . (2.22)

1000

In practice the power spectrum is passed through a Mel bdtde. Then the log-
arithm of each filter output is computed to take into accobetfact that the hu-
man loudness perception (the perceived intensity) ineeésgarithmically with
the sound intensity.

Finally the Discrete Cosine Transform (DCT), having the gesde effect of
decorrelating and compressing the mel scale filter log ée®ris performed:

Cmel(N, M) = %T_i:log (Emei(n,1)) COS(%”“) (2.23)

whereR s the total number of Mel filters,is the Mel filter index ananis the cep-
stral coefficient index; the DCT as it is expressed in equa?i@3 is equivalent to
computing the inverse Fourier transform of the logarithrthefMel spectrum. Typ-
ically the first 12 cepstral coefficients are computed sirigadr order coefficients
tend to be noisy and less informative.

2.3.2 Perceptual Linear Predictive Coefficients

Perceptual Linear Predictive analysis was introduced byrtdasky (1990) with the
aim of making Linear Predictive (LP) analysis more consisteth the perceptual
properties of the human auditory system. In this section vileniroduce Herman-
sky’s implementation of PLPs and at the same time we willineithe differences
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of the latter with HTK’s implementation (which was in factagsin the experiments
presented in this thesis).

A block diagram of Hermansky’s PLPs extraction can be seégume 2.6. Sim-
ilarly to MFCCs the first step is the analysis through a Hamminglow, described
in the previous section, followed by the computation of tlegver spectrum using
the|FFT|?. To take into account the human ear frequency resolutiosgpketrum
is warped along the frequency axis using a Bark scale filtdrath a frequency
rescaling given by:

fg = 13arctari0.76f) + 3.5arctari f /7500). (2.24)

However in the HTK implementation a Mel scale filterbank i®disand the
features are therefore often referred in the literature BsSfMPs (Woodland et al.,
1997).

While for the MFCCs the magnitude of the filters output was log p@ssed,
for the PLPs, according to Robinson and Dadson’s study of hupeaception of
sound intensity, the equal-loudness curve is used (Robmisgadson, 1956). On
top of this a cubic-root amplitude compression is performelich emulates the
non linear relation between the intensity and the percdwadness of sound.

Spectral all-pole modeling is then performed and finallysteg coefficients are
extracted applying the DCT. The all-pole modeling theorydtri, 2001) basically
starts from the observation that the transfer function rhbden the glottis to the
lips, consisting on the glottal floW(z), the vocal tracV (z) and the radiation load
R(z) can be expressed as:

A
T 1 Sk &z K
whereA represents the loudness of the sound @@, V (z) andR(z) are all rep-

H(z) = AG(2)V(2)R(2) (2.25)

resented by all-pole functions. The basic assumption loethia methods for the
estimation of the filter coefficients is the so callechutoregressive modelhich
states that each speech samgil® can be represented as a linear combination of
the past speech samples:

§(n) = % as(n—Kk) (2.26)
K=1

where thegy are the linear prediction coefficients (LPC). The LPCs are adet
so that the prediction error given by the difference of theesbed sampls(n) and
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the predicted valus(fi) is minimised. It can be demonstrated that this is equivalent
to solving the equation:

Rhna=rp
[ rn(0) rn(1) rn(2) . (p—12 17 a1 1 [ rn(1) |
rn(1) rn(0) rn(1) . (p—2) a rn(2)
Mm(2) rn(1) r(0) m(p—3) =
| (P—=1) r(p—2) m(P=3) .. mO0 Jla] [P |

(2.27)

whereR;, is a Toeplitz matrix andn(1) is the short time autocorrelation function
of s(n). The linear predictive coefficients could therefore be dalied by matrix
inversion but a more computationally efficient method a@hllevinson recursion
(Levinson, 1947) can be adopted.

In practice during PLPs computation the inverse DFT is &gptd the Bark
scaled spectrogram (Mel scaled spectrogram in the MF-PBBs)@and then the
autocorrelation function is used for the LPC analysis.
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Chapter 3

Speaker adaptation and

normalisation

3.1 Speaker Adaptation vs Speaker Normalisation

The accuracy of an ASR system can be significantly improvednbjching the
training and testing conditions. Unfortunately in praetibis is hardly possible and
more general speaker and domain independent systemsoaiapd with different
testing conditions, are built. These systems are subs#ystapted to the par-
ticular task on which they are tested. Possible sourceseoftioustic mismatch
include: speaker variability in terms of speaking stylessemts and physiological
characteristics such as vocal tract length, different &iotitransmission channels,
different type of microphones and the presence of diffenemnes.

The mismatch between acoustic models and testing datalsesidply avoided
by training acoustic models on the same kind of data as thiagetata: for example
training speaker dependent or gender dependent modelthermiismatch is due to
the acoustic channel, training a system on the same kindtafadeathe testing ones,
l.e. on data affected by the same kind of noises. Of coursadbetion of these
kind of techniques may be impossible because, to build gpependent models,
we would need a large amount of data for each speaker. Maréugeassumes to
have the same speakers for training and testing, and thrsaisceptable in the vast
majority of real applications. Moreover in a real world apation we would like to
be able to deal with unseen testing conditions.

29
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To deal with the mismatch between the acoustic madahd the testing data
Xiest two main approaches were developed:

e normalisation: the acoustic data are normalised in ordad#apt them to the
model both during training and testing making them indepentbr example
of speaker specific characteristics or of the transmisdiamicel;

e adaptation: the model parameters are adapted to the acdatdiwe want to
recognise (to represent them more appropriately).

Figure 3.1 summarises the adaptation and normalisatiartepses and their in-
teraction. In this figure the mismatch of the training d&igsin and the testing
dataXrestis reduced in two ways: on the left side of the grafphin andXrest are
normalised in the feature space; on the right side the aicongidel parameters
of Atrain are modified to better match the acoustic détiaoth for the training data
X1rain (performing adaptive training) and the test d&tas; (adaptive recognition) to
the model space. The two processes are also combined byirappbtjaptive train-
ing on the normalised acoustic featubéﬁain obtainingx which is both adapted
and normalised.

In normalised acoustic modeling we try to cope with speagectic vocal tract
length effects or channel specific effects for example, bynadising both training
and testing data during signal analysis, in order to redheentismatch between
training and testing. In fact normalising only one of themwibleave some mis-
match between acoustic models and testing data. Vocal Ieacfth Normalisation
(VTLN) is an example of speaker normalisation techniquebs\aitl be introduced
in section 3.3.2. Other examples of normalisation techgscaiming mainly to nor-
malise for the transmission channel are Cepstral Mean andria Normalisation
(section 3.4.3) and techniques aiming more specificallypatker normalisation
such as the use of the Mellin transform and Wavelet basedrapespresentations
(outlined respectively in section 3.4.1 and 3.4.2).

The adaptation approach modifies the acoustic model pagasriatorder to re-
duce the mismatch betweéfest andAtyain transformingAtrain iNto Atest There
are two main techniques to do this: the Maximum A PosteridP) adaptation
(Gauvain and Lee, 1994) (outlined in section 3.2.1) and tla&iMum Likelihood
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Figure 3.1: Normalisation and Adaptation (based on Pitz (2005))

Linear Regression family of techniques (Legetter and Waad}ld994, 1995; Di-
galakis et al., 1995; Gales and Woodland, 1996) (outlinesation 3.2.2).

3.2 Adaptation Techniques

3.2.1 MAP Techniques

MAP estimation differs from ML estimation in the fact that felL the parameter
setA is assumed to be fixed but unknown while for MAHs not fixed but is a
random variable drawn by a prior distributiqaiA); in practice for MAP givenT
observation vector® = {01,0p,...,07}:

Map = argmap(A|0) = argmap(O}) p(\) (3.)

where:A is assumed to be a random variable from sgawath a probability density
function (df) p(A|O); p(A) is the priorpdf of A defined as informative if it is
known what the parameters are likely to be. If the prior isinfirmative the MAP
objective function reduces to the ML part only.
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As an informative prior, in the case of speaker adaptatiancan choose the
parameters of the speaker independent madgel Then the modification of the
speaker independent meqxﬁ;n can be performed by maximum likelihood methods
using the adaptation data for each speaker, for eachjstatmixturemas follows:

. Nj»m ad T Sl (32)

whereN; m is the occupation likelihood of the adaptation data defireed a

.
Nj,m Zévt(i,m) (3.3)

being yt(j,m) the state occupancy at time t, ap@dm the mean of the observed
adaptation data computed as:

I"lad _ Z;I—:lyt(Jam)ol
7m_ 1
: z;r:lyt(J?m)

andt is a parameter used to weight the a priori knowledge of thetatian data.

(3.4)

The advantage of MAP adaptation techniques is that inargabie amount of
adaptation data the system converges to a speaker depemdewhile the disad-
vantage is that the adaptation can be performed only on ttaeneders which cor-
respond to the symbols observed in the adaptation data.riuntdgely for LVCSR
systems adapting all the parameters would require enorarosints of adaptation
data. Nevertheless itis possible to use the MLLR adaptecela@d a prior yielding
in this way a larger improvement.

3.2.2 MLLR Techniques

MLLR techniques compute a set of linear transformationshef means and the
variances of a Gaussian mixture HMM system, maximising itkedihood on the
adaptation data. Speech sounds are grouped into regretssses using a regres-
sion class tree so that they share the same transform. Theandavariance linear
transformations can be expressed by:

fl=Au+b (3.5)

S =HZH (3.6)
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whereA is ann x n transformation matrixp is a bias vector anéi is ann x n
covariance transformation matrix.
In practice it is not feasible to estimate at the same timertban transforni
and the variance transforkh. Thus we first consider the mean transform estimation
problem alone. If we define an auxiliary varial§é = [1 15" | we can estimate one
transformT = [b A] so that:
prd =TES (3.7)

Then the MLT transform can be estimated by maximising the likelihoodhaf t
observed acoustias -t given the speaker independent acoustic model parameters
pS' and=S!, the transfornT and the word sequene® :

TV = arngammmuS',zS',T;wlm (3.8)

where the transcriptiow; . can be either the output of a previous recognition pass
(unsupervised adaptation) or a true manual transcripsiopdrvised adaptation).
This optimisation is carried out by maximising an auxiliduypction:

A

QAA) = 3 p(owt|win,A)logp(orT|win, ) (3.9)
S1.T WiN

wheres; 7 is the state sequence ahdk the updated model parameter set of the op-
timisation iteration. The variance transformatidns also estimated by expectation
maximisation. It was found that the mean adaptation giveatgr improvements
than the variance adaptation (Gales and Woodland, 1996¢. atlhantage of the
MLLR technique is that it requires less adaptation data @meghto MAP. How-
ever given a sufficient amount of training data, MAP perfobatter than a pooled
Gaussian transformation approach since it works at the oaemt level.

3.2.2.1 Constrained MLLR

Constrained MLLR (CMLLR) is a special case of MLLR where the sfanm ap-
plied to the means is the same applied to the covarianceaesaiiGales and Wood-
land, 1998):

fl=Ap+Db, (3.10)

S =AZA. (3.11)
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It can also be shown that this is equivalent to a linear tansation of the features
so that:
Oy = Aot +b. (3.12)

The fact that CMLLR can be directly applied to the feature sg@as obvious com-
putational advantages (since transforming the acoustaehymarameters could be
in some cases rather computationally expensive). Furthrer@MLLR is partic-
ularly effective when adopted in a speaker adaptive trgii$®AT) fashion where
the CMLLR transforms are estimated for each speaker in th@ngaset and new
acoustic models are trained on the adapted features.

While the combination of VTLN and MLLR seems to achieve additmprove-
ments, it was observed that no further word error rate réolustire obtained when
VTLN is applied in conjunction with CMLLR with respect to ugift MLLR alone
(Uebel and Woodland, 1999). In Pitz and Ney (2005) it was ateova that VTLN
could be considered a restriction of CMLLR when cepstral ficiehts are used
(since for these features VTLN frequency warping is eqeinato a linear transfor-
mation of the cepstral coefficients).

3.3 Vocal Tract Length variability

Vocal tract length is defined as the distance between theahgsthe glottis. The
configuration of vocal tract has a substantial effect on tieeoved spectrum: for ex-
ample, a typical female speaker exhibits formant frequesnaround 20-25% higher
than those of a male speaker. From infancy to adult age VTwgmth according
to the body size and in a different measure according to the Iséants have the
larynx in the standard, higher, mammalian position, butveen the third month
and the third year the larynx goes down to the throat, givisg to a phenomenon
known as the larynx descent. Then as children grow up thexrstisady increase of
VTL with body growth but there is no significant differenceVifL between boys
and girls until puberty.

During puberty there is a second larynx descent only for en@#ch and Giedd,
1999). It was argued that this is the main reason which leadsx differences in
vocal tract length. This confirmed Fant’s theory that makeseha disproportionately
longer VTL than females (Fant, 1966).
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VTL is highly correlated with body size but there is anothemponent due
to sex differences, although this is only true after pubdftich (1994) also argued
that the difference between boys and girls voices (befobepy) can only be due to
behavioral and not anatomical differences. In fact boyssteebe able to protrude
their lips in order to lower their speech formants to imitatult males. This is
because human listeners are able to use the acoustics odkesperoice as a cue
for its body size estimation, and speakers are able, at teastcertain extent, to
modify their speech acoustics by increasing their VTL usmechanisms such as
that of protruding their lips by tensing the obicularis origscle on one end, and by
lowering the larynx using the laryngeal strap muscles orother end.

Another factor which influences the acoustics of speech wtélPulse Rate
(GPR), mainly determined by mass and length of the vocal fgldsceived as voice
pitch). This cue too has proved to be quite important in tifetintiation of speech
acoustics according to sex because of the growth of humétagas during puberty
in males due to increased testosterone.

According to Smith and Patterson (2005) both VTL and GPR anfte the per-
ception of speaker’s size and sex. In this study they scakedEnglish vowels
pronounced by a male speaker by re-synthesizing them witbreint GPR and
VTL values using the toolkit BRAIGHT (Kawahara et al., 1999). First of alla GPR
independent spectral envelope of the signal was produded asspectral repre-
sentation based on the adoption of a pitch adaptive winddwenTGPR scaling is
realised through expansion and contraction of the time wki¢e VTL scaling is
accomplished by compressing or expanding the speech @eviiearly along a
linear frequency axis. These scaled versions with diffiecembinations of GPR-
VTL were presented to a group of listeners which had to judgeéx and age. They
found that listeners make consistent judgements and botharii GPR changes
influence them but VTL alone is strong enough to change spaaejudgements
even with a steady GPR, while regarding sex and age there israggnteraction
between GPR and VTL. Irino and Patterson (2002) argue thaghdisteners are
in fact able to segregate the information about VTL and VTpghasing some kind
of normalisation.
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3.3.1 The effect of VTL on speech acoustics

The source/filter theory of speech explains the dependenggeech acoustics on
VTL (Quatieri, 2001). The basic principle can be explaingdapproximating the
vocal tract shape with a uniform lossless acoustic tubedwts a reasonable ap-
proximation at least for open vowels such as /aa/) with tbeexd end represented
by the glottis and the open end represented by the lips. Swelv@guide possesses
uniformly spaced resonant frequencies, expressed by Hlog/fiog relationship:

Cc
=—(2k-1) k=1,23,... A
Fk 4L( ) Y 737 (3 3)

wherec is the sound speed amdis the uniform tube length. So formant positions
are (according to this approximation) inversely propardibto the length of the
vocal tract so that a change of the scale by a factordfresults in a scaling of the
frequency axis by a factar.

3.3.2 Vocal Tract Length Normalisation in ASR

The first application of VTLN, dating back to the 1970's, reflethe computational
power of the time. In an early vowel identification work Wak{tL977) proposed a
method for vowel normalisation which consisted of reestingaformant positions
for every vowel ags = #F. — aF; wherel is the estimated VTL for that particular
vowel andlr is the reference length. He found that, representing theevepaces
in terms of theF; — F, F1 — F3 andF, — F3 planes, the distributions of each vowel
resulting from normalisation were more compact.

Cohen et al. (1995) introduced this technique in LVCSR syst@pasrting that
a linear warping of the frequency axis could compensate ifterdnces in VTL,
resulting in a speech recognition system with a reduced wont rate (WER).

Over the past 10 years VTLN has become a standard normafis&thnique
in speaker independent speech recognition, proving piatly effective in the do-
main of conversational telephone speech (CTS) (Lee and R696; Hain et al.,
1999; Welling et al., 2002) since this task has long turnisastand the reliable
estimation of VTL is not a problem.

In recent speech recognition systems the mismatch due towdTikbility was
taken into account by scaling the frequency axis of the ofesespectrum with a
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warping functiongy:
f— f=gq(f). (3.14)

We can classify the various methods used for speaker naatiain in the liter-

ature in two ways:
¢ by the kind of frequency warping used
¢ by the method used to estimate the warping factor.

The various frequency warping functiogs which can be adopted will be dis-
cussed in section 3.3.3 while the warping factors estimati@thods will be de-
scribed in section 3.3.4. There are 2 main methods for theason of warping
factors: approaches based directly on speech featureharsbicalled maximum
likelihood methods, outlined in section 3.3.4.1 and 33réspectively.

3.3.3 VTLN Frequency Warping functions
Several different warping functions were investigatediuding:

¢ linear warping functions (Eide and Gish, 1996; Zhan and \&lat989; Well-
ing et al., 2002) in the form:
f=of (3.15)

or, as a generalisation, piecewise linear functions whiéerent warping fac-
torsa are defined for different frequency bandwidths (shown inrégi2(a)).

e non linear warping functions or power functions for exampide and Gish
(2996) (figure 3.2(b)):

3f

f = orsooo f (3.16)

or (figure 3.2(c)) (Molau et al., 2000):

f:(%)am (3.17)

N
where fy is the Nyquist frequency. Alternatively a bilinear transfowas
used (Zhan and Waibel, 1989; McDonough, 1998; Dognin, 2@fgure
3.2(d)):

f = f +2arctan (1—a)sinf

1—(1—a)cosf (3.18)
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Figure 3.2: Frequency warping functions: (a) piecewise linear, (b) non linear used
by Eide and Gish (1996) (eq. 3.16), (c) power function (eq. 3.17), and (d) bilinear
function (eq. 3.18)

Piecewise and bilinear frequency warping ensure ghéfy/2) = fn/2 while
this is not true for warping functions 3.16 and 3.17.

Very few comparisons between ASR performances due to thefudiéferent
warping functions have been reported in the literature. ddadt al. (2000) com-
pared the use of a piece-wise linear with a power functionawcdmbination of
both. They found that in their system the piecewise lineacfion performed
slightly better than the other two. In fact a piece-wisedinearping function is a
common choice for many systems. Zhan and Westphal (1997paxd piecewise
linear and nonlinear warping reporting no significant aefece in performances.
Eide and Gish (1996) compared linear warpirig= a f) with nonlinear observing
slightly better performances using nonlinear.
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An example of how Mel Frequency Cepstral Coefficients (MFCC) @aodm-
puted with a piecewise linear frequency warping function ba seen in Fig. 3.3.
In practice frequency warping can even be incorporated iirddaling by varying
the spacing and width of the Mel-spaced filters (Lee and R&gH)1

3.3.4 Warping Factors Estimation Methods
3.3.4.1 Signal Based Techniques

Signal based approaches attempt to estimate the warpitag fdicectly from the
acoustic signal, usually from formant positions (Eide ansh(:1996; Claes et al.,
1997).

For example Eide and Gish (1996) estimated warping facwtiaratio of the
median third formant value for a particular speaker and tleeliem ofFs for all
the speakers in the training set. Here Fhevalues to be included in the median
computation were filtered using a criterion based on theingiprobability, theF;
value, and of course tH& range. The improvement reported in speech recognition
for the Switchboard task was about 10% relative WER redudtiothe case of
non-linear warping when both the test set and the train set marmalised.

Wegmann et al. (1996) used a piecewise linear frequencyimgagmd the warp-
ing factors were selected using a generic voiced speechImadtiés model is a
single probability distribution and is obtained with arréive procedure alternat-
ing the estimation of the best warping factor for each trajrépeaker and the use
of the warped data to train a new model until the average smarepeaker against
the generic speech model was minimised. This method hasittamtage of not re-
quiring a first pass decoding as ML does (as will be seen in éxésection) but at
the same time it does not use formant positions directly &de and Gish (1996).

3.3.4.2 Maximum Likelihood Methods

In ML approaches (Lee and Rose, 1996; Hain et al., 1999; Vigeditral., 2002) the
speaker-specific warp factaris usually obtained by maximising the likelihood of
the normalised acoustic observati¥fi, given a transcriptioW and an acoustic
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Figure 3.3: Front-end for VTLN for MFCC computation where the piece-wise linear

warping is just an example of one of the possible frequency warping
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modelA, so that the following equation has to be solved:
a = argmaxP(X%|W,A)). (3.19)
a

Since:

0fa(X)
0X

P(XY|W,\) :/p(X°‘|W,)\)dX°‘ :/p(fa(X)|W,)\)‘ ‘dx (3.20)

(where fyq(X) is the transformation applied to the acoustic observati@hia par-
ticular to the features) it follows that the probability déy function ofX given a
warping factoir, a model and a transcriptiolV can be expressed by the following
relationship:

axX | dx@ (3.21)

where the middle term is the Jacobian determinant of thesfoamation. This fac-

p(XG|W,)\) = p( fq (X)‘W,)\) ‘afdo() ‘ dX

tor has to be taken into account when the probabilities ftferdint values of the
warping factors need to be compared such as in the case of oaghes. The
importance of the Jacobian is connected to its dependenae Blany works have
neglected it (i.,e. Lee and Rose (1996); Zhan and Waibel (1988)ling et al.
(2002)), mainly because its effect was believed to be srkralithermore it is quite
difficult to estimate the Jacobian if the frequency warpspgerformed directly dur-
ing signal analysis because the transform funcfigibetween non normalised and
normalised features needs to be estimated. Pitz (2005ysaththe effect of the
Jacobian determinant for VTLN. Pitz proved that VTLN is e@lent to a linear
transformation of the MFCC feature vectors so thgtcan be expressed as:

X% = fq(X) = AX (3.22)

whereA is a transformation matrix and the determinant of the Jacols just the
determinant oAA. Given this assumption he found that although taking intmaat
the Jacobian has a substantial effect on the distributiaihettomputed warping
factors, in the case of piecewise linear frequency warpgiegWord Error Rate of
the resulting ASR system does not seem to be particularlyentied.

