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Abstract 

Elect romigration continues to be one of the important failure mechanisms lim-

iting the attainment of higher levels of reliability in sub-micron geometry VLSI 

circuits. Successful management of elect romigration in future requires adoption 

of effective statistical process control techniques, in addition to the traditional 

quality control tests and inspections. The aim of this project was to develop a 

test structure and test methodology to monitor elect romigration for metallisation 

process control. 

Based on analysis and some preliminary measurements on chequerboards, a 

new test structure and methodology was proposed to monitor electromigration. 

'Chequerboards' are dense patterns of clear and opaque squares of metal film over 

silicon. 

As part of this study, an electromigration test chip was designed. It consists 

of two designs: The design EU9 101 mainly contains chequerboards while EU9 102 

contains conventional and other elect romigration test structures for comparative 

assessment. The chip design, fabrication and measurement details including the 

instrumentation aspects are also given in the thesis. 

One of the key process parameters, namely, linewidth is chosen to demonstrate 

the sensitivity of the proposed methodology to monitor elect romigrat ion. Possible 

applications of the new structure in electromigration measurements, other than 

process monitoring are also discussed. The thesis also contains a review of the 

elect romigration measurement techniques, some measurements using the conven-

tional test structure and a detailed discussion on the limits of conventional tests. 
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Chapter 1 

Introduction 

The quality and reliability requirements of present day integrated circuits(ICs) 

is increasing inexorably. The demand for higher speed, low power consumption 

and lower cost per gate has been the driving force to go for higher and higher 

levels of integration, development of new materials and processes and innovative 

designs. So far the tremendous advance in IC manufacturing techniques has not 

only offered improved performance and low cost, but improved reliability as well 

[1]. This improvement in reliability has not often been achieved easily. New 

technologies and processes have presented new challenges and failure mechanisms. 

So, new solutions have to be evolved to combat these problems [2]. The same 

trend is expected for future generation VLSI circuits. 

1.1 Technology Trends 

1.1.1 Level of Integration 

Since 1 965,   IC complexity has advanced from Small-Scale Integration (SSI) through 

Medium-Scale Integration (MSI) and Large-Scale Integration (LSI) and to Very-

Large Scale Integration (VLSI) which has iO or more components per chip. Figure 

1-1 shows the remarkable growth achieved in DRAM (Dynamic Random Access 

Memory) packing density over the past few years and the expected trend [3]. The 

1 
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packing density roughly quadruples every 3 years ("Moore's law"), and at this 

rate 1024 MDRAM (M for megabits ) should be available by the year 2001. Of 

course no exponential growth can continue indefinitely. Limits may be imposed 

by physics, manufacturability, cost, performance and reliability. One objective of 

this thesis is to analyse one aspect of reliability measurement and specification. 

DRAM PACKING DENSITY 

3,000 

1,000 

Cl) 	300 
4-. 

IT: 
1,985 	 1,990 	 1,995 	 2,000 

	
2,005 

Year 

Figure 1-1: Trends in level of integration 

1.1.2 Minimum Linewidth 

The most important factor in achieving very high component density is the con-

tinued reduction of the minimum linewidth as shown in Figure 1-2 [4J. At this 

rate, the minimum linewidth is planned to shrink to about 0.2 pm in the year 

2000. 
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Figure 1-2: Trends in minimum linewidth 

1.1.3 Reliability Levels 

In spite of the ever-increasing complexity, the reliability of ICs is continually in-

creasing. This is reflected in the decreasing failure -rate 1  goal of a manufacturer 

achieved over the years, as shown in Figure 1-3 [5]. 1 FIT corresponds to 1 failure 

in 109  device-hours of operation. The failure rate indicated here is that in the 

'working life' period. This ('working life' period) is defined in the next section. 

Although manufacturers may all have slightly different failure rate goals, cus-

toiners will have a tendency to drive all the manufacturers to match the failure rate 

goals of the few most aggressive manufacturers. Therefore, all failure rate goals 

'.jioiild terl(1 to converge, but continue to decrease. Like Moore ' s Law for chip 

1 ratio of iiumber of IC's failing per unit time to number surviving at ally instant of 

time 
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Figure 1-3: Failure rate goal of a manufacturer versus time 

densities, it appears that these market forces have also est ablislied an euilpi rica 1 

law that govern the reliability performance. 

Based on the projection in Figure 1-3, VLSI circuits failure rate goals at the 

I I 	 r t he cent n rv should he approximately 10 FITs. 
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1.1.4 Reliability Improvement Approaches 

The 'bathtub' curve 

The conventional representation of the variation of failure rate of mechanical 

components with time is shown in Figure 1-4. This is commonly known as the 

'bathtub' curve. However, for IC performance failure can be more realistically 

represented by 4 regions as shown in Figure 1-5 [6] 

Region 1: 

The failures in this region are caused by quality-related defects ("killer defects"), 

workmanship problems etc. Examples of such defects are oxide pinholes, photore-

sist or etching defects resulting in near-opens or shorts, weak die bonds, weak 

wire bonds, partially cracked packages. These defects cause yield losses that occur 

during the initial device testing period. 

Region 2: 

The failures in this region are caused by parametric degradations. Components 

which marginally meet the upper and lower parameter specifications (for example, 

threshold voltage) may fail during this period. For semiconductor components 

'screening' tests are carried out to weed out such 'weak' devices. Examples of such 

generally used screening tests are, high temperature storage, 'burn-in', thermal 

cycling, centrifugal spinning, package leakage tests (hermeticity). Ideally the test 

time and temperature should be selected based on the specific failure mechanisms 

for a given technology and process and the corresponding activation energy. In 

practice, the general test conditions specified in military standards are used [7] 

since they represent a general catch - all standard. For example a typical high 

temperature storage test at 150°C for 24 hours; 'burn-in' for 168 hours etc. 
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Log time 

Conventional representation of the variation 
of failure rate with time 

3 Regions 

1 Failures controlled by manufacturing 

2 Mature life phase; design limits 

3 Wear-out phase 

Figure 1-4: The 'bathtub' curve 
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a) 
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Log time 

1 Yield due to killer defects 

2 Early life parametric failures 

3 User-induced failure 

4 Wear-out mechanisms 

Figure 1-5: The 'IC bathtub' curve 
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Region 3: 

This is the region in which failure rate remains roughly constant. This is also 

known as the 'useful-life' or 'working-life' period. Failures in this region are caused 

by 'screening-escapes'. 

One typical distribution of failures in this region is given in Figure 1-6. 

Wrong Diagnosis 

Electrical overstr 

Test-induced fault 

kage fault 

Wafer fabrication fault 

Figure 1-6: Distribution of in-service failures 

These data are from a manufacturer's product reliability report [8]. From this 

figure it is clear that a large percentage of failures are due to wrong diagnostics 

or misuse of the device and a very small percentage of failures can be attributed 

to intrinsic degradation processes. This implies that the inherent reliability of the 

present generation of ICs is quite high, in spite of the ever-increasing complexity. 

However, this does not mean that the future generation VLSI circuits can easily 

meet the projected reliability specifications shown in Figure 1-3. 

Region 4: 

This is the region in which failure rate increases with time. This is also known 

as the 'wear-out' region. Elect romigration - the subject of this thesis - is a good 
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example for a failure mechanism in this region. The failure rate due to 'wear-

out' is expected to be very low during the 'useful-life' period of a component. 

However, improper design, materials, process and/or test conditions can cause 

wear-out failures during the typical 'useful-life' period. 

The mathematical details of the common distribution functions (Log-normal, 

Weibull etc.) used to represent these regions are given in Appendix C. 

Traditional versus present trends 

Traditionally, screening tests have been used to improve the reliability levels 

of ICs. For example, consider the general reliability level classification used by US 

military standards such as class S (high reliability components for critical space 

applications) or class B (for less critical airborne or ground applications). These 

are mainly specified in terms of the screening test specifications. For example, 

168 hours burn-in for class B, 240 hours burn-in for class S etc. However, failures 

caused by manufacturing variations and occurring during actual field use can not 

always be eliminated by screening. Such failures are noticed even after high-

reliability screening tests. The whole methodology of end- of-line screening to 

achieve high reliability is now being questioned. 

The trend now is to 'design-in' and 'build-in' reliability and to depend less 

and less on screening tests. Designing-in and building-in reliability includes use 

of conservative design rules, quality assurance of the materials, and statistical 

process control. Efforts are underway to modernise the procedure 

for qualification of military high reliability microcircuits based on inline process 

monitoring of every wafer [9]. 
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Device or circuit parameters Constant electric field scaling Constant voltage scaling 

Device dimensions 1/a 1/a 

Gate density a2  a2  

Supply voltage 1/a 1 

Current 1/a a 

Power/gate 1/a2  a 

Power density 1 a3  

Current density a a3  

Electric field 1 a 

Table 1-1: The effects of scaling on electic field and current density 

1.2 Scaling Trends and Wear-out Problems with 

VLSI circuits 

The shrinking in device geometries to achieve high packing densities is based on 

the so-called 'scaling rules' devised to preserve the operating characteristics. The 

scaling procedures and effects of these on electric field and current density in MOS 

devices are summarised in Table 1-1. 

From Table 1-1 it is clear that current density increases by a factor of a for 

constant field scaling and as a 3  for constant voltage scaling. There is an increase 

in electric field by a factor of a for constant voltage scaling and no increase in 

electric field for constant field scaling (apparent from the name). This implies that 

the electric field dependent wear-out mechanisms such as time-dependent dielectric 

breakdown (TDDB) and hot-electron effects and current density dependent wear-

out mechanism- elect romigration- are likely to be the most important wear-out 

failure mechanisms in the future complex VLSI circuits [10,11]. 

If the power supply voltage is scaled down as indicated in Table 1-1 for constant 

field scaling, then TDDB and the hot-electron effects should not worsen with 
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scaling. However the trend is to scale down power supply voltage more slowly 

than device dimensions at some expense of power dissipation. The main reasons 

for this compromise are: 

Non-standard supply voltages impose serious end-use compatibility problems 

Reduced supply voltages imply reduced threshold voltages and therefore even 

tighter control over implant conditions. 

Additionally the reduction in supply voltage is limited by built-in junction 

voltages which can not be scaled. Hence TDDB and hot-electron effects may still 

continue as dielectric wear-out problems of future complex VLSI circuits. 

Both constant field scaling and constant voltage scaling result in increased sus-

ceptibility to electromigration. This is because of the increased current density in 

the case of constant field scaling and the drastic increase by a factor a3  in current 

density and power density, in the case of constant voltage scaling. Power den-

sity leads to temperature rise in the chip and hence more rapid electromigration 

failure. 

Gardner [12] has worked out the impact of the above 'scaling-rules' on median 

time to failure (this is denoted by MTF and represents the time for 50% failures 

to occur) due to electromigration in MOS devices using the well known Black's 

equation. The results of his analysis are shown in Figure 1-7. It is clear from this 

figure that as geometries shrink (i.e, scale factor increases) electromigration poses 

a serious threat to IC reliability. The problem is much more severe because, in 

addition to the obvious current density increase due to scaling, current crowding 

effects at steps and vias cause further reduction in the median time to failure. 

The technological solutions offered to increase the MTF are to use multilayered 

structures where aluminium-alloy films are alternated with refractory-metal /alloy 

films such as titanium, tungsten etc. However the microstructural, metallurgical 

and chemical interactions between the layers is quite complex. Firstly, the exact 

mechanism responsible for MTF increase is not yet clear. For example, in the case 
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ELECTROMIGRATION IN MOS ICs 

MTF(Normalised Units) 

11 

0.1 

0.01 

0.0001 
0 1 	 2 	 3 	 4 	 5 	 6 

Scale factor (a) 
CV onstant voltage scang 
CF -constant field scaling 

Figure 1-7: Effects of scaling on electromigration MTF in MOS devices 
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of titanium and aluminium multilayers the MTF increase may be due to the for-

mation of the chemical compound TiA1 3  and/or microstructural changes following 

the heat treatment of the layers [13]. Secondly, some new problems (for example, 

increased whisker growth with TiW and TiN films) arise with these layers. There-

fore, new solutions have to be found. Hence single layer aluminium-alloy films 

are not obsolete. Even though aluminium-copper films are more resistant to elec-

tromigration, these have dry etch, corrosion and Schottky contact problems [14]. 

In summary, aluminium-silicon alloys are likely to continue as the interconnect 

material for some time to come [15]. 

1.3 Elect romigration Monitoring Requirements 

Electromigration has traditionally been measured through MTF tests and post 

mortem failure analysis, but these will be of limited use in future. This is mainly 

because such techniques can not be used to ensure the required electromigration 

resistance of the metallisation on every wafer in a lot and also because of cost and 

time considerations since typical test times may range from weeks to months. 

A more fundamental approach to improved reliability would be by monitoring 

the quality of the materials and strictly controlling the process variables to target 

specifications. Although this sounds attractive and is very much in line with the 

best manufacturing practice for improved quality and reliability, it is not yet feasi-

ble because electromigration is affected by a large number of material and process 

parameters and the interactions between these is not always obvious. Figure 1-8 

is a ' fishbone-diagram' showing the major material and process parameters af-

fecting electromigration performance. Each of these may depend on a number of 

other parameters. For example, effective width on exposure control, photoresist 

thickness, and photoresist thickness on spin rate etc. It should be borne in mind 

that this is a simplified representation of the various factors affecting electromi-

gration; the interdependence of many factors is not shown and in many cases it is 

not completely understood. For example, presence of refractory metal layer over 
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aluminium may modify the grain structure during heat treatment, in addition to 

other mechanisms in increasing the MTF. 

under and over layers I 	Irninimum cross sectionaI 
area 

refractory metal layer 	effective width 

assivaon\j effective thickness\j 

sputter gas purity 

Figure 1-8: Material and process parameters affecting electromigration 
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1.4 Aim of the Project 

There is a strong need to develop a reliable process control test structure and test 

methodology to monitor electromigration for the reasons given in the previous 

section. 

The main aim of the project was to develop a test structure and technique 

keeping in mind the following requirements: it should meet the compatibility re-

quirements of a process monitor chip, sensitive to various factors that affect electro-

migration lifetime and should be usable to characterize 'sub-micron' metallisation 

geometries of the future complex VLSI circuits. By compatibility requirements it 

is meant that it should be possible to produce the new test structures with oth-

er test devices and to obtain test results quickly, preferably without using a hot 

chuck. 

An additional objective of the project was to use the new test structure to 

develop statistical techniques to estimate the MTF of small segments of conductor 

in which current crowding effects are significant. The future VLSI circuits are 

most likely to contain a large number of such small segments such as bends, vias 

etc. and hence it is very likely that the circuits will be analysed for any loss of 

reliability inherent in the design. 
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Chapter 2 

Elect romigration and Metallisation 

Reliability 

2.1 Background 

Reliability studies on microeletronic circuits sponsored by US Air Force in the mid-

1960s led to the identification of electromigration in thin metal films as one of the 

primary failure mechanisms limiting the reliability of film interconnections used 

in microelectronic devices [1]. This discovery fostered a period of intense activity 

in the study of electromigration phenomena in thin films which continues to this 

day [2,3,4]. While the majority of the work on bulk materials was concentrated on 

the electron-ion interactions and interaction of mobile defects and charge carriers 

[5], most of the studies on thin films were aimed at the rather practical aspect 

of conductor line failures in ICs. These studies were carried out on thin films 

prepared by evaporating metal layers onto insulating substrates and at moderate 

temperatures of about half the melting point of the metal. 

With the rapid advancement in microelectronic materials and processing, new 

technological solutions were found to improve the elect romigration resistance. 

These include microstructure modifications by various processing techniques (for 

example, increasing the grain size by using higher substrate temperature.[6]), al-

loying with other elements like copper [6] and formation of multilayer metallisation 

systems [7]. These new solutions brought new problems as well; for example, the 

excess copper forms a compound CuAl 2  which is responsible for galvanic corrosion 

and degradation of Schottky contacts. It also causes dry etch problems. Thus, 
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addition of copper even though it improves the MTF of the conductor, brings new 

problems. Similarly multilayered sandwiches of aluminium-alloys with refractory 

metals/alloys, are prone to new problems because of the complex metallurgical, 

chemical and microstructural interactions between the layers [8]. For example, 

the mechanism causing whisker growth with titanium and tungsten multilayer 

structures is not yet fully understood. Hence aluminium-silicon alloy continues 

to be used as the most common inteconnect material and will probably continue 

for some time to come [9]. This means that elect romigrati on continues to be an 

important wear-out problem. 

Historically, the theory of elect romigration was developed for bulk metals. 

However, the same approach can be used for thin films provided some appropri-

ate modifications are made, for example, replacing the lattice diffusion coefficient 

by grain boundary diffusion coefficient. Hence the theory of electromigration in 

bulk metals is given first. 

2.2 Theory of Electromigration 

2.2.1 Bulk Metals 

Elect romigration. is the term applied to the transport of mass in metals when 

stressed at high current densities. In other words it is the phenomenon of 'cur-

rent induced atom flux'. The development of elect romigration theory has evolved 

around two components of the driving force causing momentum transfer to the 

ions of the crystal : electrostatic and 'electron wind'. Early developments of the 

theory includes the semi-classical model by Fiks [10] in 1959, and by Huntington 

and Crone [11] in 1961, and the quantum mechanical model by Basvieaux and 

Friedel [12] in 1962. However the model proposed by Huntington and Crone is 

still commonly used and hence the salient features of this model are given. 

Huntington and Crone [11] made light transverse scratches on the surface of 

gold wires and then used them as markers to observe motion of gold atoms when 
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the current density was about 10 4 A/cm2. The experiments were carried out at 

high temperatures, (850°C-100 1 C) for periods of several days. They developed a 

theory to explain the observed current-induced mass transport and its dependence 

on current density and temperature. 

The following expression for the net atomic flux J in a lattice due to current 

density j was obtained 

(ND\ 
J 

= 	) Z epj (2.1) 

where, 

N = density of ions 

D = Do exp(—E a/kT)— self-diffusion coefficient 

E0  = activation energy 

k = Boltzmann constant 

p = resistivity 

T= absolute temperature 

Z*e = effective charge on the migrating ion 

In the above equation 2.1 the effective charge Z*e  is defined and given by: 

FZ*eE 	 (2.2) 

where E is the electric field and F is the total force acting on the migrating 

ion. The total force F consists of two components: electrostatic force ZeE (Z is 

the valency) and the 'wind force'. The direction of these two forces are opposite 

to each other. For example, for a positively charged ion, electrostatic force acts 

in the direction of the electric field, while 'wind force' acts in the direction of 

electron flow. The magnitude and sign of Z indicate the relative strength of the 

two forces. For instance, in gold the measured value of Z is about -7 [13] and 

since the the valency is 1 this implies that the wind force is about 8 times larger 

t1lan the electrostatic force. 
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2.2.2 Thin Films 

Elect romigration studies in thin films are usually carried out at moderately low 

temperatures compared to the melting point of the metal, for example, less than 

250°C for aluminium and the mass transport is mainly controlled by grain bound-

ary diffusion; mass transport by lattice diffusion is negligibly small. A detailed 

theoretical discussion of elect rornigration in thin films is not yet attempted by 

researchers because of the complexity arising due to the grain boundaries [14]. 

In the absence of a rigorous theory, the atomic flux expression derived for bulk 

metals is modified to [15]: 

S NbDb * 
= 	kT 

Zbepj 	 (2.3) 

where, JbIS the atomic flux along grain boundaries, Nb is the local density of 

ions in the grain boundaries, S is the effective width of the boundaries, S is the 

average grain size, Db isgrain boundary diffusion coefficient and Ze is the effective 

charge. It may be noted that Z and Nb may not be the same as these parameters 

in the lattice. Also, migrating impurity atoms often segregate to the boundaries 

which may modify the value of Nb and Z. 

Expression 2.3 is based on the assumption that in all the grain boundaries mass 

transport proceeds with the same charactrerstics. However, in a film all grain 

boundaries are not alike. Typically the grain distribution is lognormal and the 

grain boundaries are oriented at random. Hence, the grain boundary parameters in 

equation 2.3 are always considered as suitable averages. These limitations should 

be borne in mind while using the above expression. 

Electromigration causes mass transport along a thin film conductor, but such 

a displacement alone can not create a discontinuity in the film. For a discontinuity 

to occur there must be an imbalance in the electromigration flux at some point 

along the conductor path which is usuually referred to as 'flux divergence'. Flux 

divergence will occur whenever there are changes in Zt and Db. 
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Figure 2-1: Mass transport at a triple point 

A typical site in a thin film at which flux divergence occurs is schematically 

shown in Figure 2-Ji'This is known as a 'grain boundary triple point'— the junction 

of three grains. Here the electrom.igration-induced mass flux along the boundaries 

1, 2, 3 represented as J, J, J respectively are such that, 

J+J> J, 

Under these circumstances, mass depletion will occur at the triple point and hence 

void formation. These voids grow in size and coalesce to form larger voids. A crack 

may then develop that eventually leads to discontinuity in the conductor path i.e. 

an open circuit. 
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2.3 Factors Affecting Elect romigration in Thin 

films 

Several material and process related factors have been reported to affect electro-

migration resistance. For instance, composition of the metal, anneal procedures, 

film deposition conditions, metal line geometry, contamination, passivation layer 

thickness, grain structure etc. [16,17,18,19,20]. This was shown in Figure 1-7 in 

the form of a simplified 'fishbone-diagram'. 

