38 research outputs found

    MODELING THE PHYSICS OF FAILURE FOR ELECTRONIC PACKAGING COMPONENTS SUBJECTED TO THERMAL AND MECHANICAL LOADING

    Get PDF
    This dissertation presents three separate studies that examined electronic components using numerical modeling approaches. The use of modeling techniques provided a deeper understanding of the physical phenomena that contribute to the formation of cracks inside ceramic capacitors, damage inside plated through holes, and to dynamic fracture of MEMS structures. The modeling yielded numerical substantiations for previously proposed theoretical explanations. Multi-Layer Ceramic Capacitors (MLCCs) mounted with stiffer lead-free solder have shown greater tolerance than tin-lead solder for single cycle board bending loads with low strain rates. In contrast, flexible terminations have greater tolerance than stiffer standard terminations under the same conditions. It has been proposed that residual stresses in the capacitor account for this disparity. These stresses have been attributed to the higher solidification temperature of lead free solders coupled with the CTE mismatch between the board and the capacitor ceramic. This research indicated that the higher solidification temperatures affected the residual stresses. Inaccuracies in predicting barrel failures of plated through holes are suspected to arise from neglecting the effects of the reflow process on the copper material. This research used thermo mechanical analysis (TMA) results to model the damage in the copper above the glass transition temperature (Tg) during reflow. Damage estimates from the hysteresis plots were used to improve failure predictions. Modeling was performed to examine the theory that brittle fracture in MEMS structures is not affected by strain rates. Numerical modeling was conducted to predict the probability of dynamic failure caused by shock loads. The models used a quasi-static global gravitational load to predict the probability of brittle fracture. The research presented in this dissertation explored drivers for failure mechanisms in flex cracking of capacitors, barrel failures in plated through holes, and dynamic fracture of MEMS. The studies used numerical modeling to provide new insights into underlying physical phenomena. In each case, theoretical explanations were examined where difficult geometries and complex material properties made it difficult or impossible to obtain direct measurements

    Development and Packaging of Microsystems Using Foundry Services

    Get PDF
    Micro-electro-mechanical systems (MEMS) are a new and rapidly growing field of research. Several advances to the MEMS state of the art were achieved through design and characterization of novel devices. Empirical and theoretical model of polysilicon thermal actuators were developed to understand their behavior. The most extensive investigation of the Multi-User MEMS Processes (MUMPs) polysilicon resistivity was also performed. The first published value for the thermal coefficient of resistivity (TCR) of the MUMPs Poly 1 layer was determined as 1.25 x 10(exp -3)/K. The sheet resistance of the MUMPs polysilicon layers was found to be dependent on linewidth due to presence or absence of lateral phosphorus diffusion. The functional integration of MEMS with CMOS was demonstrated through the design of automated positioning and assembly systems, and a new power averaging scheme was devised. Packaging of MEMS using foundry multichip modules (MCMs) was shown to be a feasible approach to physical integration of MEMS with microelectronics. MEMS test die were packaged using Micro Module Systems MCM-D and General Electric High Density Intercounect and Chip-on-Flex MCM foundries. Xenon difluoride (XeF2) was found to be an excellent post-packaging etchant for bulk micromachined MEMS. For surface micromachining, hydrofluoric acid (HF) can be used