According to equation 3.19 a transcription is needed inot@estimate warp-
ing factors. During testing, in order to obtain a prelimin&anscription, a simple
two pass approach can be adopted (Welling et al., 2002; Haih,1999). A first
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pass decoding with non-normalised models and featuresfisrped in order to use
the transcription for warping factor estimation, and fipalsecond pass decoding
with normalised models and features is done.

Hain et al. (1999) presented a technique to train normafhsedels where an it-
erative procedure which alternates frequency warpingfaastimation and train-
ing passes is used. The use of normalised models helps toeeden more the
mismatch between testing data and acoustic models.

Lee and Rose (1996) addressed the problem of ML efficiencgasmaximum
likelihood approach during training and a mixed approaatmndtesting. For train-
ing they basically subdivided the training set in two subsah alignment s&t and
a training sefrl'; then they first train a model using the Setind then find the op-
timal warping factor for each speakerAnusing that model; subsequently the sets
are swapped and the process is repeated until the warpittgdato not change sig-
nificantly from one iteration to another. Finally a new nolised model is trained
using all the normalised training data.

Lee and Rose pointed out that a two pass approach for testiogigeal from an
efficiency point of view because it requires two decodingspas In fact they used
a different procedure to estimate the warping factors irtélséng phase. After the
warping factor estimation on the training data they pooletha data with the same
o and trained for each warping factor a GMMusing the unnormalised acoustic
vectors. Then during testing the unnormalised acoustitoveavere scored against
each GMM model to find the beataccording to the following equation:

a =argmax®(X|0y). (3.23)
a

In this way no first pass decoding is needed and at the samdherestimation is
independent from formant tracking.

Molau et al. (2000) compared performances obtained estigyatarping factors
with a two pass procedure and Lee and Rose’s more efficienbagpreporting that
there is no significant degradation in WER using the latteother words Lee and
Rose’s approach seems to have performances comparable tiwalpass proce-
dures without requiring any transcription at all for theimsition of the warping
factors.

Although the ML approach is computationally expensives iobust and consis-
tent with the overall optimisation of the speech recognisirce it maximises the
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likelihood—something not guaranteed by signal based aghes. Furthermore,
the estimation of formant positions relies on voiced segmenly and this can be
challenging with conversational natural speech (Zhan aaib&/, 1989) because it
requires an accurate alignment or a good probability ofimgiestimation, whereas
ML does not have the same requirement.

Only few works report comparisons between ML and signal thaggroaches
performances. For example Zhan and Westphal (1997) igatst the estimation
of warping factors computing them simply as:

_ Fes
Fk

whereF_KS Is the mean formarf for a speakes andF is the mean formant for the

Os k=1,2,3 (3.24)

whole training corpus. This was compared to ML estimatiowels. Although ML
seems to give the best performances in average none of thedétmds seem to be
consistently better for all speakers.

Estimatinga by ML increases the matching score with the acoustic mottels,
making the warping factor very model dependent. Moreoherestimated warping
factor is stable only when a considerable amount of datadagadte. This is well
matched to tasks such as CTS where homogeneous speakerrsideaitable for
every speaker, but it is an issue to be addressed for domadhsas meetings or
broadcast news (Kim et al., 2004a; Garau et al., 2005), wiheramount of data
per speaker varies consistently.

ML estimation of VTLN warping factors only indirectly norrises the spec-
trum to account for VTL: there are other factors (such asesyatic pronunciation
variation) which may also be normalised by spectral warping

Furthermore Miguel et al. (2005, 2008) pointed out that gigirunique warp-
ing function for every utterance (which is the minimum gntdar which a warping
factor can be estimated using ML techniques) is not appaitgobiecause not all pho-
netic events have the same spectral variation as a consgxjaéwocal tract shape
differences. Therefore they propose to expand the bi-dsmeal trellis (HMM
state space and observation space), adopted by Viterbddesancluding a third
dimension with all the N possible frequency warping factdisis augMented stAte
space acousTic dEcoder (MATE) allows to have a differerguescy warping for
every frame with the added constraint of a smoothed tramshietween adjacent
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frames. A second constraint is set on the HMM non-speech Imadehat the ob-
servation vectors associated to them cannot be “warpedigukis technique they
get an improvement compared to “classic” VTLN. One of thegkst advantages
of this approach is that it works in a single decoding padséeréintly from ML
VTLN which requires two passes. It has to be mentioned tleae#periments they
performed were on small vocabulary tasks (digits) and ehtena LVCSR decoder
would be challenging from a computational point of view.

3.4 Other Speaker Normalisation methods

Most of the works on VTLN simply applied frequency warpingth@ magnitude
spectrum right before Mel frequency scaling is performethim classical MFCC
computation as depicted in figure 3.3. However finding a sgation of speech
independent of the VTL effect could be more appropriate thast-hoc frequency
warping. In fact, both in the case of ML and parametric est@yide warping factor
values are context dependent and influenced by noise, maldifficult to obtain
a reliable estimate.

In this context experiments were performed both using dpeegresentations
based on the Scale transform of the spectrogram (Umesh, €it9819), making,
in theory, the spectrogram independent on the VTL, and aupjat wavelet anal-
ysis (Mertins and Rademacher, 2005) instead of a time-freyueepresentation,
such as the short time Fourier transform. We shall alsorautither widely used
speaker/channel normalisation techniques such as Celgistaal and Variance Nor-
malisation (which aim to normalise for the transmissionroted as well as for the
speaker).

3.4.1 Mellin transform derived spectral representations

The Mellin transform applied to a spectrum has the propertyake it insensitive
to the scaling of the frequency (Irino and Patterson, 200M)is transform was
mainly used in pattern recognition for image processingraddr and sonar signal
processing because of its scale invariance property.
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The Mellin transform of a functiori (t) is expressed by the relation:

S(p) = /Om F()tP 1t (3.25)

and it can be proved that if two functiorigt) andg(t) exist such thaf (t) = g(kt)
wheret >= 0 andk is a non zero constant, the Mellin transforms of the two func-
tions have the following relationship:

S(p) =k PSt(p) (3.26)

S andSy have the same magnitude apart from a scale faktd. It is hypothesised
that the Mellin transform is similar to human processing@iels segregating scale
information from the actual structure information (IrinecaPatterson, 1999).
. : 1 . .
In particular if p= —jc+ > then the Mellin transform is termed the Scale
transform (Umesh et al., 1996), whilepf= — jc we have:

D(f(t)) = S(—jc) = /Om et (3.27)

) —jcint [ .
= [0 = [ e i)

First from this formulation it can be noticed that a scalirgnsformation does not

change the magnitude but just brings a phase transforma&@xoond it can be seen
that the Mellin transform is just a Fourier transform of tixpenentially resampled
continuous time signal (Irino and Patterson, 2002; Send&audhesso, 2004). The
actual resampling can be obtained by interpolation orgifigis sampled at a higher
frequency rate are available, it would be possible to dompda according with the
exponential axis.

The use of the Mellin transform for speech recognition feaextraction was
investigated by Chen et al. (1998). In this work Mellin dedvfeatures were ob-
tained applying a modified version of the Mellin transfornthe log spectrum and
then using the Discrete Cosine Transform (DCT) to decorrdlaeMellin spec-
trum. The modified Mellin transform is expressed by:

s'(p) = p-S(p). (3.28)
With these features they obtained a relative error rednaio26% with respect
to MFCC. Moreover they found a significant reduction in the déad deviation
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of the WER due to the fact that the features are not any more&spedapendent.
Unfortunately this approach was not compared with standatd\ techniques.

The use of the scale transform was investigated by Umesh €1389) who
derived scale-cepstrum features as the Scale transforine édgarithm of the mag-
nitude of the spectrum. These features were compared witlcepstrum features,
resulting in a better separability for vowels, but no ASRutesswere reported.

Irino and Patterson (2002) have suggested that VTL infaonatan be ex-
tracted directly, and have proposed an auditory-inspiaastorm which separates
VTL size from shape information. This account was suppdoiegdome recent per-
ceptual experiments (Smith et al., 2005), which providdence for the hypothesis
that the auditory system automatically normalises for VThew processing speech
or other vocalised sounds. They applied the Mellin tramsfty the so called Sta-
bilised Auditory Image (SAl), a particular kind of spectemalysis based on the
use of a “gammachirp” auditory filterbank, resulting in tloecalled Mellin Images
(MI) which allowed to extract the shape information asstadawith a given vowel
class across different VTLs (Irino and Patterson, 2002).

3.4.2 Wavelet based methods

The use of the wavelet transform to obtain vocal tract lemgtariant features was
investigated by Mertins and Rademacher (2005) where thegarés were also
compared and combined both with conventional MFCCs and skatsform de-
rived features. The combination, performed using lineacriininant analysis ap-
plied on the concatenated feature vectors, gave improvearacy on a phoneme
classification task. The wavelet transform of a continuous signalx(t) is defined

by:
1 /° A
Wi(t,s) = 73/_wx(t)lp <TdT) (3.29)
wherel(t) is the mother wavelet anglis the scaling parameter. It can be demon-

strated that the wavelet transform of a linearly frequeneyped signaky(t) =
is related to the wavelet transformxit) by:

e

W (t,9) =Vik (=, ) (3.30)
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which in the lods) domain is basically a translation by I@g and when a Fourier
transform is applied translates in a phase factor which baeffiect on the magni-
tude but only a time scaling effect:

Fa(t, p) = e M09 (é u) (3.31)

A wavelet transform has also been investigated for ASR calpsbefficient
extraction by Wassner and Chollet (1996) because of its piyppé yielding an
optimal time-scale resolution, since on one side it pravigeod time and poor
frequency resolution at high frequencies and on the otlier good frequency res-
olution and poor time resolution at low frequencies.

3.4.3 Cepstral Mean and Cepstral Variance Normalisation

Cepstral Mean Normalisation (CMN) and Cepstral Variance Nésaigzon (CVN)
(Molau et al., 2003) are two normalisation techniques wiaiich to reduce the dis-
tortions due to the transfer channel through which the dpsigmal is transmitted.
The effect of the channel (assuming a linear time-invaraarg) can be seen as a
filter h(t) in the time domain which is convoluted to the input siggél). In the
frequency domain this translates in a multiplication sumt:t

Solt) = h(t) *s(t) (3.32)

S(w) = H(w) - S(w) (3.33)

During feature extraction (i.e. of MFCCs) the logarithm is alguperformed
on the Mel spectrum before the DCT is applied. Thus the midagbn of the
channel transfer function in the frequency domain is tramséd into a summation.
Therefore channel compensation is performed by subtattie mean over time
of the cepstral coefficients (which in fact represents thenael effect) from the
cepstral coefficients. This is what is called CMN. It is alsefusto normalise the
variance of the cepstral coefficients by CVN especially irspaionditions.

Moreover the channel effect can be actually subdivided i jpart due to the
transmission channél(w) and another one due to the current speaker who uttered
the speecl (w), thus the transfer function can be expressed @s) = C(w) -V (w)
and CMN and CVN normalise both for the speaker and the chanfesdtef It
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was also found that best results are obtained when CMN ispeefibat a speaker
granularity rather than on a per utterance basis (espgaidien short sentences
were uttered) (Westphal, 1997).

Another widely used approach is histogram normalisationléM et al., 2001,
2003; Hilger and Ney, 2006; Haverinen and Kiss, 2003; Drogipal., 2005). This
techniques aims to reduce the mismatch between the distribaf the test data
and that of the training data. It is assumed that enough dathé estimation of the
distribution are available. In this technique the test @atalinearly transformed as
in the following equation:

Y = Prain(Res(Y)) (3.34)

wherePRain is the cumulative distribution function (CDF) of the traigidata and
Rest is the CDF of the test data whi andY are the test data respectively before
and after the histogram normalisation. When the amount dfadla data is not
sufficient to estimat®.eg;, quantile based histogram normalisation can be adopted
(Hilger and Ney, 2006), which basically uses an approxich&®F independent
from the amount of data available. In Molau et al. (2003) iswaown that CMN,
histogram normalisation and VTLN are complementary ang ttes be used to-
gether to reach the best performances especially in norsyitwons.

3.5 Conclusions

In this chapter the main techniques of adaptation (MAP and_R)Land normali-

sation (VTLN, CMN and CVN, histogram normalisation, and Melind Wavelet
transform based methods) were outlined with a particulaugoon VTLN. Nor-

malisation and adaptation techniques aim both at redutiagrismatch between
the training and the testing conditions. Normalisatiorhtegues mainly act on
the acoustic data by normalising it with respect to the attoebannel (CMN and
CVN) or speaker specific characteristics such as vocal teagth (VTLN). Adap-

tation techniques on the other hand act on the acoustic rpad@ineters, modifying
them with the goal of reducing the mismatch between the dicomodels and the
specific testing data. In the particular case of CMLLR the &atagn can be per-
formed either on the acoustic model parameters or equithalem the acoustic data
themselves, making this technique an hybrid between n@satiin and adaptation.
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In this thesis we focused on the investigation of speakemabsation tech-
niques such as VTLN performing our experiments in conjumctvith CMN and
CVN in the context of large vocabulary conversational spe&¢hile experiments
using MAP and MLLR were not considered in this thesis (belmgse adaptation
techniques), experiments on the use of CMLLR were not peddrivecause, as
mentioned in section 3.2.2.1, it was found Bgbel and Woodland (1999) that no
further improvements are found when CMLLR is performed injanation with
VTLN.






Chapter 4

Automatic Speech Recognition of

multiparty meetings

4.1 Introduction

Meetings are a rather unconstrained domain for automagiecdprecognition, due
to the high variability in terms of: acoustic conditionsgsjing style; overlapping
between speakers; speaker accent, age, and gender; argl tdpe meeting type
may also vary quite consistently: they can be both in the fofra lecture where
a single speaker presents a particular topic to a smaklatglience and a little
discussion may follow, or a conference where people meenara table to discuss
several topics. This variety makes meetings an interestimgain for each step of
the speech recognition process.

Recording conditions are the main challenge for the pregsieg step. During
meetings users are confined within a meeting room but acoastiditions may
vary from one room to another (or even in the same room) beazfiibe position of
speakers, microphones and even the furniture arrangerBestdes reverberation
and noise, both vocal sounds (e.g. cough, breath, and @alk3sand non-vocal
sounds (such as noise from laptops or from the street) ¢otest serious problem.
The number, the positions and the quality of the microphomag differ.

Most of the available meeting corpora were recorded bothguBidependent
Headset Microphones (IHM) and Multiple Distant Microphen@DM). While
ASR on IHM is relatively more constrained, the presence afal@and ambient

51
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noise, reverberation and crosstafoses challenging problems. These are even
more accentuated for the MDM condition which offers othealldnges as well.
On the MDM condition the exact location and configurationta microphones is
unknown. Moreover in this domain the speech segments nebkd #itributed to
a given speaker in order to apply speaker normalisation dagtation techniques.
All these issues are addressed by the preprocessing pag ASR usually referred
to as the front-end. The U.S. National Institute of Standartl Technology (NIST)
set MDM as the main testing condition for its Rich Transcaptof meetings eval-
uations (NIST, 2004). The use of unobstrusive distant npicomes for meeting
recording and transcription is in fact a challenging bu¢tiasting domain because
users prefer not to wear headset microphones.

Another important issue for meeting speech recognitiohag¢latively limited
availability of data for this specific domain. Extensive para of conversational
telephone speech (CTS) are available and they have provesn fatler useful to
reach low word error rates for Large vocabulary ContinuouseSp Recognition
(LVCSR) systems (Evermann et al., 2005). For this reason mgstgmss for the
meeting domain are adapted from models trained using CTS(8&ticke et al.,
2004; Hain et al., 2005c, 2007a). In fact CTS recordings hawiegities to meeting
data being natural conversational speech.

Meetings can feature a large variety of topics and rathérvacabularies thus
the acquisition of suitable data for Language Modeling (LisBlso a relevant task.
Moreover conversational speech is rather rich in hesitatibackchannel and fillers
and fully unconstrained in terms of style and lexical regjistTherefore sourcing
large amounts of natural conversational speech for the lahitig can be a chal-
lenging task.

Meetings offer an interesting domain from a speaker adaptand normalisa-
tion point of view too. Speaker variability includes:

e speaking style, mostly affecting the language model;

e a wide range of accents, including native and non native kgpegwith a
sparse distribution of native languages) and various cliallénflections af-
fecting the pronunciation and therefore the acoustics dis we

1Sometimes evident in low quality microphone recordingshsag for example when lapel mi-
crophones are used.
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e wide demographics (age and gender) which heavily affe@dpacoustics;
e large variation in the amount of speech available for eadlvidual speaker.

Adaptation techniques such as MLLR and MAP can be used téetapleaker’s
variation in pronunciation and articulation, while speaermalisation techniques
such as VTLN can be applied to normalise for the speakerfpeocal tract length.
These techniques have proven to be particularly effectiviheé meeting domain
especially when applied during training and testing.

Building a state-of-the-art large vocabulary speech reitiognsystem targeted
on meeting data is a rather challenging task which requisegraficant effort both
in terms of human and computational resources. This chapllesutline the vari-
ous components of such a system taking as example the mitase | have con-
tributed to develop as a member of the AMI ASR team. My key gbutions to
this system were in speaker normalisation and adaptatawever the whole sys-
tem was the result of an extensive multi-site team-workiifigreinvolving a close
collaboration between 8-10 researchers specialised Garalit sub-fields over the
course of several years (Hain et al., 2005c,a,b, 2006, 20M@iring this time we
also participated to the NIST meeting recognition evaaratiin 2005, 2006 and
2007.

The overall structure of this chapter is as follows: in smti.2 a description
of the corpora used for training and testing meeting speecbgnition systems
will be provided, while in section 4.5 the NIST meeting ewalans will be briefly
described; section 4.3 will outline the structure of an LVCSRtem for meet-
ing recognition and the various blocks will be briefly intemed in the following
subsections; the approaches used for the development AMhASR dictionary
will be introduced in section 4.3.1; the data and the metlogies used for lan-
guage modeling in the AMI ASR system will be outlined in senti.3.2; auto-
matic segmentation and MDM preprocessing will be outlinedection 4.3.3 and
4.3.4 respectively; acoustic modeling techniques addiatetthe AMI ASR system
development, with particular attention to the approactsesiun this thesis, will be
reported in section 4.3.5 with a brief overview of speakenmadisation and adapta-
tion techniques; section 4.4 will introduce the ASR syst@mlination techniques
used in the experiments of chapter 6 and 7.



54 Chapter 4. Automatic Speech Recognition of multiparty meetings

4.2 Data Resources

The experiments presented in this thesis were performetiree domains using
the Wall Street Journal corpus WSJCAMO, conversational kelep speech and
meeting data. Although the kind of speech provided by the W34C2orpus, be-

ing read clean speech, is far from meetings from a languagkehng and acoustic
modeling point of view, it provides a large vocabulary domwaith a good trade
off to perform experiments on new acoustic features in aomsle time. As men-
tioned in section 4.1 conversational telephone speechiding a large amount of
conversational speech is an interesting domain both omwitsand in order to ex-
ploit CTS models to adapt them to the meeting domain, whichiisy@in interest.

4.2.1 The WSJCAMO corpus

The WSJCAMO corpus, recorded at Cambridge University in 1988sists of na-
tive British English read speech (Robinson et al., 1995). Ses were selected
from the Wall Street Journal (WSJO) text corpus and reconded acoustically iso-
lated room with head-mounted microphones (sampled at 1. KHhe training part
of this corpus (sir) consists of 7861 utterances, corresponding to arourttblibs
of speech, spoken by 39 female and 53 male speakers. We testida 20 000
words “open vocabulary” task development setdt0a) which has 10 female and
10 male speakers.

4.2.2 Conversational Telephone Speech data

CTS is one of the richest domains for large vocabulary speszdgnition providing
rather large amounts of training data, including: the Swbtzard—1 (Godfrey et al.,
1992) and Switchboard—2 corpora which were originally rded by Texas Instru-
ments and LDC respectively and consist of two-sided telephmnversations by
speakers from around the U.S. on various topics; SwitcltbGatlular, mainly fo-
cused on GSM cellular phone calls; in the Call Home corpusksyeaalled family
members or close friends (this corpus has been collectedaftous native lan-
guages such as: American-English, Egyptian-Arabic, S§parserman, Mandarin
and Japanese) ; and finally Fisher (Cieri et al., 2004), trge#drone, including
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Dataset nameAll - Tot. (F/M) | Switchboard—1Switchboard—-2Call Home
ctstrain04277h(45H132h 248h(26H122H | 15h@h7h) [14h(L1H3h)
ctstrainO4sub 71h@7034h) | 56h@9N27h) 8h@h4ah) | 7h(4h3h)
Dataset nameAll - Tot. (F/M) | Switchboard—1Switchboard—2 Cellular
NIST hub5 evalO1 6h 2h 2h 2h

Table 4.1: CTS dataset statistics

2000 hours of speech from a variety of accents and Englidiicpocy and a large
variability in topics and speakers (shorter conversatweie preferred compared to
Switchboard and Call Home).