These are now discussed further with reference to the commonly used aluminium-

alloy metallisation. 

2.3.1 Composition of Metal 

Significant improvements in MTF can be achieved by the addition of small quan-

tities of metals like copper, silicon, titanium etc [16,17]. Addition of copper ( up 

to 4% copper in Al-Si metallisation) increases the MTF by a factor of 70 to 100 

[18]. The exact mechanism is not yet well established. Two reasons have been 

given; one is a reduction in grain boundary diffusivity (copper atoms segregate at 

the grain boundaries and so retard the elect romigration-induced aluminium ion 

flux, the other is grain structure modification when the added copper helps to 

form 'bamboo' structures as shown in Figure 2-2 which may also be an important 

factor contributing to improvement in lifetime. Dry etch and other problems with 

copper, whisker growth with titanium, etc. have to be considered if these alloys 

are used instead of the common aluminium-silicon [8]. 

2.3.2 Linewidth 

A number of experimental studies on the linewidth dependence of electromigration 

lifetime have been reported [21,22,19]. Figure 2-3 shows one typical example [22]. 
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In general it has been noticed that MTF decreases with linewidth up to a 'critical 

width' below which the lifetime either levels off or increases. 

The improvement of MTF for linewidths smaller than the median grain size 

is usually explained in terms of the 'bamboo' grain structure in such fine lines 

[19]. These are further confirmed by computer simulations, taking microstruc-

tural aspects into consideration. For example, simulations by Harrison [23] on 

aluminium-copper metallisation is shown in Figure 2-4. The three curves corre-

spond to median grain sizes of 3 jzm (curve A), 2 tm (curve B) and 1 im (curve 

C). The standard 

deviation of the failure distribution also shows a similar behaviour. It follows from 

these simulations and the experimentally observed results that 'critical width' is a 

sensitive function of the metallisation process parameters such as, substrate tem-

perature during deposition, anneal conditions etc. because these are the factors 

that affect grain size in the films [20]. 

Even though MTF may increase below the critical width, electromigration still 

continues as a major problem in sub-micron geometry ICs. This is because, 

Current density increases with scaling and this will decrease MTF (it may 

be noted that Figure 2-3 is for a given current density). 

Metallisation process parameters such as linewidth, sputter parametrs etc. 

may have to be monitored and controlled to take advantage of the increased 

MTF below the critical width. In general, statistical process control mea-

sures are becoming necessary to preserve process uniformity over a wafer and 

from wafer to wafer in a batch which is discussed in chapter 4. 
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normal grain structure 

Figure 2-2: Sketches of the normal grain structure and 'bamboo' structure 
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2.3.3 Linelength 

The MTF has been reported to first decrease and then become independent of 

the length for all practical purposes [24]. This is thought to be due to the higher 

probability of finding more defects in a longer metal line. However, if we are con-

sidering electromigrat ion- induced failures caused by grain boundary defects then 

there should be no linelength dependence of electromigration lifetime. This is 

because there is an abundance of these defects in lines of any length. 

2.3.4 Microstructure 

Detailed investigations of electromigration in fine line aluminium by Vaidya and 

others [19] has shown that there is a strong correlation between microstructure 

and electromigration lifetime. MTF is shown to be proportional to an empirical 

microstructural quantity 77, given by [19] 

77 = .- S jlog(I111 /I200 )3 	 (2.4) 
O 

where S is the grain size, or is the standard deviation in grain size distri-

bution and 'i  and 1200  represent the intensity of X-ray diffraction peaks for 

(111) and (200) respectively. 

A large number of process and material-related factors could cause variations in 

the microstructural parameter: 

. Sputter deposition bias 

• Deposition temperature 

• Post-deposition annealing 

• Addition of alloying elements 

• Cleanliness of the vacuum during deposition 
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Thus metal lines having identical geometry and metal composition may have dif-

ferent lifetimes depending on the deposition and anneal conditions. 

2.3.5 Under and Over Layers 

Passivation 

The technique of covering thin film conductors with an insulating dielectric layer 

has been found to be beneficial with respect to electromigration failure times. 

In the earliest implementation, aluminium conductors were covered with a layer 

of fused glass [25]. Subsequently, improvements in electromigration by orders of 

magnitude were reported for aluminium films covered with a layer of aluminium 

oxide obtained by anodisation [26]. The mechanism for the improvement is not 

well understood. It is believed that the passivation layer inhibits the hillock growth 

and defers the void formation. [18]. 

Refractory metal layers 

Multilayer sandwiches of aluminium-alloys with refractory metals/alloys, have 

also been reported to significantly increase the MTF. However, the complex metal-

lurgical, chemical and microstructural interactions between the layers responsible 

for this improvement is not yet fully understood [8]. For example, in the case of 

aluminium and titanium films the improvement in MTF has been observed only in 

the films where the intermetallic compound TiA1 3  is formed. The presence of this 

compound which represents an electrically continuous layer is believed to block the 

propagation of the voids across the film. Additionally, new problems arise with 

these structures. For example, whisker growth with titanium and tungsten etc. 

However, research efforts are expected to continue to combat these deficiencies. 

2.3.6 Other Factors 

Many other factors have been reported to affect the elect romigrat ion resistance of 

thin films. These include, mechanical stress arising due to the difference in ther- 
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mal expansion coefficient between the metal and the insulator,reverse mass trans-

port('back flow') due to concentration and pressure gradients because of hillock 

formation [27] and the presence of hydrogen and other gaseous ambients during 

thin film deposition and anneal [28]. However, in general it is quite difficult to es-

timate the relative contribution to mass transport due to these factors and special 

experimental techniques have had to be developed to separate out the contribution 

to mass transport from these factors. For example, drift velocity measurements 

using aluminium-silicon segments over titanium-nitride films to study reverse mass 

transport [27]. 

2.4 Failure Models 

The industrial requirement is to predict the electromigration-induced failure time 

when operating at the specified maximum current density and chip temperature 

for a given material, deposition process and track layout. 

A satisfactory and complete model for failure should be able to predict the oh-

served relations between the lifetimes of thin film conductors and such parameters 

as material, current density, test temperature, linewidth etc. For example, lifetime 

increases as the linewidth increases (when the linewidth is significantly larger 

t ban the grain size) and it is inversely proportional to the square of the current 

density when j is about 1x10A/crn 2  

\lany failure models have been proposed [29,30]. However, the semi-empirical 

11iudc1 proposed in 1969 by J.R.Black [25] has been very widely used in estimating 

Ihe NVFF of Co1I(lllCt or Ii I1('S SO it is now (liscUssed in detail 

2.4.1 Black's Equation for MTF 

\ i 	ii  nn 	thii 	llv aniVUi 	 l 	and 	i 	at 	a 	a(1( I1 	pnnnl 

nit of its potential well and essentially free of the metal lattice) is acted on by two 

fumes as shown in Figure 2--5 
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Figure 2-5: Forces acting on an ion at its saddle point 
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The electric field applied to the conductor— this will exert a force on the 

activated positive ion in a direction opposite to electron flow. 

The rate of momentum exchange between the conducting electrons  colliding 

with activated metal ions—this will exert a force on the metal ion in the 

direction of electron flow. 

Because of shielding electrons, the force on the ion due to the electric field is quite 

small. The predominating force is due to the 'electron wind'. As a result, the 

thermally activated metal ions travel towards the positive side of the conductor. 

This can also be viewed as vacancies moving towards the negative side. The 

vacancies condense to form voids while the ions condense to form hillocks. 

After being accelerated and colliding with ions elastically, the electrons impart 

all of their momentum to the ions. The rate of mass transport by momentum 

transfer between electrons and thermally activated ions is directly proportional 

to: 

• Electron momentum 

• The number of electrons/ second/ cm 2  available for striking the activated ions 

• Effective target cross section 

• Activated ion density 

Electron Momentum 

The additional momentum picked up by an electron in an electric field E, in a 

distance of its mean free path A is given by 

P = eEr = epjr = epj() 	 (2.5) 

where v is the average velocity, ,r is the mean free time between collisions, e is 

the charge on the electron, p is the volume resistivity and j the current density. The 
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average velocity v is determined mainly by thermal velocity VT and is perturbed 

only slightly by the drift velocity vd 

Number of electrons. 

The number of electrons per second per unit cross sectional area, N, is related 

to current density (j) by 

N=j/e 
	

(2.6) 

Activated Ion Density (e). 

One may consider the number of activated ions per cubic centimeter in the metal 

to follow the Arrhenius equation as a function of temperature. Hence we get: 

/ 
E) 	

E 

	

= F1exp 	
\ 	

(2.7) 

Where Ea  is the activation energy in electron volts, Fl is a constant, and other 

symbols as defined earlier. 

The MTF is considered to be inversely proportional to the rate of mass trans-

port, and directly proportional to the film cross sectional area. That is, 

	

MTF = F2wt 	
(2.8) 

where F2  is a constant and R is the rate of mass transport given by 

	

R = (epj) () ((Flexp
a

\e) 	
(2.9)

kT  

This gives 

MTF=ex Ea 

	

2 	 (2.10) 

where the constant A depends on: film geometry (w and t), the electron mean free 

path(A), 	average velocity (v), 	the volume resistivity of the metal and F2/F1. 



Chapter 2. Electromigration and Metallisation Reliability 	 34 

Using this model and the experimental results on aluminium films, Black ob-

tained an activation energy in the range 0.48 eV to 1.2 eV. He attributed this 

wide differnce to the different mass transport processes, namely, grain boundary 

diffusion and lattice diffusion having different activation energies. 

The drawback of Black's equation is that it does not satisfactorily explain the 

observed variation in MTF with grain boundary parameters such as median grain 

size, grain orientation etc. In addition, the finer details of mass transport in terms 

of grain structure of thin films are not dealt with in the model. Also, the linewidth 

dependence as in equation 2.8 (MTF oc wt) is valid for wide metallisation lines for 

which the linewidth is larger than the median grain size. The increase in MTF at 

widths smaller than critical width (discussed in section 2.3.2) is not explainable 

using Black's equation. 

Subsequent to Black's model a number of failure models have been proposed, 

mainly based on computer simulations of microstructure of thin films. These in-

clude the earlier attempts by Attardo et al (1971) [31] and more recent models by 

Huntington et al (1991) [32] continue to account for a large number of empirical 

results collected over the years. These simulations have some succcess in 

explaining the microstructural dependence of elect romigration, but use complex 

models. For example, in the model used by Huntington et al [321 a grain boundary 

network is first established by laying down a random array of points in two di-

mensions and then constructing the perpendicular bisectors of lines joining nearby 

points. The planes so constructed form the grain boundaries. Having generated 

the above network many details have to be carefully worked out. This includes, 

the determination of the orientation of the individual grains, optimisation of the 

network to meet the minimum surface energy requirements etc. However, a sim-

ple failure model incorporating microstructural and temperature factors is not yet 

available. Hence, despite its drawbacks, Black's equation is very widely used in 

IC metallisation failure time predictions. 

However, based on subsequent studies, Black's equation is usually modified to: 

f(w)tA' 	E 
MTF= 	ex p( P(i) 	 (2.11) 



Chapter 2. Elect romigration and Metallisation Reliability 	 35 

where, 

x=1 	for j < 1 x 105 A/cm2  

x=2 	for j > 1 x 106 A/cm 2  

f(w)= w for wide lines with w >> grain size and the functional relation is to be 

empirically obtained for widhs near critical width. 

2.5 VLSI circuit Reliability Simulation Models 

2.5.1 Motivation for Reliability Simulation 

In designing a complex circuit, designers make a large number of circuit simula-

tions, design changes and optimisations and can predict the circuit's performance 

reasonably accurately before committing it to silicon. It would be unthinkable to 

bypass the circuit simulation and optimisation and rely entirely on the testing of 

finished ICs to discover errors or to find out if the performance of the circuit meets 

specifications. Yet,this is basically the way IC reliability is treated today [33]. 

At the present time, reliability assurance relies mainly on failure detection, 

which occurs only at the end of a lengthy product development and qualification 

process. This practice poses serious problems for future complex VLSI circuits. 

Reliability failure, if detected during testing, or worse during field application, will 

be prohibitively costly both from time and cost points of view to fix the problem 

by process or design changes. 

It is highly desirable to predict the circuit reliability at the circuit design stage. 

A schematic diagram of this methodology is shown in Figure 2-6 [33]. Several re-

liability simulators analogous to process simulators which contain separate models 

for diffusion, implantation, oxidation etc. have been reported in the literature to 

model electromigration, hot-electron degradation etc. [34,35]. In these simula-

tors, a set of parameters relevant to circuit reliability is identified for each failure 
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Figure 2-6: A methodology of reliability assurance 

mechanism. Computer programs are developed to predict circuit failure rate from 

these parameters 

The above methodology is still in its early stages and not well established. 

Development of simple methods of extracting these parameters for a given process 

or technology involving accelerated stress tests on test structures is one of the 

important research areas. 

2.5.2 Reliability Simulators for Electromigrat ion 

Many of the VLSI circuit electrornigration reliability simulators use the series 

model to express the failure [36,37]. That is, the failure rate of any one of the 
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segments (bends, vias etc.) in the IC causes IC failure and that the total failure 

rate is the sum of the individual failure rates: 

A=fll.\l+flb'b+fluAv+ 	 (2.12) 

Where A is the failure rate of the IC, 

nj  = number of linear segments 

A1 = failure rate of linear segment 

nb = number of bends 

A6 = failure rate of bend 

n = number of vias 

= failure rate of via 

It should be noted that in the absence of any technique to directly obtain the 

failure rate A of a small linear segment, (generally of median grain size), it is a 

general practice to use the MTF of a lengthy line and estimate A by applying 

statistical techniques [38]. Estimations of A 6  and A,, are complicated because of 

current crowding effects. If we use the usual current density dependence (MTF o 

1/j 2 ) and inceased current density values due to current crowding, the calculated 

failure rate of VLSI circuitsay  come down to unrealistic values; on the other hand 

ignoring these effects overestimates the reliability. Quite often the latter approach 

is adopted [38] and A 6  and A,, are usually estimated based on the expected changes 

in cross sectional area at a via or a bend. This is one important area where further 

research is needed. 

A statistical methodology has been suggested in this thesis to estimate the 

MTF of small segments using the new test structures. 
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Chapter 3 

Review of Measurement Techniques 

3.1 Introduction 

Electromigration in thin films has many interesting features both from theoretical 

and technological points of view. The former include the nature of the 'wind force' 

at the grain boundaries, while the latter concerns mainly the more practical aspect 

of failure time predictions of IC metallisation. Accordingly the following two types 

of measurement techniques have evolved to meet these requirements: 

1 .Electron microprobe techniques, drift velocity measurements and mass trans-

port measurements to measure the elect romigration parameters of fundamental 

interest such as the effective charge (Zr) and diffusion coefficient (Db) at the grain 

boundary. Details of these measurement techniques can be found in a review 

article [1]. 

2. Conductor lifetime measurements (usually referred to as MTF measure-

ments or lifetests), resistometry, fast tests, mass transport measurements and noise 

tests [2]. 

We are interested in type 2 measurements because these give parameters use-

ful in assessing the IC metallisation reliability. Therefore these are discussed here. 

However, the noise measurements are not discussed here because the theory and 

analysis of these tests are yet to be developed and also the instrumentation re-

quirements are quite complicated. 

In the initial stages of this project some measurements were carried out using 

some of these techniques, in order to derive the constants in Black's equation for 

42 
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the EMF process and the results are also included here. In all of these measure-

ments, accelerated testing are used to cut down the test times. Hence the various 

aspects of accelerated testing and acceleration factors are discussed first. 

3.2 Accelerated Testing 

Accelerated testing techniques involve stressing a part in an environment more 

severe than standard operation conditions. The stress conditions are selected 

under the assumption that factors controlling the degradation are the same failure 

mechanisms as those that predominate in typical operating conditions for the part. 

The observed behaviour of the part under these conditions is then related to its 

performance at actual operating conditions using a degradation model. 

The major reason for using accelerated testing is to cut down the test times 

involved. The failure rate expected of the present day VLSI circuits under normal 

operating conditions is very low- of the order of 100 FITs. This corresponds to 

stressing 100 parts for approximately 11 years or equivalently 10,000 parts for ap-

proximately 1000 hours to observe one failure. In future the situation will be much 

more demanding; to monitor 100 parts for one failure in 114 years of operation un-

der normal operating conditions. Obviously the test times and the number of test 

parts required make it extremely difficult to carry out reliability testing of a design 

in a time scale short enough that the design has not become obsolete before being 

produced. Also the usage of ASICs in military/ aerospace applications means the 

number of samples actually needed may be far below that required for reliability 

testing. Using higher current densities and temperatures, one could shorten test 

times, for example: the MTF of 20 years at an operating temperature of 25° C 

and current density of 1 x iO A/cm 2  will be reduced to almost a few days at 

1 x 106 A/cm 2  at 150°C for A1-l%Si metallisation [3]. However, one should be 

cautious in using high temperatures. At temperatures > 250°C lattice diffusion 

may become predominant and it will be inappropriate to extrapolate these failure 
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rates to normal operating conditions where grain boundary diffusion dominates 

[4]. 

3.3 MTF Measurement [5-9] 

This measurement records the time at which 50% of a large number of nomi-

nally identical specimens fail when subjected to constant current density at a given 

temperature. This is the most commonly used method for evaluating electromi-

gration resistance [1]. The advantages of this method are its simplicity and well 

defined failure mode("open"). We have a good empirical database and experience 

and also the availability of standard test procedures and methods for reliability 

estimations [10-12]. Hence MTF measurement has been described as a a cor-

ner stone of metallisation reliability testing' [13] and MTF values are the most 

sought-after electromigration parameters. 

However, the main practical disadvantage is 	the fact that it requires a 

large number of samples to be tested at elevated temperatures usually in a burn-

in chamber for test times that may range from weeks to months. There are some 

fundamental limitations of MTF measurements and these are discussed in detail 

in chapter 4. 

3.3.1 MTF Measurements on EMF Metallisation 

These measurements were done to derive the constants in Black's equation. The 

standard NBS [14] test structure commonly used for MTF tests was used which is 

shown in Figure 3-1. The process and other details are summarised in Table 3-1, 

the dimensions shown are the measured values (averages). 

Ideally the number of samples used for electromigration MTF measurements 

should be as large as possible. However, test setup, cost and time factors forbid 

the use of a large number of samples and some compromises have to be made. A 

literature survey indicated that majority of experiments have been carried out with 

a sample size between 10 and 20. So the minimum acceptable sample size of 10 
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NBS TEST STRUCTURE 

A 

= 2w 

X ,T> 100 microns 

Y=2W 
VA 
	

VB. 

A, B: pads for passing the stress current 

VA, VB: pads for monitoring the voltage-drop 

Figure 3-1: Test structure used for MTF measurements 
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Wafer 	 P-type, 3 inch dia., 

Insulator 	 Material 	 Si0 2  

Process 	 wet oxidation 

Thickness 	 5600A 

Metallisation 	Material 	 A1-1%Si 

Deposition 	 sputtering 

Thickness 	 1.Oitm 

Anneal 	 435°C, 10 mm. N21H2  

Etch 	 Dry 

Structure dimensions Width 	 6.20um 

Length 	 800im 

Table 3-1: Test structure and process details 



Chapter 3. Review of Measurement Techniques 	 47 

was chosen. The samples were mounted in DIP packages and powered individually 

(current density of 1 x 106A/crn2 ) and a HP computer was used to monitor the 

failure times. For stress experiments conducted at 150°C, printed circuit boards 

made from epoxy glass were used. But to conduct stress experiments at 175°C 

these PCBs were not suitable and special jigs were fabricated using holes drilled 

in metal boards and high temperature IC sockets, turrets, solder and wires were 

used. 

All the test samples were visually inspected for any defects using optical mi-

croscopes. Only defect free samples were used. The resistances of all the samples 

were measured at various temperatures inside the oven and the temperature co-

efficient of resistance was obtained. Using this, the temperature rise in all the 

samples when subjected to a current density stress of 1 x 10 6 A/cm 2  was obtained. 

This was found to be approximately 3°C. 

3.3.2 Test Results and Discussion 

The time to failure data obtained is shown in Figure 3-2. 

The activation energy is obtained using Black's equation as follows: 

MTF1  = A exp( 
Ea

—) j2 	kT1 

MTF2  = A exp( 
Ea 

—) 2 kT2 
MTF1 Ea fl 	1\ - 
MTF2 

- 

Ea = (TF,M'11\ 
kln 	/ 	- MTF2) 

where 

T1  = 150+3+273=426K (3.1) 

T2  = 	175+3+273=451K (3.2) 

MTF1  = 	30.5hours (3.3) 

MTF2  = 	9hours (3.4) 
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Figure 3-2: failure time distribution 
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substituting the above values in the expression above, we get 

	

E. 	0.8eV 
	

(3.5) 

	

A 	10.4 x 10 3  [hours] [amperes/ cm']' 	 (3.6) 

Most values of E for aluminium films lie in the range of 0.6 ± 0.2 eV [12]. 