    Non-destructive evaluation of solder joint reliability

    Get PDF
    A through life non-destructive evaluation technique is presented in which a key solder joint feature, nucleating at the bump to silicon interface and propagating across a laminar crack plane is captured and tracked using acoustic microscopy imaging (AMI). The feasibility of this concept was successfully demonstrated by employing the measurement technique in combination with Finite Element Analysis (FEA) to study the impact of component floor plan layout on the reliability of electronics systems subjected to thermal cycling. A comprehensive review of current and emerging packaging and interconnect technologies has shown increasingly a move from conventional 2D to 3D packaging. These present new challenges for reliability and Non Destructive Evaluation (NDE) due to solder joints being hidden beneath the packaging, and not ordinarily visible or accessible for inspection. Solutions are developed using non-destructive testing (NDT) techniques that have the potential to detect and locate defects in microelectronic devices. This thesis reports on X-ray and Acoustic Micro Imaging (AMI) which have complementary image discriminating features. Gap type defects are hard to find using X-ray alone due to low contrast and spot size resolution, whereas AMI having better axial resolution has allowed cracks and delamination at closely spaced interfaces to be investigated. The application of AMI to the study of through life solder joint behaviour has been achieved for the first time. Finite Element Analysis and AMI performance were compared to measure solder joint reliability for several realistic test cases. AMI images were taken at regular intervals to monitor through- life behaviour. Image processing techniques were used to extract a diameter measurement for a laminar crack plane, within a solder joint damage region occurring at the bump to silicon interface. FEA solder joint reliability simulations for flip-chip and micro-BGA (mBGA) packages placed on FR4 PCB's were compared to the AMI measurement performance, with a reasonable level of correlation observed. Both techniques clearly showed significant reliability degradation of the critical solder joints located furthest from the neutral axis of the package, typically residing at the package corners. The technique also confirmed that circuit board thickness can affect interconnect reliability, as can floor plan. Improved correlation to the real world environment was achieved when simulation models considered the entire floor plan layout and constraints imposed on the circuit board assembly. This thesis established a novel through life solder joint evaluation method crucial to the development of better physics of failure models and the advancement of model based prognostics in electronics systems

    Materials for high-density electronic packaging and interconnection

    Get PDF
    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production

    MICROELECTRONICS PACKAGING TECHNOLOGY ROADMAPS, ASSEMBLY RELIABILITY, AND PROGNOSTICS

    Get PDF
    This paper reviews the industry roadmaps on commercial-off-the shelf (COTS) microelectronics packaging technologies covering the current trends toward further reducing size and increasing functionality. Due tothe breadth of work being performed in this field, this paper presents only a number of key packaging technologies. The topics for each category were down-selected by reviewing reports of industry roadmaps including the International Technology Roadmap for Semiconductor (ITRS) and by surveying publications of the International Electronics Manufacturing Initiative (iNEMI) and the roadmap of association connecting electronics industry (IPC). The paper also summarizes the findings of numerous articles and websites that allotted to the emerging and trends in microelectronics packaging technologies. A brief discussion was presented on packaging hierarchy from die to package and to system levels. Key elements of reliability for packaging assemblies were presented followed by reliabilty definition from a probablistic failure perspective. An example was present for showing conventional reliability approach using Monte Carlo simulation results for a number of plastic ball grid array (PBGA). The simulation results were compared to experimental thermal cycle test data. Prognostic health monitoring (PHM) methods, a growing field for microelectronics packaging technologies, were briefly discussed. The artificial neural network (ANN), a data-driven PHM, was discussed in details. Finally, it presented inter- and extra-polations using ANN simulation for thermal cycle test data of PBGA and ceramic BGA (CBGA) assemblies