In this thesis experiments on the Conversational Teleph@eed task were
performed training on two different sets. The larger sefinded asctstrain04 con-
sists of a total of 277 hours of speech, and the smaller onayses of the former,
consists of a total of 71 hours of speech (all sampled at 8 kBpjh sets have a
good balance between female and male speakers (as can lveeobisetable 4.1
where the amount of speech for female and male speakers &iasiokcated in red
and blue respectively). Moreover both sets comprise data 8 different subsets:
Switchboard—-1, Switchboard-2 and Call Home English, alsiimg of two-sided
telephone conversations from different areas of the UrStadles. While the exper-
iments on CTS described in chapter 5 were performed trainirgsirain04 those
described in chapter 6, were based ondtstrainO4sub

Our test set for the CTS task is the NIST Hub5 Eval01 evaluasiet con-
sisting of approximately 6 hours of speech in total, equdibtributed between
Switchboard—1 (SW1), Switchboard-2 (S23) and Switchbaatldar (Cell), com-
prising 60 male and 60 female speakers.

4.2.3 Multiparty meeting data

In the following sections the most relevant corpora for thematic speech recog-
nition of meetings will be described.

2http://www.nist.gov/speech/tests/ctr/h5_2001/index. htm



56 Chapter 4. Automatic Speech Recognition of multiparty meetings

4.2.3.1 The two phases of the NIST meeting room corpus

The NIST meeting corpus was collected in the NIST Meetingazdllection Lab-
oratory in two phases (Garofolo et al., 2004; Mitchel et 2006). While the first
phase consists of 15 hours of meetings all recorded in a e configuration
(using a single conference table), the second phase cor$i20 hours of speech
recorded in two other configurations as well: classroom & fthrm of lectures
where the student tables are placed opposite to the teadhble, and discussion
configuration where four tables are configured in a U shapereMaer for both
phases they recorded both video and audio with 5 camerasGhdchZrophones
respectively. Speakers wore both a headset and a lapelphmne, 4 microphones
were placed on the table and 3 microphone arrays consistib§ microphones
were positioned on the walls.

Speakers were chosen with a reasonable balance both betatemnand non-
native English speakers and between male and female sgedkey recorded both
real meetings (those which would have happened anyway)zmdgo ones (where
an artificial task was assigned to the participants) and #tere of the meetings
varied quite significantly ranging from formal and struettimeetings such as staff
meetings to very interactive and collaborative meetinghsas interactive game
playing meetings.

4.2.3.2 The ICSI meeting corpus

This collection of 75 meetings (72 hours of speech), wasrdembat the Interna-
tional Computer Science Institute in Berkeley (Janin et &103) with an average
of 6 participants per meeting (maximum 10). The recordirtjrags, audio only,
consist of an individual headset microphone for each ppéit and six tabletop
distant microphones of various quality (from omni-direail to a PDA), four of
which were arranged in a staggered line on the table.

These meetings are weekly group meetings which would hauerad anyway
on technical topics such as natural language processiren(Beeper Understand-
ing meetings), the ICSI meeting corpus (the Meeting Recordsatimgs), robust
speech recognition (the Robustness meetings), and intarclgtectures and net-
working (the Network Services group meetings). They al$erat variety of native
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and non-native speakers with various proficiency levelsis Tieeting collection
has become one of the most studied data resources for mepgegh recognition.

4.2.3.3 The ISL meeting recordings

This is a collection of 100 meetings (approximately 100 kafrwhich about 50%
of the data has been transcribed) collected at the InteeaSiistem Labs of CMU,
Pittsburgh. They had 3-8 participants with an average ofr@meeting (Burger
et al., 2002). Each speaker wore a lavalier microphone agyl dlso used table
microphones. Acoustic conditions were not particularlyp@an these meetings
because the room was subdivided by two carpeted walls fremest of a large
room (which was in fact a lab). Three video cameras were gdlat¢he room as
well.

The most interesting feature of this corpus is the varietyneéting scenarios:
project/work planning, work meetings where a specific priagdiscussed; military
block parties where military personnel performs strategercises pretending to be
in combat; sessions where the meeting group was given apartgame-like task;
chatting where people where left free to chat, gossip armidsscommon interests;
and discussion where a particular topic was assigned torthggn the form of
journal articles, video documentaries etc. These meetogsist of native and
non-native speakers covering a wide age range.

4.2.3.4 The AMI meeting corpus

The AMI meeting corpus (Carletta et al., 2008pnsists of a multimodal collec-
tion of 100 hours of meetings recorded in three instrumemeeéting rooms at
Edinburgh, IDIAP and TNO. The recording settings were samdcross all these
rooms which were instrumented with a set of synchronisedtdsyincluding lapel
and headset microphones for each participant, an 8-elearentar microphone
array placed at the table centre, 6 video cameras (4 closkéfopeach participant,
and 2 room-view), and capture devices at the data projet@nvhite board, and
the handwritten notes of each participant (using digitalg)e

This corpus is subdivided into scenario (about two thirds) aon scenario

3The annotated corpus is freely available frbitp://corpus.amiproject.org
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meetings: the scenario ones are elicited meetings wheredugr development
project has to be brought from kick-off to completion and siehof series of 4
meetings (project kick-off, functional design, conceptmaetings and detailed de-
sign meetings) where each of the 4 participants plays anpbesiarole (project man-
ager, marketing manager etc); the non scenario meetingsanmeetings with 3-5
participants. Furthermore the annotation of the corpusides several levels: or-
thographic transcriptions, dialogue acts, summarisgtiead and hand movements,
and focus of attention.

4.2.3.5 Other resources

Other meeting corpora (which were not used in the experisnehthis thesis) in-
clude the M4 meeting data, the VACE multimodal meeting corgug the CHIL
seminar data. The M4 meeting data (McCowan et al., 2003)rdedan the IDIAP
smart meeting room, consists of 5 hours of multichannel@udiual meeting data.
These meetings were recorded in a similar setup to the AMitingse each par-
ticipant wore a lapel microphone and an eight-element t@ramicrophone array
was also placed in the center of a rectangular table. Moredesed circuit tele-
vision cameras were placed on the walls. These 4 people mgsetiere scripted
in the sense that the sequence of meeting actions (such esdimple monologue,
discussion, presentation, and note-taking) has beengirergted using an ergodic
Markov model.

The VACE corpus (Chen et al., 2006), recorded at the Air Forséitirte of
Technology, is a collection of wargames and military megtiwith 6 participants.
Sensors included headset microphones for each speakdrpftabletop micro-
phones and a stereo calibrated camera pair for each particip

Finally the CHIL data were collected in the context of the Coteplin the
Human Interaction Loop European project (Chu et al., 2005stefa et al., 2007)
in the Smart Room at the University of Karlsruhe, GermanysTorpus consists of
5 hours of technical seminars (12 in total) given by studesitsa variety of English
fluency. They were recorded using both close talking and é&t fnicrophones (2
linear 8 channel microphone arrays and one 64-channel Markdrophone array)
and they were also provided to NIST for the Rich Transcripgealuations.
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Dataset nam@ll - Tot. (F/IM) ICSI NIST ISL AMI
icsinistislami05106h@8H78h) 67h(14h53h) 13hEH8h) 9h(G4h) [16h3BH13h)
rt04seva 99 min 25 min 24 min | 26 min 24 min

Table 4.2: Meeting data statistics

4.2.3.6 Meeting training data

For meetings the training set adopted in this thesis, whiak the same used for
the AMI-ASR systems in the NIST RT05 and RTO6 evaluationdigigaal., 2007b;
Fiscus et al., 2006), consisted of a total of over 100 houc®n¥ersational meeting
speech (sampled at 16 kHz) from four corpora of multipartyetimg recordings:
67 hours from the ICSI corpus, 13 hours from the NIST corpuo@$ifrom the
CMU-ISL corpus and 16 hours from the AMI corpus, with 115 mald 49 female
speakers. More detailed statistics about this data candreisdable 4.2 where it
can be also noticed that unfortunately there is an unbathdist¢ribution of female
and male speakers.

4.3 ASR/LVCSR infrastructure

Figure 4.1 shows the overall training process of an LVCSResysiThe first block

in the acoustic modeling part is preprocessing. This stegdiibed in more de-
tail in section 4.3.3 and particularly for MDM preprocessin section 4.3.4) has
different functionalities during training and testing. Mg training it consists es-
sentially in the use of speech enhancement techniques suetha cancellation,
noise cancellation and beamforming to improve the qualitthe speech acoustic
signal (manual segmentation is used in this phase). Duesiing preprocessing
also involves automatic segmentation.

Acoustic features are extracted from the enhanced sigmahamalised using
cepstral mean and variance normalisation. The type of featused in the AMI
ASR system is discussed in section 4.3.5. Acoustic feanesised together with
the manual segmentation (the utterance boundaries), ttmeafised transcription
and the dictionary to train acoustic models using standevdgalures. First mono-
phone models are trained, then tied-state cross-word madel bootstraped by
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initialising them from monophones, and then more accuratedross word mod-
els can be trained by initialising from cross-words. Thisgadure can be iterated
until convergence of the WER on the development set. Moreistipdited acoustic
modeling approaches such as speaker adaptive trainingusecdein the AMI ASR
system and are described in section 4.3.5.

During text normalisation the transcription is transfodme a consistent form
reducing lexical variability. This is achieved by: remayitihe eventual punctuation,
converting everything to the same spelling , and unifyingdgossuch as numbers
and acronyms. Text normalisation is also the first step teigga the word list of the
AMI ASR pronunciation dictionary, described in more detaisection 4.3.1. Sep-
arate dictionaries are generated for testing and trainiigile for testing the word
list of the data used for language model training is adogdtadiraining the word
list from the reference transcription is used. Languageehwdining is performed
separately using a large amount of data coming from variouscss, by training
separate language models for each data resource and thgrinsar interpolation
to combine them as outlined in section 4.3.2.

On top of the baseline training process shown in figure 4.algrenormalisa-
tion and adaptation techniques are also a rather imporgahbopthe AMI ASR sys-
tem: for example VTLN is performed both during training aedting as is speaker
adaptation (further details will be provided in 4.3.5).

Figure 4.2 shows the first baseline steps of the testing psofte a meeting
speech recognition system. Similarly to the training pssceluring testing the
preprocessing is performed to enhance the speech signate &ir testing, in a
fully automatic system, the segmentation of the waveforaotti@rances is unknown,
the segment boundaries are estimated applying speechyadétection techniques
(see section 4.3.3) on the enhanced speech signals. Featraetion follows the
same procedures used during training. Finally the decostieyg uses the acoustic
and language models and the dictionary to produce an autotretscription.

4.3.1 Dictionary

The design of a pronunciation lexicon is an important anticadiaspect of a large
vocabulary speech recognition system. An extensive oserdf pronunciation
modeling for LVCSR can be found in Fossler-Lussier (2003).0Twain meth-
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Figure 4.2: Baseline decoding flowchart

ods can be adopted: knowledge based approaches wherestiogabservations

are included in the model, and data-driven approaches wieneetic patterns are
discovered in the corpora. Knowledge based methods camd@dioth the compi-

lation of the pronunciation dictionary by hand or the use eftér To Sound (LTS)

rules. Data-driven approaches, on the other hand, are atitbamd may use phone
recognisers to produce the most likely phonetic sequence.

To take advantage of both knowledge based and data-drieémitpies, hy-
brid approaches have been proposed which automaticatly pranunciation rules
from a training dictionary (which is usually hand made). Quossibility is to use
Classification and Regression Trees (CART), a particular kirtéoision trees, but
machine learning techniques such as neural networks mayalased. For CART
the goal is to find some features which best describe the xtsnidich mostly in-
fluence the phone realisation. These features are defineddiyaquestions which
recursively subdivide the training data in two groups.
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The AMI ASR dictionary (Hain et al., 2005c) starting pointbhased on the
Unysin accent-independent keyword lexicon (Fitt, 2000hisTrelies on the use
of “keysymbols” which enable the generation of pronunciasi for a number of
accents. In the AMI ASR dictionary, pronunciations were pe&pto the Gen-
eral American Accent since this was the most present in @imitrg data. The
use of Unisyn leaves a number of out of vocabulary (OOV) pnamations. To
facilitate human intervention to produce these missinghpnziations, hypotheses
pronunciations have been generated using a CART based Li&rsysained on
the base Unisyn dictionary). The automatically generateshynciations where
then checked and corrected manually by the members of the X8R team. The
AMI ASR dictionary generation process is therefore a mixggraach which uses
knowledge based techniques (the Unisyn lexicon), a hylmd@ach such as CART
to automatically create OOV pronunciations, and finally oarcorrection of the
automatically generated pronunciations.

4.3.2 Language Modeling

Language modeling resources for conversational speecéparse, since the tran-
scription of natural conversations is an expensive prod@aghe other hand train-
ing an N-gram language model requires a large amount of teikthashould be as
similar as possible to the target recognition task. To detd gparse training data
a baseline general purpose language model can be adaptea wihall amount
of domain specific data, or the domain specific training cergan be augmented
with out—of-domain data. For ASR of conversational spebehsecond approach
has proved to be the most effective: Hain et al. (1999) useddrast News data
to obtain a CTS language model while Bulyko et al. (2003, 20@id) Wan and
Hain (2006) investigated the use of data collected from thb W build language
models for meeting speech recognition. In both cases layjggoandels trained on
in—domain data were interpolated with those trained onafy#tomain data so that,
for a trigram case, the language model probabilities arepced as a weighted
sum of the probabilities of the individual language models

P(WiWi_1,Wi_2) = ZNH (Wi|Wi—1,Wi_2) (4.1)
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where the interpolation weights are usually estimated maskng the likelihood on
a small held-out set.

As mentioned in section 4.2.3 meeting data covers a wideerahtppics and
conversational registers (from reporting to problem swvio more informal di-
alogues). Therefore the choice of the out of domain datatieralelicate: web
data is usually collected by performing web search queriés thhe most frequent
n-grams in the in—domain language model and then selectiegtected number
of pages by perplexity filtering, that is retaining only thegps having a perplex-
ity (measured with an in domain language model) which is lothan a certain
threshold.

In this thesis we performed ASR experiments on the WSJCAMO, o8 &1d
on meeting recordings. For the first task the standard MITdlim Labs 20k Wall
Street Journal trigram language models were used (Paul aker,BE992). For
the CTS experiments, language models were trained on SwicpCall Home,
Fisher, ICSI meetings and web data resources, while for thetingelanguage
model training AMI, NIST and ISL meetings were also used (Hgtial., 2005c).

4.3.3 Preprocessing and automatic segmentation

Automatic segmentation is a crucial step in the preprongssi an ASR system. It
consists of automatically finding the time boundaries ofgéetences which have
to be recognised and it is also referred to as Speech Acbatgction (SAD). Even

in the independent headset microphone task, the presereress-talk and vocal

noises makes it infeasible to adopt threshold based tegbsiq Therefore most
SAD systems simply consist of GMM/HMM based classifiersrieai on various

kind of features: typically MFCCs, PLPs, kurtosis etc. The AR system (Hain

et al., 2005b) automatic segmentation consists in a Mulgek&erceptron (MLP)

classifier trained on PLPs as well as kurtosis. Another itgpdipreprocessing step
is echo cancellation performed in the form of adaptive L&ésan Square (LMS)

echo cancellation (Hain et al., 2005a).
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4.3.4 Multiple distant microphone preprocessing

In the multiple distant microphone condition speech hasdadrognised using
multiple audio signals captured by a set of microphones asttunknown geom-
etry. Directly applying ASR to each of these signals wouldpbeblematié¢ be-
cause there would be too much overlap between differentdsgumcluding speech
coming from different speakers and ambient noises. Indteadet of available mi-
crophones constitutes a microphone array and techniquesrease the sensitivity
in the direction of the desired signal and decrease it in thisensignal direction
can be used. The sensitivity in a specific direction is defingdhe microphone
array directivity pattern also known as the array respoBsamforming techniques
(McCowan, 2001) aim to achieve a particular shaping andistgef the directivity
pattern and they can be seen as a spatial filter. The dirgcpiaitern for a linear
equally spaced array of identical microphones dependsenudmber of the array
elementdN, on the distance between the elemeahéd on the frequencly and has
the form of a sinc function of the anglgof arrival to the array:

neN-1
Dir (f,¢) = Wi (el 5 ndeos®) (4.2)

_Na
n=-"3

wherew, is the weight of the tih element. AN increases the amplitude of the side
lobes decreases and ésncreases the width of the main lobe (called beam width)
decreases making the array more directive for a certaireangl|

Furthermore, equivalently to the Nyquist theorem in thg@iency domain, the
spacial sampling theorem states that: in order to prevattad@liasing in the di-
rectivity pattern of the array, the distanddetween the microphones should be

d< )‘”2“” (4.3)

whereAmin is the minimum wave length and is equakiofmax (Wherec is the speed
of propagation for acoustic waves, approximately 330 miiseair). Therefore if

we have a fixed then:

c
fmax < 55 (4.4)

4Under the unrealistic assumption that each microphone eastriztly assigned to the closest
speaker
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So when the array geometry is fixed we can expect spatiairaidsr frequencies
over a thresholdyax In practice for those frequencies the side lobes becorgerar
and therefore the array shows a high sensitivity even foraimed directions.

Moreover the directivity or “spatial selectivity” varieceording to the fre-
quency. For a linear array the beam width is wider at lowegudencies and nar-
rower at higher frequencies so that we can say that the artags directive at lower
frequencies.

One of the most used beamforming techniques is delay andBuisitechnique
basically combines the output &f microphones. First of all the time delay of
arrival D; of the signaly; recorded by the microphonewith respect to a reference
microphoney; is estimated. Then the delayed signals+ D;) are summed as can
be seenin figure 4.3. When the delay varies over time, as itmeiting recordings
where speakers are free to move around, the beamformed signa

N
4t) = SHEHDID) (@5)

and it can be shown that the directivity pattern is:

N N
Dir (f,@,t) = Zle_JZT[fDi(t) _ Ze_,mwncdcos(w
i= =

whereDj(t) = (i— 1)dcog@(t))/c. The time delayD;(t) can be estimated by cross
correlation techniques. In particular in the presence cbuelated noises the most

(4.6)

commonly used technique is the Generalised Cross Correlagdmod (Knapp and
Carter, 1976). The estimation of the time delay allows in fpcad¢o do sound source
localisation because the angle of arrigat directly related to the time delay.

A more general class of beamforming is filter and sum (of whlielay and sum
is a sub-class) where the received signals are first filtanddreen summed, and the
filters are frequency dependent:

y(f) = wn(f)xa(f). (4.7)

The AMI meetings were recorded using 8 element circular oplbone arrays.
This configuration is particularly interesting for meetmggordings because it pro-
vides a uniform (36€) distribution of all possible locations of the speakers @vio
and McCowan, 2003). Moreover the directivity pattern of giac arrays shows
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Figure 4.3: Delay and sum beamforming

good discrimination between speakers separated by at483sinaking this con-
figuration suitable for up to 8 participant meetings (McCowéal., 2005).

The AMI ASR system uses the so called superdirective impheation of delay
and sum beamforming with some additional preprocessirgsstéirst a gain cali-
bration by the normalisation of each channel with the maxmamplitude level is
performed, because it would not be possible to apply deldysam on acoustic sig-
nals with different dynamic ranges; second Wiener filtersagechnique to reduce
(additive) stationary noise, is applied to each distanthale&(where the noise esti-
mation is performed on the lowest energy frames); then the energy scaling factor
and the delay of each channel is estimated by generalissd carrelation with
respect to a given reference channel; finally the beamfofittens for each frame,
used to perform delay and sum beamforming (Hain et al., 20@%a estimated by
means of the delay and scaling factor parameters from thvéopiestep.

4.3.5 Acoustic Modeling

Both in the AMI ASR system and in the experiments of this thasisustic mod-
els are phonetic decision tree clustered Hidden Markov Néoaeh left—to—right
three—state topology and Gaussian mixture model (GMM)wwudistributions, trai-
ned using the Hidden Markov Model ToolKit (HTK) software (Mug et al., 2006).
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The overall training and decoding structure used in thisithexperiments was that
developed for the AMI-ASR system (Hain et al., 2005a).

In the AMI ASR system the baseline acoustic models wereedairsing stan-
dard Maximum Likelihood Estimation (MLE) techniques, oe first 12 HTK Mel
Frequency Perceptual Linear Prediction (MF-PLP) coeffitsigvith the inclusion of
the zeroth cepstral coefficiead and first and second derivatives (therefore yielding
39—dimensional feature vectors). Moreover Cepstral MeahGeapstral Variance
Normalisation have been applied on a per channel basisg Ibleamefore not only
speaker specific but also channel specific.

CTS models for the AMI ASR system are trained on the full 270rkdraining
setctstrain04 Since the amount of meeting data is rather limited comptrede
CTS domain, and it was found that adapting from CTS to the mgetomain is
beneficial (Stolcke et al., 2004), in the AMI ASR system we exkpented with
adapting from the CTS domain as well. The CTS models are Narrow B€B) in
the sense that they have been trained on a limited bandwadttelen 125 Hz and
3800 Hz, because of the telephone channel band pass effect.

In the AMI ASR system a procedure was developed to adapt th€ N8 mod-
els to the Wide Band (WB) meeting datdaximum Likelihood Linear Regression
transforms from NB to WB are used as input transforms to adepiB CTS mod-
els to the WB meeting domain using Maximum a Posteriori (MA@R@ation. Us-
ing this procedure it was found that the models adapted fro® arformed better
than those trained on meeting data only (Hain et al., 2006bjen the mismatch
between the IHM and the MDM condition, in the AMI ASR systenotdifferent
sets of models were trained for the two tasks, using acodate from the two do-
mains. In particular the MDM acoustic models were trainedtenbeamformed
acoustic signals.

The AMI ASR system is a multi-pass system consisting of sdvercogni-
tion steps with increasing degree of complexity. In thedwihg steps the system
makes use of more complex techniques, both on the featuractrn part, where
Smoothed Heteroscedastic Linear Discriminant (SHLDA) posterior features are
used, and in the adaptation part, making use of MLLR, Con&tBMLLR (CM-

SMeeting audio files are sampled at 16kHz and it has been shuatrusing the full bandwidth
is beneficial
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LLR) in a Speaker Adaptive Training (SAT) fashion, and emtszthtaining VTLN.