This spread is due to the fact that in addition to the mass transport due to 

grain boundary diffusion, other parallel mass transport mechanisms with different 

activation energies coexist. 

Mass transport mechanism Ea (eV) 

Lattice diffusion 1.4 

Grain boundary diffusion 0.4-0.5 

Grain boundary to bulk 0.63 

Defects to bulk diffusion 0.62 

Surface diffusion 0.28 

Table 3-2: Mass transport mechanisms in thin aluminium films 

These are summarised in Table 3-2. Hence the activation energy of 0.8 eV 

may be considered as an appropriate average. 

The reliability specifications are commonly given in terms of FITs and hence, 

the MTF data is translated into failure rate versus time curves as shown in Figure 

3-3. This prediction is for a 3m width line and under the following operating 

conditions: normal operating current density 1 x 10 5 A/cm2  and normal operating 

temperature 40'C. Also, the commonly used value of x=1 for this current density 

was used in Black's equation (see section 2.4.1). 

The failure rate as a function of time is calculated using the probability den-

sity function and cumulative distribution function of the lognormal distribution 

described in Appendix C. The expression for the failure rate is given below. 

2ci 2 	J 
A(t) - 
	exp[- 

(1n_IL)2 1 

- t f 	exp 
(1nt_)2i dt 	 (3.7) 

	

2c 	I 
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Failure Rate(Failures per hour) 
1E-05 

1000 FIT 
1 E-06 

100 FIT 
1 E-07 
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0 	 5 	 10 	15 	20 	25 
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Figure 3-3: Estimated failure rate versus time of EMF metallisation under nor-

mal operating conditions 
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where, 

\ (t) = failure rate as a function of time 

t = time 

p = ln(MTF) 

= ln[MTF/t 16] 

= time for 16% cumulative failures 

Figure 3-3 shows that when)inewidth is < 3pm it may become increasingly 

difficult to meet the future reliability requirements. The failure rate may far exceed 

(by a factor of about 500) the minimum acceptable limit of 10 FITs for 20 years. 

There are many ways to meet the reliability demands of high reliability device 

users. One method is to reduce the operating current density. This is not a real 

option because it puts stringent constraints on the circuit designer. The second 

way is the technological solution; addition of copper to the aluminium-silicon alloy 

film or multilayer metallisation systems with refractory metals which give order of 

magnitude improvement in MTF and hence a significant reduction in failure rate 

to meet or exceed the requirement for 10 FITs for 20 years. However, this may 

bring in other technological process problems as discussed in chapter 2 (section 

2.3.5). The most attractive solution is to increase the MTF by grain structure 

modifications such as 'bamboo' structures. This means the process should be well 

controlled and should be continuously monitored to ensure that all the wafers meet 

the target reliability specifications. There are some fundamental limitations with 

MTF measurement as a process control monitor and these are discussed in 

chapter 4. 

Owl  I. 
IOL 
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Figure 3-4: Schematic representation of resistance change with time of a met-

allisation line during electromigration stress experiments 

3.4 Resistometry 	[15-24] 

This method measures the fractional change in resistance () with time caused 

by material accumulation and depletion as a result of electromigration. The tech-

nique has the advantage of being simple and resistance changes can be measured 

accurately. The resistance change with time during elect romigration stress exper-

iments usually looks like 3-4. It consists of three regions: 

Region I: joule heating 

Region II: mass transport due to electromigration 

Region III: catastrophic failure processes 

In region I the temperature of the metallisation increases due to self-heating. 

The thermal stabilization time depends on various thermal time constants. For 

example, thermal time constant of the metallisation/oxide; oxide/ substrate; sub-

strate/chuck etc. 
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In region II the resistance increases gradually due to mass transport. Typ-

ically a near linear resistance increase has been reported by many researchers. 

Electromigration parameters like activation energy, the pre-exponential constant 

in Black's equation, and estimation of MTF are usually obtained by analysing this 

region. 

In region III resistance increases rapidly and within a short time the structure 

fails ("opens"). The mechanisms leading to the ultimate failure of the line are quite 

complex, involving increase in current density, temperature and void growth. The 

exact point on the resistance versus time curve at which these catastrophic failure 

processes take over is not yet resolved, typically it is taken as that corresponding 

to 5-10% increase in resistance. 

Figure 3-4 shows a smooth resistance versus time curve, but this may not 

be the case in practice and multiple spikes may occur to further complicate the 

analysis. This problem is discussed in section 3.4.2. 

While the time to failure is determined by the failure time of a worst site a-

long the stripe length, all the grain boundaries at which electromigration is taking 

place contribute to the resistance change and hence the rate of resistance change 

is considered to be an appropriate average over the entire stripe. These mea-

surements are carried out before the catastrophic failure processes occur and an 

understanding of the mechanisms of solid state transport is only possible through 

measurements carried out in the earlier stages of electromigration damage. 

Resistometry has been used to obtain many important electromigration param-

eters like activation energy, effects of material/ processing on the pre-exponential 

constant in the MTF equation, and also MTF. 

3.4.1 Resistometry Types 

Resistometric measurements have been carried out under three types of stress 

conditions: 
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High ambient temperature but negligible initial joule heating— This is the 

simplest of the three types. Samples are subjected to constant current density 

stress at high temperatures. Current density values are such that the temperature 

rise is usually small (5 tolO°C). Using a minor alteration of this technique, activa-

tion energies have been obtained using a single sample by suddenly changing the 

ambient temperature, but keeping the same current density and noting the ratio 

of rate of change of resistance. 

Temperature Ramp - This technique is known as temperature ramp analy-

sis of resistance to characterize electromigration [TRACE] [25]. Instead of keeping 

the ambient temperature constant, it is ramped up with a known rate. Now the 

resistance increase is due to increase of temperature as well as elect romigration. 

This may be expressed as: 

R(t) = RTEMP(t) + REM(I) 

TEMP(t) = T0  + fit 

where /3 is the heating rate and T. is the initial temperature. 

By knowing the temperature ramp rate and subtracting RTEMP(t) one obtains 

the rate of resistance change due to electromigration. Black's equation is modified 

as: 
1dREM C 	Ea  

(i t 
= exp(—) 	 (3.8) 

Where R, is the resist ance at room temperat tire and Cis a constant determined 

lv TRACE experiments in the initial stages (5-10 % increase in resistance). It 

ritay be noted that TRACE assumes a linear increase in REM  with time. Both ac-

tivation energy and pre-exponential constant C can be determined by the TRACE 

experiments carried out on a single sample in few hours time. Using this tech-

nique, the effects of composition and structure on electromigration time to failure 

at a given failure criteria such as 10 % increase in resistance have also been studied 

[21;]. 
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The TRACE experimental set-up is very complicated. Usually TRACE exper-

iments have been carried out on packaged parts by ramping the temperature of a 

furnace at a known rate. However, the TRACE methodology is very risky because 

it is assumed that the ramp rate must be carefully maintained. 

Resistometry Without External Heating: 

In order to accelerate the failure rate to cut down test times, resistometry 

techniques using high current densities which cause self-heating have been used to 

compare the lifetimes of conductors and to obtain activation energies [27]. The 

main disadvantage of this technique compared to low current densities is that the 

temperature rise due to joule heating as a function of time has to be known. In the 

past, thermocouples placed adjacent to the tracks have been used for this purpose. 

But, that procedure is clearly inaccurate and gives poor reproducibility. 

3.4.2 Problems with resistometry 

The major problem in using resistometry is the erratic resistance versus time 

curves, characterised by multiple spiking and sudden increases, unless efficient 

heat conducting paths are provided for elect romigration structures. A typical 

example is shown in Figure 3-5 [28]. The explanations provided for this graph 

and similar graphs obtained by others are summarised in Figure 3-6. 

The above explanations are supported by computer simulation of the thermal 

and electrical environment in the vicinity of a void [15]. Experimental evidence 

has also been provided by TEM studies [19]. 

In those cases where very smooth resistance versus time curves are reported: 

Time resolutions are not fine enough to record the spikes. For example, only 

a few points collected over a period of hundreds of hours at selected intervals. 

Only the average value of resistance within a time interval is shown. 

In summary, resistometry is very promising from the point of view of process 

monitoring for electromigration because any process deviation causing an unac- 
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Figure 3-5: Resistance versus time curve showing multiple spiking 
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Figure 3-6: Factors causing multiple spiking and sudden increase and decrease 

in resistance 
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Figure 3-7: SWEAT method for monitoring elect romigration 

ceptable overall change in width, thickness, median grain-size etc. would change 

the average mass transport integrated over the entire line and this would be re-

flected in the resistance measurements. However, the spiking problem is the major 

drawback of this technique. 

3.5 Fast Tests [4, 29-32] 

Many tests have been developed recently as process control monitors of metalli-

sation reliability, usually referred to as 'fast tests' [29, 30]. All these tests use high 

current densities and temperatures to shorten the test time to few tens of second-

s. One typical example is Standard Wafer-level Electromigration Acceleration 

Test ( SWEAT  ) [29]. The principle behind this test is to provide a stress (cur-

rent and temperature) equivalent to 20 years of normal operating conditions, with-

in a very short time of few seconds and to compare the actual failure time against 

a calibrated reference value. This is schematically shown in Figure 3-7. Before 

starting the test, the value of the pre-exponential constant in Black's equation. 
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Figure 3-8: SWEAT structure unit 

temperature coefficient of resistance of metallisation, activation energy etc. are 

needed. These are used to estimate factors like temperature rise and equivalent 

stress time. 

The test structure consists of alternate wide and narrow segments as shown in 

Figure 3-8. Electromigration damage is mainly confined to the narrow regions and 

thus is localised because of high current density. Another characteristic feature 

is that the wide segments act as heat sinks. In conventional long tracks where 

the heat dissipation from the electromigration region ( may include the entire 

metal length ) is mainly through the oxide-silicon-chuck sandwhich, such highly 

accelerated tests produce irreproducible results [13]. 

The actual test system consists of computer controlled instruments used to 

ramp up the power and continuously monitor the current and temperature of test 

line and estimate the 'equivalent stress time' the line receives in 30 milliseconds 

time intervals, typically. Usually the testing is continued till the line fails and the 

cumulative value of this (equivalent stress time) is compared with the target value. 

The principle is illustrated in Figure 3-7. For temperature estimations, the metal 

line is used as its own temperature monitor. Equivalent stress time at any instant 

of time is estimated using Black's equation. 

SWEAT testing may work but it is risky to use it for routine process monitor-

ing. This is because it is assumed that thermal equilibrium is established rapidly 

across the structure. But this depends on the different thermal time constants 

for the metal-oxide-silicon-chuck sandwhich and the implications of this are not 
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clear. Some typical values of the thermal time constants are given in Appendix E. 

Inaccurate temperature estimations in SWEAT tests are also due to the fact that 

temperature is not independently monitored during the course of stress testing but 

the test line is used as its own temperature monitor. Also, test line temperatures 

may reach 250°C in a very short time and when this happens lattice diffusion 

becomes significant and hence these results are not accurate in estimating the e-

quivalent stress under normal operating conditions where grain boundary diffusion 

dominates. 

In spite of the above deficiencies, fast tests are becoming popular in the in 

dustry and in the military/ aerospace VLSI circuit qualification programmes [33]. 

However, at present many of the IC manufacturers are running classical tests also 

to 'satisfy the customers' because the validity of these fast tests is yet to be estab-

lished Nevertheless, efforts are continuing to make these tests more acceptable. 

3.6 Mass Transport Measurement [34-36] 

This type of experiment measures directly the net amount of mass transport 

caused by elect romigration. It may be recalled that elect romigration may result 

in mass accumulation or depletion depending on the flux divergence at a triple 

point. This mass transport is usually manifested by formations of hillocks and 

voids. The aim of the experiment is to measure the total volume of the voids 

and/ or hillocks as a function of time. Usually a transmission electron microscope 

(TEM) is used for this purpose. However, there are obvious limitations of this 

method to evaluate metallisation reliability for routine process monitoring. For 

example, access to specialised instruments and sample preparation difficulties. 
requires 

Also, because TEM 	- suspended films, accurate temperature measurements 

present a problem due to the existence of large thermal gradients. 
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Chapter 4 

Limits of Conventional Tests 

4.1 Introduction 

It was outlined in chapter 1 that statistical process control measures are be-

coming necessary to achieve higher levels of quality and reliability. It was also 

pointed out that a large number of interacting factors affect electromigration and 

hence the problem cannot be solved by just monitoring all the process variables. 

Nevertheless, manufacturing priorities are to reduce process variations and to 

keep process parameters closer to target specifications. This is usually stated as 

aiming for a process capability, C ~! 2. This term is briefly explained in section 

4.2. By these process control measures, an improvement in yield and an overall 

improvement in quality and reliability [1] have been demonstrated. Thus, pro-

cess controls leading to increased C 9  may be expected to result in more reliable 

metallisation since that result is contained in overall failure rates. However, the 

conventional electrornigration MTF tests may fail to meet our expectations of a 

direct causal link to process capability data. This is mainly because MTF is es-

sentially determined by the failure times of the weak-spots in the lines under test 

rather than the average values represented by C 9  values. Also, the sample size 

determines the accuracy of the measurements. Section 4.4 discusses these issues 

in detail. 

There are many metallisation process parameters for which it is becoming 

necessary to adopt the process control measures. However, one parameter, namely 

linewidth is discussed in detail in section 4.3 because it is one of the critical process 

parameters affecting elect rornigration MTF and it is also very important from 

64 
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yield considerations. To preserve device yield it is essential to maintain the target 

linewidth specifications not only over the entire wafer, but for all wafers in a batch 

and from batch to batch [2]. The present trend in linewidth measurement is to 

move away from the conventional spot-checks, and to get an average value over an 

area of a wafer [2, pages:199-20q. 

4.2 Process Capability 

Two yardsticks, C and Ck, have become standard terminologies in the area of 

statistical quality control in recent years [3]. The usual definitions and the formulae 

are given in Figure 4-1. USL and LSL stand for upper specification limit and lower 

specification limit respectively. 

C does not take into account any noncentering of the process relative to the 

specification limits of a parameter. Such noncentering reduces the margin of safety 

and this is taken into account in the parameter C 9k. For example, when the 

process mean and the target value coincide, k is reduced to zero making C, and 

C equal. If, however, the process mean is skewed toward one end or the other of 

• specification limit the value of k increases, causing a decrease in Ck.  Thus Ck is 

• measure of both spread and noncentering. Generally for critical parameters the 

aim is to attain C. > 2.0 and C 9k ~: 1.5) [4]. Within the semiconductor industry, 

these statistical control procedures are being more widely introduced for control 

of all physical dimensions, layer thicknesses, etc.[5]. 

4.3 Linewidth Control 

4.3.1 Factors affecting linewidth control 

There are a large number of photolithographic and etch process parameters which 

control the minimum feature size achievable and variation in linewidth from sample 

to sample [6,7,8,9]. 
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Cpk = c (1-k) 

k - target value - process mean 
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Figure 4-1: Definitions and formulas for C, and Ck 
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Variation can be due to: 

The quality of the optical system producing the image. 

Variations in exposure. 

Resist-image-substrate interactions. 

Etch variations. 

Some of the above in turn depend on a number of other parameters. For ex-

ample, resist-image-substrate interactions include a wide variety of process pa-

rameters like resist type, spinner rotational velocity, bake time and temperature, 

reflectivity of the substrate, etc. Non-uniform etching may be caused by the 

plasma machine configuration, composition of the plasma, etc. In the case of 

wet etch— concentration of the chemicals, temperature and time. 

A functional relationship derived by Einspruch [10] based on a simplified model 

connects the fractional change in line-width to photolithography parameters as 

follows: 

[()2 (Ap),]1/2 

	
(4.1) 

where M stands for the modulation transfer function of the imaging system 

The first term () in the bracket is the fractional change in exposure (expressed 

in terms of radiation intensity multiplied by time duration). The second term () 

is the fractional change in the 'threshold exposure' of the resist. The 'threshold 

exposure' includes the effects of the development process, resist thickness, spectral 

composition of the radiation and optical properties of the underlying substrate. 

In short, this term represents non-uniformities in resist processing. 

The above equation despite its simplifying assumptions helps to approximately 

estimate the relative contribution of the various parameters. For example, equa-

tion 4.1 clearly shows that large image modulation transfer function (M) is the 
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most important factor in achieving good linewidth control. Increasing M can re-

duce the effect of non- uniformities in exposure and process variations. To achieve 

±10% linewidth control at 60% modulation with a non-uniformity of exposure of 

±10% leaves around ±6% allowable variation for the rest of the process. 

The equation contains a subtle relationship between focus and Iinewidth control 

as a result of M in the denominator. When the optical system becomes defocused, 

M decreases causing more linewidth variations. 

4.3.2 Linewidth Measurements 

Linewidth measurements for process monitoring purposes have traditionally been 

based on optical or SEM inspection or electric-al measurements of test structures 

on process control chips [11]. In the latter case, linewidth data are taken by mea-

suring the resistance of bridge resistors of known length and then calculating the 

linewidths based on the sheet resistance, as determined from the adjacent van der 

Pauw structures [12]. Such systems usually produce linewidth uniformity maps of 

wafers. But electrical probing techniques are restricted to conducting layers, and 

can not measure photoresist. Optical techniques can measure resist but they have 

some dependency on the exact measurement location on the wafei,sma1l bumps, 

scratches etc. An integrated measurement over a localized area would give a more 

accurate picture of linewidth dimensions at each site. But it can easily result in 

a measurement routine that is too slow for production purposes. There is a need 

for a non-destructive fast scan system for monitoring linewidth uniformity across 

wafers for routine process monitoring and this was the motivation behind one of 

the PhD projects at the EMF [2]. This research [2] led to the development of a 

new test structure - chequerboard test structure- to measure linewidth uniformity 

for process control [2, pages, 199-230. In essence, the technique involves a simple 

optical measurement of a large area test pattern consisting of an array of alter-

nate clear and opaque squares. Using an aluminium chequerboard over the entire 

surface of a glass wafer the sensitivity of the technique has been demonstrated 

[2, page,237). Using white light in transmission through a glass wafer, variation 
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of only 5% in linewidth across the wafer becomes visible to the naked eye. Also 

it reveals details such as non-uniformities in photoresist spinning. Since the che-

querboard test structure is also relevant from electrornigration point of view also, 

it is briefly described in chapter 5. 

A sample linewidth contour map and focus exposure curves for the EMF pro-

cess are shown in Figure 4-2 and Figure 4-3 [2, pages, 110-111]. The plots 

are generated from the commonly used Prornetrix Litbomap LM20 system for 

linewidth process monitoring. This is an electrical probing system and hence can 

be expected to yield an integrated measurement over the entire area of a track. 

The linewidth contour map in Figure 4-2 shows variations in linewidth across the 

wafer for nominal exposure and focus conditions. Referring to equation 4.1, under 

nominal exposure conditions, () is small because the exposure is nearly con-

stant, but () varies depending upon the process variations across the wafer and 

hence the variations in linewidth shown in the linewidth contour map are mainly 

due to process variations. The focus exposure curves in Figure 4-3 show variations 

in linewidth when exposure and M, the modulation transfer function in equation 

4.1 are varied. 

In summary, Figures 4-2 and 4-3 indicate that in order to reduce linewidth 

variations, uniformity in other process parameters such as photoresist processing, 

exposure etc. should be carefully maintained. 
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4.4 Conventional MTF tests and metallisation 

process monitoring 

Conventional MTF tests are popularly used for metallisation quality and relia-

bility evaluations because they have a very good empirical base, i.e. they 'work 

well' and have been widely accepted by the microelectronics industry, despite the 

fact that they take prolonged test times. It is natural to expect that the met-

allisation process control measures such as linewidth control should result in an 

overall improvement in quality and reliability of IC metallisation. However, a clos-

er look indicates the following disadvantage and limitation if we want to use them 

for routine metallisation process monitoring in general, and linewidth control in 

particular. 

4.4.1 Sample Size 

Sample size plays an important role in determining the accuracy of the electro-

migration lifetime measurements. This is evident from the Figure 4-4 based on 

the mathematics of failure distributions [13]. In this figure, tso is the MTF of 

the samples, t is the population MTF , s is the standard deviation of the 

failure distribution and n is the sample size. By population MTF we mean the 

MTF obtained when a very large number of samples are used (theoretically, when 

n - oo). When n=400 the sample MTF is close to the population MTF with 

an error of about ± 10%. But, as the sample size is decreased below 400, the sam-

ple MTF deviates more and more from the population MTF, depending on the 

standard deviation. For example, when s0.6 and n =10, f- can be expected to 

be within the range [ 0.5 to 1.5] with 90% confidence. That is, there may be an 

error of about ± 50 % in the sample MTF. However, although theory demands a 

large number of samples for an accurate analysis, cost and time considerations are 

usually prohibitive. In practice, a sample size of around 10 is generally chosen. 
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In resistometry, it may be recalled that small sample sizes may not produce 

large errors because MTF extraction is based on average mass transport over the 

entire line and any metallisation line contains a large number of electrom.igration 

damage sites. 