    Novel test structure to monitor electromigration

    Get PDF

    Glass multilayer bonding for high density interconnect substrates

    Get PDF
    The aim of this research was the investigation of bonding borosilicate glass sheets, its trade mark CMZ, 100μm thickness, to create multilayer substrates capable of supporting high-density electrical interconnections. CMZ glass was chosen as it has a coefficient of thermal expansion that is close to that of silicon, thereby minimising thermal stresses in assemblies generated by manufacturing processes or service conditions. Two different methods of bonding the glass were used in this study; pressure assisted low temperature bonding (PALTB), and water glass bonding, using Sodium Trisilicate (Na2Si3O7) solution. These two bonding methods have already been applied in electronics manufacturing applications, such as silicon wafer bonding and multichip modules (MCMs). However, glass-to-glass bonding is a relatively new subject and this study is an attempt to standardise bonding processes. Additionally, the concept of using glass as a multilayer substrate provides a foundation for further exploration by other investigators. Initial tests that were carried out before standardising the procedures for these two methods showed that a two-stage bonding process provided optimum results. A preliminary stage commenced by placing the cleaned (using Decon 90 solution) samples in a vacuum oven for 15 minutes, then heating at 100oC for 1hr. The permanent stage was then achieved by heating the samples in a conventional oven at temperatures from 200 to 400oC, for different periods. At this stage, the main difference between the two methods was the application of pressure (1-2MPa) during heating of the PALTB samples. To evaluate the quality of the bonds, qualitative tests such as visual, optical microscope and dye penetrant were used. In addition, to estimate the strength and the rigidity of the interlayer bonds, two quantitative tests, comprising of deflection under cyclic stresses and crack opening were used. Thermal cycling and humidity tests were also used to assess resistance of the bonds to environmental effects. The results showed that heating to 100oC was insufficient to enhance the bonds, as occasionally a sudden increase of deflection was observed indicating slippage/delamination. These bonds were enhanced during the permanent bonding stage by heating to 300oC in PALTB, under a pressure of 1-2MPa. The crack-opening test showed that the delamination distances of the bonds in the permanent stage were lower than that for preliminary bonding in both bonding methods. The delamination distances from the crack opening tests were used to calculate the strain energy release rate (GIC) and fracture toughness (KIC) values of the interlayers. The results showed that the KIC values of the permanent PALTB and water glass interlayers were higher than 1MPa.m0.5, while the KIC value of the CMZ glass, determined by linear elastic fracture mechanics, was around 0.8MPa.m0.5. The optical observations revealed that the prepared bonded sheets did not delaminate or break after thermal cycling and humidity tests

    Reliability of GaN-on-Si high-electron-mobility transistors for power electronics application

    Get PDF

    Compliant copper microwire arrays for reliable interconnections between large low-CTE packages and printed wiring board

    Get PDF
    The trend to high I/O density, performance and miniaturization at low cost is driving the industry towards shrinking interposer design rules, requiring a new set of packaging technologies. Low-CTE packages from silicon, glass and low-CTE organic substrates enable high interconnection density, high reliability and integration of system components. However, the large CTE mismatch between the package and the board presents reliability challenges for the board-level interconnections. Novel stress-relief structures that can meet reliability requirements along with electrical performance while meeting the cost constraints are needed to address these challenges. This thesis focuses on a comprehensive methodology starting with modeling, design, fabrication and characterization to validate such stress-relief structures. This study specifically explores SMT-compatible stress-relief microwire arrays in thin polymer carriers as a unique and low-cost solution for reliable board-level interconnections between large low-CTE packages and printed wiring boards. The microwire arrays are pre-fabricated in ultra-thin carriers using low-cost manufacturing processes such as laser vias and copper electroplating, which are then assembled in between the interposer and printed wiring board (PWB) as stress-relief interlayers. The microwire array results in dramatic reduction in solder stresses and strains, even with larger interposer sizes (20 mm × 20 mm), at finer pitch (400 microns), without the need for underfill. The parallel wire arrays result in low resistance and inductance, and therefore do not degrade the electrical performance. The scalability of the structures and the unique processes, from micro to nanowires, provides extendibility to finer pitch and larger package sizes. Finite element method (FEM) was used to study the reliability of the interconnections to provide guidelines for the test vehicle design. The models were built in 2.5D geometries to study the reliability of 400 µm-pitch interconnections with a 100 µm thick, 20 mm × 20 mm silicon package that was SMT-assembled onto an organic printed wiring board. The performance of the microwire array interconnection is compared to that of ball grid array (BGA) interconnections, in warpage, equivalent plastic strain and projected fatigue life. A unique set of materials and processes was used to demonstrate the low-cost fabrication of microwire arrays. Copper microwires with 12 µm diameter and 50 µm height were fabricated on both sides of a 50 µm thick, thermoplastic polymer carrier using dryfilm based photolithography and bottom-up electrolytic plating. The copper microwire interconnections were assembled between silicon interposer and FR-4 PWB through SMT-compatible process. Thermal mechanical reliability of the interconnections was characterized by thermal cycling test from -40°C to 125°C. The initial fatigue failure in the interconnections was identified at 700 cycles in the solder on the silicon package side, which is consistent with the modeling results. This study therefore demonstrated a highly-reliable and SMT-compatible solution for board-level interconnections between large low-CTE packages and printed wiring board.Ph.D
    corecore