The VTLN embedded training procedure, described in moraildatchapter 5,
involves the alternation of warping factors estimation #maghing passes until the
WER in the development set stabilises (which should cormgpmthe convergence
of the warping factor values of the training set as well).

On top of VTLN embedded training, SAT techniques are alsal lgeestimat-
ing CMLLR transforms in the training set and using then the CRLttansformed
speaker adapted features to train a new acoustic model.

4.4 ASR system combination

Different acoustic representations have different stfesignd weaknesses for ASR.
Approaches to combine multiple representations, at thieifeamodel and system
level, have proven to be effective to reduce the word erra. reeature combina-
tion may be carried out directly at the feature vector leyetbncatenating feature
vectors, followed by a dimension reducing transform suclhiresr discriminant
analysis (LDA) or heteroscedastic LDA (HLDA) (Burget, 2004iadirectly at the
model level (Kirchhoff et al., 2000; Zolnay et al., 2007), as a postprocessing
procedure applied to the outputs of multiple recognizeisc(is, 1997).

The simplest form of direct feature combination involves toncatenation of
the acoustic feature vectors. This approach has a numbeawbdcks including a
substantial increase in the dimensionality of the featpees to be modelled, and
the presence of strong correlations between componenk®indncatenated vec-
tor, which can cause problems for acoustic models basedagonal covariance
Gaussians. Both these problems are addressed through tlodé diseension re-
ducing, decorrelating transforms such as LDA, HLDA and @pal components
analysis (PCA). PCA estimates a global transform, and wagdfeaibe much less
well-suited to the task compared with LDA and HLDA which alithe decorrelat-
ing transforms to be estimated on a per-class (or per-dvat$ (Burget, 2004a).
Schiiter et al. (2006) have observed that numerical problemsadaa when esti-
mating LDA transforms from a concatenation of strongly etated feature vectors,
and that model-based transforms are less susceptiblestpriiblem.

Zolnay et al. (2007) have demonstrated that discriminatufe-level combina-
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tion may be nested successfully inside a model-based catitnmnapproach, and
this has resulted in reduced word error rates for two LVCSRstagerbMobil-11
and the European Parliamentary Plenary Sessions corpus.riglent work by this
group, involving the investigation of auditory-inspirezhtures from a gammatome
filterbank, have indicated that a system level combinati®ingiROVER (Fiscus,
1997) results in a significant reduction in word error rateh(&ter et al., 2007).

441 LDA/HLDA

In our experiments and in the AMI ASR framework, featureelesxombination was
performed using HLDA (a generalisation of LDA), a procedtiiat enables the
derivation of a linear projection that decorrelates coscated feature vectors, and
performs a dimensionality reduction. In both HLDA and LDAch feature vector
that is used to derive the transformation is assigned to scl&ince one of the
goals of these techniques is to improve the discriminatetwben the classes used
during decoding, HLDA/LDA classes are typically HMM statasmixture compo-
nents. The class assignment is usually performed usingovaignment. We have
chosen to use HLDA in our experiments because this techiigs@roven to yield
better performances than LDA, this being motivated by th®Hlability to handle
heteroscedasticity (Kumar and Andreou, 1998) (the prgpErhaving a different
covariance matrix per class).

Hunt (1979) proposed the use of LDA to improve discriminati@tween syl-
lables. Given an dimensional feature vectorthe goal of LDA is to find a linear
transformatiorﬁg :Un — Op with p < n such as to project in a p dimensional
space according tp, = GEX. The transform is chosen in order to maximise the be-
tween class covarian@g. and to minimise the within class covariariGg. and it is
computed as the eigenvectors corresponding to the largeneilues oEp x S,
Then dimensions are therefore those corresponding to the beatagen of indi-
vidual classes. In one of its first applications on ASR, LDA waed in a small
vocabulary continuous speech recognition system (Bahl.e1888) to introduce
time information in the feature vectors by appending counsee feature frames
and using LDA to reduce to a smaller dimension.

The LDA method makes two assumptions: all the classes obeyrioltivariate
Gaussian distribution and share the same within class ieova matrix. HLDA
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LDA projection space

Figure 4.4: Comparison of LDA and HLDA projection for a 2 to 1 dimensional reduc-

tion case with 2 classes

relaxes the second assumption and it is therefore a gesarah of LDA. An illus-
tration of this principle can be seen in figure 4.4 for a bidasienal case. In this
example the LDA assumption of having the same covariancexfiat each class is
not valid and LDA would project the features in a nuisanceatision, while HLDA
projects the features in the useful dimensions where tlesetaare better separated.

The HLDA transform computation was derived by Kumar and Aadr (1998)
although the idea of maximum likelihood estimation of theehr transform was
introduced for the first time by Schukat-Talamazzini et 4695) where an ML
optimisation of the transform was performed with respeth&likelihood function
of the overall model. Similarly in Kumar’s work the likelilbd of the original data
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X; is maximised finding the optimal transformation mathix

(detA)?

nN 2 N;
logL(x,A) = ——-+ > —log U7 o -~
(2" M1 @ 8 MMk=py1 23

2 42

, (4.8)

where¥ and i(j) are the global and per class covariance matrix estimatpgces
tively; andN andN; are the total and per class number of training vectors. More-
over in equation 4.8 we assumed to handle with diagonal @wee matrices. Since
the maximisation of equation 4.8 has no closed-form salyi@ém efficient iterative
algorithm was proposed by Gales (1999). The use of this idhgoron ASR of

Tl connected Digits was investigated by Burget (2004a,b)iar@lir experiments
we used the same implementation. The proposed iterativeguoe computes the

transform matrixA, by periodically reestimating individual rows as follows:

N
A, — (k-1
a = G G0 (4.9)

whereg; is theith row vector of co-factor matrig€ = |A|A~2 for the current estimate
of A and

(] .
—yj: i(l) k<p
& aki(l)a;(r -
Gk (4.10)
LTE k> p.
acal

yj is the number of training feature vectors belonging tojthelass.

A restriction of HLDA whenp = n was investigated by Gopinath (1998), and
it is referred to as Maximum Likelihood Linear Regressionngfarm (MLLT) or
diagonalisation transform because it has the effect ostoaming the features in a
space where the assumption of diagonal covariance matsicesre valid. More-
over when MLLT is applied on top of LDA or HLDA consistent ingseement can
be seen (Saon et al., 2000b).

The main characteristic which sets apart HLDA from LDA is #esumption
of a different covariance matrix for each class. In LDA théhivi class covariance
matrix is approximately the weighted sum of the individu&lBA class covariance
matrices. A minimum amount of in—class data is necessaryntbréliable esti-
mates for the individual HLDA covariance matrices. Therefan order to avoid
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data sparsity, the type of classes used to estimate the Htddsformation matri-
ces should be carefully considered. In the experimentsriegan this thesis we
experimented with two possible classes choices (see seg#): in the first case
we used classes corresponding to the HMM triphone statagrohodels and in the
second case we used Gaussian mixture componenents of nureopiodel® The
class assignment has been achieved by performing Vitedgnraént.

To exploit the advantages of both LDA and HLDA, Smoothed HL{SAILDA),
a technique which estimates the per class covariafidéas a weighted sum of the
estimated per class covariance and the within class coxajavas introduced in
Burget (2004b). For SHLDA the estimate of the class covagamatrix is given
by:

S0 = a2l) 4 (1—a)Zye (4.11)

whereZ()) is the smoothed estimate of the covariance matrix of clalsgdjs the
within class covariance matrix used in the LDA transformreation anda is the
smoothing factor and it is between 0 (pure LDA) and 1 (pure LD

4.4.2 System-level combination

In addition to feature-level combination in the experinseat this thesis we also
explored the use of system-level combination using ROVERC(fs, 1997), a tech-
nique to combine the output of multiple speech recognitigsteans. In ROVER,
the transcriptions are first compared by aligning them udyrgamic programming
to minimise the number of substitutions, deletions andrirmes. This alignment
depends on the word sequence chosen as the reference.

The multiple alignments are then combined using a voting@ggh, performed
either by choosing the most frequently recognised hypathesajority voting) or
by selecting the hypothesis with the highest confidenceegeeaximum confidence
score voting). The choice of the voting criteria is not liedtto these two tech-
niques and any approach able to disambiguate between raulimscriptions can
be adapted (Hillard et al., 2007). It is also possible to imbéalower bound on the
word error rate achievable by ROVER, by using an oracle coatizin in which the
closest available word sequence to the correct transonigiselected. A disadvan-

SMonophone models are estimated as part of the triphonesrgaprocess
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tage of ROVER is the need to train and use for decoding eadbrayseparately, in
contrast to HLDA which requires a single decoding pass.

A generalisation of the ROVER algorithms aligns confusietworks (a partic-
ular lattice representation outlined in section 2.2.2n8)jead of the 1-best hypothe-
ses (Evermann and Woodland, 2000), hence taking into atoauitiple hypothe-
ses from the same system at the same time and yielding thetsdtter results.

4.5 Testing Conditions: the NIST Rich Transcription

Meeting Evaluations

The NIST meeting recognition evaluations, which have beensince 2002, give
the opportunity to the participants to evaluate and comiperperformances of their
speech recognition systems in a competitive environmentebler their main goal
is to improve automatic transcriptions making them morduldmth for humans
and machines. Although they comprise several tasks sugieaker activity detec-
tion and diarisation (“who spoke when”) our main interesthis thesis is focused
in the Speech To Text (STT) task.

NIST RT evaluations have a number of different acoustic d¢ant as well, the
main ones are:

¢ independent headset microphone (IHM): requiring thahgiaiseparate head-
set microphone signal for each meeting participant, théegys provide a
separate transcription for each speaker;

e multiple distant microphones (MDM): multiple distant nophone signals
are provided and the systems should output a single trgiscristream com-
prising all the words said during the meeting.

We conducted experiments using both conditions, trainggasate acoustic
models for each condition. For the MDM task, the speech hdseteecognised
from the output of a certain number of microphones, of unkm@esition, placed
in the meeting room. The geometry of the microphone posiames depending
on the site where the data was collected.
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In this thesis we used as a testing set for the meeting systam®IST Rich
Transcription Spring 2004 evaluation Sethich is composed of about 90 minutes
excerpted from 8 meetings (11 minutes each) recorded indifi@rent data col-
lection sites (CMU, ICSI, LDC and NIST). While all speakers hawbése cancel-
ing head mounted microphone, the number of multiple distantophones varies
according to the meeting room; in particular the CMU data hael distant micro-
phone only. Moreover these meetings contain a total of 3Gquasmspeakers (some
of the speakers participated in more than 1 meeting) of wh&tvere male and 13
were female speakers.

In this work the performances for the MDM condition are re@pdrfor the non-
overlapping segments only while for the IHM condition aljseents are recognised.
Moreover the manual segmentation is used unless otherteitszls

"http://www.nist.gov/speech/tests/rt/rt2004/spring/






Chapter 5

VTLN in meetings

5.1 Introduction

In this chapter we will describe a set of baseline experisieahcerning the appli-
cation of VTLN to multiparty conversational speech. The aiithese experiments
is to assess the effectiveness of VTLN with respect to thdipauty meeting do-
main and its particular characteristics from a speaker absation point of view.
The experimental setup for the application of VTLN is ddsed in section 5.2.

First we report on experiments performed on the convernsaltielephone speech
domain, a task where several successful VTLN applicatian tbeen reported
(Hain et al., 1999, 2005d). Here the presence of distinchlegeside$ and the
availability of several minutes of speech for each speakeabled stable estima-
tions of the warping factors. These experiments are desgtribsection 5.3.

A larger set of experiments was performed in the multipargeting domain.
The experimental setup and baseline VTLN results on meelag are outlined
in section 5.4. The stability of the estimated speakerifipegarping factors was
investigated, both for the same speaker across differeatings, and across time
for the same speaker within a single meeting. The length pealeer’s vocal tract
depends on the lips and the larynx positions, thereforegdinis varies across time
during speech production (Dusan, 2005b), we did not findetagtimates for the
warping factors. We have investigated the relationshipghefftequency warping

IFor CTS data the two speakers share the same communicatomeihbut their speech is
recorded separately providing distinct speaker sideseakgy turns

77
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factor to the addressee of the current speaker (in secdloh&nd 5.4.2), the formant
positions (in section 5.4.3) and the quality of the tranins used for the warping
factor estimation (see section 5.4.4).

A final set of analysis experiments on the AMI corpus invesdgg the rela-
tionship between warping factor values and recognitionrowpments (see section
5.5).

5.2 VTLN experimental setup

In this section we describe our application of VTLN. A maximuikelihood ap-
proach was adopted, using a piecewise linear frequencyingagimilar to those
illustrated in Fig. 5.1 (Hain et al., 1999; Young et al., 2D0&iven the warping
factora and the lower and upper cutoff frequencigsand fy, the warping function
is in general defined in three regions (as shown in the lefignf%:1), with the con-
straints that the minimunfi,i, and the maximuntax frequencies (i.e. the lower
and upper frequencies of the speech signal bandwidth) ghmukept unvaried in
the frequency warped space, as follows:

aU'(forig—CU)—F% forig>CU
fori

fwarped = o cL < forig > Cu (5.1)
a_- (forig — fmin) + fmin forig < CL

where the frequencieg andcy shown in figure 5.1 are defined as:

CL= %, (5.2)
U= ij‘é (5.3)
The angular coefficients of the first and the third regian®nday are computed
as:
a = m (5.4)
cL — fmin’
ay = M. (5.5)
fmax—Cu

In particular in the experiments presented in this thésis fy so that the warp-
ing function is defined by two regions as shown in the right pafigure 5.1.
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Figure 5.1: Piecewise linear frequency warping functions: on the left the general
case and on the right the particular case adopted in the experiments of this thesis

where the lower cutoff frequency f| is equal to the upper cutoff frequency fy

The warping factom is estimated using a Brent search technique based on
quadratic interpolatios, since the log-likelihood’s trend for a given transcriptio
tends to have a parabolic shape in function of the warpingfa@lue.

VTLN was applied both during training and testing. For tnaghwe used an
iterative procedure with the following steps, figure 5.2wh@ block diagram of
this method, (Hain et al., 1999):

1. warping factorst are estimated using a non-normalised model and normalised
features are computed using the estimated warping factors;

2. a training pass is performed (adopting the single pasaimatg technique
(Young et al., 2006) starting from non-normalised model®¥eed by a few
Baum Welch iterations, typically four are sufficient);

3. the warping factors are estimated again using the acowstiels trained in

2Brent’s method is an algorithm combining the bisection rodttihe secant method and inverse
quadratic interpolation, aiming to find the minimum of a gwoi&c curve.
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ML estimation:
HMM, Brentsearch
Based on quadratic
interpolation

Y
WF estimation
+normalised features computation repeat

untilWER :

HMM | on development :
data :
is stable

training pass

Figure 5.2: Block diagram of the iterative VTLN training procedure

the previous pass and normalised features are computeldearimhe using
the estimated warping factors;

4. another training pass is performed: similar to step 2 butisg from the
normalised models of the previous pass;

5. steps 3 and 4 are repeated until the WER on the developm&ntsefasta-
bilises.

This iterative procedure allows warping factors to coneergesulting inas
in the range between 0.8 and 1.2, with the distribution ofpivey factors for fe-
male speakers decreasing to less than 1, and the distnldotionales increasing to
greater than 1. This behaviour is due to the fact that as¢native VTLN training
proceeds the acoustic models, being trained on featureshvane better speaker
normalised, can better match the normalised acoustic datadmg therefore an
improved estimate of the warping factors (usually smal&dues for female speak-
ers and higher values for male speakers). The iterative Viraking approach
aims at improving the reliability of the estimated warpiagtor, iteration after it-
eration. Thus the distributions of the warping factors f@emand female speakers
tend to be increasingly separated until convergence ishiegac

For testing a two pass decoding procedure was adopted aw$oiin figure 5.3
a diagram representation of this method can be seen, (\Yedtiral., 2002; Hain
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Figure 5.3: Block diagram of the two pass VTLN decoding procedure

etal., 1999):
1. decoding is performed using non-normalised featureswodkels;

2. warping factors are estimated using normalised modelgtan preliminary
transcription of the previous pass;

3. normalised acoustic features are computed and used ¢oduig with the
normalised acoustic models trained using the iterativegutare.

It is possible to perform a VTLN test only procedure where Waeping factors
are estimated using non-normalised models in step 2. Howleseesulting WERS
would be higher. Moreover the same models were used for ngfaictor esti-
mation and for decoding having 16 mixtures per state of theisMWelling et al.
(2002) suggested that using low complexity acoustic mddelarping factor esti-
mation yields better performances. However this resedrelsttbn was considered
out of the scope of this thesis.
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5.3 CTS Experiments

Experiments on the Conversational Telephone Speech tagkomaducted training
on thectstrain04set consisting of around 270 hours of speech from Switcltboar
and Callhome and testing on the NIST eval01 set (both destiibsection 4.2.2).
As features we used CMN and CVN normalised MF-PLPs and we ttainess-
word clustered acoustic models. The trigram language msogstd were those
trained by the AMI ASR team as described in section 4.3.2.

For VTLN we used a piecewise frequency warping function whée values
of the lower cutoff frequency, and the upper cutoff frequendy (see figure 3.3)
were both set to 3400Hz. The iterative VTLN training techu@glescribed in the
previous section was used yielding the results shown iretaldl which shows the
WER for the baseline system without adaptation, the WER usifig\N/during test-
ing only, and the results for each of the 4 iterations and afaening from scratch
using the normalised features of tH8 gass. From the baseline to thi& #eration
after training from scratch a relative improvement of a9f6 was obtained. The
improvements in terms of WER are consistent with the statits of the warping
factor distributions after 4 passes as can be observed irefigd. The warping
factors distribution tends to shift towards values smatham 1 for females and
towards values larger than 1 for males. This incrementahrsgjon between the
warping factor distributions for male and female speaksrdue to the fact that
the acoustic models improve after each iteration (beingecdhon features which
are better speaker normalised), therefore providing mocarate estimates of the
warping factors.

5.4 Meetings Experiments

We also applied VTLN to multiparty conversations in a megtmvironment. Suc-
cessful applications of VTLN have been reported on conviensal telephone speech
tasks, where there are distinct speaker sides and usuadlyaseninutes of speech
per speaker (Hain et al., 1999). However in the case of ngetine amount of
speech data per speaker can vary significantly, makingfitudlif to obtain stable
estimates of the VTLN warping factor.
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Figure 5.4: Warping factor distributions of the training set for each VTLN iteration for

females and males in the CTS domain
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Tot | Sub | Del || Ins| SW1| S23 | Cell F M

No Adapt| 37.2| 24.2| 88 | 4.2| 30.1 | 38.0| 43.0| 36.7| 37.6
Testonly || 36.4| 23.6| 85| 4.3| 29.5| 36.5|42.6| 36.1| 36.7
18t pass | 35.7|22.9| 8.9 || 3.8| 29.1 | 35.4| 42.2| 35.0| 36.4
2"d pass | 35.0| 22.5| 8.8 | 3.7| 28.5|34.6| 41.4|| 34.2| 35.8
3 pass | 34.5|22.0| 8.7 || 3.7| 27.7| 34.2| 40.9| 33.6| 35.3
Ahpass || 34.2|22.0| 8.6 | 3.6 27.5|34.2| 40.5| 33.3| 35.1
ANTFS || 34.1(22.1| 7.9 4.2| 27.6 | 34.6| 39.8| 33.8| 345

Table 5.1: VTLN CTS results on evalO1 training on the full ctstrain04 set, from top
to bottom: WER without any adaptation or normalisation, test only VTLN, 15t pass
VTLN, 2" pass VTLN, 3 pass VTLN, 4" pass VTLN and 41" pass VTLN Trained
From Scratch (TFS). The testing set consists of approximately 6 hours of speech in
total, equally distributed between Switchboard-1 (SW1), Switchboard-2 (S23) and
Switchboard-cellular (Cell).

We performed a first set of experiments using the ICSI meetioggus de-
scribed in section 4.2.3.2 (Janin et al., 2003). We used T0e075 ICSI meetings
as training data. For testing we used the ICSI portions of tf&TNspring 2004
Meetings Evaluation development and evaluation setsreeféo as RTO4sdev and
RTO04seval, respectively (NIST, 2004). Each of these tetst sentains 10 min-
utes of two different meetings, with 12 different speaker&fiT04sdev and 15 in
RTO4seval (described in more detail in section 4.5).

As mentioned in section 4.3.5 in the meeting domain besitseate obtained
by adapting the acoustic models from the conversationapbkeine domain where
more data are available. Therefore as a starting point we tiieeacoustic mod-
els described in the previous section trained on 270 houST& data using the
VTLN iterative procedure. The resultant models were thenPVieapted to the
meeting domain using 70 of the 75 ICSI meetings. VTLN trainvag performed,
starting from the MAP adapted models, using the iteratiaepdure described in
section 5.2. Each intermediate model was evaluated on bsetlséts (using a bi-
gram language model and a vocabulary of 50k words), and shdtseare shown in
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RTO4sdev| RTO4seval

(Icsl (csi
noVTLN 27.0 34.2
VTLN 1 24.6 31.6
VTLN 2 24.5 31.2
VTLN 3 24.9 32.1
VTLN 4 24.4 31.3
VTLN 5 24.3 31.0

Table 5.2: Speech recognition results of VTLN experiments (% WER) on meetings,
training on 70 ICSI meetings and testing on the ICSI part of the RTO4sdev and

RTO4seval sets for five successive training passes of the iterative procedure.

table 5.2. Moreover Cepstral Mean Normalisation (CMN) and Cepstralafare
Normalisation (CVN) were performed both during training dadting where the
mean and variance was calculated over a complete channeldoy speaker per
meeting (Hain et al., 1999). Only two VTLN training passesewequired for the
convergence of the distribution of the warping factordh@ligh after convergence
some small ripples in the WER could be observed.