4.4.2 MTF and Process Capability 

The process control measures to improve the process capability, Ck, usually make 

the distributions narrower and decrease k. In the case of linewidth control, this 

means aiming for smaller linewidth variations across a wafer and from wafer to 

wafer in a batch and from batch to batch. Also the mean linewidth has to be kept 

closer to the specified linewidth so that k remains small. In practical terms this 

demands the maintenance of uniformity in photoresist processing, etch control 

etc. across a wafer. The emerging technique using chequerboards is promising 

for measuring these parameters over an area of the wafer. However, the MTF 

measurements may not be linked to Ck because the failure time is determined by 

the weak-spot in a metallisation line and not to the average mass transport over 

the entire line. 

When small number of samples are used, as is the common practice, the prob-

1cm-s are much more serious. 

Apart from the errors that may result because of the small sample size, irre-

producible results may also be obtained if the samples are not properly screened. 

This is because, gross defects such as localized overetched areas, scratches etc., 

may determine the failure time of the entire line. However, in the experiments 

where a small number of samples are used (as in the case of this project - report-

ed in chapter 3) the samples are usually visually inspected and only good devices 

are taken for stress experiments. But, even screening may not solve the problem 

completely, because some of the defects may go undetected even under high reli-

ability military/ aerospace quality control inspections such as MIL-STD-883D [14, 

15,161. 
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In summary, it is difficult to estimate the population MTF from convention-

al MTF measurements because of sample size and other considerations and also 

difficult to link conventional MTF results to Ck. However, in contrast to the 

conventional MTF measurements, it may be recalled that in resistometry, resis-

tance increase due to electromigration is monitored. The mass transport along 

the entire line due to electromigration contributes to resistance change and hence 

the extracted MTF can be expected to be better linked to Ck. 

4.5 Chapter Conclusions 

There are many critical process parameters which affect electrornigration. 

Linewidth is one of the most important parameters for the present sub-

micron geometry VLSI circuits. It is also very important from yield consid- 

erations. 

Figures 4-2 and 4-3 show that there are many factors which cause linewidth 

variations across a wafer. The latest trend in statistical quality control 

strategy is to reduce these variations, in addition to the traditional approach, 

namely, inspections and screening tests on the end-products. New techniques 

which give an integrated measurement over an area of a wafer are becoming 

necessary to maintain linewidth uniformity. One new technique uses a novel 

test structures namely, a chequerboard for demonsration of linewidth con-

trol. This structure appears to be useful from the electromigration point of 

view also. 

Routine process monitoring for critical parameters that affect electromigra-

tion using conventional MTF tests is difficult because of sample size and 

other considerations. 

Conceptually, resistometry appears to be better suited for the above purpose 

(process monitoring) than conventional MTF tests. 
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Chapter 5 

Some Studies on Chequerboards 

5.1 Background 

Patterns of squares as shown in Figure 5-1 are routinely used in the EMF (Edin-

burgh Mi crofabri cation Facility) to optimise development and etching conditions 

[1,2]. They are commonly added to a mask or reticle to provide a rapid visual indi-

cation that the layer has been correctly exposed/developed/etched. The principle 

is: if under-development/etching has occurred, the squares overlap at the corners 

and conversely, with over-development/etching the squares become isolated from 

each other. Only when the process is correct, will the squares just contact at their 

respective corners. These three cases are shown in Figure 5-2. 

Figure 5-2 does not show the finer details at the corners. In reality rounding 

off (Figure5-3) at the corners occur depending on the resolution and modulation 

transfer function of the optical exposure system. 

The optical characteristics of chequerboard test patterns have been shown to 

give an excellent visual representation of the effect of severe lithographic factors 

that determine linewidth uniformity and the inadequacy of using spot checks of 

critical dimensions to monitor the process [1]. Aluminium chequerboards on the 

surface of glass wafers were used to show the deviations in linewidth in terms of an 

area change on the chequerboard. Electrical resistance of chequerboard structures 

are also being studied to monitor the under/over-etch[3]. 

When this project started, a large number of micrographs and experimental 

database from earlier projects were available. From these it was clear that chequer- 

VVI 
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CHEQUERBOARD STRUCTURE 

rm 

a 0 
Figure 5-1: chequerboard structure for rapid visual monitoring of linewidth 

board structures could be used to generate a large number of nominally identical 

micron to sub-micron width segments distributed over an area. There are some 

striking features of these structures from the electromigration point of view: 

Localisation of elect romigration damage sites to the overlap regions because 

of higher current density due to smaller cross sectional area. 

• Possibility to include a large number ( 	1000) of nominally identical seg- 

ments in one structure to extract mass transport data which can be consid-

ered to be very close to the 'effective' average value. 

• The chequerboard structures may provide efficient heat dissipation from the 

overlap regions through the large metal squares and this may yield spike-free 

resistance versus time curves. 

• Sub-micron to deep sub-micron width segments could be fabricated using 

the standard optical lithography techniques. 

The first step was to study the current density distribution in the overlap segments. 

PISCES-213 [4] software was used to do this and the results are given in section 
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Figure 5-2: Correct-etch (Top), over-etch (Middle), under-etch (Bottom) 
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Figure 5-3: Rounding off at the corners 

5.2. The heat-sinking aspects are discussed in section 5.3. It was also thought 

appropriate to do some preliminary integrity tests with these structures before de-

signing the structure for electromigration studies. This was because the structures 

are radically different from those normally used for electromigration studies. The 

results of some of these experiments are given in section 5.4. This is followed by 

the proposed electro- migration failure model for chequerboa.rd structures. 

5.2 Current-density Simulations of Chequerboard 

Structures 

Figure 5-4 shows a sample plot of the current flowlines for a 6pm chequerboard 

with an overlap of 0.2pm. The plots were derived from simulations with PISCES- 

2B for a current of 25 mA. They show the current peaking in the centre of the 

segments as expected. 
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A current density vector plot for one of the overlap segments is shown in Figure 

5-5. In this figure the length of the arrow is proportional to the current density 

at the given point. It is apparent from this figure that the current density at the 

corners is much higher than at the centre. This is due to the current crowding 

effects at the corners. The arrows are more closely spaced in the centre of Figure 

5-5 because of the close grid spacing used in this region during simulation. In 

these simulations only 900  corners for the metal pattern were used. The effect 

of the rounding off that occurs at the corners can be shown by replacing the 90 0  

corners with a typical curvature geometry. 

The graph of Figure 5-6 shows the variation of current density along the line 

AB from one corner to the other, when curvature effects are considered. The 

segment with the minimum time to failure in a chequerboard can be expected to 

be the one having the highest current density at the corners and also having the 

largest value of microstructural parameter 77 in the vicinity of the corner. A failure 

leading to the discontinuity ('open') may propagate from one of these sites. 

5.3 Heat Dissipation in Chequerboards 

The large metal squares of the chequerboards are expected to provide an efficient 

heat dissipation path for the temperature increase caused by Joule heating. Before 

a steady state temperature is established across the chequerboard, we can expect 

the temperature to be maximum at the overlap regions. The thermal stabilization 

time is determined by various thermal time constants and this aspect is discussed 

in Appendix E. Also, some of the general concepts such as thermal resistance, 

thermal capacity etc. are defined and discussed in Appendix E. An approximate 

estimation of the efficiency of chequerboards compared to the conventional long 

tracks in dissipating the Joule heat is given below. 

Consider an unit element of a chequerboard structure as shown in Figure 5-

7 (a). Mainly there are two components of the heat flow as shown in Figure 

5-7 (b): one is the conduction through the metal pads A and B and the other 
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Figure 5-4: Current fiowlines 
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is the conduction through the oxide-wafer-chuck sandwich and into the outside 

environment. 

The thermal resistance for the heat conduction towards the metal pads A and 

B can be expressed as: 
L 

Rm =KmWtm 

where, 

Rm  = thermal resistance for heat conduction across the metal 

Km = thermal conductivity of the metal 

tm  = metal thickness 

the width w and length L of the metal as defined in Figure 5-7(a). Similarly, 

the thermal resistance for the conduction heat flow through the oxide-wafer-chuck 

sandwich (R0 ) may be approximately expressed as: 

D ____t. 
"° KwL 

(5.2) 

where, 

to  = oxide thickness 

K. = thermal conductivity of the oxide 

It may be noted that in the equation 5.2 a linear approximation to the decrease 

of R, with (-) has been assumed. But, in reality non-linearities may occur due to 

the heat flow through the metallisation edges depending on w and t 0 . However, 

for the calculations shown here, this is a reasonable approximation because while 

discussing the results later we are considering the orders of magnitude only. 

Now, the ratio (i-) is used as a figure of merit to compare the effectiveness of 

the heat dissipation through the large metal squares. That is, the higher the ratio 

the higher is the effectiveness. (Note that the figure of merit is (i-) and not () ). 

-Th e length L is varied from 1 pm to 1000 pm, the latter length is the typical length of 

a conventional electromigration test structure. Using the following values for the 

material constants and the oxide and metal thickness: 

Km  = 2.38 W/cm0C 

(5.1) 
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Figure 5-7: Heat conduction from the overlap region of a chequerboard 
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L(pm) () 

1 248 

10 248 x 10-2 

100 248 x iO 

1000 248 x 10-6  

Table 5-1: Relative heat conduction (metal versus oxide) values 

K. = 0.0096W/cm0C 

tm = 1pm 

to  = 1pm 

the values of (i-) for different L values are calculated and the results are given in 

table 5-1. From table 5-1 it is clear that the chequerboards where L is typically 

around 1pm provide efficient heat dissipation paths through the large metal pads 

unlike the conventional long tracks. For example, when L = 1pm the heat con-

ducted away by the pads A and B from the centre of the overlap region is about 

248 times that conducted away by the oxide. Thus the metal pads A and B act 

as heat-sinks conducting away the Joule-heat generated in the overlap region. 

The fact that the thermal conductivity of aluminium is 	248 times that of 

the oxide will be used to put forth the argument that in chequerboard structures 

significant heat is conducted away by the squares from the segments. In classical 

structures where length is 1000 pm heat conduction through oxide is significant. 

5.4 Thermal Measurements 

Before using chequerboard structures to study electromigration, it was thought 

appropriate to study the integrity of the structures at high currents and temper-

atures. The structures are radically different from the conventional test layouts 

and this may lead to new problems, for example, a chequerboard contains a large 

number of high current density segments so the definition of uniformity is very d- 
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ifferent from the usual long track case. Temperature coefficient of resistance is one 

of the important parameters required in any electromigration study to estimate 

the temperature rise due to Joule heating. Hence, resistance versus temperature 

behaviour of these structures was also studied to confirm that the typical thermal 

behaviour of these films was linear in the temperature range of interest: 25-200°C. 

5.4.1 Temperature Coefficient of Resistance Measurements 

TCR MEASUREMENT 

Figure 5-8: TCR measurements 

The measurements were carried out using the chequerboard structures from 

one of the previous projects. It should be noted that these structures did not 

contain the commonly used four-probe arrangements for accurate resistance mea- 
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probe probe 

padi 	 pad2 
V 

th.qu.board 	 R 
R padi 	 pad2 

Figure 5-9: Two-probe resistance measurements 

surements and were quite long ( 1cm) giving resistances typically in the range of 

40-50 ohms. The results are shown in Figure 5-8. The TCR value obtained from 

the graph (0.36 %/°C) contains an error due to the contact resistance between the 

tungsten probes and aluminium bond pads. This adds Rpadl  and  Rpad2  in series 

with chequerboard structures as shown in Figure 5-9. These two resistance com-

ponents may not remain constant from one measurement to the next, depending 

upon the contact pressure, probe placement, thermo-emf depending on the tem-

perature etc. Nevertheless, these measurements showed the general linearity of 

resistance versus temperature. It may be noted that the published TCR value for 

t lutni i iuni-iliun hi ms Is O.) 

5.4.2 Integrity Tests 

Fhe resistance of the chequerboard test structures was monitored at higher cur-

rents causing significant (greater than about 5°C and up to about 30°C ) joule 

heating to test the integrity of these structures. The results are shown in Figure 

5-10. The following observations can he made from the graph: 
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Figure 5-10: Integrity Tests 

The resistance increases from about 50 ohms at low power levels ( 20 mA) to 57 

ohms at 350 mA. Using the TCR value of 0.36% /°C this indicates a tempera-

ture rise of about 39° C. Many structures were tested at much higher currents till 

failure and similar graphs were obtained. 

In summary, these measurements showed that there are no 'integrity' problems 

with these structures for elect romigration studies involving high current densities 

and temperatures. 
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5.5 Elect romigration Model for Chequerboard 

Structures 

The above measurements and studies clearly indicated the general suitability 

of chequerboards for electromigration monitoring. In addition, resistometry ap-

peared to be the most appropriate choice for the following reasons: 

• We are mainly interested in estimating an average lifetime value from a pro-

cess monitor structure so that it can be used as a check to verify process 

control. Resistometry techniques have a general advantage over other elec-

tromigration techniques in that these measure the average mass transport 

occurring over the entire stripe as opposed to 'weak spots' in the structure. 

• Because of the heat-sinking effects of the chequerboard structure we can 

expect spike-free resistance versus time curves. 

Hence, it was natural to use electromigration models which describe the resis-

tance behaviour due to electromigration. 

There have been many theoretical models that describe the nucleation of voids 

and their and growth during electromigration in thin films. [7,8,9,10]. But, these 

models do not explain the observed increase in resistance in terms of growth rate 

of voids. However, the model by Rodbell, Rodriguez and Ficalora [11] explains 

the resistance increase in thin films caused by void nucleation and growth due to 

electromigration. This model has been shown to represent the resistance versus 

time data of lengthy metallisation stripes [11]. This model is referred to as the 

RRF model in this thesis. 

According to the RRF model, resistance increase due to electromigration in 

straight line structures is considered to be due to the creation and subsequent 

coalescence of voids. This is an important analysis of elect romigration. and it 

should be considered in some detail. So the details of this model are given first, 

followed by a discussion on its applicability to chequerboards. 
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RRF Model 

Let, 

N = nucleation rate of voids 

G = growth rate of voids 

r = incubation time for nucleation 

V = total volume of the system 

V01 = total volume of voids 

fv  = volume fraction of voids = V0d/V 

t = time 

Then, The equation governing f(t) is shown to be given by: 

1 	4irG3  
- In 1 f - 3 Jo 

N(t - T)3  dr 	 (5.3) 

a general solution for f is [11]: 

= 1 - exp[—(m t")] 	 (5.4) 

where, m is proportional to G 3  N and n is a constant. 

The above formula in the RRF model is based on the model developed by 

Johnson, Mehl and Avrami [12,13] in connection with the nucleation and growth 

of solid-phase particle precipitation in a saturated solid-solution matrix. The nu-

cleation and growth depends on the local super-saturation of the solute element 

before precipitation can occur. Precipitation generally begins at grain boundaries. 

In the case of elect romigration a super-saturation of vacancies must occur before 
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a void nucleates. In this sense, vacancies are considered analogous to the pre-

cipitates. This analogy has been experimentally verified for the case of vacancy 

precipitation during diffusion in metallic systems [14]. In the general solution rep-

resented by equation 5.4 there are no restrictions on n but through experiments, 

certain values of n have been given definite physical significance and is discussed 

at the end of this section. 

Resistance versus Time 

At constant temperature, 

	

R(t) = pL/A(t) 
	

(5.5) 

where, R(t) is the resistance as a function of time, p is the resistivity , L is the 

length and A(t) is the effective cross-sectional area as a function of time. 

The volume fraction of voids f  can be expressed as the area fraction 

(considering cylindrical voids) as: 

fv = A 	
(5.6) 

where, 

Avoids = 	 cross- sectional area of voids 

A = total cross-sectional area 

= number of voids per unit cross-section 

Noting that, 

	

A = Avoid. + A(t) 	 (5.7) 

From equations 5.6 and 5.7, 
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A(t) = A(1 - f) 
	

(5.8) 

Substituting for f, from equation 5.4, 

A(t) = A [exp(— mt")] 	 (5.9) 

From equations 5.9 and 5.5, 

R(t) = 	exp[mt"] 	 (5.10) 

or 

R(t) = R1  exp[mt] 	 (5.11) 

where, R 1  is the initial resistance. 

Significance of m and n 

It has been shown that 

mcxG3 N 

where G is the growth rate of voids and N is the nucleation rate of voids. In 

the case of electromigration, it is reasonable to assume that the activation energy 

can be calculated from the temperature dependence of in [11]. In a precipitation 

process the value of n distinguishes various mechanisms such as increasing, de-

creasing or constant nucleation rate (among others) with n varying from 1 to 4 

[15]. The same significance of n can be applied to electromigration induced voids. 

For example; n=1 for an initial high void growth rate with void nucleation oc-

curring at grain boundaries. This is further confirmed by the activation energy 

measurements by Rodbell et al [11] for aluminium and silver. 
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ELECTROMIGRATION DAMAGE MODEL 
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Figure 5-11: Electromigration damage model 
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5.6 RRF Model and Chequerboard Structures 

In a chequerboard structure the void nucleation and growth sites are localised 

as shown schematically in Figure5-11. Hence it is reasonable to consider that 

A(t), the effective cross sectional area as a function of time, is proportional to the 

effective thinning rate of the overlap areas. However, it should be noted that now 

the parameters m and n characterize the void nucleation and growth processes 

occuring at the overlap regions. Equation 5.9 now describes the resistance increse 

of a chequerboard due to elect romigration. 

In order to estimate the MTF of a chequerboard in terms of the parameters in 

and n, the failure criteria have to be fixed. Failure is taken as the time taken for 

the resistance to increase by 10%. This is a reasonable approximation in view of 

the fact that in region III of the resistance versus time curve, the time differential 

between this point and the open circuit failure is negligibly small (refer to Figure 

3-4 ). It should also be noted that the calculated failure time is an average time. 

This is because the resistance increase is due to the void volume summed over the 

entire chequerboard. For the case of grain-boundary nucleation (n=1), the above 

failure criteria yield, 

mt = In R/Ri 	 (5.12) 

since R/R 1  =1.1 when R increases by 10%. This gives, 

MTF = 0.09531/rn 	 (5.13) 

For n=2 and 3, MTF is given by 0.30872/V' and 0.0.45678/m 1/3  respectively. 

5.6.1 Extraction of Parameters m and n 

In principle, extraction of m and n should follow the following three steps: 

1. Monitor resistance as a function of time. 
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Identify the constant temperature region. 

Use function fitting software to extract m and n. 

However, there are many experimental aspects to be given due attention. When 

high currents are used to cause Joule heating to reduce test times, we have to 

consider the temperature changes that occur over the lifetime of the sample as 

discussed previously. The model presupposes that the temperature is constant and 

hence the beginning and the end of region II of the resistance versus time ( Figure 

3-4 ) in which the temperature remains nearly constant should be determined 

experimentally by some means. Some trial experimentations may also be needed 

to determine thermal stabilization time. Using very high stress levels (currents 

and temperatures) may cause the breakdown to occur much before the typical 

stabilization time and thus produce erroneous results. 

5.7 Chapter Conclusions 

The success of chequerboards to assess linewidth control has been demon-

strated in an earlier PhD project and they offer the possibility to produce 

micron/sub-micron dimensions close to and even below the typical minimum 

linewidth specifications. This capability has to be further confirmed by ex-

periments and measurements when the linewidth approaches the resolution 

limits of the optical system. Chapter 6 describes how this is planned to be 

carried out. 

The current density simulations show the higher current density in the over-

lap regions of a chequerboard, as expected. 

Sample thermal calculations indicate that the large metal squares of a che-

querboard may provide efficient heat conduction from the overlap regions. 

In this regard, it is necessary to monitor the resistance and temperature 

throughout the electromigration test period. The temperature monitoring 

methodology is discussed in chapter 6. 
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Preliminary measurements on chequerboards indicate that there are no in-

tegrity problems with these structures for electromigration experiments. TCR 

of metal films and the temperature rise caused by Joule heating can be ob-

tained from the resistance measurements on chequerboards. 

It has been proposed to use the RRF model to describe the electromigration 

damage in chequerboards. The validity of this model has to be established 

through experiments. 
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Chapter 6 

Chip Layout and Fabrication 

6.1 Introduction 

The main aim of this chapter is to give an overall view of the layout that was chosen 

for the test chip that formed the core experimental vehicle for this project. Several 

test structures with a range of dimensions were designed. They each had different 

objectives but all were produced by the same fabrication process. Some useful 

tips to generate chequerboard structures are given, along with a brief note about 

the mask design software. The purpose of the different types of test structures are 

discussed under the broad category of conventional test structures, chequerboard 

test structures and other test structures. Each structure in the chip belongs to 

one of these types and they are summarised in Tables 5-1 and 5-2 and are denoted 

by 'con.', 'cbd.' and 'other' respectively in these tables. Even though the main 

aim of the project was to use chequerboards as a process monitor, chequerboards 

are likely to be used for statistical modelling of the elect romigration failure times. 