Another set of acoustic models for meetings was also trasteating both from
baseline acoustic models which were CTS MAP adapted to theimgedomain
using the full meeting training set described in section31& and models trained
on meeting data only. We refer to these models respectigaBi&-INIA and INIA,
since they were trained using ICSI, NIST, ISL and AMI data ¢(Hei al., 2005c).
Recall that in the CTS domain the warping function was choseh that both the
lower and the upper cutoff frequenciefg @nd fy respectively) are set to 3400Hz.
Since the meeting data was sampled at 16kHz, we experimesitietvo warping
functions: one using, = fy = 340Hzand the other usinfy = fy =720z For
both configurations we trained both CTS-INIA and INIA modeéssulting in four
model sets.

These models were tested on the whole eval set of the full R(BH# meeting
evaluation data and results are reported in table 5.3. Tjpmeees of the VTLN

SDifferent warping factors were estimated for those speatteat occurred in both sets.
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TOT | F M | CMU ICSI LDC NIST
noVTLN INIA 40.6|39.6 41.1] 452 26.0 549 335
NOVTLN CTS-INIA | 40.0| 39.4 40.4| 445 256 534 344
INIA 3400 38.4|37.1 39.0/ 436 233 521 318
INIA 7200 38.6| 374 39.2 43.6 232 53.0 320
CTS-INIA3400 | 37.7|36.5 38.3| 42.7 226 50.7 324
CTS-INIA7200 | 38.3|37.9 38.6| 43.0 231 51.7 33.5

Table 5.3: Results of CTS-INIA and INIA baseline and VTLN models (on the NIST
2004 meeting transcription evaluation set) where 3400 and 7200 indicate the f| = fy

values in Hertz in the piece-wise linear frequency warping functions

iterative training procedure were performed and trigramgleage models were used
for decoding.

It can be noticed that choosing a value for= fy = 340(Hz gives the best im-
provement together with the use of CTS adapted models whinhireconsistently
the best models even after the application of VTLN.

5.4.1 Warping Factors Behavior Analysis

The amount of data per speaker in each meeting varies coallgevith a mini-
mum of 3 seconds to a maximum of more than 1 hour of speech pakspper
meeting with an average utterance duration of about 2.4nsksco the training set.
This aspect of the meeting data affects the reliability e WTLN warping factor
estimates. Figure 5.5 shows the distribution of the numbetterances per speaker.
It can be seen that about a third of the speakers have lesa thamdred utterances
per meeting.

Figure 5.7 illustrates (for a few selected speakers) howetitenated warping
factor depends on the number of utterances from which ittimesed. More pre-
cisely the set of utterances was extended from 2 to 5, 10,..20,600; i.e. each
time the previous subset was augmented by selecting at masdme additional
utterances (from the same speaker). This behaviour is seemoist speakers. Here
CMN and CVN were also performed using different amounts of.dEt@ ML esti-
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Figure 5.5: Distribution of the number of utterances per speaker (per meeting) for

the ICSI training dataset

mate for the VTLN warping factor needs about twenty utteesrmefore it begins to
stabilise. Moreover in our experiments we computed a dififewarping factor for
every speaker for every meeting and we observed that thheastil warping factors
vary across different meetings. This is also shown in figusenthere every vertical
line goes from the minimum estimated warping factor valuéhtomaximum and
the point in the middle corresponds to the mean.

If the estimated warping factors do indeed correspond tonabising for vari-
ability in VTL between speakers, then we would expect theineates to be more
stable. This variability is highlighted if we compute therpiag factor as a moving
average across ten utterances (figure 5.8).

Multiparty meetings are characterised by a rich speakergtructure, and we
have investigated the influence of this on the warping faettimates. In partic-
ular, we have investigated the dependence of the warpirtigrfastimated for a
speaker given the speaker that they are addressing. Aedaiztlling of which
participant(s) each utterance is addressed to is ratheutabtensive—and can be
difficult from an audio-only recording of a meeting (suchlas tCSI meetings used
in this experiment). We have made the approximation thakealsgr speaking at a
given time is addressing the most recent speaker (not imgusackchannel-type
utterances).
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For each utterance of each speaker we estimated a localngafigistor using
that utterance and the previous nine utterances. Our fiestigun was whether the
distribution of the warping factor for speaker & {(A)) has a dependence on the
previous speaker. We used a hypothesis testing procedute tbis, where the
null hypothesidHg is that the mean value of the warping factor of speakgiven
that s/he spoke after speakgris equal to the global warping factor value for A
computed using all the data for that meeting. The probglditaccepHy has been

computed a®(t) with:
wi(A) — p(wf(AB))
o(wf(AB))
/n

t — (5.6)

wherep(wf(A|B)) is the mean warping factor of A after B,is the standard devia-
tion andn is the number of data (utterances) considered.

We studied eight meetings from the ICSI training datasetrtdkam different
meeting types (Janin et al., 2003) and in a way that some o§pleakers were
present in more than one meeting. Using the Student tyest3 05) we found that
for 84% of the speaker pairs the mean warping fapterf (A|B)) was significantly
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Figure 5.7: Trend of the warping factor values using different amount of utterances

for the estimation

different from the global warping factor f&. Thus it appears that the turn taking
process has some influence over warping factors. We alsorpexfl an unpaired t-
test on the distributions of the warping factorsfdfandA| j for every speaker# A
andj # Awith i # j. Here the null hypothesidg is that the mean warping factor of
Ali andA|j is the same. At 5% significance we found that in 78% of the ctises
means of the two distributions were significantly differantd we could reject the
null hypothesis. Therefore we could hypothesise a poss#alson could be that a
given speakeA will speak differently according to whom they are addregsind
that the ML estimate of the warping factor could take this iatcount. This would
be inline with the psycholinguistic theories on dialoguaakhwill be described in
section 5.4.2.

We performed a speech recognition experiment computinggvery speaker
a different warping factor for every possible speaker tuwe tested on a set of
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5 complete meetings from the ICSI corpus, referred t@aageval (Hain et al.,

2005c), which were excluded from the training. We compareanalising with

a global warping factor per speaker with normalising withrputag factors condi-
tioned on the previous speaker. These experiments inditizaethe WER obtained
without VTLN (32.6%) was improved by both global speaker pyag (27.1%)

and speaker-conditioned warping (28.0%), but no improvemes found using
speaker-conditioned warp factors compared to the use aofltteal warping fac-
tors.

5.4.2 A possible interpretation of the Warping Factors tren d

Figure 5.8 (bottom) plotsvf(i|j) andwf(j|i) against time. It shows the local
warping factor estimated for speakae003for utterances following utterances by
speakeme012and vice versarie012afterme003 for the BEDOO3ICSI meeting.
This figure may be segmented in a sequence of intervals: sggmwhere the two
warping factor sequences show a similar behaviour (alipaad segments where
the warping factor dynamics are nonaligned. A similar gtreee can be also ob-
served for the fundamental frequency FO (figure 5.8, toprtvpiots the mean FO
value for each utterance.

A possible explanation of this structure could be a psydgpiistic account of
dialogue, referred to as thateractive alignment moddPickering and Garrod,
2004). In this account of dialogue it is argued that linganisbomprehension and
production representations are shared between intedigcint a dialoguémaking
use of each others choices of words, sounds, grammaticakfaand meanings”
(Garrod and Pickering, 2004). This is referred toaignmentand it is argued
that it occurs at many levels: phonetic, phonological,dakisyntactic and seman-
tic. Interactive alignment is manifested at these diffetevels within a dialogue,
for example the use of similar syntactic structures, ldxiepetitions, and common
pronunciations. Krauss and Pardo (2006) have suggestealitirament in dialogue
may be clearly observed at the phonological level and hagsemted preliminary
evidence based on the vowel space (in terms of the first twodnots) of interlocu-
tors in two party dialogues. Their results suggest that gr&es in a dialogue align
at the phonological level as initially divergent pronurtiias converge as the dia-
logue progresses. Kakita (1996) has presented evidente @onvergence of FO
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between parties in a dialogue.

The behaviour of the warping factor estimates could be a@xgtawith the inter-
active alignment account of dialogue. The estimated warfactors of two inter-
locutors are typically non-aligned at the start of a meeting can be seen to align
(or at least go through phases of alignment) as the meetoyggsses. In addition to
the length of the vocal tract, there is a well known relatitopsetween the VTLN
warping factor and FO (Eide and Gish, 1996; Wegmann et a@6)16since these
two measures are both influenced by the vocal tract lengtlng.therefore natural
to think that the same phenomenon observed by Krauss and 28@6) could also
be observed for the VTLN warping factor. Moreover our expemts considering
only 8 of the ICSI meetings provide an initial analysis of théuence of the in-
teractive alignment on the behaviour of warping factorsjdewset of experiments
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(on constrained conversations collected ad hoc) would lpdtheo further validate
this theory.

Experiments on the use of a different warping factor perattee (where warp-
ing factors are computed using a moving window of a given nemalb utterances)
have been run. The results of these experiments can be ststarb.4. We tested
both with a window of 10 and with a window of 5 utterances andp&eormed
CMN and CVN using the sentences used to compute the warpingréaictr that
particular utterance. The models used were the best VTLN [BII&models. Un-
fortunately adopting a moving window for warping factor qmmation does not
seem to help but it has to be observed that acoustic modeleeviteened using
global warping factors and it may be the case that using theedachnique for
warping factor estimation for the training set would make thodels match the
testing data better.

TOT| F M | CMU ICSI LDC NIST

VTLN (global) 37.7|36.5 383 42.7 226 50.7 324
VTLN (moving window: 10)| 38.6 | 37.6 39.1| 42.7 25.2 51.2 33.0
VTLN (moving window: 5) | 38.0| 37.2 38.4| 425 23.3 50.6 33.8

Table 5.4: Results (WER) of CTS-INIA VTLN models using a global warping factor
(first row) compared to using a per utterance based warping factor computed with a

moving window of 10 and 5 utterances (second and third rows respectively)

5.4.3 ML estimated warping factor values and formant positio ns

In order to better understand how warping factors estimbayeblL are influenced

by formant positions some experiments have been performatutly their rela-
tionship. To do so the entire ICSI training data set was tak®leuconsideration.
Using forced alignment to find vowel positions and the Snaokit*, a mean value

for FO,F1,F2,F3 andF4 for each occurrence of each vowel was computed. Then
the estimated correspondent “global” warping factor hanlaessociated to each of
these occurrences. The analysis was based on MATLAB mailiipkar regression

4Available from: www.speech.kth.se/snack/download.html
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vowel | R(Fo) | R(Fy) | R(F) | R(Fs) | RFa) | R(Fo a)
aa | 0.4848| 0.5347| 0.4223| 0.3676| 0.3036| 0.6854
ae | 0.4934| 0.5350| 0.5713| 0.6632| 0.4838| 0.8003
ah 0.4909| 0.3859| 0.5685| 0.5521| 0.4111| 0.7287
ao | 0.4830| 0.3854| 0.3333| 0.2162| 0.3281| 0.5962
aw | 0.5177| 0.6305| 0.6076| 0.5190| 0.3607| 0.7873
ax | 0.4201| 0.1523| 0.3438| 0.4918| 0.3402| 0.6088
axr | 0.5204| 0.1907| 0.5039| 0.1028| 0.2225| 0.6677
ay |0.5218| 0.3763| 0.5867| 0.5670| 0.4347| 0.7809
eh | 0.4908| 0.5076| 0.4807| 0.5774| 0.4496| 0.7467
er 0.5202| 0.2398| 0.7077| 0.1812| 0.3474| 0.7880
ey 0.5088| 0.3455| 0.5760| 0.5334| 0.5139| 0.7478
in 0.4477)| 0.2890| 0.4612| 0.6148| 0.4920| 0.7173
iy 0.5660| 0.1513| 0.4104| 0.4540| 0.4859| 0.6866
ow | 0.5003| 0.3277| 0.3694| 0.4551| 0.3689| 0.6517
oy 0.6282| 0.3343| 0.4744| 0.5347| 0.3629| 0.7740
uh 0.5065| 0.2549| 0.6262| 0.4211| 0.4633| 0.7305
uw | 0.5027| 0.1202| 0.3096| 0.4917| 0.4609| 0.6334

Table 5.5: Correlation results based on phones between ML estimated warping fac-

tors and formant positions

functionregressin a way similar to Dusan (2005a) where the correlation betwe
speaker’s height and formant positions in the TIMIT corpasstudied. The values
of the correlatiorR for each vowel for every formant and for the combination of al
formants can be seen in the table 5.5. Warping factors atdyhaprrelated with
formant positions altogether for most of the vowels, whiterelation with each
formant is smaller.

5.4.4 Experiments on making VTLN faster

As described in section 5.2, the estimation of VTLN warpiagtors using ML re-
quires a preliminary transcription. Thus VTLN decodingésfprmed in two passes
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with the first one obtaining the preliminary transcriptidrherefore we performed
some experiments to evaluate if it is feasible to use a hepriming during the first
decoding pass, in order to speed-up the process.

We reported the results of these experiments in figure 5@ mnthin graph re-
ports the WER of the first decoding in function of the beam d@agclog probabil-
ity threshold for pruning where we also reported the reat¢tiactor (RTF) in red for
each point; in the table on the right we report the root meamsgerror (RMSE)
between the warping factors estimated using transcriptodrvarious quality (ob-
tained with various pruning thresholdy)in the table of results (in the middle of
figure 5.9) the second pass decoding WER using features risethalith the warp-
ing factors estimated with the various quality transcops was reported. We mea-
sured a difference in the warping factor value estimatedgugarious transcription
gualities, observing RMSEs ranging from 0.016 between thstpauned and the
less pruned system (B and E) and 0.0001 between the lessdpsystems (E and
D). Even so the WER after decoding was basically the same cexpériments,
meaning that the quality of the first pass transcription dugsexert a substantial
influence on the second pass decoding result.

5.5 AMI meeting experiments

We also performed some VTLN experiments within a joint dffifrthe AMI ASR
team for the automatic transcription of the entire AMI capuror these experi-
ments the corpus was transcribed using a five—fold crosdatadn technique (it
was subdivided in five parts and acoustic models were traimetbur parts and
tested on the fifth part iteratively). An initial decoding svaerformed using non
normalised acoustic models and MF-PLP features, then n@fgaictors were esti-
mated for the entire corpus and a system was trained andi test¢ TLN HLDA
MF-PLP features (that is 13 VTLN MF-PLP cepstral coefficgewith As, AAs and
AAAs dimensionality projected from 52 to 39 dimensions usingA). Further-
more the same experiment was performed on close talkingpptiones using both
manual and automatic segmentation. On the manual segmoertgk we obtained

5System B provided a WER of around 60% with an RTF of 11.27, wéyistem A provided a
WER of almost 90% with an RTF of 10, therefore given the neglie decrease in RTF compared to
the large increase in WER, the ouput of system A was not coresider warping factor estimation.
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Performances of the 1st pass of decoding changing HRPRUNE
and after VTLN on rt0O4seval IHM
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Figure 5.9: Speeding up VTLN: on the left graph the WER of the first pass in function
of the pruning decoding setting HRPRUNE (beam searching log probability thresh-
old) with the corresponding real time factors (RTF) in red; in the table on top of
the graph WERs after VTLN using the correspondent transcriptions obtained from
the first pass decoding; on the right root mean square errors between the warping

factors estimated using various transcription qualities

an overall reduction in WER from 43.2% to 39.4%.

This experiment was an excellent opportunity to look at setaéstics of the
warping factor behaviour since it was performed on a largewrhof data. The
correlation between the WER improvement from the non-nasedlto the VTLN
HLDA system was investigated. The change in WER is plottedhagthe warping
factor value in figures 5.10(a) and 5.10(b) for female anderapeakers respectively.
Not surprisingly we can notice that the more the warpingdai smaller than 1
(in the case of female speakers) or larger than 1 (in the dasale speakers) the
larger reduction in WER is obtained.

Finally we looked at the comparison of warping factors coteguwsing the
manual transcription and those computed using the firstgqpgsesnatic transcription
using manual segmentation which were also compared to th@nvgafactor values
estimated using the automatic segmentation. In table 5.6p@rt the root mean
square error between the warping factors estimated in tinese configurations.
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AMI corpus VTLN analysis
r=0.5747,p=0.000002
correlation between WER reduction (after VTLN and HLDA) arfdor female speakers
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Figure 5.10: WER improvement vs warping factor values for the AMI corpus from a
non-normalised system to a VTLN system with HLDA where r indicates the correla-
tion coefficient, p is the statistical level of significance and quadratic regression lines

along with the 95% confidence intervals were plotted using a statistics toolkit.



5.6. Conclusions
RMSE manual segm.| manual segm. | automat. segm.
manual transcr, automat. transcr. automat. transcr.
man. segm. _ 0.0115 0.0116
man. transcr.
man. segm. 0.0115 _ 0.0026
automat. transcr.
automat. segm. 0.0116 0.0026 _
automat. transcr.

Table 5.6: RMSE between warping factors computed using the manual transcription,
the automatic transcription using manual segmentation and the automatic transcrip-

tion using the automatic segmentation

It can be noticed that while using the automatic transaip{instead of the true
manual transcription) there is a small difference in thénested warping factors,
there is not such a difference between the use of the autosegmentation and
the manual segmentation. However in section 5.4.4 we ribticat such small
differences in the estimated warping factors do not affeetgerformances when
they are used for the second pass of decoding (also obseyv@ddiling et al.,
2002).

5.6 Conclusions

In this chapter we have studied the application of ML VTLN toltiparty conversa-
tions. We have found consistent improvements both in theersational telephone
speech and in the meeting domain (observing a relative WERctie for both
tasks of around 8%). Moreover we have studied the behavidineavarping fac-
tors during multiparty conversations, finding that:

e The warping factor estimated for the current speaker isenited by the con-
versational situation.

e Given the same speaker multiple ML VTLN frequency warpingtdas are
found for different conversations (meetings) and withie game meeting
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across time. We can hypothesise that this could be relatide fohonological
alignment observed by Krauss and Pardo (2006).

e The warping factor is also highly correlated with the fun@sutal frequency
FO and the higher order formants.

The correlation of warping factors with formant positiomslavith FO motivated
the experiments described in the next chapter about thef aseiteh adaptive spec-
tral representation in conjunction with VTLN.



Chapter 6

Pitch adaptive spectral

representations

6.1 Introduction

Frequency warping factors are known to be correlated wighftindamental fre-
quency (Wegmann et al., 1996; Eide and Gish, 1996; Faria agibda@, 2005)
being both influenced by the vocal tract length. It is themefof interest to ex-
plore the use of a pitch-adaptive analysis. As it will be deged in section 6.2,
pitch-synchronous and pitch-adaptive representatioms imgestigated in the con-
text of speaker recognition (Ezzaidi and Rouat, 2000; Kim.e2804b; Zilca et al.,
2003) and for small vocabulary ASR in the presence of noiseil@n et al., 2004,
Bozkurt and Couvreur, 2005). However, investigation of piclaptive representa-
tions for LVCSR has been rather limited.

In this chapter the use of spectral representations defregd STRAIGHT, a
pitch-adaptive analysis developed by Kawahara et al. (1989iewed in section
6.3, is explored. This analysis results in a smoothed tiregtfency representa-
tion from which it is possible to extract MFCCs and MF-PLP cegistoefficients.
These pitch-adaptive acoustic representations are ceahlwith conventional rep-
resentations both at the feature level using heterosaediastar discriminant anal-
ysis (HLDA, section 4.4.1) and at the decoding level usirggROVER technique
to combine the outputs of multiple decodings (see sectidr2}.

The combination of multiple acoustic feature streams hagttential to im-

99
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prove the accuracy of automatic speech recognition (ASREfKioff et al., 2000;
Zhu et al., 2004; Zolnay et al., 2007; Sitdr et al., 2007; Hillard et al., 2007). Dif-
ferent acoustic representations have different strengtigsthus will tend to result
in ASR systems that make different errors. The combinati@toustic feature rep-
resentations is a way to exploit complementary informa#iod to take advantage
of the strengths of particular representations.

In section 6.4 a set of experiments using the combinatioron¥entional and
pitch adaptive spectral representations on three LVCSRstaslkbutlined: tran-
scription of dictated newspaper text (WSJCAMO); conversuatitelephone speech
(CTS) recognition; and transcription of multiparty meesnging both close-talking
and distant microphones. This set of experiments allowdddbthe approach in
a range of speaking styles and channel conditions. AlthotnghWSJCAMO task
consists of read speech using a close-talking microphomeqguiet environment,
the other two tasks are more challenging. Both are concerridsgontaneous
conversational speech. Moreover, CTS involves telephoeecspwhich is subject
to a bandpass filter that partly obscures the pitch, whilentdtiparty meetings
were recorded in reverberant conditions with overlappipgagers. The situation
Is further complicated for the meeting task when multiplgtait microphones are
used to record the speech, and beamforming algorithms atiedo the recorded
signals.

The results of the experiments reported in this chapteresighat combining
conventional and 8RAIGHT-based acoustic features using HLDA results in a con-
sistent decrease in the word error rates.

6.2 Pitch Adaptive Analysis

The short time Fourier transform (STFT) involves the compiah of a separate
Fourier transform for each frame of the signal waveform uradsliding window.
This process is affected by the uncertainty principle, Whitates that it is impos-
sible to have an arbitrary resolution both in time and fregye(Quatieri, 2001).
The effect of this physical law is that the use of a long windowme (longer than
2 fundamental periods of the signal) leads to a good resoluti frequency and
poorer time resolution, whereas a short window in time l¢adke converse, good
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time resolution at the cost of frequency resolution. Forespe in particular, the
fundamental frequency of the signal varies over time, amdfiked size window is
applied, then its effect will be evident on the spectrumtipalarly for high pitch
speakers. This effect will be apparent even after the agpdic of a Mel-scaled
filterbank, in which the standard filter bandwidth in the lovirequency region is
usually around 200-300 Hz. This is not broad enough to rentlegeharmonic
structures for high pitched speakers, usually femalelspagh it is able to provide
a smooth representation for low pitched speakers (malesa(@ Rose, 2001). This
phenomenon can be observed in the left part of figure 6.1 watiokvs the conven-
tional STFT spectrogram computed using a fixed 25 msec |dhghming window
and the Mel scaling spectrograms derived from it using 48(&g.1(c)) and 24 fil-
ters (figure 6.1(e)) for a high pitched female speaker (améseher small warping
factor which in our meeting experiments was 0.837). It candieed that the pitch
interference* which is particularly evident in the narrow-band SFTF spmgtam
can still be seen in the Mel scaling spectrogram with 48 feeqy bands and even
with 24 bands (which is the number of filters used commonlypeesh recognition
front-ends). On the other hand this effect is filtered outléov pitched speakers
such as in the example of figure 6.2 (male speaker with a wafgictor of 1.16)
where the harmonic lines due to the pitch artefacts are mam®wly spaced and
are therefore smoothed out by the Mel scaling filterbank wa¥filters are used.

It is therefore of interest to investigate the use of a padaptive window that
adapts according to the current estimate of the fundamé&etgiency for the ex-
traction of conventional features such as MFCCs.

In speech synthesis and speech coding, where it is impddagenerate the
correct fundamental frequency, pitch-synchronous aealygere well studied (Rao
et al., 2003). The use of pitch-synchronous features hasb&len investigated for
speaker recognition. Voice source information, as manifebe pitch, is a speaker-
specific characteristic, and source features derived frpitth-synchronous analy-
sis were proposed as features for speaker recognition gidiznd Rouat (2000).
In this work the use of pitch synchronous features derivethfthe Instantaneous
Frequency (IF) and the short term envelope (AM) for spead#tentification was

1The term “pitch interference” was used in Kawahara et al99)90 describe the influence of
the pitch on the whole spectrogram, although it would be @ibbomore precise to speak about pitch
artefacts and this term will be employed in the rest of thésib.
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Figure 6.1: On the left: Short Time Fourier Transform and Mel scaling spectrograms
using 24 and 48 filters for a rather high pitched female speaker; on the right: STRA-

IGHT and Mel scale spectrograms for the same speaker
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Figure 6.2: Short Time Fourier Transform and Mel scaling spectrograms using 24

and 48 filters for a low pitched male speaker
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investigated. The signal is first filtered in subbands thibagochlear filterbank.
From the output of each filter the IF and AM are then computetaeraged over
time adopting intervals synchronised to the position ofGhattal Peak and a length
equal to the pitch periodp ([0 To]) and averaged over interval% /2 3Tp/4] and
[3To/4 Tol. In this way multiple measures of the spectral envelope hadhistanta-
neous frequency are computed over a single pitch cycle. €hernmances of the
newly obtained features are compared and combined witletbba system trai-
ned on MFCCs finding that AM, IF and MFCC features are complengiotathe
telephone speech corpus SPIDRE (a subset of the Switchbogrds).

Zilca et al. (2003) proposed a pitch-adaptive analysigrretl to “depitching”,
which attempts to filter out pitch information from the spleasggnal, by having an
integer number of pitch periods in every frame. The “depifmtocedure consists
in 3 steps: the signal is windowed and LPC (Linear PredicBeeling) analysis
is performed, then a single pitch cycle is extracted fromddetre of the residual
frame and it is interpolated to cover the duration of thererftame. Then the in-
terpolated residual is LPC filtered to get a speech signalC@K-are then extracted
from the depitched waveform. Although depitched featutesaresulted in lower
accuracy for speaker recognition, combining systems usimyentional and de-
pitched MFCCs resulted in a significant improvement, with aenamiform error
distribution across speakers.

The fundamental frequency provides prosodic informatimmhiaformation about
the speaker but, for non-tonal languages, pitch is not useshtode words and
phonemes. Therefore, factoring out the pitch informatiorspeech recognition
should result in a system with a greater speaker indepeedefwo basic ap-
proaches were reported in the literature: the use of pi§clcisonous or pitch-
adaptive acoustic features, and acoustic models in whechithh is explicitly mod-
elled as a variable. An example of the latter approach (&tesim et al., 2002) uses
dynamic Bayesian networks (DBNSs) in which the variables spoading to the
MFCCs are conditioned on the pitch, although this did not tes@ significant im-
provement in accuracy. Some improvement on the use of p#@amnauxiliary fea-
ture in conjunction with tandem features was found by Magibass et al. (2004)
especially in noisy conditions for the OGI numbers database

Bozkurt and Couvreur (2005) investigated a pitch-synchreramalysis based
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on group delay features (the negative of the differentiasghspectrum) extracted
using a window centered at the glottal closure instant, frainich a phase spec-
trum was computed. Applying these features to ASR, in contioinavith MFCCs,
resulted in a significant increase in accuracy over a bas@IRCC system on
the AURORA-2 corpus. Holmes (2000) proposed the use of fixegtheexcita-
tion synchronous windows for the Mel frequency cepstralffenents extraction.
These features were tested and compared with “fixed” arsalysidows based
features for various window lengths on a digit recognitiaskt finding a signifi-
cant improvement using a 10 ms excitation synchronous wndan alternative
pitch-synchronous representation, pitch synchronous @@ssing peak-amplitude
(PS-ZCPA), has also shown some promise in reducing error®isy speech (the
AURORA-2J corpus) (Ghulam et al., 2004).

Irino et al. (2002) employed the pitch-adaptiveR3\IGHT representation, dis-
cussed in the next section, using it as the underlying spletpresentation for
the extraction of MFCCs. BRAIGHT-based MFCCs were compared with conven-
tional MFCCs in HMM-based speech recognition on a small Jaggdatabase,
but no significant improvement in accuracy was observedhigdhapter, the use
of STRAIGHT-based acoustic features is explored, in conjunction widaker nor-
malisation using VTLN, and in combination with conventibhkl-CC and MF-PLP
features.

6.3 STRAIGHT based features

STRAIGHT (Kawahara et al., 1999) is a vocoder consisting of analysisgnthesis
parts. The spectral analysis off SAIGHT uses a pitch-adaptive window which
gives equivalent resolution in both time and frequency damaAn interpolation
is then performed on the partial information given by thepdida windowing. This
is achieved by using a second order B-spline as a smoothirgjidanfor surface
reconstruction, constrained on the preservation of gtiessuch as the energy and
the perceived loudness of the signal. This results in a dmedotime-frequency
representation which is not affected by the artefactsragiBiom signal periodicity.
In this work SrRAIGHT-based MFCCs were derived by replacing the classic
STFT, which typically uses a Hamming window, with ther\IGHT spectral anal-
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ysis using the following window:

w(t) = = exp(—Ti(t/0)?) (6.1)
W (@) = %T exp(—Ti(w/wp)?) - (6.2)

This window is ideally Gaussian both in time and frequenay @&nwvas chosen by
Kawahara et al. (1999) because of its isometric propeitiestfie only smooth non-
zero function which transforms to itself) and its uniqueg@y of minimum time-
bandwidth product. The shape of the window depends on theatstd fundamental
frequencyfo = 1/10 = 21/ wy. If we compare it with a 25 msecs Hamming window:
for fo = 80Hz they are almost equivalent; while fdg < 80Hz the pitch adaptive
window gives a better frequency resolution and lower terap@solution; and for
fo > 80Hzit provides a better temporal resolution and lower freqyarsolution.

The pitch used for the window computation can be estimatedyusrious al-
gorithms: TEMPO, the algorithm for pitch tracking providedthe STRAIGHT
framework (Kawahara et al., 1999), is based on the use of dhmaked funda-
mentalnessneasure, obtained using a wavelet Gabor filter designedgtaigint
the fundamental frequency (maximal filter output) and teceharmonic replicas.
However, other pitch trackers may be used and most of theriexpets reported
here employed the RAPT pitch tracking algorithm (Talkin, 899mplemented as
ESPS gef0?, which is based on cross-correlation in the time domain. issu$sed
further in section 6.4, although no significant differenedeen the use of the two
pitch trackers was found when working on clean read speeaattfQgroved to be
more reliable for conversational telephone speech, asagdleing more computa-
tionally efficient.

The STRAIGHT pitch spectrogram of a telephone speech signal is compatied w
a conventional STFT spectrogram in figure 6.3. The harmanic®ire, visible
in the STFT, is not present in the smootharRBIGHT spectrogram. The lowest
part of the figure shows the pitch value plotted along withwindth of the analysis
window in the time domain (measured &8Blof the height of the window in number
of samples), illustrating how the spectrogram resolutioliows the value of the
fundamental frequency of the signal. A reliable pitch eatenis important, since

2Available from:http:/iwww.speech.kth.se/snack/
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pitch tracking errors such as pitch doubling can lead to & wede window in the
frequency domain and poor spectral resolution. For undospeech a default value
of about 10ms was used for the window width (measured/atdf the maximum
window amplitude), corresponding to a fundamental fregyesf 160 Hz.

STFT
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2 80 i E = =
5 99 1Es 1 S S= ]
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Figure 6.3: Example of STFT spectrogram, STRAIGHT spectrogram, fO and spectral
analysis window width in the time domain for a telephone speech signal, with a

sample rate of 8 kHz.

Figure 6.4 shows a block diagram of the extraction procefuré&TRAIGHT
derived MFCCs. The log BRAIGHT (power) spectrogram is processed through
a Mel scaled filterbank and decorrelated using the discresene transform. A
comparison of the output of the Mel-scaled filterbank fon@artional MFCCs and
STRAIGHT derived MFCCs can be observed in figures 6.1 and 6.2 for a higheait
and a low pitched speaker respectively. It can be noticetttieaartefacts of the
pitch, still present in the Mel scaled spectrogram of theveational features for
the high pitched speaker, is not present in the case of ttRaiSHT derived Mel
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spectrogram which is smoother.

Our STRAIGHT derived MFCCs computation is similar to the feature extractio
process presented in Irino et al. (2002) but here we perfonriaal DCT instead
of a warped DCT because we do not require feature inversion-PMPs were
also extracted from the logTRAIGHT spectrogram, by Mel scaling, followed by
equal loudness pre-emphasis, cube root compression aat |anedictive cepstral
analysis. Figure 6.5 shows a block diagram of STRAIGHT PLPRaexibn. In
addition, we employed a VTLN frequency warping proceduneye in the figures
and described below.

Speech wave

STRAIGHT .
spectral analysis “

L I T T A

Mel-Fiterbank |y, ik iy

VTLN
piece-wise linear frequency warping

DCT

v

STRAIGHT derived
MFCCs

Figure 6.4: A block diagram of STRAIGHT MFCCs extraction with VTLN frequency

warping

The centres of the filters of the Mel scaled filterbank are rdaecording to a
piecewise linear frequency warping function where diffén@arping factorst are
defined for different frequency bandwidths (depicted in Wi&.N box in figures
6.4 and 6.5) and described in more details in section 3.3.2.

As described in section 5.2 the warping factors are estithaségng maximum
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'
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conversion

STRAIGHT derived
PLPs

Figure 6.5: A block diagram of STRAIGHT PLPs extraction with VTLN frequency

warping
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likelihood in the acoustic model training process (Hainlet¥99), such that the
speaker-specific warp factaris set to maximise the likelihood of the normalised
acoustic observation feature vectot€, given a transcriptio®V and an acoustic
modelA (Welling et al., 2002; Hain et al., 1999).

6.4 Experiments

VTLN warping factors attempt to normalise for the variatiohthe vocal tract
length across different speakers. In our previous experisnabout the use of
VTLN on multiparty meetings, described in chapter 5, it waarfd that VTLN
warping factors estimated using the ML method are not readlystant over time.
This variation was partly explained with the fact that warpfactors are correlated
with pitch. It is therefore of interest to investigate the wf a spectral representa-
tion which is less dependent on pitch, such as the pitch agampresentation of
STRAIGHT, in conjunction with VTLN.

STRAIGHT provides a smoother spectral representation conceivedpieech
modification and we expect VTLN, which performs frequencypig, to bene-
fit from this smoother pitch independent spectral repredem. The main goal of
the experiments described in the next sections is to irgastiways of applying
and benefiting the most from this representation: focusimghe VTLN speaker
normalisation context and evaluating the proposed approaca wide range of
tasks corresponding to different challenging acousticahains. In particular we
expected that high pitched female speakers would benefints from a pitch
adaptive representation; in fact for these speakers thdilides bandwidths are not
sufficiently wide to smooth the harmonic lines due to pitdefaicts. Conventional
MFCCs are affected by pitch artefacts, whileRAIGHT provides a smoother pitch
adaptive spectral representation, sensitive to pitctkitmgcerrors and sometimes
too smooth and therefore less informative than the convealtiSTFT. Even if an
absolute improvement over conventional features is dasi@verall, we are aware
that the new features have both pros and cons, thus the ideantining them with
conventional features was envisaged from the beginninger8beworks in the liter-
ature have shown that, while it is sometimes difficult to getsistent improvements
when new features are introduced, it is often possible tllloore robust systems
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combining new and conventional features: this is for exantple for gammatone
features (Scliiter et al., 2007), Tandem features (Zhu et al., 2004), apdiiticular
for pitch synchronous features (Bozkurt and Couvreur, 20@zakli and Rouat,
2000; Zilca et al., 2003).

In our work in order to exploit the advantages of both coneral and SRA-
IGHT representations, we combined them using HLDA. As mentianeskction
4.4, Schiiter et al. (2006) argued that numerical problems coul@avisen strongly
correlated features are combined with LDA. Although it cbioé argued thatTRA-
IGHT and conventional MFCCs were extracted in a similar way in opegrments,
the correlation of these two feature streams is highly ddpethon the window
used in the particular instant of time considered, whichtserurn depends on the
pitch. Moreover the interpolation of theTSAIGHT spectrogram to compensate
for pitch errors affects this representation differemigtit from the conventional
STFT anyway. In fact the use of HLDA provides consistent ioyements in all
our experiments.

6.4.1 Experimental setup

Baseline acoustic models were trained using convention&a ®~(computed with
a 25ms window with a 10ms shift); for each domain we also é@dimodels using
STRAIGHT derived MFCCs. For each representation 12 cepstral coefficpns
the zeroth cepstral coefficient (C0) and first and second ateras were also com-
puted, resulting in a 39-element feature vector (13 coeffisi+ 12\ + 13AA). The
acoustic models were state clustered cross-word tripheitesl6 mixture compo-
nents per state. We also performed VTLN during both trair@nd testing, using
an iterative method which alternated the estimation of way factors and the esti-
mation of acoustic model parameters, described in detagation 5.2. VTLN was
applied both to the standard MFCC system and to theAScHT derived MFCC
system.

A number of experiments were carried out to determine thsigeity of the
STRAIGHT-based features to the pitch tracking algorithm that wasl.uge ini-
tial set of experiments employed the Keele pitch extraatgderence corpus (Plante
etal., 1995). This corpus features ten British English spesaleading a phonetically-
balanced story, for which the fundamental frequency growath was obtained
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from a laryngograph signal. The corpus is not large enougtetestimate the
acoustic models, and it is from a different domain to any ef domains studied
here. Since it consists of British English read speech, wenaatically transcribed
the Keele corpus using WSJCAMO models, described in detaieatian 6.4.2,
which are trained on British English read speech. Moreoveusezl the same lan-
guage model adopted in the WSJCAMO experiments, the MIT Lintalbs 20k
Wall Street Journal trigram language model. The word emtes are rather high
(over 40%) because we have used acoustic and language nmohela different
domain and no development data was available to adapt thelshtal this new
domain. However it is possible to compare the performancesobgnizers us-
ing STRAIGHT-based features. Therefore we extracte@ 8GHT derived MFCCs
both using the reference pitch, and the TEMPO and the RAPT piéckers, ob-
serving less than 1% difference in word error rate betweatufes using the ground
truth pitch track (43.6%), versus features using the TEMP®APT algorithms
(both 44.7%). Although there is a small improvement in ushmegreference pitch
tracks, we conclude that both of the automatic pitch traglalgorithms offer ac-
ceptable performances. It is likely that training with refece pitch tracks might
result in further improvements, but a database suitabléafge vocabulary speech
recognition with laryngograph signals is not available.

For this data, and for WSJCAMO, the ASR performance for systasisg
TEMPO and gefO was almost identical. For the CTS domain we observed that
getfO resulted in significantly lower word error rates companeth TEMPO (see
table 6.3). Since gdD also has lower computational demands, we used this pitch
tracker for all our experiments (except where stated).

Figure 6.6 shows a block diagram of the HLDA training proc&SELN features
are extracted separately for conventional am&@ SGHT derived features and they
are CMN and CVN normalised and concatenated. From these éeatators (78
dimensional in this case) an HLDA transform is trained udib#\ as an initialisa-
tion starting point. Then feature reduction is performeth&desired dimension (39
in this example) and triphone tied-clustered CMN/CVN HLDA ratwdare trained.
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Figure 6.6: A block diagram of the HLDA training process

6.4.2 WSJCAMO

Ouir first set of experiments were performed on the WSJCAMO srfs described
in section 4.2.1 we trained on the official set denoted #&sasid tested on the 20 000
words “open vocabulary” task development setdid0a). We used the standard
MIT Lincoln labs 20k Wall Street Journal trigram languagedaloPaul and Baker,
1992).

Table 6.1 shows our baseline results for this corpus. Théotagines show the
word error rates for the conventional an@drR\IGHT-based MFCC systems with
and without VTLN. The conventional system has a lower wordrerate than the
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Dimensior# mixtures Total FemaleMale
STD MFCCs 39 30352 | 13.2| 12.8 |13.5

STRAIGHT MFCCs 39 29440 | 14.4| 13.7 |15.2

STD MFCCs + VTLN 39 31312 | 12.5| 12.0 |13.0

STRAIGHT MFCCs + VTLN 39 30720 | 13.0| 12.5 |13.5
STRAIGHT + STD MFCCs + VTLN 78 39152 | 154 | 15.2 |15.7

Table 6.1: Word error rates on the WSJCAMO si_dt20a dataset along with the
model complexity (total number of mixture components), comparing conventional
and Straight-based MFCCs, with and without VTLN. The combined system (bottom
line) used concatenated feature vectors with no dimension reduction. d is the overall

feature dimension.

STRAIGHT-based system, with the difference between the two redugduilb in
the case of VTLN. The final line of the table shows the basdéatuire combination
experiment, in which the two feature vectors are simply etecated at each frame,
ending up with a 78-element feature vector. This resulteddansiderable increase
to the word error rate, as might be expected due to the ctimesain the resulting
feature vectors. To reduce the correlations within the doetbfeature vector, and
to reduce the overall dimensionality, we applied HLDA to toecatenated features.
Table 6.2 summarises the main results of these experimarte;ms of the word
error rates with respect to the reduced dimensionality haathoice of class in the
HLDA.

The upper part of table 6.Z\{rd) shows the obtained results when the HLDA
statistics were estimated using the states of the crosgd-tiphone HMMs, a total
of 1927 classes. The lower parh¢ng shows the results obtained using mono-
phone mixture components as classes — 2 208 in total (46 gh8rstates/phone,
16 gaussians/state). Therd condition is more focused on discriminating between
triphone states, allowing a consistent definition betwéerHLDA classes and the
acoustic triphone models (used during recognition). Onotiner hand thenono
condition, using mixture components as classes, enswaethndistribution of the
feature vectors corresponding to each class are more gaussr each HLDA type
of class, we experimented with different dimension redingj with the best results
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d | # mixtures| HLDA content/classes Total | Female| Male
52| 38752 xwrd/states 12.3| 119 | 12.8
39| 37136 xwrd/states 12.4| 12.1 | 12.7
52 37792 mono/components | 12.3| 119 | 12.8
39| 35472 mono/components | 12.1 | 114 | 12.8

Table 6.2: Error rates and model complexity (number of mixture components) af-
ter combining conventional and STRAIGHT derived MFCCs using HLDA, testing on
WSJCAMO si_dt20a. The xwrd/states condition indicates that the states of cross-
word triphone models are used as HLDA classes; the mono/components condi-
tion indicates that Gaussian components of monophone models are used as HLDA

classes.

being obtained with a reduction from 78 to 39 dimensions.déonparison we also
show results for 52 dimensions. The best results were asthiesing monophone
state mixture components as classes, yielding 3.2% reletiprovement compared
to the baseline standard MFCC system.

6.4.3 Conversational Telephone Speech

The next set of experiments on CTS data, are based on the 72raming set
described in section 4.2.2t6train04sulpand on the NIST hubBvalOltest dataset.

We used clustered cross-word triphone acoustic models atitut 3 600 tied
states. For this task we conducted several experimentsichwie compared the
accuracies of systems using conventional and/&8GHT derived MFCCs, with and
without cepstral mean and variance normalisation (CMN/C\ANY with and with-
out VTLN. We also compared the use of the TEMPO andf@agditch trackers for
STRAIGHT, in this case on systems without normalisation (no CMN/CVN aad
VTLN). We used the same trigram language model in all casiéis awocabulary of
50000 words, trained on various additional sources inalyidveb data, broadcast
news transcripts and email text (more details can be fousddtion 4.3.2).

Word error rates for various configurations are shown ireté8. The first three
rows show results in the case of no normalisation, includicgmparison between
TEMPO and gefO pitch trackers for $RAIGHT. Conventional MFCCs result in
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the best performance, and gétgives a significant decrease in word error rate of
4% relative compared with TEMPO. We note that telephonedpiesignificantly
more challenging for pitch tracking owing to the bandpassrfitg and other chan-
nel effects (Rabiner et al., 1976). Applying CMN/CVN and VTLMNuéis in a de-
crease in word error rate by over 10% for both conventiondl 8rRAIGHT-based
systems. As in the WSJCAMO task, the gap between conventiodaBerAIGHT-
based systems is considerably reduced when VTLN is appttegldifference in
WER is reduced from 3% to 1.6%. This is evidence that the sneoaibectral rep-
resentation offered by1RAIGHT is well-matched to VTLN, which uses frequency
warping to normalise speech to increase speaker indepeaden

We combined the two normalised systems using HLDA both usiipione
states and monophone mixtures as classes. Each combigatided an 8% rel-
ative improvement compared to the baseline, a conventigif@@C system with
VTLN and CMN/CVN. The improvements are consistent for bothdéand male
speakers and for all the testing subsets. This is a signifieanlt, since the baseline
system is strong, given the training set of 72 hours.