This is mainly because of the ease with which a large number of nominally identical 

electromigration damage sites can be incorporated in a single die and in a single 

structure. Keeping this in mind, chequerboards with a wide range of rows and 

columns were also included for further work. The structure by structure details of 

the number of rows and columns are also summarised in Tables 6-1 and 6-2. 

There are invariably differences between the designed or target dimensions 

and actual dimension on the wafer depending upon the calibration methods and 

process control. Results comparing the target values and actual values obtained 

are also included in this chapter. The process run-sheet is given in Appendix A. 

102 
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6.2 Chip Layout 

6.2.1 Chip Design 

The mask layout for the chequerboard chip consisted of two designs EU9101 and 

EU9102 and was done using the PRINCESS' CAD software system run on a 

VAX station 2000. EU9 101 predominantly contains chequerboard structures while 

EU9102 contains in addition standard test structures recommended by the Na-

tional Bureau of Standards (NBS) to be used with straight line metallisations [1]. 

Figure 6-1 shows how the two designs are placed on a lcmx 1 c chip. The actual 

chip plots are placed in the pocket attached to the inside back cover of this thesis. 

All the structures are contained in 2x20 probe-pad arrays. Each pad is 

120 jim x 120itm size and has a separation of 120 tim. This makes it suitable 

to probe test these structures with a standard probe card used for other routine 

structures in the EMF [2]. 

One notable feature of the the chequerboard chip design is the large number of 

squares and their arrangement in the form of an array. The layout task was eased 

by the graphics editor command ADD ARRAY to create an array of cells. 

By defining a cell as shown in Figure 6-2 and using the following edit com-

mands, chequerboards with required square size, overlap and rows x columns can 

be easily designed. 

NUMBERJ(—number of copies in X-direction 

NUMBERLY—number of copies in Y-direction 

DELTA..X—column spacing 

DELTA.X—row spacing 

1 Trademark of Silvar-Lisco software systems 
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Metal border 

C EU9101 	 EU9101 

EU9102 

a 

EU9102 

1 c 
a= 100 microns 

b= 50 microns 
c= 75 microns 
d= 10 microns 

Figure 6-1: Geometric details of the chip 
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Figure 6-2: Cell used in the design of chequerboard arrays 

Another problem of having such a large number of squares is that using an 

optical pattern generator for mask making is too slow and it is necessary to use 

an electron beam pattern generator to produce the mask. The graphic database 

file was sent to Rutherford Apleton Lab for conversion from HPGL to GDSII and 

finally to Compugraphics Company to get the electron beam mask. 

6.2.2 Test Structure Types and Their Purpose 

Conventional Test Structures 

These structures are meant for classical elect romigration tests (MTF tests) and 

are denoted by 'con.' in the tables 6-1 and 6-2. Typically the tracks are 800 im 

or more in length. The structures NB1, NB2, NB3 and NB4 in EU9 102 are based 

on the U.S.National Bureau of Standards test structure [1]. This structure has 

been shown in Figure 3-1 of chapter 3. The dimension details are summarised 

in Tables 5-1 and 5-2. Structures Al to A6 in EU9101 are similar to the above 

test structures except for the fact that they do not exactly conform to the strict 

geometric details of the standard test structures but nevertheless can be generally 

used in all MTF measurements. All the structures in row H of chip EU9102 are 

also long conventional structures but have a number of bends. They were intended 

to be used for general studies such as the reduction in lifetime caused by bends. 
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d2 = d 1 + 2E 

d1= v'a 

a= (B - A )/ 2 

I 
- - - - 

Figure 6-3: Symbols and terms used to define the chequerboard geometry 
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Structure Location Type D(pm) a(pm) columns rows width(m) 

Al row A con. 10 

A2 row A con. 6 

A3 row A con. 4 

A4 row A con. 3 

A5 row A con. 2 

A6 row A con. 

Bi row B cbd. 2 0.2 100 1 

B2 row B cbd. 2 0.4 100 1 

B3 row B cbd. 2 0.6 100 1 

B4 row B cbd. 2 0.8 100 1 

B5 row B cbd. 4 0.2 100 1 

B6 row B cbd. 4 0.6 100 1 

B7 row B cbd. 4 1.0 100 1 

B8 row B cbd. 4 1.4 100 1 

Cl row Cl cbd. 6 0.2 80 4 

C1S row CI cbd. 6 0.2 80 1 

C2 row Cl cbd. 6 0.6 80 4 

C2S row Cl cbd. 6 0.6 80 1 

C3 row CI cbd. 6 1 80 4 

C3S row Cl cbd. 6 1 80 1 

C4 row CII cbd. 6 0.2 80 8 

C5 row CII cbd. 6 0.6 80 8 

C6 row CII cbd. 6 1.0 80 8 

Dl row D cbd. 2 0.2 300 4 

D2 row D cbd. 2 0.4 300 4 

D3 row D I 	cbd. 2 0.6 300 4 1 	11 

Table 6-1: Test structures in EU9101 
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Structure Location Type D(m) a(pm) columns rows width(pm) 

D4 row D cbd. 2 0.2 300 8 

D5 row D cbd. 2 0.4 300 8 

D6 row D cbd. 2 0.6 300 8 

El row E cbd. 6 1-2 80 4 

E2 row E cbd. 4 1-1.8 80 4 

Fl row F cbd. 6 0.2-1.8 40 4 

F2 row F cbd. 4 0.2-1.8 40 4 

GI row G cbd. 4 0.2 100 4 

G2 row C cbd. 4 0.6 100 8 

G3U row C cbd. 4 1.0 100 4 

G3L row G cbd. 4 1.0 100 8 

G4U row G cbd. 4 1.4 100 8 

G4L row C cbd. 4 1.4 100 4 

H row H cbd. 4 -1.8 to +1.8 20 4 

Ii row I cbd. 6 0 100 4 

12 row I cbd. 4 0 100 4 

13 row I cbd. 2 0 100 4 

14 row I cbd. 6 0 100 1 

15 row I cbd. 4 0 100 1 

16 row I cbd. 2 0 100 1 

Table 6-2: Test structures in EU9101(continued from the previous page) 
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Structure Location Type Design details and remarks 

A1,A2 row A other 100 pm length segments in series 

CC row A other width=10 pm,length=200 pm(Van der Pauw) 

NB4 row A con. width=6 pm, length800 pm (NBS) 

iOU row B cbd. D=10 pm,a=1 pm,rows=4 

ST-3 row C other narrow region width=2 pm(SWEAT) 

ST-4 row C other narrow region width=1 pm (SWEAT) 

ST-1 row D other narrow region width=6 pm (SWEAT) 

ST-2 row D other narrow region width=4 pm (SWEAT) 

El row E other 6 pm wide, 100 pm length segments 

E2 row E other 4 pm wide, 100 pm length segments 

4U row F cbd. D=4 pm,a=0.2 pm,> 1000 segments 

2U row F cbd. D=2 pm,a=0.2 pm,> 1000 segments 

6U row G cbd. D=6 pm,a=0.2 pm,> 1000 segments 

Hi to 116 row H other lengthy lines with bends 

NB1 row I con. width=10 pm, length= 800 pm(NBS) 

NB2 row I con. width=5 pm, length=800 pm(NBS) 

NB3 row I cbd. width=2.5 pm, length=800 pm(NBS) 

Ji row J other same as structure H in EU9101 

J2 row J cbd. D=4 pm,a=0.2 pm,rows=8 

Table 6-3: Test structures in EU9 102 
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It may be recalled that the NBS test structures are based on an inter-laboratory 

electromigration experiment conducted by U.S. National Bureau of Standards us-

ing 3 .tm width aluminium-silicon metallisation lines [1] to recommend methods 

to standardise MTF measurements. The important design consideration behind 

the NBS structures is the optimisation of the dimensions and placement of volt-

age taps so that the temperature profile of the lengthy line is not altered in a 

significant way. 

Chequerboard Structures 

These are denoted by 'cbd.' in the tables6-1 and 6-2. Basically two categories 

of chequerboard structures were designed, first one to be used for routine char-

acterisation for electromigration and the second mainly intended for extracting 

critical width data. The design features of these are discussed below. 

Figure 6-4: Structures Cl and MS 

Structures in rows CI and CII of EU9101 belong to the first category. One 

typical structure is shown in Figure 6-4. To extract elect romigration parameters 

m and n from resistance versus time data it is essential to monitor the temperature 

1 Device Under Test 
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Figure 6-5: Temperature rise in the monitor 
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profile of the DUT. Adjacent chequerboard structure CIS is intended to be used 

for this purpose. The temperature of CIS is expected to closely follow that of the 

DUT. The temperature increase in DUT/C1S during electromigration experiments 

is expected to consists of three regions I, II, III as shown in the bottom Figure 

6-5. 

These three regions correspond to the three failure/ physical processes taking 

place in the DUT during electromigration experiments shown in the top 2  Figure 

6-5. That is, region I -+ joule heating, region II -+ elect romigration, region III -p 

catastrophic failure processes. 

It may be noted that the temperature of CIS is measured by monitoring 

its resistance and using its temperature coefficient of resistance to estimate the 

temperature. Hence low current which does not cause significant joule heating 

and electromigration should be used for CIS. 

Structures El, E2, Fl, F2, of EU910I belong to the second category. An 

outline diagram of the structure Fl is shown in Figure 6-6. Structure El is same 

as that of Fl but has an overlap width increasing from 1.0 pm to 2.0 pm in step 

of 0.2 pm. Structures E2 and F2 are for the smaller square size of 4 pm. In 

these structures, chequerboards with increasing overlap width are all connected 

in series to enable the resistance versus time characteristics of all series-connected 

chequerboards to be monitored simultaneously. In reality the voltage tap outputs 

of these chequerboards are not measured in parallel but through a multiplexing 

scheme. However, the time interval between any two successive measurements is 

typically 30 second which is large compared to the multiplexing time of interval 

of 100 milliseconds. 

These structures are intended to be used for critical width determination be-

cause the electromigration parameters m and n can be measured for the range 

of widths at once. These structures are intended to be tested using low currents 

which do not cause significant temperature rise ( i.e., less than about 2°C ). Ex- 

2 reproducedfrom Figure 3-4 
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Chequerboards in series 

CURRENT 
P. 

overlap width (microns) 

ncreasing overlap width 

Vi 	 V2 	 V9 	yb 

Figure 6-6: Serially connected chequerboards 

ternal heat source either a hot chuck for wafer level tests or an oven for packaged 

devices is necessary to shorten test times. 

Other Structures 

Many other structures are included on the chip because of their general impor-

tance. For example, SWEAT structures, chequerboard structures for etch moni-

toring etc. The dimensional details and location of these structures on the chip 

are summarised in Tables 6-1 and 6-2. These structures are denoted by 'other' in 

tables 5-1 and 5-2. SWEAT structures were included because of their importance 

in electromigration (discussed in chapter 3) evaluation while the other structures 

are included from their general importance in metallisation process monitoring. 

Rapid visual monitoring of under/over etch may be done using structure Ji of 

EU9 102. 
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6.3 Fabrication 

6.3.1 Starting Material 

The starting material is 3 inch diameter p-type silicon wafer of resistivity 14-20 

ohm-cm and having (100) crystallographic orientation. 

6.3.2 Oxidation 

The process details of the oxidation process are given in step II of the process 

run-sheet in Appendix A. 

6.3.3 Aluminium Sputtering 

All the oxidised wafers were coated with aluminium- 1% silicon using a Baizers 

sputterer. Target thickness was around 0.6 ym. Process details are given in step 

III of the process run-sheet. 

6.3.4 Photolithography 

All the wafers except numbers 5 and 10 went through the normal exposure/ development 

process (steps IV and V of the process run-sheet). Wafers 5 and 10 were subjected 

to an exposure matrix, that is, exposure time was increased in steps of 20 ms from 

one die to the next, starting at 600 ms and ending at 1340 ms for the final die as 

shown in figure 6-7. Higher exposure time has the same result as overetching and 

this is useful to extend the segment widths into the deep sub-micron region. 

It may be noted that for routine electromigration characterisation it is sufficient 

usually to evaluate for the minimum linewidth for a given technology and use the 

normal exposure to realise this linewidth. Hence in general it may not be necessary 

to process the wafers using the exposure matrix for routine process monitoring. 
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EXPOSURE MATRIX 

exposure increased In step of 20 me In the direction of the arrow 

1340 me 

Figure 6-7: Exposure time variations across the wafers 5 and 10 

6.3.5 Reactive Ion Etching (RIE) and Anneal 

The standard RIE process of the EMF was used to etch the metal. The samples 

were annealed for 5 minutes nitrogen, 10 minutes in nitrogen/ hydrogen and 5 

minute in nitrogen at 435°C. The process details are given in the process run-

sheet. 
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6.4 Dimensional Measurements 

6.4.1 Pattern Dimension Measurements on the Mask 

The electron beam mask was visually examined under an optical microscope for 

any visual defects. Pattern dimensions were measured using a Vickers shearing 

microscope. The visual examination did not show any defects such as pinholes, 

scratches etc . However, there was an offset of 0.2 um between the designed 

dimension and the pattern dimension on the mask. This is evident from Figure 

6-8. 

6.4.2 Oxide Thickness 

The target thickness was 500 A. The thickness measurements were carried out 

using ellipsometer. Figure 6-9 is a two dimensional contour map showing the 

thickness variations across the oxide film. Excellent uniformity of the oxide thick-

ness is quite evident from the figure. 

6.4.3 Pattern Dimension Measurements on the Wafer 

Linewidth measurements 

Linewidth measurements were carried out using a Cambridge S100 scanning elec-

tron microscope. The results of measurements on 10, 6, 4, and 1 pm lines within 

a central die in wafer 6 are shown in Figure 6-10 

Chequerboard structures 

From electromigration point of view the important dimensions in a chequer-

board are d 2  , d1  , a and c. These symbols are described in Figure 6-3. d 2  was 

measured by placing the SEM cursors as shown in Figure 6-3. d 1  was measured 
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Mask Dimension (microns) 

5' 

4 

3 

2 

1 

1 	 2 	 3 	 4 	 5 
Designed Dimension (microns) 

Figure 6-8: Pattern dimension measurements on the mask 
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UNEWIDTH MEASUREMENTS USING SEM 

Linewidth on wafer(microns) 

14 

12 

10 

8 

6 

4 

2 

A 

0 	2 	4 	6 	8 	10 	12 	14 

Designed Iinewidth(microns) 

Figure 6-10: Linewidth measurements using SEM 
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by measuring A and B and noting that d 1  = / a where a = 

SEM micrographs showing the measurement of the dimensions A and B are 

given in Figure 6-11. From these micrographs we can calculate the overlap(a) as 

follows: 

A=4.41jtm 

6.21 pm 

Therefore, 

a = B  2  A  = 0.4 pm. 

is the additional component due to the 'rounding off' at the corners. It 

depends on the modulation transfer function and the resolution of the lens (foptics) 

and also on the over/under etching caused by exposure/develop/etch processes 

(cproc ). It may be represented as: 

= foptics ± Eprocem 	 (6.1) 

also, 

d2 = d 1  + 2f 
	

(6.2) 

If we plot (d 2  - d1 ) versus d 1  for the segments within a die, the above equation-

s indicate that we should get a line nearly parallel to the d 1  axis because the 

segment-to-segment variations in opti  and Eprocess  within a die can be consid-

ered to be negligible. In other words is expected to be nearly constant within a 

die. Hence it was expected that as overlap (a) is increased in steps of 0.2 pm in 

the serial chequerboard structures, d 2  and d 1  would increase, but (d 2  - d 1 ) will be 

very nearly constant. Constancy of c would also enable us to obtain the value of d 2  

for all the overlap widths in a serial chequerboard quite easily. This simplifies the 

measurements, especially when we note the fact that measurements of hundreds 

of segments using SEM is quite tedious. 

The main intentions of these measurements can be summarised as: 
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To verify the expected normal distribution of segment widths in a chequer-

board structure. 

. To verify the constancy of c within a die. 

A sample histogram is given in Figure 6-12. The segment width distribution 

shown in the histogram was normalised using the method described in Appendix 

C and the result is shown in Figure 6-13, the resulting linear plots in all the 

cases gave further proof that the distributions were indeed normal. The average 

and standard deviation values obtained in each case are summarised in Table 5-3. 

Constancy of c is evident from Figure 6-14 

Segment 

label 

Number of 

observations 

overlap(a) 

(microns) 

Mean d2  

(microns) 

o of d2  

(microns) 

Mean d 1  

(microns) 

(d2  - d 1 ) 

(microns) 

A 112 0.3 1.11 0.041 0.43 0.68 

B 101 0.51 1.41 0.038 0.72 0.69 

C 101 0.73 1.71 0.039 1.04 0.67 

D 75 0.95 2.03 0.034 1.34 0.69 

Table 6-4: Summary of the chequerboard segment width measurements 

6.4.4 Metallisation Thickness 

The thickness across the wafer was measured using a Dektak surface profiler. The 

measurements were repeated at many locations within a die and an average value 

was obtained for each die. Finally these measurements were repeated across the 

wafer and typical results are shown in Figure 6-15. The variations in metallisa-

tion thickness shown in Figure 6-15 are quite typical of any well maintained IC 

fabrication facility. 
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Figure 6-12: Segment width distribution 
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METALLISATION THICKNESS 
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Figure 6-15: thickness measurements across wafer 6 
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Chapter 7 

Elect romigration Measurements and 

Test Results 

7.1 Introduction 

In this chapter all the electromigration and related measurements carried out using 

chequerboard structures are given and the results are analysed within the overall 

context of this PhD project aims. 

The measurements include: 

General measurements such as resistance, temperature coefficient of resis-

tance (TCR) etc. 

Thermal measurements. 

Monitoring for spikes in resistance-time curves. 

Resistometry measurements. 

Fast tests. 

As the resistometry technique was intended to be used extensively, it was con-

sidered appropriate to measure the resistance of chequerboard structures and the 

die-to-die variations across a wafer. The chip contains various geometry structures 

and resistances of nearly all the structures in one die were measured to test the 

integrity of these structures and to verify some of the general expectations. For 

128 
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example, resistance of structure Cl is expected to be higher than that of C2 be-

cause of the smaller overlap width(a) of Cl. It may be recalled that Cl and C2 

are chequerboard structures meant for resistometry experiments and the dimen-

sion details are given in Table 6-1. Die-to-die variations of resistance of a number 

of structures were also measured. However, the results of chequerboard structure 

lOU are typical and hence are shown as a reference in Figure 7-3. Besides, this 

structure covers the largest area of the die and hence is expected to yield a better 

process average. TCR measurements are important in estimating the temperature 

rise in the metallisation due to Joule heating. Thermal measurements include 

measurements such as thermal stabilization time and the significance of this is 

discussed in section 7.3.3. 

The resistometry technique can be applied only if there are no spikes in re-

sistance versus time curves. This was verified by stress testing a chequerboard 

structure for long test times (tens of hours) and monitoring the resistance for 

spikes. The test results are given in section 7.4. 

The resistometry details have been discussed in chapter 3. Both options, name-

ly, resistometry with self-heating and resistometry with external heating were car-

ried out and the test results are given in section 7.5. The measurements were 

carried out using a microcomputer and the instrumentation details are also pro-

vided in this section, but the program listing is given in Appendix B. 

Some fast tests were carried out to check whether very rapid monitoring of 

electromigration can be carried out using the chequerboard structures and the 

results are given in section 7.6. 

Finally, in section 7.7 the results are analysed. Activation energy is one of the 

important parameters of general interest and hence it is extracted from resistom-

etry measurements and the results are given in section 7.7.2. It may be recalled 

that the main aim of the project was to use chequerboard as a process monitor 

structure. Hence, one of the process parameters, namely, average linewidth is con-

sidered and the results are analysed to check the sensitivity of the methodology 

for this parameter. Specifically, the interest was to determine the critical width. 

The results are given in section 7.7.3. It may be recalled that an additional objec- 
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tive of the project was to estimate the MTF of a single segment from an array of 

chequerboard segments and the proposed method is described in section 7.7.4. 

7.2 Instrumentation 

A block diagram of the measurement system is shown in Figure 7-1. A notable 

feature of the instrumentation is the measurement of voltages at various bond 

pads of the chequerboard structure in a multiplexed way using the HP 3495A 

multichannel scanner. It consists of 2 'Duo-decade- options' [1] each of which is 

a 20-to-1 multiplexer allowing 20 signals to be monitored by one measurement 

system. This is schematically shown in Figure 7-2. The various instruments 

such as power supply sources, DMM etc. and their HP-lB address schemes are 

provided in the HP BASIC program listing in Appendix B. The resistance values 

are obtained from the scanned voltage data. 