6.4.4 Multiparty Meetings

Our final, and most extensive, set of experiments is in theaiorof multiparty
meetings. For this task we trained separate systems fag tddlsng microphones
(IHM) and distant microphones (MDM) on a set of about 100 koof meet-
ing speech (described in section 4.2.3) and tested on th& Ri&h Transcription
Spring 2004 evaluation data both in the IHM and MDM condition

We used clustered cross-word triphone acoustic models Matmixture com-
ponents per state and around 4 400 tied states in total, amedra set of models
for each condition using VTLN. We used a vocabulary of 50 0@0ds and a tri-
gram language model trained on web collected data, meeéitegashd CTS data as
described in section 4.3.2. As for the other tasks we coctgtdubaseline systems
using the conventional andr8AIGHT-based systems independently, then produced
a combined feature stream by concatenation and dimengioictien using HLDA
(using both monophone Gaussian components and cross-vijpindrie states as
classes). The resulting systems corresponded to a sudmsydenoted as VTLN
enhanced P1) of the state-of-the-art AMI-ASR meeting ttapson system (Hain
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. = Q
# mixtures TOT|| F M|l o

MFCC (no CMN/CVN)| 86288 |42.7/41.8 43.636.5 43.3 47.¢
STRAIGHT (TEMPO no CMN/CVN)| 83018 |47.6/46.0 49.140.7 49.0 52.¢

STRAIGHT (get. fO no CMN/CVN)|| 83296 |45.7/44.5 46.940.0 46.6 50.1

MFCC+CMN/CVN+VTLN| 85836 |37.6/37.0 38.331.8 37.1 43.}
STRAIGHT (get f0)|| 84197 |39.2|38.2 40.133.6 39.0 44.5
+CMN/CVN+VTLN

MFCC + STRAIGHT (get f0)| 102560 ||34.6(33.6 35.628.3 34.5 40.5
+CMN/CVN+VTLN+HLDA(xwrd)
MFCC + STRAIGHT (get.f0)|| 98928 ||34.7|33.8 35.628.6 34.7 40.5
+CMN/CVN+VTLN+HLDA(mMono)

Cell

w0 O

Ot

Table 6.3: Word error rates (and model complexity in terms of total number of mix-
ture components) on the CTS NIST Hub5 eval01 data for conventional and STRA-
IGHT derived MFCCs, and their combination using HLDA. TEMPO and get_fO pitch
trackers are compared for Straight features (lines 2-3). Both triphones states and
monophone mixture components are used as HLDA classes for a feature reduction
from 78 to 39 dimensions (lines 6—7). CMN and CVN are cepstral mean and vari-
ance normalisations. Tot: total WER; M: WER for male speakers; F: WER for female

speakers

et al., 2007b) which participated in the NIST RT evaluati@®@, with the differ-
ence that MFCC features were used rather than MF-PLP featiMteieover both
the IHM and MDM models used in the experiments describedisdhapter were
trained on meeting data only (there is no MAP adaptation ftoenCTS domain,
which was used for the NIST evaluations).

The results for the IHM condition are shown in table 6.4. THRAGHT de-
rived MFCCs result in slightly higher word error rates thanwantional MFCCs;
we note that pitch extraction is also challenging in the mngedomain. Lower error
rates are observed for female speakers usimgASGHT, while for male speakers
lower error rates are observed for conventional MFCCs. Cortibmaf the two
systems using HLDA with monophone Gaussian componentedassults in an
absolute reduction in word error rate of 1.8% (5% relati@ppared with the base-
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2 3 8 o

# mixturesTOT| F M |0 © I Z
MFCC+VTLN (A)| 70304 |38.4/38.5 38.342.7 23.9 52.1 30.9
STRAIGHT+VTLN (B) | 69264 |39.3|38.3 39.744.7 24.8 53.1 31.2
MFCC+STRAIGHT 88275 |42.1)44.4 41.045.6 28.5 55.4 37.0

+VTLN
MFCC+STRAIGHT 88400 |(37.3|37.6 37.241.4 23.8 51.9 294
VTLN+HLDA xwrd (E)

MFCC+STRAIGHT 83312 |36.6/36.3 36.741.0 22.5 51.2 28.5

VTLN+HLDA mono (F)

Table 6.4: Word error rates (and model complexity in terms of number of mixture
components) for meeting transcription (IHM condition) using the RTO4seval testing
set. Results are given for baseline systems using conventional and Straight-derived
MFCCs, and for combined feature vectors obtained using HLDA. Tot: total WER; M:

WER for male speakers; F: WER for female speakers.

line conventional MFCCs.

Word error rates for the MDM condition are shown in table 6lB.this case
there is a 2% absolute difference between the baseline sbomal and SRAIGHT
systems, which is larger than for the IHM case. Beamformeudadsgfrom distant
microphones have increased additive channel noise, cempath the IHM condi-
tion, leading to less reliable pitch tracking, and hencs tefiable estimates of the
pitch-adaptive window in 8RAIGHT. However, the combination of the two sys-
tems by HLDA using monophone Gaussian classes results instasiial decrease
in word error rate of 3.6% absolute (7.3% relative), whicltasisistent over the
different subsets.

There is also a large difference between word error ratemfde and female
speakers. Beamforming is known to have less directionalitgveer frequencies,
while it has some aliasing at higher frequencies. Since,dfemoices, information
content and the fundamental frequency is concentratednar lrequencies, it is
possible that the higher error rate observed results frasithited directionality at
low frequencies and therefore less reliable pitch tracking
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> - o E
= 2 a 2
TOTAL | Female Malg ©O O - =

MFCC+VTLN | 495 46.8 50.8/55.7 26.2 60.1 33.1
STRAIGHT+VTLN 51.5 48.6 529|574 26.2 634 34.6
MFCC+STRAIGHT 46.8 42.2 49.1|/525 243 58.1 29.%
VTLN+HLDA xwrd
MFCC+STRAIGHT | 45.9 427 47.4/50.8 21.3 57.7 30.1

VTLN+HLDA mono

Table 6.5: Word error rates for meeting transcription (MDM condition) using the
RTO4seval testing set. Results are given for baseline systems using conventional
and Straight-derived MFCCs, and for combined feature vectors obtained using
HLDA.

6.4.5 Further experiments on meetings

Higher order cepstral coefficients are known to be the mdstted by the spec-
tral harmonic components due to the pitch (Irino et al., 20B&nce systems using
conventional MFCCs typically limit their dimensionality te¢lve coefficients plus
CO or the log energy. However, using the smoothed B8GHT spectral representa-
tion, which is not affected by spectral harmonics, we shdaddble to exploit the
information in higher order coefficients. To assess thisimilgy, we carried out a
set of experiments using both the first 17 and the first 21 capsiefficients (plus
C0) and their first and second temporal derivatives, regutgspectively in 51- and
63-dimension acoustic feature vectors. Experiments wertopned in the IHM
meeting domain both for the STFT-based MFCCs and our pitcptaaVIFCCs.
In practice the extraction of higher order cepstral coedfits was carried out by
simply taking the first 17 and the first 21 coefficients outputhe DCT block re-
spectively.

The results of these experiments are shown in table 6.6,emerrepeat the
results of the 39-dimension systems to facilitate compatislt is interesting to
observe that the systems based on 21 and IRA®HT derived MFCCs have a
lower word error rate than both 13, 17 and 21 conventional MB@sed systems.
In particular the higher order MFCC system yields a great@reate for female
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speakers (8 row of table 6.6) compared to the higher order STRAIGHT dediv
MFCC systems (8 row): this is due to the fact that for high pitched speakees th
Mel filter bandwidths are not sufficiently broad to remove Hamonic structure
which affects the higher order coefficients. On the othedh&RAIGHT derived
features, which are not influenced by pitch harmonics, alestalexploit the infor-
mation of higher order coefficients even for female spealenhich they perform
significantly better than STFT based features.

As an analysis experiment to have an idea of the contribwfdhe higher or-
der coefficients, both conventional and derived fromR&IGHT, we concatenated
the first 13 cepstral coefficients derived from the STFT amséhfrom the 1% to
the 21" derived from SRAIGHT and viceversa. The results of these experiments
are shown in the ™ and 8" row of table 6.6. While taking the first coefficients
from the conventional feature stream and those of highesrdrdm the SRAIGHT
derived MFCCs yields even a small improvement compared to3hdiriensional
STRAIGHT MFCCs alone, the opposite results in a degradation comparedtto
63 dimensional setups. This is what we would expect and cosfihat SRAIGHT
derived higher order cepstral coefficients are respongila significant improve-
ment while those derived from the STFT (being affected bypitheh artefacts the
most) have a negative effect on the performances of therayste

HLDA combination based on monophone gaussians as classepes@rmed
to combine the best performing systems faR&IGHT derived and conventional
MFCCs (the 63 dimension systems) reducing from 126 to both 8%&ndimen-
sions. As can be seen in the second-last and last row of tablthé best result
is obtained reducing to 63 dimensions (probably becausecnegl to 39 we throw
away too much information). Moreover the combination of@gdimensional fea-
tures yields a significant 9% relative WER reduction compdeetthe baseline 39
dimension conventional MFCCs system.

We also performed some experiments on the userefs8sHT for MF-PLP ex-
traction. Here a PLP implementation based on that of HTK (i¢pet al., 2006) was
used, where the Mel frequency scaling is performed on tlrRASGHT spectrogram.
Similarly to MFCCs, twelve cepstral coefficients plus CO wereaoted along with
their first and second derivatives. WERs of systems basedreaiSHT derived
MF-PLPs were compared with those of conventional MF-PLRsaeted by HTK
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d #mixt.TOT|F M|O © I Z
MFCC+VTLN (A)| 39 |70304(38.4/38.5 38.342.7 23.9 52.1 30.9
STRAIGHT+VTLN (B) || 39 |[69264(39.3|38.3 39.744.7 24.8 53.1 312
MFCC+VTLN 51 ||78784|37.1|37.9 36.741.8 22.4 51.0 30.7
STRAIGHT+VTLN 51 ||77184|36.9/36.5 37.141.8 22.6 50.4 30.1
MFCC+VTLN (C)|| 63 |82432|37.138.5 36.441.3 22.2 51.5 31.2
STRAIGHT+VTLN (D) | 63 |81564(36.7(36.4 36.841.0 22.3 50.8 30.0
13 conv. + 39+24(|83024(/36.4|37.1 36.040.4 22.7 50.1 29.6
8 STRAIGHT MFCCs
13 STRAIGHT 39+24||81456(|37.7|39.0 37.142.9 23.3 51.4 30.6
+ 8 conv. MFCCs
MFCC 63 +SRAIGHT 63 39 |84304|35.8|35.7 35.839.8 21.8 50.8 27.8
VTLN+HLDA mono
MFCC 63 +SRAIGHT 63 63 |/99184(34.9|35.8 34.538.7 21.2 48.9 28.5
VTLN+HLDA mono

Table 6.6: Extended dimensionality experiment on RTO4seval testing set using VTLN
features for the IHM condition. From top to bottom: conventional MFCCs 39 di-
mensions; STRAIGHT MFCCs 39 dimensions; conventional MFCCs 51 dimensions,
STRAIGHT derived MFCCs 51 dimensions; conventional MFCCs 63 dimensions,
STRAIGHT derived MFCCs 63 dimensions; concatenation of the first 13 conventional
MFCCs and from the 14" to the 215! STRAIGHT MFCCs; concatenation of the first 13
STRAIGHT MFCCs and from the 14" to the 215t conventional MFCCs; combination
of the 63 dimensional systems using HLDA with monophone mixtures as classes
reducing from 126 to 39 and 63 dimensions. The model complexity in terms of total

number of mixture components has also been reported.
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S5 - o E
ot M| & 8 2
MF-PLP+VTLN (G)||37.4/35.8 38.342.5 23.3 50.8 30.4
STRAIGHT MF-PLP +VTLN (H)|138.4/37.4 38.943.7 24.4 51.9 303
MF-PLP+SrRAIGHT MF-PLP  [36.2]36.0 36.340.0 22.4 51.0 285

VTLN+HLDA mono (1)

Table 6.7: MF-PLP experiment on RT04seval testing set using VTLN features for the
IHM condition. From top to bottom: conventional MF-PLPs 39 dimensions; STRA-
IGHT MF-PLPs 39 dimensions; HLDA combination from 78 to 39 dimensions using

monophone mixtures as classes.

and these two feature streams were concatenated and rettiumegh HLDA from
78 to 39 dimensions using monophone mixture componentsaasad. Results are
shown in table 6.7. Word error rates were somewhat lower fastthe individual
feature systems and for the combination through HLDA, caegbavith the MFCC
experiments. The combination by HLDA yields a word erroenatduction of 1.2%
absolute (3.2% relative) compared with conventional PLPs.

6.4.6 ROVER experiments on meetings

To fully exploit the complementarity of conventional andicpi adaptive represen-
tations, we performed combination experiments at the sysgel using majority
voting ROVER for the IHM condition of the meeting domain. Wensidered all
the different IHM systems discussed in the previous sulsectdenoted with an
alphabetic letter. Results are reported in table 6.8, wheralso present WERS for
the ROVER oracle to provide a lower bound on the achievable waor rates for
each combination. Results for each individual system arerteg in tables 6.4, 6.6
and 6.7, and each of the nine systems is identified by a leitandB denote the
conventional and BRAIGHT derived systems for lower order MFCCs, whileand
D are the same but for higher order MFCEsandF are the HLDA combinations of
A andB with monophone Gaussian classes and triphone state claspetively;
finally G andH are the MF-PLP systems from conventional am&&IGHT derived
spectral representations, whilés their combination using HLDA and monophone
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Gaussian classes.

First of all comparing the combinatioCG (STFT spectral representations)
and BDH (STRAIGHT representations), we observe that while they have similar
accuracies overall, I RAIGHT representations seem to favour female speakers while
male speakers are recognised better by the conventiondl Bdged features. When
they are merged together kBCDGHthe greatest improvement is still maintained
for females.

ROVERIing the HLDA system outputs with those of the originatsmsed for
the combination gives a substantial improvement with resfrethe HLDA fea-
ture combinationsABEF gives a 1.5% improvement comparedBalone, while
ABCDEFis 0.8% better thaABCD; similarly for PLPs,GHI improves the HLDA
combination systenh by 0.8% also. This is of interest because it indicates that
ROVER acts in a complementary way to HLDA, being able to fertimprove the
already combined systems.

Complementarity between MFCC- and PLP-based systems is nfGoeiltito
exploit than that between conventional antR8IGHT-based systems. When we
consider the combination of all the MFCC based syst&BE€D with the PLP-
based systemSH, we observe thaABCDGH has a similar error rate taBCD for
the majority voting experiment, although there was a suhistamprovement in the
oracle case. On the other hand, the contribution of the higiter representations
(CD) is evident (around 1% absolute), and occurs consistentignacomparing
ABCDEFwith ABEF, ABCDGHwith ABGH, andABCDEFGHIwith ABEFGHI.

Finally the best result is obtained by combining all the alde system&BCDEFGH|,

consistent with Sclilter et al. (2007). This yields a substantial decrease inl\wor

ror rate of 2.4% absolute (6.6% relative) compared with thst BILDA system
(HLDA combination of PLPs), and 2.9% absolute (7.9% reigtisompared with

the best single stream systddn(higher order $SRAIGHT derived MFCCs). Over-

all, by combining HLDA and ROVER we were able to reduce thedwerror rate

by 4.6% absolute (12% relative) compared with the baselmmalised lower order
MFCC system. The oracle results indicate an upper limit ofetk@oitation of the
complementarity between representations.



6.4. Experiments 125

6.4.7 Experiments discussion

STRAIGHT derived features have proven to benefit the most from VTLNv@gx-
pected). Unfortunately in most of the experiments they weteable to outperform
conventional features. Even so there are several exceptiomparticular for high
pitched female speakers, pitch harmonics are still evid&at Mel scaling in con-
ventional MFCCs, thus pitch adaptive features are able tceoioipm conventional
features.

The combination of MFCCs andT8AIGHT features through HLDA was suc-
cessful in all the tasks. MFCCs are affected by pitch artefadt¢hey are extracted
from a sharper representation, whilerAIGHT features are affected by pitch track-
ing errors, but are smoother and devoid of pitch artefacke fWo spectral repre-
sentations are thus complementary and their combinatioviges consistent im-
provements. The effect of the smoothing and the pitch adaptiodules will be
separately studied in chapter 7. Pitch tracking errors areerfrequent and have
the most influence in telephone speech because of the basdijparing channel
effect, in the meeting domain because of the presence o$-tatls and in case
of beamformed signals because of the decreased diredtjoatllower frequen-
cies. The telephone line and beamforming effects partiljugdfect male speakers
(having a lower pitch); this also accentuates the preddeaif STRAIGHT towards
high pitched female voices, but this is clearly evident ia WSJCAMO and in the
IHM meeting domain as well. Nevertheless the combinationguslLDA is able to
yield consistent improvements even in more challengingalosm(CTS and MDM
meetings), where the actual relative improvement is evegefa

In order to analyse our experiments and to better exploittmplementarity
of the pitch adaptive spectral representation, ROVER syst@mbination was also
performed. This is a reasonable experiment when a large euofindependent
speech recognition outputs have been made available. €kpsaments confirmed
the predilection of $RAIGHT systems for female speakers, the importance of the
information contained in higher order coefficients (whieim®e exploited thanks to
the pitch adaptation of SRAIGHT); and the complementarity of HLDA and ROVER
techniques.
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6.5 Conclusions

We have investigated a pitch adaptive acoustic paramatenisfor speech recog-
nition, derived from the SRAIGHT approach to time-frequency analysis, with a
particular focus on speaker normalisation (VTLN) and cambbn with conven-
tional features using HLDA. We performed experiments oed¢Harge vocabulary
domains, using standard data sets and evaluation protodtsICAMO, conver-
sational telephone speech and multiparty meeting trgstgmmi considering both
close-talking and microphone array conditions in the tattemain.

In each domain we observed significant reductions in wordreate through
the combination of conventional and®AIGHT-based features using HLDA. The
resulting systems based on these combined representattoesble to achieve rel-
ative reductions in word error rate of 3.2% on WSJCAMO, 8% orveosational
telephone speech, and for the meeting domain 4.7% for thedéiMition and 7.3%
for the MDM condition. In both the WSJCAMO and CTS domains, wenfbthat
STRAIGHT derived features benefit the most from VTLN (because of gramother
representation) particularly for male speakers. VTLN onenspeakers lowers the
centers of the Mel filters making the filters width narrowew,tthus more able to
capture the thin horizonal spectral lines due to pitch adist For female speakers
the pitch artefacts are even more evident in the convert®hBT representation,
while the pitch adaptive spectral representation makesottmant positions more
evident and therefore easier to catch by the VTLN warpedtliittek. Therefore
VTLN on male speech benefits more from a smoother spectroghemving even
better improvements than VTLN on female. Note that in gdrtbespeakers ben-
efiting the most from the use of a pitch adaptive represamtare high pitched
speakers for which the pitch artefacts are more evident.

Moreover experiments on the CTS domain showed that the irdkuefthe pitch
tracker is of importance for SRAIGHT derived feature extraction.

Experiments on the use of pitch adaptive MF-PLPs for the imgéHM task
showed a 3.2% relative WER improvement when combined with@atonal MF-
PLPs using HLDA. On the same task the use of higher order caefts (20 MFCCs
plus CO) was evaluated both for standard and pitch-adapatifes, finding that
STRAIGHT-based features performed better than conventional Estparticularly
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for female speakers. In fact, for STFT derived featuredydnigrder coefficients are
strongly affected by pitch artefacts which is more eviderttigh-pitched speakers.
Finally ROVER system level combination was applied on topbDA feature level
combination finding that further improvements can be aadawerging the output
of the baseline systems with the correspondent HLDA contbsystem; therefore
showing that ROVER is complementary to HLDA.

We have explored the use of pitch-adaptive spectral reptasens in ASR, as
a complement to conventional STFT representations. Exteesperiments over
three standard large vocabulary tasks allow us to conchatdhe use of such com-
plementary information, combined using HLDA, provides sistent, significant
reductions in word error rate.






Chapter 7

Experimental analysis of the use of
STRAIGHT in LVCSR

7.1 Introduction

In chapter 6 we used a pitch adaptive spectral represemte8iRAIGHT (Kawa-
hara et al., 1999), to perform experiments on three Largabary Continuous
Speech Recognition (LVCSR) tasks: WSJCAMO, conversationgitielee speech
and multiparty meeting data.

STRAIGHT derived features provided substantial improvements ithaltasks
when combined with conventional MFCCs, suggesting that theg@mplementary
to the latter.

In this chapter we analyse the individual contribution ofleaepresentation
in two ways. First in section 7.2, we decouple the pitch aslapind smoothing

aspects of SRAIGHT. Experiments performed on the meeting speech recognition

task highlight the importance of using a pitch adaptive spéanalysis and the
benefit of combining it with a conventional fixed window spatanalysis. Second
in sections 7.3 and 7.4, a speaker independence metric wdsgasompare pitch
adaptive features with conventional features: it was fotlvad the pitch adaptive

component of SRAIGHT provides improved speaker independence. Reduced inter-

speaker variability is particularly beneficial when feat@wombination techniques
such as Heteroscedastic Linear Discriminant Analysis (M).&re employed.

129
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7.2 Decoupling the pitch adaptive and the smoothing

effect of S TRAIGHT

The STRAIGHT spectral analysis has two concurrent effects: on one side&ch p
adaptive window is used for spectral analysis and on the sttle smoothing is per-
formed interpolating the partial information provided I tpitch adaptive spectral
analysis itself. In the experiments described in the previchapter we observed,
both on the WSJCAMO, the CTS and the IHM and MDM meeting condstidnat
for 39 dimensional systems conventional MFCCs outperformedtRAIGHT de-
rived MFCC systems. Therefore we conducted some experin@iscouple the
two STRAIGHT effects both on the IHM and the MDM meeting task. To compute
STRAIGHT derived features without the pitch adaptive analysis wikeist the win-
dow’s width fixed (to 80 Hz), and to computea8AIGHT derived features without
smoothing this step is just skipped in the processing.