7.3 Measurements 

7.3.1 Resistance Measurements 

The resistance of various chequerboard structures summarised in Table 6-1 and 

Table 6-2 of chapter 6 were measured to verify the integrity of these structures and 

the values are tabulated in Table 7-1. All the structures listed in this table belong 

to the same die. These measurements indicated that in general the resistance 

values of the chequerboard structures were as expected. 

For example, 

RBI > RB2> RB3> RB4 

RB5 > RB6> RB7> RB8 

Rci > R2>Rc3 

Rc4 > Rc5> Rc6 
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Figure 7-1: Block diagram of the measurement system 
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Figure 7-2: A schematic representation of the multichannel scanner 

where, R X  stands for resistance of structure X. 

Variation in metallisation cross sectional area ( width x thickness) over the 

wafer due to process variations such as etch, exposure, etc. means one can expect 

die-to-die variations in resistance for any given chequerboard structure. One typ-

ical result showing the resistance variations across wafer 6 using structure lOU is 
1 

given in Figure 7-3. The spread in resistance of 	+ 10 to 15 % from the average 

value was quite typical and considering the typical linewidth variations (+10%) 

and thickness variations (+ 3%) over a wafer, is quite reasonable. We can notice 

the higher values of the resistance in die at the edge of the wafer than those at 

the centre and these variations were quite typical for any wafer. 

ledge values are rejected 
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Structure Resistance(ohms) 

Al 9.33 

A2 13.66 

A3 22.4 

A4 32.5 

A5 54.7 

BI 38.6 

B2 28.0 

B3 20.9 

B4 9.1 

B5 63.1 

B6 40.1 

B7 29.5 

B8 19.6 

Cl 7.4 

C1S 48.0 

C2 5.7 

C3 4.68 

C3S 29.8 

C4 3.45 

C5 2.69 

15 6.88 

Structure Resistance(ohms) 

C6 2.27 

Dl 19.5 

D2 13.8 

D3 8.74 

D4 9.26 

D5 6.56 

D6 3.96 

El 17.63 

E2 18.7 

Fl 23.0 

F2 16.6 

01 8.67 

G2 5.99 

03L 1.97 

04U 3.01 

G4L 1.42 

Ii 11.16 

12 10.7 

13 9.64 

14 7.58 

16 5.91 

Table 7-1: Test structures and their resistance 
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RESISTANCE OF CHEQUERBOARD STRUCTURE 

Structure: IOU 
Wafer 6 

_ 	2j 19.5 18.7 19.8

U16.8fl17.1 
F18 6] 

18.3 17.2 [16 3]  15.9 F16i16.2 

17.7 16.6 	1 	15.7 15.8 

[16.9jr 1 j[
15 j 15.7 H 16.O  

H-H 17.j[16 .4T6.OH16j18.4 

18.8 18.7  19.7 L 

Notes: 
1 Wafer fiats are not shown 

2 Resistance values are In ohms 

Figure 7-3: Resistance variations of the chequerboard structure lOU across wafer 6 
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7.3.2 TCR Measurements 

The temperature coefficient of resistance measurements were carried out using 

chequerboard structure Fl as described in chapter 3. The sample resistance versus 

temperature curves are shown in Figure 7-4. The curves A to E correspond to 

the successive serial chequerboards in Fl. The TCR values calculated from these 

curves are tabulated in Table 7-2. These measurements clearly showed that the 

the resistance versus temperature curves were linear as expected and average TCR 

is 0.33%/°C. 

Chequerboard TCR(%/ oc) 

A 0.32 

B 0.39 

C 0.27 

D 0.32 

E 0.36 

Table 7-2: TCR of chequerboards 

7.3.3 Thermal Measurements 

Temperature Tracking 

In chapter 6 it was described that the chequerboard structure Cl is the DUT 

(device under test) and the structure C1S is the corresponding temperature mon-

itor ( Figure 6-4 ). That is, the temperature of the DUT during electromigration 

experiments would be monitored by monitoring the temperature of the adjacent 

structure C1S. Some measurements were carried out to determine the effectiveness 

of the structure C1S in tracking the temperature profile of the DUT. The results 

are shown in Figure 7-5. These measurements were done by using a current of 

500 mA through Cl in die 5L of wafer 8 ( There are two EU9101 patterns in 

each die and L denotes the left one). 
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Figure 7-4: Temperature coefficient of resistance measurements 
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TEMPERATURE TRACKING 
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Figure 7-5: Temperature increase in the chequerboard under test Cl and the 

monitor CIS 
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The top figure in Figure 7-5 shows the temperature increase in the chequer-

board structure Cl during the initial Joule heating period (T a ). The temperature 

rise was calculated using the increase in resistance from the ambient value and the 

TCR of the chequerboard. That is, structure Cl is used as its own temperature 

monitor. 

In general, 

L R = LReiectmmigratioit  + LRtemperature 	 (7.1) 

where the left side of the above equation represents the total increase in resistance 

Of Cl, LReiectromigration is the electromigration component of the resistance in-

crease, and ARtemperatum  is the temperature component of the resistance increase. 

The following approximation was made, 

R = LRtemperatw.e 	 (7.2) 

The above approximation in equation 7.2 is reasonable because the resistance 

increase due to electromigration is expected to be negligible in the short duration 

test (about 60 seconds). This is based on rough estimations and the experimental 

observations that the structure typically takes more than few hours to break down 

as a result of electromigration with a stress current of 500 mA. 

The middle figure in Figure 7-5 shows the temperature of the monitor structure 

C1S (Tm ). The temperature estimations were made as usual using the resistance 

and TCR of C1S. It may be noted that low current was used to measure the 

resistance of C1S and hence the Joule heating and elect romi gration in C1S due 

to the test current is negligible. In other words the resistance increase in C1S 

with time may be considered to be mainly due to increase in temperature of Cl. 

The bottom figure in Figure 7-5 shows the difference between T and Tm and 

is nearly constant as expected. The close 'temperature tracking' is evident from 

these figures and the result indicates the good thermal coupling provided by the 

silicon substrate. 
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THERMAL TIME CONSTANTS 
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Figure 7-6: Temperature rise versus time in the monitor structure CIS 

Thermal Stabilization Time 

The temperature of a chequerboard subjected to a stress test increases rapidly 

in the beginning but nearly levels off after some time and the time required for this 

is defined as the the thermal stabilization time. The thermal stabilization time 

depends on the thermal time constants of the various interfaces: metal to oxide, 

oxide to silicon, substrate to chuck and chuck to outside environment. Typical 

values of these are given in Appendix E. 

A sample result using structure Cl of EU9101 in the die 511 of wafer 8 (There 

are two EU9101 patterns in each die and R denotes the right one) is given in Figure 

7-6. A current of 500 mA was forced through Cl and resistance of CIS was 

monitored continuously. During monitoring of CIS only low current was used 
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to measure the voltage drop across C1S. The temperature was monitored every 

5 seconds and there were more than 700 data points available, but only sample 

typical values have been shown. For example, up to 100 seconds there are 20 data 

points but only 10 have been shown. 

The structure C1S attains 45°C much before 10 seconds. That is, the tern 

perature increases from 25°C to about 45°C rapidly and this is not shown in the 

figure. Similar results were obtained using other die. In Appendix E the proce-

dure used to determine the thermal stabilization time is given. It is typically in 

the range of 10 to 15 minutes. These measurements clearly show that using too 

short test times (..# few seconds) may result in erroneous conclusions about Joule 

heating. 

7.4 Monitoring Resistance-Spikes 

One of the major problems in using resistometry technique for electromigration 

monitoring is the occurrence of random spikes [2]. This was reviewed as a general 

issue in chapter 3. The chequerboard structures were expected to yield spike-free 

resistance versus time curves because of the good heat dissipation from the elec-

tromigration damage sites (see section 5.3). In order to verify this prediction, the 

resistances of chequerboards subjected to electromigration experiments were mon-

itored through an oscilloscope at regular intervals and also the resistance values 

were continuously stored in an hard disc by the microcomputer for about 1000 

minutes. Figure 7-7 shows a typical plot generated from the stored data. 

The measurements shown in Figure 7-7 were done using a packaged device at 

125°C and a current of 100 mA. Structure Fl of EU9101 was used because more 

than one chequerboard could be stressed at once. The three lines A, B, C corre-

spond to the three serial chequerboards in the same structure. The measurements 

showed the integrity of these structures for elect romigration stresses being applied 

for a long time and the absence. of spikes. A number of spike-free resistance 
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versus time curves were obtained as part of the resistometry measurements and 

some of these are shown elsewhere in the thesis. 

7.5 Resistometry Measurements 

7.5.1 Itesistometry with Self-Heating 

It may be recalled that in this technique external heating is not necessary 

and metallisation failure can be accelerates by using high currents to cause a 

temperature rise in the metallisation. Structures in row CI of EU9101 are suitable 

for these measurements since the temperature profile in the chequerboard under 

test can be obtained as described in chapter 6 (see section 6.2.2). 

A number of experiments were carried out with the following aims: 

To study the general nature of resistance-time curves of chequerboards. 

To use the resistometry technique to monitor the effect of one of the param-

eters on electromigration, namely, average segment width. 

The measurements indicated that in general the resistance versus time curve 

looks as shown in Figure 7-8. This particular curve was obtained using the struc-

ture Cl in the wafer 8 and a current of 700 mA. It is clear that the resistance 

increases gradually and then shoots up just before the failure. The temperature 

profile of the structure during its life period and as recorded by the temperature 

monitor is shown in Figure 7-9. 

These figures confirmed the general expectation of three characteristic regions 

of the resistance versus time curve. Another striking feature was the sudden 

increase in the resistance after about 8 to 10 % near-linear increase in resistance. 

The visual examination of the failed chequerboards revealed that these struc- 

tures fail in a characteristic 'chain-like' fashion. A few typical optical micrographs 



Figure 7-8: Typical resistance-time curve 
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TEMPERATURE RISE IN THE MONITOR 
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Figure 7-9: Temperature profile recorded by the monitor structure 
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Figure 7-10: Optical micrographs showing chain-like failure in chequerboards 
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Figure 7-11: SEM micrographs showing the magnified view of chequerboard 

failure sites 
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are shown in Figure 7-10 while a typical scanning electron micrograph of adjacent 

overlap regions is shown in Figure 7-11. 

The chain reaction failures may be explained by the increase in current density 

in all the parallel segments when one of the segments fails. 

Extraction of Parameters m and n 

Having studied the general nature of resistance versus time curves of chequer-

boards, the next step was to study the region II in detail. That is, to analyse the 

near-linear region of the resistance versus time curve to extract the parameters 

m and n. It may be recalled that m and n are defined by: 

R = R0exp(mt) 
	

(7.3) 

where R. is the resistance at time t = 0 and R is the resistance at time t. The 

time t = 0 is counted from the time the temperature stabilization has occurred. 

The resistance versus time curve in the region II obtained for structure Cl (die 7 

wafer 8) is shown in Figure 7-12. 700 mA current was used. 

The following values for m and n are obtained from the measured resistance 

versus time data by curve fitting: 

m 	3.8 x 10-"s-  " 

n 	0.9 

The curve obtained by substituting these values of m and n in the equation 

7.3 is also shown in the Figure 7-12. The close agreement between the measured 

values (dotted line) and the values obtained by using the above values of m and 

n in the resistometry equation is quite obvious. Similar near-linear resistance 

curves were obtained for other structures in row CI of EU9101 and the values of 

m extracted are tabulated in Table 7-3. (n is nearly equal to 1 in all these cases). 
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Die Number Structure m (X 10-6S- 1) 

13L Cl 35.0 

13L C2 17.4 

13L C3 5.0 

12R Cl 38.0 

12R C2 20.0 

12R C3 5.6 

14R Cl 38.5 

14R C2 16.0 

14R C3 4.5 

8R Cl 38.0 

8R C2 17.4 

811 C3 4.2 

Table 7-3: The values of m extracted from the measured resistance data and 

using the resistometry equation 
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Normalisation of m and MTF Estimation 

The values of in listed in the table 7-3 are those obtained using a current of 

700 mA through the structures Cl, C2 and C3 of EU9101. Since these samples 

have different overlap widths (a) and hence different segment widths (d 2 ), the 

current density in the segments will be different. The temperature rise may also 

be different depending on the electrical and thermal resistance. The parameter m 

is a measure of the average mass transport and hence is expected to vary depending 

upon the values of the current density and temperature. If we wish to compare the 

values of in of structures Cl, C2 and C3, normalisation is required to illustrate 

the equivalent values of m for identical stress conditions. 

The normalisation of m was carried out using the following equations based on 

the Black's equation: 

md1 OC j 1eXp(E8/kTl ) 	 (7.4) 

md2 	j n2exP(Ea/kT2 ) 	 ( 7.5) 

h 1'Jcnd2) 	Ea 	1 	1 1 
md2 = md1 I ( 	exp-- ( 

	- 	
(7.6) 

where, mcnd, and mcnd2  are the values of m at stress conditions 1 and 2 

respectively having current density values of jd1  and jd2  and temperatures T 1  

and T2  respectively. E is the activation energy. The structures Cl, C2 and C3 

on the same die were compared and normalisation was carried out using the stress 

conditions of structure C3 as a reference. The temperatures T 1  and T2  were 

estimated from the temperature monitor structures and the results are shown in 

Table 7-4. 

The average current density was calculated using the average segment width 

d2 . For example, if d 2  = 1gm, thickness = 0.61 pm and the current through the 

segment is 10 mA then, 

lOmA 

= 	 pm = 
1.64 x 106 A/cm2  

1pm x 0.61  
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Die Number Structure normalised m ( X 10-6 S - 1) 

13L Cl 116.1 

13L C2 103.2 

13L C3 5.0 

12R Cl 121.3 

12R C2 102.2 

12R C3 5.6 

14R Cl 120.1 

14R C2 83.7 

14R C3 4.5 

811 Cl 123.7 

811 C2 108.7 

811 C3 4.2 

Table 7-4: Normalised values of m 

The main reasons for using the average current density and not the current 

density at the corners are: 

. If we are monitoring the failure times of 'weak-spots', current density at 

the corners may be important. But, in resistometry it is the average mass 

transport rate that is measured and not the mass transport rate at any 

specific site. Even in the case of classical tests which essentially measure 

the failure time of the 'weak-spots', only average current density values are 

considered [3]. The justification for this is based on empirical results [4,5]. 

In other words, it means that the MTF does not decrease as suggested by 

Black's equation, that is, (MTF 9( jorner) 

. The reason why the MTF does not decrease as one would expect from the 

higher current densities at the corners is expected to be due to the complex 

nature of the geometry and microstructural defects at the corners and is not 

attempted in this thesis. 
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MTF estimations were done using the method described in chapter 4 and using 

the average current density. Typical results are shown in Figure 7-13. This is for 

the die 13L shown in the table 7-4. A similar MTF decrease with width was 

noticed for the other die listed in the table. 
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Figure 7-13: MTF versus d2  segment width 
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7.5.1.1 Measurements on Wafer across which Exposure was Varied 
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Figure 7-14: MTF versus segment width 

The above methodology of extraction of the parameters m and n, normaliza-

tion and MTF estimation was repeated for wafer 5 which had gone through the 

exposure matrix as described in chapter 6. The main purpose of this methodology 

can be described through Figure 7-14. The aim was to observe the increase in 

MTF with decrease in segment width in the sub-micron region. It may be recalled 

that the exposure time was increased in step of 20 ms starting from die 1 and 

was expected to have the same effect as overetching and hence we can expect the 

average width to decrease from die 1 to die 38. The d 2  reduction was further 

confirmed by visual examination ( segment width d 2  has been defined in Figure 

6-3). For example, the optical micrographs A (lower exposure) and B (higher ex- 
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posure) given in Figure 7-15 show the effect on d 2  caused by increased exposure. 

Further, resistance is expected to increase as the exposure time is increased and 

the results shown in the Figure 7-16 confirm this. The average segment width was 

obtained using the scanning electron microscope, the results of dimensional and 

resistometry measurements are summarised in table 7-5 while the corresponding 

variation of MTF with d 2  segment width is shown in Figure 7-17 

I DieNumber d2  (/IM) measured m (x10 6 .s 1 )) normalised m (x10 6 s 1 ) 

13L 1.10 10.0 10.0 

19L 0.90 1.88 0.65 

25L 0.64 3.02 0.26 

Table 7-5: Dimensional and resistometry measurements on wafer 5 across which 

the exposure was varied 

7.5.2 Resistometry with External Heating 

Generally resistometric measurements are carried out on packaged devices using 

external heating in an oven [6] and test times may be in the range of few tens of 

hours to few days. Longer test times are usually required because low currents 

which do not cause significant Joule heating (less than about 2 to 3 °C ) are 

used. In spite of the long test times, this is the most commonly used resistometry 

technique to study elect romigrat ion and hence it was thought appropriate to use 

this with chequerboards. However, it may be recalled that this is not intended as 

a routine process monitor test because of the long test times but it may be used 

to determine the critical width. 

Structure Fl of EU9101 was used for this experiment. It may be recalled 

that this is a serially connected chequerboard in which the designed overlap (a) 

increases from 0.2 pm to 2 pm in steps of 0.2 pm. But, because of the offset-

error of 0.2 pm introduced during mask making the actual overlap width increases 

from 0.4 pm to 2.4 pm. The d 2  segment widths were measured using the SEM 
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Figure 7-15: The reduction in segment width d 2  caused by increased exposure 
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RESISTANCE INCREASE WITH EXPOSURE 

a. 	 - S 

111111 
Incresing exposure 

Figure 7-16: Resistance increase across wafer 5 
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MATRIX EXPOSURE 

Resistometry with self-heating 
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Figure 7-17: MTF versus d2  segment width 
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as described earlier. The values are given in table 7-6. The structure was wire 

bonded and packaged in a DIP (dual- i nli ne-package). 

The package was heated in an oven and resistances were measured at 50 °C, 

100 °C, 125 °C and 150 °C to determine the TCR ( 0.34%/°C). Using this value 

of TCR the temperature rise due to Joule heating for a current of 100 mA was 

found to be about 3 1C. The resistometry experiments were carried out at 150 

O C and 100 mA. The resistance versus time of the three successive chequerboards 

( a=0.4, 0.6 and 0.8 jim respectively) were monitored. The parameters m and n 

were extracted and the values of m were normalised as usual. The parameter n 

was nearly equal to 1 for all the three chequerboards. The values of m are shown 

in table 7-6. The normalised values of m shown in table 7-6 are with respect 

to the stress ( current and temperature) conditions of the 0.8 jim overlap width 

chequerboard. All the samples were stressed till they failed ('open-circuit') and 

whenever a failure occured, the failures were analysed and the experiments were 

continued by shorting the appropriate package pins. All the chequerboards showed 

the usual chain-reaction failures. The MTF vales were derived from the normalised 

values of m as usual. The MTF versus d 2  segment width variation is shown in 

Figure 7-18. 

Overlap(a)(pm) d2 (jim) measured m (10 7s)) normalised m (10 7 s 1
) 

0.4 1.17 24.5 9.5 

0.6 1.45 5.1 3.3 

0.8 1.73 2.8 2.8 

Table 7-6: Measurements for packaged structure 
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PACKAGED STRUCTURE 

Resistometry with external heating 
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Figure 7-18: MTF versus d 2  segment width 
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7.6 Fast Tests 

Can we use resistometry techniques to monitor electromigration by ramping the 

power quickly to cause catastrophic failure processes within a few tens of seconds? 

This was motivated by the SWEAT [7] tests. Chequerboard structures Cl, C2, C3 

and Fl of EU9101 were subjected to rapid electromigration experiments. The ex-

pected break-down time due to electromigration was within a few tens of seconds. 

These experiments produced inconsistent results. For example, the electromigra-

tion damage sites were not localised to overlap regions only but included the large 

metal squares and the chequerboard end-pads also. Optical examination of the 

failed chequerboards indicated a complete destruction of the sample as shown in 

Figure 7-19 unlike the characteristic chain-reaction failures. The results are briefly 

discussed in section 8.2 on suggestions for further work. 
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I 

jet 	
a 0  40 

Figure 7-19: A typical optical micrograph of fast-test failure 
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7.7 Analysis of Test Results 

7.7.1 Determination of Activation Energy 

Using Black's equation and the MTF expression based on resistometry, we get: 

m = C'exp(—Ea/kT) 	 (7.7) 

where Ea  is the activation energy, k is Boltzmann constant, T is the temperature 

and C' is a constant. Taking logarithms on both sides of the equation 7.7 we get: 

i 	Ea 	n 	E 	
(7.8) 1nm=lnC—C—j  

where C" = in C', is a constant. From equation 7.8, a plot of In m versus l/T 

should yield a straight line with slope E s/k. 

A typical plot is given in Figure 7-20. 

The activation energy is given by 

Ea = slope xk 

= (6045 ±2100) x (8.617 x 10 eV K 1 ) 

0.5±0.2eV 

The activation energy so obtained is believed to be an effective average value 

of the various mass transport mechanisms having different activation energies [8, 

9,101. For example, around 0.5 eV for grain boundary diffusion and around 1.2 

eV for bulk diffusion. It may be noted that in general the activation energy for 

aluminium-silicon thin films is reported to be in the range 0.4 to 0.8 eV [11] and 

using conventional MTF measurements a value of 0.8 eV was obtained (chapter 

3). 

7.7.2 MTF Variations with Width 

It may be recalled that in general the MTF is expected to decrease with a decrease 

in track width to the critical width. Below that point it is expected to either 



	

Chapter 7. Elect romigration Measurements and Test Results 
	 164 
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Figure 7-20: Parameter m versus 1/T to determine activation energy 
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level off or increase. At about the critical width the grain structure may be 

approximated to a 'bamboo' structure (Figure 2-2). 

The designed overlap width in a chequerboard (dimension (a) in Figure 6-3) 

was in the range of 0.2 pm to 2.0 jim. But because of the offset-error in the 

mask dimensions the achieved range was 0.4 pm to 2.4 pm and hence with normal 

exposure we could provide a segment width d 2  greater than about 1 pm. This is 

because, 

d2 	'a+0.6pm 

as shown earlier and for a = 0.4 pm , d 2  1.17 pm. Therefore, to get the complete 

picture of how the MTF varies with width, both the normal exposure (see Figure 

7-13) and the matrix exposure (see Figure 7-17) results are necessary. 

It follows from these figures that the critical width is around 1 pm. The me-

dian grain size is expected to be typically about 1 pm and hence [12] the critical 

width meets the general expectations. The microstructural confirmations such as 

confirming 'bamboo' structure through TEM studies could not be carried out be-

cause of sample preparation problems. However, new techniques are now available 

which do not require any specialised sample preparation. This new technique is 

briefly described in the section on suggestions for further work in chapter 8. 

7.7.3 MTF of a Single Segment 

The estimation of MTF of a single segment may be made by considering the che-

querboard as a series-parallel structure formed by the overlap regions as shown in 

Figure 7-21. The statistical methods quite commonly used in the analysis of elec-

tromigration of series-parallel elements [13,14] may also be here. The definitions 

and mathematical details of the statistical distributions (for example, probability 

density function and cumulative distribution function of the lognormal distribution 

) are discussed in Appendix C. 
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Figure 7-21: Series-Parallel representation of a chequerboard with n 8 =10 and 

n=4 
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Let, 

n8  = number of serial elements 

n, = number of parallel elements 

t50 	MTF of the chequerboard ( series-parallel system) 

u0= In t50  

t 50  = MTF of a single element 

a0  = sigma of the element failure time distribution 

Then it can be shown that (the mathematical details are given in Appendix D) 

In t 5osp = Lo  + 7o ç 	 (7.9) 

where, 

L exp(—z 2 /2) dz = [i - (1/2)1] 
1/np 	

(7.10) 

Given the values of 115  and n 0 can be obtained from statistical tables and 

hence t 5Np  can be calculated. 

As an example, the MTF results obtained for chequerboards for the packaged 

structure (see Figure 7-18 ) are used to estimate the single segment MTF. Since 

n8  = 39 and n = 7 for these chequerboards, the right hand side of equation 7.10 

simplifies to: 

) h11  [i_ (1/2 	I hhhh1P 	0.5616 

Now, using statistical tables to get the value of 0 satisfying the equation: 

1 f-00 exp(—z 2 /2) dz = 0.5616 
v/ 

we get, 

0.16 
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We require the value of a 0 . We can use the value 0.278 obtained from the 

conventional MTF measurements as on approximation. However, it should be 

noted that this approximation is valid for linewidths greater than the critical 

width. In the calculations shown here we are considering the chequerboards with 

d2  greater than about 1 pm and hence the approximation is valid. Rearranging 

equation 7.9, MTF of single element can be expressed as: 

MTF single element = exp[ln t so  - ao q] 	 (7.11) 

The results of the above calculations are given in table 7-7 

d2(PM) t 5o 	(hours) MTF of single segment(hours) 

1.17 28 27 

1.45 81 78 

1.73 95 91 

Table 7-7: Estimation of MTF of a single segment 

Table 7-7 indicates that in this particular case ( n 8  = 39 and n, = 7 ) the 

MTF of the system t sop  (i.e. chequerboard) is slightly higher than that of the 

corresponding single element MTF. 
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Chapter 8 

Conclusions 

8.1 General Remarks 

The main objective of the project was to develop a process control test structure 

and technique to monitor electromigration. The development of a process mon-

itor structure is a challenging task. Although electromigration in thin films has 

been studied extensively over the past two decades, we have to work under the 

constraint of a lack of a rigorous theory. It is unlike the situation in bulk metals. 

Electromigration in thin films is complex because it is strongly influenced by grain 

structure in thin films and an all-embracing theory has yet to be developed. That 

is why even today Black's semi-empirical model is commonly used. Electromigra-

tion in thin films is also complicated because a large number of material, process 

and design factors affect electromigration and the interaction amongst them is not 

always clear. Chapter 2 discusses these issues in detail. 

Chapter 3 and 4 highlight elect rornigration measurement difficulties from a 

process control point of view. The conventional MTF test has been described as 

a 'corner stone' in metallisation reliability testing. However, from a process con-

trol point of view, 'sample-size' and 'weak-spots' in tracks pose major problems. 

We may have to use around 400 samples to get an MTF value which is close to 

the process average. However, experiments carried out with as few as 10 samples 

showed that it is possible to get consistent results. It should be noted that these 

samples were invariably screened for any visual defects. However, no experiments 

were carried out using large sample size, because of project time and cost con-

siderations. Based on this limited experimental work it may be concluded that a 

171 
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sample size of around 10 seems to work provided the samples are carefully chosen, 

but it is risky and the risk factor is not easily quantifiable. The measurements 

also showed that there is a need to maintain uniformity in process parameters to 

achieve the reliability goal of 10 FITs. 

In summary, the studies and measurements described in chapters 2-4 clearly 

indicated that a new test structure and methodology are required for process 

monitoring. It should meet the following requirements: 

The possibility to include the test structure with other process control test 

structures in a scribe channel or a drop-in die on a wafer. This will enable 

electromigration experiments to be carried out as part of routine quality 

assurance tests on all wafers, unlike the conventional package-level tests. 

Use of resistometry because the mass transport over the entire track caused 

by electromigration contributes to resistance change. Hence it can be ex-

pected that the results obtained from resistometry are better linked to the 

statistical index, namely, the process capability ( C r). 

Demonstration of the sensitivity of the methodology to the average linewidth 

over an area of a wafer. 

Fast test capability; unlike conventional tests where typical test times may 

vary from weeks to months. 

Chapter 5 describes how and why chequerboards are considered appropriate to 

monitor elect romigration. The success of chequerboards to assess linewidth control 

has been demonstrated in an earlier PhD project and they offer the possibility to 

produce micron/sub-micron dimensions close to and even below the typical mini-

mum linewidth specifications. This capability has been further confirmed in this 

project. Pattern dimension measurements given in chapter 6 and the micrographs 

of chapter 7 (Figure 7-15) clearly indicate that by using chequerboards we can 

generate a large number of sub-micron width segments distributed over an area. 

A small degree of broadening occurs at the corners depending on the quality of 
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the imaging system and etching. It may be recalled that this is expressed 

in terms of the quantity c ( € = 1/2(segment width on a wafer - segment width 

on the mask) ). The f value of around 0.35 pm derived from chequerboards is 

nearly constant within a die. This is expected to be a function of the quality of 

the imaging system because the etch conditions can be considered to be nearly 

uniform within a die. Thus, this work has shown another interesting possibility: 

chequerboards can be used for stepper characterization experiments. 

From an elect romigration point of view the notable features of chequerboards 

are: 

The localisation of electromigration damage sites to the overlap areas be-

cause of higher current density. 

In chequerboards, in addition to the heat dissipated by the oxide-wafer-chuck 

sandwich, a significant quantity of heat is conducted away from the overlap 

regions by the larger metal squares. It may be recalled that in conventional 

long tracks the Joule heat generated near the centre of the track has to be 

dissipated mainly through the oxide-wafer-chuck sandwich. 

Current density simulation using PISCES software confirms item (1) above, while 

item (2) has been confirmed by thermal tracking measurements described in chap-

ter 6 and close monitoring of resistance versus time for a number of chequerboards 

stressed at high currents and temperatures ( chapter 7 ). 

Chapter 6 discusses the chip layout, fabrication and dimensional measurements 

in detail. Monitoring the temperature profile of a chequerboard during electromi-

gration experiments is one important requirement. Another chequerboard adja-

cent to the device under test (DUT) is used to monitor the temperature profile. It 

has been shown later in chapter 7 that this technique works well and the thermal 

tracking is excellent. 

An unintended linewidth offset of 0.2 pm was introduced during mask-making. 

This meant that the minimum segment width could be greater than 1 pm under 

normal exposure/etch conditions. Hence it was considered appropriate to use an 
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effective overetching technique to produce sub-micron geometry segments. Micro-

graphs in Figure 7-15 along with dimensional and resistance measurements show 

that over-exposure causes a systematic decrease in segment width as expected. 

Other dimensions such as oxide thickness and metallisation thickness have also 

been measured as part of general integrity tests and the variations reported in 

chapter 6 are quite typical of any well maintained IC fabrication facility. 

The elect romigrat ion measurements and test results given in chapter 7 indi-

cate that chequerboards can be used to monitor electromigration for metallisation 

process control. The overall performance of chequerboards to monitor electromi-

gration are now summarised. 

Chequerboard test structures having a segment width nearly equal to the min-

imum specified linewidth may easily be included with other process control test 

structures in scribe channels or in drop-in die on wafers. This is possible because 

all the chequerboards have been designed to conform to a standard probe pad 

layout requirements with a pad spacing of 120tm. It may be recalled that re-

sistometry with self-heating was used for routine process monitoring because it 

does not require external heating to increase temperature to accelerate the failure 

process. The extracted parameter in from the resistance versus time curve can 

be used to monitor the average electromigration performance. 

The activation energy of 0.5 eV derived from chequerboard methodology is 

typical of the value published in the literature for electromigration in aluminium-

silicon alloy films (0.4-0.8 eV). 

A key process parameter, namely, linewidth has been chosen to demonstrate 

the sensitivity of the proposed methodology to monitor electromigration. Even 

though only one parameter was chosen, the measurements and tests consumed a 

major portion of this work. The salient features of this task involved: 

. A detailed study of the various factors affecting linewidth control 

• Extensive SEM measurements using chequerboard segments to derive the 
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small degree of broadening that occurs at the corners due to the resolution 

limits of the optical system. 

• Generation of sub-micron geometry segments using an effective overetching 

technique. 

• Resistometry with self-heating and the more common method of package 

level tests. 

Based on the above studies the critical width was determined, thus demonstrating 

the sensitivity of chequerboards to average linewidth. 

As regards the fast test time capability, although the typical stress levels (cur-

rent and temperature) used in the present work correspond to a breakdown time 

of about an hour, it is to be noted that the acceleration factor is still very high 

(calculated and shown below) compared to the general specification of about 20 

years lifetime under normal operating conditions. It may be noted that the break-

down time chosen is about 5 to 6 times the typical thermal stabilization time. 

When breakdown time is 1 hour, 

20years - 
Acceleration Factor = ihour - 175200 

Further study is required10  use higher acceleration factors and this aspect is dis-

cussed in the next section on suggestions for further work. 

8.2 Suggestions for Further Work 

One important limitation which has become clear by fast tests is the need to study 

the thermal aspects of chequerboards before thermal equilibrium is established. 

When the stress (current and temperature) conditions are such that the breakdown 

times are about few seconds, inconsistent results have been obtained. In this 

short duration, when test durations are significantly smaller than the thermal 

stabilization time, temperature may vary significantly across the chequerboard. 
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Thus even when same current is used, failure times may vary considerably from 

sample to sample depending upon the 'thermal signature' of the chequerboard. 

The approximation of a uniform temperature across the entire chequerboarci may 

not be valid. Computer simulations of thermal profile and temperature rise as 

a function of time in chequerboards may deepen our understanding in this area. 

This is expected to be an interesting subject for another PhD. The thesis cited in 

reference [1] may provide some useful hints as to how to analyse this complicated 

problem. 

As chequerboards provide a new insight into elect romigration measurements 

which correlate to average process parameters, it is obvious that one can use this 

methodology to study the effect of all the major parameters affecting electromi-

gration which are described in chapter 2. No doubt, this will generate a great 

deal of information and further enhance our understanding of electromigration. 

Of special interest will be the study of the effects of the microstructure on MTF. 

This interesting area had to be left out in the present work because of sample 

preparation difficulties with TEM. However, new techniques such as focussed ion 

beam microscopy are now available and they do not need any specialised sample 

preparation [2]. This technique can be used to determine grain size distribution in 

aluminium films at any point on a die or wafer relatively easily and hence is being 

used for metallisation process control [2]. In this technique the sample surface is 

imaged with ion beam generated secondary electrons in a manner analogous to 

the operation of an SEM. 

It may be recalled that an additional objective of the project was to make 

some statistical estimations of the MTF of small segments. Sample calculation 

has been carried out and is generally in agreement with similar estimations that 

have been reported. However, the elect romigrat ion test chip contains a number 

of chequerboards with a wide range of rows and columns and further statistical 

analysis should improve our understanding in the emerging area of circuit level 

reliability estimation. For example, study of the variation of chequerboard MTF 

with n8  and n, the number of serial and parallel elements respectively. 

In summary, a starting point for a radically new way of thinking in test strac- 



Chapter 8. Conclusions 	 177 

ture design and test methodology to monitor elect romigration has been shown. Fur-

ther experimental and theoretical work is needed to deepen the understanding of 

the issues introduced here. 
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Appendix A. Process Run-Sheet 

EDINBURGH MICROFABRICATION FACILITY 

ELECTROMIGRATION EXPERIMENT 

BATCH NUMBER: 91034 START DATE: 30 MAY 1991 

DEVICE IDENTIFICATION: 	EU 9101, EU9102 

MASK SET:SERCB 247 

MASKING SEQUENCE: 1 

MASK REV.LETTERS: A 

STARTING MATERIAL: 14-20 ohm-cm(100) p-type,3inch diameter 

STEP 1 FURNACE 9 WOXHCL11 lOminutes 

Start date: 	Start Time 	Initials 

Furnace 19500 C,idling on oxygen 

Preset gas flows as follows: 

Nitrogen 20% (1.5 litres/minute) 

Oxygen 20% (1.5 litres/minute) 

HCI 15% (0.15 litres/minute) 

Hydrogen 10% (1.7 litres/minute) 

Load wafers into furnace with Oxygen only flowing: 

5 minutes Oxygen + HC1 

10 minutes Oxygen +HC1 + Hydrogen 

5minutes Oxygen 

Measure oxide thickness: 

Finish date: 	Finish time: 	Initials 

STEP II. SPUTTERING 
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Start Date: 	Start time 	Initials: 

Load wafers on palettes and load into Baizers BAS 450 coater. 

Pump system to 5 x 10-6  Torr better with Meissner trap. 

Close shutter. 

Throttle pump and admit argon at 2 x iO Torr. 

Set integrator at 3500. Range 3. 

Run up Aluminium/Silicon target to 6KW. 

Open shutter until integrator times out. 

Warm up Meissner and chamber. 

Vent system and remove wafers. 

Finish date: 	Finish time: 	Initials. 

STEP III PHOTO(POSITIVE RESIST) 

NOTE: Wafers 5 and 10 EXPOSURE RUN 600 milliseconds to 1360 milliseconds 

in 20 milliseconds steps 

Start date: 	Start time: 	Initials: 

HMDS vapour box prime for 30 minutes 

Spin HPR 204 at 4500 rpm for 30 seconds 

Hotplate bake at 105°C for 60 seconds 

Align and expose. 

Inspect for proper development 

Measure resist image: 	microns 

Hot plate bake at 130°C for 60 minutes 

Inspect for proper baking 

Finish date: 	Finish time: 	Initials: 

STEP IV. ALUMINIUM RIE ETCH 

Start date: 	Start time: 	Initials 

RIE etch to in CC14(10cc/min) pressure 40 x 10 3Torr 

Power 750 Watt for 2 minutes + 500 Watt to clear 

Finish Date: 	Finish Time: 	Initials: 
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STEP V. RESIST STRIP 

Start date: 	Start time: 	Initials 

Oxygen plasma ash 30 minutes 

Immerse in Fuming Nitric Acid for 10 minutes 

Wash and spin dry 

Inspect for removal of resist 

Measure etched image: 	microns 

Finish date: 	Finish time: 	Initials 

STEP VI. FURNACE(ANNEAL) 

430°C, idling on Nitrogen 

preset gas flows as follows: 

Nitrogen 50 (2.0 litres/minute) 

Nitrogen/40 

Finish date: 	Finish time: 	Initials 

5 minutes Nitrogen 

10 minutes Nitrogen/ Hydrogen 

5 minutes Nitrogen 

Finish date: 	Finish time: 	Initials 



Appendix B 

HP-BASIC Program Listing 

183 



A A S A 

...urirUIC.IL) 	)$ )C,I FOR  

ELECTROMiGRA T ION  

EZ 
ritJ'- 

331 

F 	 ' 
PRINT

øA6.0' AAAAAAASAAAAAAAAAAA 

, 	rrU 	
1 rHLUN iC 

F1T 	
AAXSAAXA.& .. 

c.r' SCREEN 
rrU 	 iirIC. 	• 

................ 

burl LfIC' 	
it4rt.w 

. CON NaMI/ Ftiei.1L 

Isiart 
•J 	I.._cMi 	rC.I' 

ri 

r
1 	iI 

. 	rr'ei I rIDA I 	• 	.; BREAE 00W'4 

Nn 	rr.LrI 	 .• 

rLI'4I 	IrIoAl.. 	
; I4ULI 

A  
- 

. LroL 
u' CALL Ter 

	

"A 	CALL 
ON 1roc- 	LJ' 	 Nu 

	

L %I 	 C.M 
rI D - ' EMT 

£. 	 jI4 PC. 	
OUI%d &3 

• 	jI' pC' 	
N 	LL Nu 

C 	
i. CALL 

P 	I LrIOL 

ON P'C 	
pj 	ILL 

%JII.I 

cr 

'I 

4l; 	
itI _drI 	4'  

35 	CALL 	 Creaie' 

.)OW 	'rrO.) 	 TO  FOR" 
 

370 	UU 	
r41st 

'C.  

CtIC"  

3Zi 
..i 	 r)VrIL1%t? 

Fi 

j oruI 

; 	
(¼1 

AI4I 	tI'I.C.t' 

r%1I'4I VOJ 

INPUI ENE 	ISET.iset 

I) 

ri$L ' 

45Z 	oil-cisV spis 

G.,TFuT 1705 Iiou I:  

5,21B 	ENTER 70S 110" 
53C 	FRINT lout 

CLEAR SCREEN 

184 



CALL Measure 
57Z 	 ioiATA 

530 	UNTIL 	Ut•.J"J 

D¼II 	ALAAAAAAAAAAAAAAAAAAAAAAAAAA 

6 e3sure 
0 	 L ic3c" litart ,w 

63 	C(1 /ki's Fe11.F1i..a,i,Wa 

BAZ 	0 &I1 V i ai 43i,VI 	 r.jr 

65Z 	V4, ,CV)i 	r;.er'c irnj 4rt 

66Zuri V 	¼l.VOJlI 

'rr 	 i 	rr; USED TO rtjritJr 

6 	iziitiri 
ijjiruI 	LL 	rcr ALL 	I'4 rtL 

,'j 	uulrul7Z5i'iZE- iCLOSE CHANNEL I 

iic 	uwru' ;..; ri 	Ii., 	' U,. VULI 	, flViv 

71i 	il;ASIT .1 
LQ ENTER iIv'i'  

0rCi4 X 	LrlrUMI4tL 

	

, 	 ;iQ 	w' 

.i 	uuiruu 	i ri 

761 	iAIT . 

	

.' 	rncI 	;;i I . 
•.j 	tjsru. 	' 

jtj,rLJi 	 I I 	LL4.)C .,l1. 	Ii 

Sic 	jirfl •.j ri 	r. 

ail 	.IiT . 

;CIv3' 

54C 	vw- 

55c vu.F  

	

v 	LjuIrui . 	F 	i. 

.C.l 	Iw 

O 	 uI.flrUi .; 
ru; 

	

1C 	CTFL,T 7Z;F1 	7 

,l 	 c'd.C' 	lv 	I 

,AT .1 
i4z 	OUTPUT 73;C 

jnruI •1 

jiFL. i. Z  

37 Z 	
.1 

CJiI.I 	1.D' L 

vuirul 

	

ww 	,wrui •;l 

	

icic 	TT 7;Fi 

	

II 	..rLs 	.1 

.v.' 

	

izia 	CUT 	•1 

	

ii)o 	uuerUI 

	

iz6z 	u1jruI  

	

,%01 	wri 	.1 

185 



186 
tI'M •IVOL 

jijirUI 	'- 
IIjj 	IjuIru. 