Figure 7.1 shows a plot of the spectral contour for one frammized speech
for the short time Fourier transform (STFT), and forRIGHT, while figure 7.2
compares the BRAIGHT spectral envelope with that offRAIGHT using only the
smoothing and 8RAIGHT using only the pitch adaptive component. It can be no-
ticed that when the pitch adaptive module afiRAIGHT is used with no smoothing
some harmonics are still present, while using the smootbargalone on the other
hand seems to yield a very smooth spectral envelope.

We performed the experiments in the meeting domain in the teidk training
and testing using the same data used for the experimentstsbsbm the previous
chapter (chapter 6) and described in section 4.2.3.6 and 4.5

The results of these experiments are reported in table gt.viFe observe that
the pitch adaptive analysis without smoothing (S2) givealkbut not significant
improvement over conventional MFCCs (M1) and an even largerarement on
S1 (STRAIGHT derived MFCCs). This is particularly evident for female sprak
while for male speakers there is a substantial improvemspeaally when com-
pared to purely $8RAIGHT derived MFCCs (S1). Smoothing is particularly bad for
male speakers and this is also confirmed by the experimehtarse of the smooth-
ing part only of SRAIGHT without pitch adaptive analysis (S3). The MFCCs ex-
tracted using the smoothing component only oR8IGHT performed consistently
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Figure 7.1: A comparison of the STFT and STRAIGHT spectral analysis

worse than conventional MFCCs.

We also combined conventional MFCCs with the pitch adaptivg (M1+S2)
and smoothing only (M1+S3) IRAIGHT derived MFCCs using HLDA feature
combination with monophone mixture components as clagskgmg from 78 to
39 dimensions. While none of this combinations outperforriedcombination
of conventional and 8RAIGHT derived MFCCs (M1+S1) overall, the combination
with pitch adaptive only $RAIGHT derived MFCCs (M1+S2) gave better perfor-
mances for female speakers (for which pitch adaptive aisalysnore important).
The combination with smoothing onlytTBAIGHT derived MFCCs (M1+S3) on the
other hand gave a smaller improvement. This is further emdehat the comple-
mentarity between conventional an@tr:IGHT derived MFCCs is arisen from the
use of a pitch adaptive window by the latter.
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Figure 7.2: A comparison of the STRAIGHT spectral analysis with pitch adaptive

only and smoothing only

7.3 Statistical measures of the acoustic features

speaker independence

One of the aims of using a pitch adaptive spectral representr feature extrac-
tion is to obtain features which have increased speakepam#ence. Ideally we
would like to have features which only vary across differdasses and which have
as little as possible variation across different speakétfsmthe same class used
for speech recognition.

Haeb-Umbach (1999) investigated the effectiveness ofkgpaaormalisation
techniques such as CMN and CVN and VTLN proposing to use the LiBjéocbive
function as an effectiveness measure. A similar treatmetiteoeffect of speaker
normalisation techniques was also presented by Saon &08l2) where they re-
late VTLN and LDA techniques showing the importance of apyLDA on top
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TOT| F M | CMU ICSI LDC NIST
MFCC M1 38.4(38.5 38.3 43.7 239 521 309
STRAIGHT MFCC | S1 39.3|38.3 39.7 44.7 248 53.1 31.2
STRAIGHT MFCC | S2 38.2(38.2 38.3 434 242 51.8 30.7
pitch adapt. only
STRAIGHT MFCC | S3 40.1 39.9 40.1 45.1 255 55.2 31.3
smoothing only
HLDA78t0 39 |M1+ S1| 36.6 [36.3 36.7 41.0 225 51.2 28.5
mono
HLDA78t039 M1+ S2| 36.9(36.1 37.3 41.1 22.0 51.8 30.0
mono
HLDA78t0 39 |M1+ S3|| 37.336.6 37.6 42.1 23.3 50.7 30.2
mono

Table 7.1: Experiment on RTO4seval testing set using VTLN features for the IHM
condition. From top to bottom: conventional MFCCs 39 dimensions (M1); STRAIGHT
MFCCs 39 dimensions (S1); STRAIGHT MFCCs 39 dimensions with pitch adaptive
analysis only (no smoothing) (S2); STRAIGHT MFCCs 39 dimensions with smoothing
only (no pitch adaptive analysis) (S3); HLDA combination of M1 and S1, M1 and S2,
M1 and S3 all reducing from 78 to 39 dimensions using monophone mixtures as

classes.

of speaker normalised features (which ideally eliminatmgletely inter-speaker
variability) in order to achieve better class separabigyng LDA. The aim of this
section is to summarise the results of these two papersrtalinte the analysis we
conducted on 8RAIGHT derived features.

Suppose each acoustic feature vegtas labelled according to the clagsand
the speakes to which it belongs (the association of a particular frama tassj
can be done automatically by forced alignment). We can défieeorresponding
total number of feature vectorg € (j,s) as NU-S): therefore the corresponding
mean and variance will be respectively defined as:

o 1" s
S) __ (J,s
= NG9 ; X\ (7.1)

p_(h
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(is)

LS (09 39 (9 90T, (7.2)
NG i; ! |

$(09 _

And if NU) is the total number of feature vectors belonging to clpshie corre-
sponding class specific mean and variance are defined as:

: 1 .
) = — (.97, .
. 1 A a
s — = S NOSSGS 15 o 7.4
NT 2 e (74

WhereiBs is the between speaker covariance for clpsesmputed as:
(i)

n 1 . . . . .
S o = — 5 NG _ghypts — ginT. 75
BS, N(,)S; (PO =) (S — i) (7.5)
The within-class covariance is therefore due to two distoaenponents: the vari-

ance due to the classes themselves and the between speak@aoce:

. 1 o 1 RSN 1 N A
Swe=— SN0 = = NS5 L = 5 NS s (7.6)
N J; N %S; N % BG)
s s

B

WC

whereBS is the total between speaker covariance &jdis the within class covari-
ance matrix we would have if the features were ideally spegidependent. The
total covariance is given by the sum of the within class covariarig and the
between class covarian&g. which is given by:

- NG .
She= Y —— (Y —p@V -pT. (7.7)
2N

The goal of LDA is finding the projectio which maximises the across class
covariance and minimises the within class covariance iptbgected space that is:

02,07 02,07
0= arg maxm — argmax 19216 |

— < . 7.8
0 ’ezwce” 0 ‘e<z\’/\|vc+ BS)GT‘ ( )

As already observed in section 4.4.1 the solution of eqnati® can be found by
computing the eigenvectors corresponding to pHargest eigenvalues (ff\,;%ibc,
with the product of thep largest eigenvalues corresponding to the LDA objective
function. Saon et al. (2002) argued that, since ideally #tevben-speaker covari-
ance should be zero for speaker normalised features, thedbpsitive function for
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normalised features should always be higher than that ofnoomalised features.
Unfortunately even using speaker normalisation techrsgtle between-speaker
covariance is not completely zero but it makes sense to edelA objective func-
tion to measure inter-speaker independence of the features

Similarly we can also demonstrate that the HLDA objectivection measured
on normalised features is larger than that measured on re@akspnormalised fea-
tures. In fact we recall that from equation 4.8 HLDA transfsrare estimated by
maximising the likelihood of the original data given theimstted statistics with
an objective function inversely proportional both to theateovariance& and the
per class covariance matricég). We have shown that the total covariance ma-
trix £ = Spe+ Swe can be further decomposed into two parts: the covariande tha
would be obtained if the features were perfectly speakemabsed, and the be-
tween speaker covariance (equation 7.6). The per classiaoga matrix5 "
(equation 7.4) can be also split into a class-specific camag and the between
speaker covariance matrix for the class. Ideally, if theuess were completely
speaker normalised, the between speaker covariance weuhdilband therefore
the likelihood of equation 4.8 would be greater for nornediseatures compared
to features with some speaker dependence. Unfortunately @sing speaker nor-
malisation techniques, the between-speaker covarianua& isompletely zero (for
example coarticulation differences are not normalised HiN) and the LDA ob-
jective function can be used as a measure of speaker independf the features.

In Haeb-Umbach (1999) the trace (the sum of the eigenvabfask ratio be-
tween the between class covariance matgixand the between speakers covariance
matrix is used as a measure of speaker normalisation MSibC/éS). In our
work we applied this measure to compare conventional MFCC®an8rRAIGHT
derived MFCCs from an inter-speaker variability point of view

7.4 Measuring the speaker independence of S TRA-

IGHT derived features

We adopted the inter-speaker independence measure iogwdou Haeb-Umbach
(1999) using Gaussian components of monophone models ssesléan order to
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Figure 7.3: Trace measure as a function of the feature dimension measured using

the whole meeting IHM training data
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maintain the same type of classes used in our HLDA combin&iperiments. We
compared conventional MFCCsT8AIGHT derived MFCCs without the smooth-
ing, STRAIGHT derived MFCCs without the use of the pitch adaptive window and
STRAIGHT derived MFCCs with both smoothing and the pitch adaptive windo
usage. We used the entire meeting IHM corpus (describecdttioaet.2.3.6) which
contains a total of 115 male and 49 female speakers. Thetsesfulhis experi-
ment, using 39 dimensional feature vectors (12 cepstrdficeats plus CO pluds
andAAs), are shown in figure 7.3 for the whole training set and inrégu5 and
7.7 for male and female speakers respectively. In figure7Z6dand 7.8 the traces
normalised using the trace of the MFCC features are also sfaviaetter compari-
son. The trend of the trace measure shows 3 large humps due ddferent nature
on cepstral coefficients and their first and second dereatand to the fact that
obviously as lower order cepstral coefficients are moreruiscative so are their
correspondent first and second derivatives (the gradiemgiser for lower order
coefficients and their derivatives), while higher orderstegd coefficients are more
noisy and therefore less discriminative; thus they havereespondent eigenvalue
which is smaller than that of lower order coefficients.

Looking at the magnified lower part of figure 7.3 (which shotws trace trend
for the first 12 cepstral coefficients only) we can observé 8T®AIGHT derived
MFCCs using the pitch adaptive windowing but without smoaitshow the higher
inter-speaker independence. Pitch adaptive features ame speaker independent
than both conventional MFCCs and smoothing onfyRS8IGHT derived MFCCs.
STRAIGHT derived features using the pitch adaptive component omytheg most
speaker invariant.

Comparing the lower magnified part of figure 7.5 for male spesa&ad figure
7.7 for female speakers we can observe that they are slighitgrent. while for
female speakers for lower order cepstral coefficients theetrs lower for conven-
tional MFCCs and this curve is then crossed by th®@ 8GHT derived features
without the use of the pitch adaptive window, in the malewigtthis happens only
for the 10th cepstral coefficient. Most importantly both females and males the
features derived from a pitch adaptive representation shbigher trace and there-
fore evidence of higher speaker independence for the egpmsiefficients them-
selves.
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TOT | F M | CMU ICSI LDC NIST
MFCC M1 | 38.4| 38,5 38.3| 43.7 239 521 30.9
STRAIGHT MFCC | S1 || 39.3| 38.3 39.7| 447 248 53.1 31.2
STRAIGHT MFCC | S2 || 38.2| 38.2 38.3] 434 242 518 30.7
pitch adapt. only
STRAIGHT MFCC | S3 || 40.1 | 39.9 40.1] 451 255 552 31.3
smoothing only
HLDA 39 to 39 M1 | 37.6| 37.7 375 417 23.1 53.1 295
mono
HLDA 39 to 39 S1| 374|372 375 423 21.8 53.7 28.6
mono
HLDA 39 to 39 S2 || 37.1| 36.0 37.7/ 41.8 223 522 293
mono
HLDA 39 to 39 S3 | 39.6| 38.8 40.1 442 25.0 554 30.7
mono

Table 7.2: Experiment on RT04seval testing set using VTLN features for the IHM
condition. From top to bottom: conventional MFCCs 39 dimensions (M1); STRAIGHT
MFCCs 39 dimensions (S1); pitch adaptive only STRAIGHT MFCCs 39 dimensions
(S2); smoothing only STRAIGHT MFCCs 39 dimensions (S3); HLDA 39 to 39 dimen-
sion projection of M1 (conventional MFCCs); HLDA 39 to 39 dimension projection of
S1 (STRAIGHT derived MFCCs); HLDA 39 to 39 dimension projection of S2;HLDA

39 to 39 dimension projection of S3.

Saon et al. (2002) argued that LDA gives better performanoesore speaker
independent features and we have shown in the previouose@ti3) that this
should be also true for HLDA. To assess this on ouRSIGHT derived features we
applied HLDA directly on the 39 dimensional conventional 1Es, SRAIGHT
derived MFCCs and 8RAIGHT derived MFCCs using the pitch adaptive module
only and the smoothing module only projecting to 39 dimemsi(performing in
this way MLLT (Gopinath, 1998)).

The results of this experiment are shown in table 7.2. Theowrgment obtained
by the use of HLDA is larger for pitch adaptiva SAIGHT derived MFCCs than for
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conventional MFCCs and smoothing onlyaIGHT MFCCs. We hypothesise that
this is due to the better speaker independence of pitch imddptaitures as shown
similarly by Saon et al. (2002) for LDA applied on VTLN feats.

7.5 Conclusions

In the previous chapter aTRAIGHT based pitch adaptive spectral representation
was successfully applied to extract acoustic features éhiaienging LVCSR task,
multiparty conversational speech in the meeting domaine dtmbination with
conventional MFCCs using HLDA was particularly beneficiallgieg consistent
improvements over conventional features alone.

In this chapter the two key components ofFAIGHT, pitch adaptive analysis
and smoothing through interpolation, were studied inddpatly. Experimental re-
sults showed that adopting pitch adaptive features canovepspeech recognition
performances. Non smoothed pitch adaptive features datpeed smoothed non
pitch adaptive features, when combined with conventioneO@s. This improve-
ment is principally due to the adoption of a pitch adaptiyeresentation. The use
of a pitch adaptive representation is particularly benafficr female speakers, be-
cause for high pitched speakers the Mel filters are not broadgh to remove the
horizontal spectral lines due to the pitch artifacts.

We have also measured the speaker independence of all thesfeadopted in
this study. Using an LDA based metric we found evidence thatpitch adaptive
features are more speaker independent than conventior@OglPNe observed that
the improved speaker independence has the desirable effi@etking HLDA more
effective and making BRAIGHT derived features more suitable for this technique
than conventional features.



Chapter 8
Conclusions

The main goal of this thesis was studying the applicatiorpef&er normalisation
techniques such as VTLN to multiparty conversational speed in particular mul-
tiparty meetings. Therefore the principal research gaestaimed to answer in this
dissertation is:

How can we apply speaker normalisation and in particular VTLN
to multiparty conversational speech?

More specifically this problem has been subdivided in twoguestions:

1. Which are the most important features of multiparty cosee
tional speech from a VTLN point of view?

2. Is it possible to improve the conventional feature extoac
methods to obtain features which are better suited for spaake
malisation and thus more speaker independent?

Two main research threads were therefore investigateddwearnrespectively
the two proposed research questions above recalled. Réstpplication of max-
imum likelihood VTLN to spontaneous conversational spe&ath particular at-
tention to multiparty meetings, was investigated findingsstent WER reductions
(8% relative) both on CTS and meeting data. The stability ef warping fac-
tors, parameterising vocal tract length normalisatiors stadied both for the same
speaker across different meetings and across time for the saeaker within a
single meeting, finding no stable estimates, even if voeat{ength should be con-
stant at least to a certain extent. Thus we investigatedatability of the warping
factors in connection with the rich speaker turn structuraracterising meetings.

145
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This study was conducted looking at the dependence of theimgafactor estimated
for a speaker given the current speaker’s addressee. Wd thah ML estimated
warping factors appear to be influenced by the context antcpkarly by the cur-
rent conversational partner. Itis thus likely that speakeldress others according to
whom they are speaking to and that this is reflected in the Mimese of the warp-
ing factor. We also hypothesised that the behaviour of thgwvg factor estimates
Is in line with the interactive alignment account of dialegthe estimated warping
factors of two speakers are typically non aligned at therbegg of a meeting but
can be seen to align as the meeting progresses. Accordihg fateractive align-
ment account, during a dialogue two speakers could be sealigto at multiple
levels: lexical, syntactic, phonological, phonetic andeirms of the formant space.
In particular warping factors are known to be highly cortethwith pitch (as we
also found in the experiments of this thesis) and the vanati warping factors can
be at least partly explained by a shift in formant frequenci@used by interactive
alignment.

Therefore we investigated the use of pitch adaptive featureéhe context of
multiparty spontaneous speech in conjunction with VTLNS(ik the main second
thread of this thesis). In particular we adopted the pitcptisle spectral representa-
tion of STRAIGHT for the extraction of acoustic features such as MFCCs and PLPs.
This spectral representation is computed in two steps:dipstich adaptive spectral
analysis is performed adopting a window which adapts to hediue, second a
smoothing through interpolation of the partial informatigiven by the pitch adap-
tive spectral analysis is performed. For the unvoiced segsritbe value of the pitch
determining the analysis window width was fixed to a consthé0Hz). One pos-
sible alternative could have been to use an interpolatigheopitch contour for this
regions. A recent modification toTRAIGHT (Kawahara, 2007) provides non-zero
pitch trajectories even for unvoiced and silence segment# aould be interesting
to investigate the effect of this on pitch adaptive feattioespeech recognition.

We also combined conventional and pitch adaptive featusagyboth feature
level combination in the form of HLDA and system level condtion in the form
of ROVER. As well as in the meeting domain, both for the clodkirig and the
distant microphone tasks, we also performed our expersnemtthe WSJCAMO
corpus (read speech) and conversational telephone speech.
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Results on the use ofiRAIGHT derived features have shown that the pitch in-
dependent features achieve performances comparables® dficonventional fea-
tures. In addition they benefit particularly from VTLN aneld especially good re-
sults for female speakers. CombiningrAIGHT derived and conventional features,
both using feature and system combination techniques, wadfthat the informa-
tion carried is complementary. HLDA feature combinationsvedole to achieve a
consistent relative decrease in the word error rate of 3-@¥%sa all three domains,
with the largest relative reductions being observed on ¢tephone speech and
distant microphone tasks. A further 8% relative reductionvord error rate was
observed when ROVER combination (using majority votingsvegplied to the
meeting transcription task. The success in applying theASGHT spectral repre-
sentation to three different challenging tasks, allowetbusake strong conclusions
about the usefullness of a pitch adaptive representatitreihVCSR domain, par-
ticularly if used in conjunction with VTLN. Besides providjrconsistent word error
rate reductions when combined to conventional featuregpitch adaptive features
have proved to be able to benefit the most from VTLN. This destrates their
better suitability in conjunction with this technique bath the WSJCAMO and the
CTS task.

The complementarity between conventional amtR&GHT derived features
could be explained as follows: TRAIGHT derived features, given their more ac-
curate representation (independent from the pitch at®faprovide information
complementary to the conventional STFT derived featuresnv@ational STFT
features on their turn, because of the sharper spectralopevef STFT, contain
important information which was smoothed out in therRBIGHT representation.
We have combined the conventional antR8IGHT features at the cepstral coef-
ficient level. It would be however possible to combine dinethe STFT and the
STRAIGHT spectrograms after the Mel scaling is performed. This ctealdione
in several ways. One possibility is to apply directly HLDA tloe concatenated
Mel spectrograms, skipping the DCT step, since this is betldéo be not necessary
when discriminant linear transforms are used (Yu and Wa@@00; Saon et al.,
2000a). In this way the two frontends could be integratedlaivar level reducing
the computational overload and making the feature extragirocess more consis-
tent. Moreover recent works have shown the benefit of systenbmation through
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cross-adaptation (Giuliani and Brugnara, 2006; Hoffmeistal., 2007). It would
therefore be possible to use the output of tht@ &GHT derived MFCC system to
adapt through MLLR the conventional MFCC system and viceers

Further investigations on meetings, isolating the pitcipdiste from the smooth-
ing component of the BRAIGHT spectral representation, have also shown that when
the two main modules are used separately it is the pitch agapart to provide
most of the complementarity with the conventional featurkreover evidence
of an improved speaker independence due to the pitch adaguialysis was also
observed.

It is well known that the pitch artefacts, which manifestrttself through spec-
tral harmonic lines in the spectrogram, particularly afdagher order coefficients
(Irino et al., 2002). The pitch artefacts can be in fact gti#sent after the Mel Fil-
terbank is applied (especially for high pitched speakefs)is is the main reason
why in most of the speech recognition systems only the firgteltral coefficients
are used. In our experiments we found that the adoption of@#npitch adap-
tive spectral representation enables to use higher orgetred coefficients even for
high pitched (female) speakers, yielding a significant mepment compared to the
conventional features. In fact in this caserR3IGHT derived MFCCs outperform
conventional MFCCs.

The peculiarities of conversational speech from a speakenalisation point of
view (our main starting point question) were studied thtoutestigations of the
VTLN warping factor behaviour finding a dependence on thie nieeting speaker
turn structure. It is therefore interesting to take intoaot the discourse structure
by estimating VTLN parameters depending on the speaker tdowever the re-
lationship between warping factors and speaker turns islinett but it is filtered
through the dependence of the formant space on the speaksrtfiemselves. In
fact warping factors are directly dependent on the formaate which can shift
because of the speaker turn structure (speakers speatediffeaccording to their
current addressee to facilitate the conversation flow aagpven the pitch of their
voice). Therefore we investigated the use of pitch adapextral analysis aim-
ing to find features which are at the same time more suitabl®T&N and more
speaker independent. Not only the adoption of these feapn@/ided consistent
word error rate reductions, particularly in the multipacgnversational domain of
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meetings, but we also found evidence of better speaker @ntkgnce.
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