IHC 	CTT 7 &Z 	 R 7"  
H;; 	IP.ALT 

I It.J 	t4C9  

I4i 	ijtJIFU 

15Z 	OLiTFU 7 7;SE 
ii6 	OvTFuT 7iFI 
I 	 wCL4 	.1 

ENT ER •;IciL 

i 	Ciii A i i sa i  
U 	QJIrU Ai USING 	ê,AAA.LLJUU.UL.0U.500.60 ..500.60* 1 ,wIJLl, 

• 0 L I  V4i a I • v" 1 I 

OUTPUT 	a, 
I 3Z 	PRINT ;i 

U1 D)Li4 
DI 	

u.D.j 

.• £ Ii £ I • V 	a ' • VIv a i 

iI 	rrLLNI D$ 

126C 	JTFUT 
14. . q 	startaaS%1rt' I 

I4. 	 )OCNZ` 
l.4.0 

i.jj 	SUB 
i3. 

3u Creaieie' 
FLiei,F1iei.1aYLiZ 

I 3 4Z rr LI4 • ' Fit'.E NAME IN T HE FORMAT  
rrc&r 	.&; 

I)O 	LIr.) 	rei 
i YNZ 	re,)zrLL) I, 

i3so 	Fl icz! -Flleis 
i3sz 	CREATE ASCII FLieil.BioCK 
14 	iErTE 	Fiei.cCs 

I51G 	T 	Fjei 

• 	 i-a,- i 	 * 

uOcs4J 

44C 	 XXXXAXAAAAAAAAAAAAAA 

i45Z 	SUB Ter 

I4O 	rzv 

üii i T c r g r o u r, 	crILJ,Qrat 
i' 	• ; irt.jI 	iiicr 	VC.i 	• S€ 

I45iIj 	j.) 	VtI 

I5C 	F=civse% 

1S3 z 	INPUT ENTER SET.sei 

154 	C3;='ISET - 
iSSZ 

 
rrL1LSe 

iSEO 
15 71Z 	OUTPUT 7S;3i -. 
•oi 	uulrvl • 	£ U. 



1530 	ENTER 	iout 

'D
IS  • I'P 

oIw 

R 

eoO 	vj,ruI 71 iJc.L 

ID. 	uirUI 	II 

	

uuIrw .....l ri 	rc. 

ENTER 

rrUNI 

OUTPUT 
OUTPUT 

7 --wZ 	OUTPUT 	1FI 	R7 

1.31 	Wr%LI 	• 1 

I70 	ENTER 711r 

1,41 	rII 	;llr 

uuirw 

li  OUTPUT 
 

17*. WAIT . 

I ,w 	ENT E R 
iI 	r'Ni vr 

iallo 	uuIrW 
&)4FJI 	;'Ol 

IØ.)i 	u.i;rUl 	F 	I 

iØI 	wru' .1 

I3i 	ENTER 

o6 	..,jir4J 1,  .u; 4.. 

irjl  

Dw 	uirui 	F  

wr 	I • 

iuJ 	ENTER `Z: 

Isio 	TPLir 

jrU4 •l 
OTFUT 7::1F1 	R7 

I 	3I 	liL I 	• I 

JlvD.r 

IJ 	*JU.Fifl .0 	4.. 

IDq.. 	QijrJI .•;ii -JC 

OUT r'Jl 	Z F  

rsi 	• 1 

55w!Tt 	ci' 

,..jirui 

zzic 	OUTPUT 7E 

uJirJ' 	...; ri 	ri 

wrul • 1 

Z03C 	ENTER  

uwru' 
vrU 	i.;i 

uv;rw 	ri 

HI 	WrLI .1 

64. 	tNItN 	_;vrI 

Zi w 	OUTPUT 7;C 

2I 13 	OUTPUT 	;E 

1Z0 	OUTPUT T;Fi 	R 
42 

46 I.I 	Al 	.1 

187 



3C 	ETE 	::1izcF 	 188 

	

Iu 	• 

	

&; 	Di TiisES 
OUI Tiiisi 
JI 	Tite35Zi 

&ri 

(JAr, 

	

.'u 	ur; 

	

lz 	LCt1 	CC' 

uLeI$s UVLL flJ 	icra 

	

Z4Z 	T i ieizTEFERATE.0 	A.Temp 

	

Zsa 	Titie35sCuENTA 	&Liit 

	

Z60 	OUTPUT N 	i5Ii 	j • A •  3;7iteIi 
OUTPUT r:i  USIN6 j IA •  3a;Tiiie6 

USING  

	

Zia 	PRINT Ni 

	

3ZZ 	PRINT 

	

3iz 	PRINT N31 

	

3Z z 	D11 

uU.rU ,  ru) uAI 

I ..r 	a. T Ot 

	

353 	GUT PUT FZI v3N3 
3: F/ut 

. 	0 .r%a r;.) 	 e.u,u.OU..UU.DU.)LtJ.DU 

I. out 

	

37 	JTFJT i.i u: 
; 

	

Jaco 	uu i rtj,r; 	 i • .r ,-vo.r 	Sk r IV 

r I ;oui 

	

35 	OUTPUT - 	Si 

.rl/io(Jt 

.r. 
Uj(Jur(J, JJ I4 	 LlsøU 

	

a 	. 

j iJr(JL r;. 	 .OU.JLJ.DU 

•ciCF ; I/:QJi 

:43 Fm 1 N 

	

:443 	FRIrT rii 

	

45G 	FitT r35 

	

,*e 	rrua 

	

,4. Z 	rr'Aiu M Si  

	

'4 6C 	rfAi 	r.c.a 

	

.Ase 	rruud i IN 

	

VI() 	F R 1 N Tra') 

	

.5iu 	r,i'n MBi  

	

533 	O UTPUT iFa thid 

CJUTFU 71 VratflI.) 

	

553 	3uTFuT i Faih; 

	

.OV 	uLHrUi Qrafll 

	

573 	üuTPjT iFaihli ll  

OUTPUT CiFaihihZi 

	

553 	OUTPUT opathl.M 3 i  

	

633 	OUTPUT Vr6thlh4$ 

	

613 	OUTPUT iFaihiFi5 i  

uuirw Qr6%rWiO) 

	

633 	OUTPUT i Fath;i 

	

O4z 	uuirou iFjIUr.) 



Im 

OUTPUT 	F4th;S 

..ceoJ 

,,crrOP 	,riVr4tfl 

. 
ia 

rNN 	lr4ru; 	rLc'IC 

ri'n 	&Li 	rurrti; 	06OI4J 

Z7 
:73Z 

IFLiT 	Tcr$ 

CETE 	13CI 	Tr1.6i3C 

Qratr 	IJ 	icri 

SUB rdU 

,Z78z BEEF 



Appendix C 

Mathematics of Failure Distributions 

190 



Appendix C. Mathematics of Failure Distributions 	 191 

The term reliability has many popular connotation. However, from mathematical 

point of view, it is usually defined as : "Probability that an item will perform 

a required function under stated conditions for a stated period of time." The 

required function includes definition of failure which may vary from application to 

application. However, failures could be broadly classified into degradation failures 

and catastrophic failures as explained in chapter 1. The stated conditions in the 

definition comprise of the total physical environment, including the mechanical, 

thermal, and electrical conditions of expected use. For example, burn-in at 150°C 

centrifugal spinning at 20,000g etc. The stated period of time is the time during 

which satisfactory operation is required. This includes the concept of lifetime. 

This will vary depending upon the usage of the system. In some cases, the time 

can be relatively short, as in the case of an emergency beacon transmitter or an 

air- craft or the component has to perform throughout the target mission life as 

in the case of a satellite. The next sections present the basic reliability concepts 

in terms of mathematical functions. For further details refer to references [1,2,3, 

4]. 

C.i Quantifying Reliability 

C.1.1 Cumulative Distribution Function 

Assume that a device is operating at time t=0. The probability that the device 

will fail at or before time t is given by the function F(t). This is a cumulative 

distribution function (CDF) with the properties 

	

F(t) = 0 
	

t<0 	 (C.1) 

	

0 < F(t) -5 F(t') 
	

0<t<t' 	 (C.2) 

t-400 	 (C.3) 

F(t)=percentage of failures at time t 
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C.1.2 Reliability Function 

The reliability function R(t) is the probability that the device will survive to 

time t without failure. The function is related to F(t), and is given by 

R(t) = 1 - F(t) 	 (C.4) 

R(t)=percentage of good devices at time t 

C.1.3 Probability Density Function 

The derivative of F(t) with respect to time is known as the probability density 

function (PDF) and is represented by f(t). 

i.e, 

f(t) = 	.F(t) 	 (C.5) 
dt 

or 

	

F(t) 
= fo 

f(x)dx 	 (C.6) 

From the above equations it follows that, 

R(t) = 1 - F(t) 	 (C.7) 
too 	 Ft 

= I f(x)dx - I f(x)dx 	 (C.8) 

00 

Jo 	Jo 

= jf(x)dx 	 (C.9) 

and 

1(t) = —R(t) 	 (C. 10) 
dt 
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C.1.4 Failure rate 

The instantaneous failure rate A(t), defined as the ratio of ( fraction of failures in 

a time period (t, t+ 8 t) of those units that were good at the beginning of this 

period ) to (the time interval 6 t), 

can be expressed in terms of f(t), F(t) and R(t) as shown below: 

F(t+St)-F(t) 
= urn 	 (C.11) 

6t-o 	R ) x St 

1 R(t) - R(t + Si) 
= urn - 	 (C.12) 

6t-O St 	R(t) 
-1 d 

= 	—R(t) 	 (C.13) 
R(t) dt 

-t-()-  
- R(t) 
- 	f(t) 

 
- 1-F(i) 

C.2 Common Distribution Functions 

C.2.1 Exponential Distribution Function 

The exponential distribution is characterized by a constant failure rate over 

the lifetime of the device. This function is useful in representing a device in its 

working-life or useful-life period. The exponential distribution is characterized by 

the following functions 

= A 0  = constant 

R(t) = exp(-A ot) 

F(t) = 1 - exp(-A ot) 

f(t) = 	xp(-\ ot) 

Some of these functions are shown in Figure C-i 
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EXPONENTIAL DISTRIBUTION 

PROBABILITY DENSITY FUNCTION 

FAILURE RATE 

RFI IARIIrrV FIiNTION 

1.0 

Figure C—i: Probability density function, failure rate and reliabilty function of 

exponential distribution 
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C.2.2 Normal Distribution Function 

The PDF, CDF and )(T) are given by 

2  exp [_(t_tL)1 

PDF = 1(t) 
= 	22 	

(C.20) 
0• 

	

t 	I (t-1z)2 dt 
	 (C.21) CDF=F(t)= 

1 
 fexp 

	

7/JO 	{ 	2 	I 
______ 	

f_(t_)2I 	

(C.22) A(t) - 
	1(t) 	- 	exp [ 2a2 

- 1 - F(t) - f°° exp 	(t_,)21 dt 
2 0,2  

where ji is the mean or median of the normal distribution. It may be noted 

that for normal distribution mean and median coincide. 

Some of these functions are shown in Figure C-2 

Normalization of normal distribution 

It may be noted that if we consider t to represent a general normal variable in 

which case negative t is also meaningful, The CDF can be expressed as: 

____ 	 (t-1L)2 
F(t)= 1 L [ 	2 	

]dt 	 (C.23)exp  

Normal curves can be normalized to yield linear plots of the CDF using the 

following substitution 

z= t -; IL 

The CDF F(t) can be expressed in terms of the function q(z) given by: 

 7  F(t) = q(z) = 	J exp(-Z2 /2)dz 	 (C.24) 
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NORMAL DISTRIBUTION I 
PROBABILITY DENSITY FUNCTION 

AII I IPP PATP  

RFI IARII ITV F1JM(TION 

1.0 

Figure C-2: Probability density function, failure rate and reliability function of 

normal distribution 
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4(z) cannot be expressed analytically. But it is generally tabulated in statistical 

tables, and can be evaluated by approximated expressions. 

The equation, 

z=(-)(t—p) 
01 

	

gives a straight line with slope 	and intercept it. Plots of z versus t and q(z) 

versus t are shown in Figure C-3 

C.2.3 Lognormal Distribution 

The PDF, CDF and A(t) are given by: 

[—(Int--lntso) 2  exp1 	2u 2 	I (C.25) PDF = f(t) = 

	

CDF = F(t) = 	ft exp [ (
mt - lnt 5o)21 dt 

2a2 	
(C.26) 

	

= 	

exp [ - (mtmt50 )2] 

2c2  ______ 	 (C.27) 
 t f°° exp 	

(Int_lnt5o)2] dt [ 	2o 

where t 50  is the median time to failure. Some of these functions are shown in 

Figure C-4 

The lognormal distribution may represent the early life, the useful life or the 

wear out period of a device. It can be used to represent the increasing and decreas-

ing failure rates as opposed to just increasing failure rate of a normal distribution. 

Normalization of lognormal distribution 

Linear plots can be obtained by the substitution, 

mt - p 
Z = 

0 



z 

-1 

:si 

1 
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UY  

F(t) 

84% 

p =MTF 

t 

50% 

16% 

a 
/ 

.-t 

P 

Figure C-3: Normalized variable and CDF versus time of the normalized normal 

distribution 
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LOGNORMAL DISTRIBUTION 

DCPARII ITV fl.FITV Ft INrTION 

1.0 

ii 

Figure C-4: Probability density function, failure rate and reliability function of 

lognormal distribution 
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Now F(t) can be expressed as 

F(t) = F(z) = 1 JZ exp( _z2 /2)dz  27r 

Ihe plots of z and F(t) versus In t are shown in Figure C-5 

C.2.4 Weibull distribution 

ilie VVeihull distribution function is characterized by the following functions: 

f(t) = btb_lexp(ltb) 	 (C.28) 
a 	a 

F(t) = 1 - exp(— 
1 
—t') 	 (C.29) 
a 

R(t) = exp(_.l_t') 	 (C.30) 
a 

= .tb_ 1 	 (C.31) 
a 

Figure C-6 shows the plot of some of these functions. In some applications of 

the Weibull distribution function, the time t is replaced by t, where y corresponds 

to some portion of the life of the device that has been used up (for example, 

burn-in). When b=1, Weibull reduces to the exponential distribution function. If 

b < 1, the failure rate decreases with time and if b> 1, the failure rate increases 

with time, representing the early life and wear-out regions respectively. 
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z 

1 

0 

-1 

t=MIF 

H° L 	
In t 

Ii 

F(t) 

84% 

50% ------------------------- / 

16% 

t=MTF 

/ 
In t 

P 

Figure C-5: Normalized variable and CDF of the normalized lognormal distri-

bution 



Appendix C. Mathematics of Failure Distributions 	 202 

WEIBULL DISTRIBUTION 

PROBABILITY DENSITY FUNCTION 

ential distribution 

RELIABILITY FUNCTION 

OR 

FAILURE RATE 

Figure C-6: Probability density function, failure rate and reliability function of 

Weibull distribution 
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In this appendix the equation used in estimating MTF of a single element ( equa-

tion 7.9, chapter 7) is derived. The concepts and methodology described here are 

taken from the references [5,6,7]. 

Let, n8  and n represent the number of serial and parallel elements of a test 

structure subjected to electromigration stress experiments. The PDF, CDF etc. 

of the elements are denoted by the same notations as used prevoiusly in appendix 

A, section A.2.3 to describe lognormal distribution and are reproduced below for 

easy reference. Lognormal distribution has been used because it is the commonly 

used distribution to describe elect romigration failures. 

f(t) = Probability density function (PDF) 

F(t) = Cumulative distribution function (CDF) 

t5o = MTF 

= lnt 5o  

= standard deviation of the lognormal distribution 

The CDF of the series-parallel system, G(t), is given by [6] 1  

G(t) = 1 - [1 - F(t)"] 	 (D.1) 

Let, t5o8 , = MTF of the series-parallel system, Then by definition of MTF, 

G(t 5 ) = 1- 	 (D.2) 
2 

or 

J 
t5o'p 

g(t) = 	 (D.3) 

where g8 (t) is the PDF of the series-parallel system. Equation D.3 follows 

from equation B.2 by noting that PDF is the derivative of CDF. 
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From equations D.1, D.2, D.3 and noting that F(0) = 0, we get, 

1 
1 - [1 - F(t)"] at t=t50 minus 1 - [1 - F(t)'P" I J at t=O = 	 ( D.4) 

F(to p) "] 	= 1 

	

 - 	 (D.5) 
2 

1 - F(t508)''P =  
(12) 	

(D.6) 

1 

F(t5) 	
[ 	

1 
= i_() ] 
	

(D.7)
no 

by defining the normalized variable 0 with the equation: 

lntsosp  — I.Lo 	
(D.8) 

UO 

the CDF at t = t5Np in equation D.7 can be expressed as (see section A.2.3 of 

appendix A), 

fF(t5o) = 1 
	

exp(—z2/2)dz 	 (D.9) 

where z is a dummy variable. Equation D.8 may be rearranged to get, 

i.e, 

i.e, 

In t.5osp = po + c0 q 	 (D.10) 
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E.1 Thermal Resistance and Thermal Capacity 

In the steady state, the rate of heat transfer by conduction in the monodimensional 

case can be expressed as: 
AT AT 

q=kA - —=- --- 	 (E.1) 

w liere, 

q = rate of heat transfer 

Rh = thermal resistance 

k = thermal conductivity of the material 

A = area of cross section 

AT = temperature difference between two points distant Lx. 

However, it may be noted that for ICs the thermal resistance is usually ex-

pressed as: 
AT 

Where, 

'LTj =TA+TJ 

Where, TA is the ambient temperature, Tj is the junction temperature and P is 

the applied power. For a ceramic 16 pin DIP packaged IC the thermal resistance 

is typically in the range 110 —140 O/\7,T. 

The thermal capacity C 1h is defined and given by, 

h msAT 
Ch = 	

=LT = ms 
	 (E.2) 

where, Ah is the amount of heat required to rise the temperature of m grams of 

a substance through AT and s is the specific heat. 
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(b) 

Figure E-1: Thermal equivalent circuit (a) and the thermal response for a pulse 

(b) 

E.2 Thermal Time Constant 

Let Rth  and Ch be the thermal resistance and thermal capacity respectively of 

a system whose thermal equivalent circuit is shown in Figure E-1 (a). Figure E-1 

(b) shows the expected temperature rise as a function of time when a heat pulse 

is applied. The temperature rise can be mathematically expressed as: 

T = T1  + (Tf - T1)[1 - exp(—t/r)] 	 (E.3) 



I. 
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I 
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where, r = RthCth is the thermal time constant and, T =T j  at t = 0 and T— Tf  

as t—+ cc. 

E.3 Equivalent Thermal Circuit for the Metal-

Oxide-Silicon-Chuck Sandwich 

It inay be recalled that the chequerhoarci test structures are fabricated by sputter 

depositing aluminium-silicon on an oxidised silicon wafer. Also, the electromi-

gration experiments are carried out by probe-testing the wafers whilst held by a 

va cu urn- chuck. 

A simplified model winch can be used to describe the dynamic response of 

the above system to heat energy is shown in Figure E-2 [8]. In the electromigra-

tion experiments using chequerboards, the source of this heat energy is the Joule 

heating caused by the current applied to the I) UT (device under test). 

metal 	oxide 	silicon 	chuck 	ambient 

Figure E-2: A simplified thermal model for the metal-oxide-silicon-chuck sand-

wich 

Some calculations and typical values of the different thermal time constants 

are shown below. The following estimations are expected to indicate the order of 

magnitude of the various thermal time constants involved in the electromigration 

experiments using chequerboards. In the example shown below, we consider a 

6pm x 6pm aluminium film of thickness 1pm deposited over an 1 pm thick silicon 
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dioxide. 

Using the following material constants for aluminium: 

p 	2.7 g/cc 

S = 0.9 J/g °C 

k = 2.38 J/cm O  sec 

we get, 

thickness 	116 °C/W th— 	kA 

(l4h = m s = (volume x density)(specific heat) 	10b0  J/°C 

Therefore, 

= 	10 	seconds. 

Similar!. using the following material constants for silicon dioxide: 

p = 2.2 g/cc 

S = 1.0 J/g o  

k = 0.0096 J/cm O C sec 

we get, 

Toxjde 	iO seconds. 

Some typical values of the thermal time constants for the heat flow from silicon 

wafer to the outside environment through the chuck are summarised in table E-1. 

These values are taken from reference [8]. 

In the electromigration experiment described in section ? the temperature of 

the chequerboard rises from 25°C to 50 °C. The rise from 25°C to about 40 °C 

is rapid and is expected to be of the order of few microseconds to fraction of 

a millisecond determined by the metal-oxide thermal time constants. However, 

the chuck-ambient time constant is the longest and was empirically found to be 

greater than about 5 minutes. Hence the time at which the slope becomes nearly 
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Thermal time constant Order of magnitude 

Tsilicon milliseconds 

Tchuck seconds 

Tbient few hundred seconds 

Table E-1: Some typical values of the silicon wafer to ambient thermal time 

constants 

zero after a minimum period of 300 seconds from the start of the electromigration 

experi ineiils has been considered the thermal stabilization time. 
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