1,503 research outputs found

    Integration of software reliability into systems reliability optimization

    Get PDF
    Reliability optimization originally developed for hardware systems is extended to incorporate software into an integrated system reliability optimization. This hardware-software reliability optimization problem is formulated into a mixed-integer programming problem. The integer variables are the number of redundancies, while the real variables are the components reliabilities;To search a common framework under which hardware systems and software systems can be combined, a review and classification of existing software reliability models is conducted. A software redundancy model with common-cause failure is developed to represent the objective function. This model includes hardware redundancy with independent failure as a special case. A software reliability-cost function is then derived based on a binomial-type software reliability model to represent the constraint function;Two techniques, the combination of heuristic redundancy method with sequential search method, and the Lagrange multiplier method with the branch-and-bound method, are proposed to solve this mixed-integer reliability optimization problem. The relative merits of four major heuristic redundancy methods and two sequential search methods are investigated through a simulation study. The results indicate that the sequential search method is a dominating factor of the combination method. Comparison of the two proposed mixed-integer programming techniques is also studied by solving two numerical problems, a series system with linear constraints and a bridge system with nonlinear constraints. The Lagrange multiplier method with the branch-and-bound method has been shown to be superior to all other existing methods in obtaining the optimal solution;Finally an illustration is performed for integrating software reliability model into systems reliability optimization

    Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction

    Get PDF
    This paper studies the fault detection process (FDP) and fault correction process (FCP) with the incorporation of testing effort function and imperfect debugging. In order to ensure high reliability, it is essential for software to undergo a testing phase, during which faults can be detected and corrected by debuggers. The testing resource allocation during this phase, which is usually depicted by the testing effort function, considerably influences not only the fault detection rate but also the time to correct a detected fault. In addition, testing is usually far from perfect such that new faults may be introduced. In this paper, we first show how to incorporate testing effort function and fault introduction into FDP and then develop FCP as delayed FDP with a correction effort. Various specific paired FDP and FCP models are obtained based on different assumptions of fault introduction and correction effort. An illustrative example is presented. The optimal release policy under different criteria is also discussed

    A general introduction to software reliability

    Get PDF

    Design de fiabilidade bidimensional do software de múltiplos lançamentos tendo em conta o fator de redução de falhas na depuração imperfeita

    Get PDF
    Introduction: The present research was conducted at the University of Delhi, India in 2017. Methods: We develop a software reliability growth model to assess the reliability of software products released in multiple versions under limited availability of resources and time. The Fault Reduction Factor (frf) is considered to be constant in imperfect debugging environments while the rate of fault removal is given by Delayed S-Shaped model. Results: The proposed model has been validated on a real life four-release dataset by carrying out goodness of fit analysis. Laplace trend analysis was also conducted to judge the trend exhibited by data with respect to change in the system’s reliability. Conclusions: A number of comparison criteria have been calculated to evaluate the performance of the proposed model relative to only time-based multi-release Software Reliability Growth Model (srgm). Originality: In general, the number of faults removed is not the same as the number of failures experienced in given time intervals, so the inclusion of frf in the model makes it better and more realistic. A paradigm shift has been observed in software development from single release to multi release platform. Limitations: The proposed model can be used by software developers to take decisions regarding the release time for different versions, by either minimizing the development cost or maximizing the reliability and determining the warranty policies.Introducción: la presente investigación se realizó en la Universidad de Delhi, India en 2017. Métodos: desarrollamos un modelo de crecimiento de confiabilidad de software para evaluar la confiabilidad de los productos de software lanzados en múltiples versiones bajo disponibilidad limitada de recursos y tiempo. El factor de reducción de fallas (frf) se considera una constante en entornos de depuración imperfecta, mientras que la tasa de eliminación de fallas está dada por el modelo de forma retardada en S. Resultados: se valida el modelo propuesto en un conjunto de datos de cuatro lanzamientos de la vida real mediante un análisis de bondad de ajuste. También se aplicó el análisis de tendencia de Laplace para juzgar la tendencia que presentan los datos con respecto al cambio en la confiabilidad del sistema. Conclusiones: se calculó una serie de criterios de comparación para evaluar el rendimiento del modelo propuesto en relación con el modelo de crecimiento de confiabilidad del software (srgm) de múltiples lanzamientos basado únicamente en el tiempo. Originalidad: en general, el número de fallas eliminadas no es el mismo que el número de fallas experimentadas en intervalos de tiempo determinados, por lo que la inclusión de frf en el modelo lo mejora y lo hace más realista. Se ha observado un cambio de paradigma en el desarrollo de software, que pasa de un lanzamiento único a una plataforma múltiples lanzamientos. Limitaciones: los desarrolladores de software pueden emplear el modelo propuesto para tomar decisiones con respecto al tiempo de lanzar diferentes versiones, ya sea minimizando el costo de desarrollo o maximizando la confiabilidad y determinando las políticas de la garantía.Introdução: esta pesquisa foi realizada na Universidade de Deli, na Índia, em 2017. Métodos: desenvolvemos um modelo de crescimento de confiabilidade de software para avaliar a confiabilidade dos produtos de software lançados em múltiplas versões sob disponibilidade limitada de recursos e tempo. O fator de redução de falhas (frf) é considerado uma constante em contextos de depuração imperfeita, enquanto a taxa de eliminação de falhas é dada pelo modelo de forma retardada em S.Resultados: o modelo proposto é avaliado em um conjunto de dados de quatro lançamentos da vida real mediante uma análise de bondade de ajuste. Também foi utilizada a análise de tendência de Laplace para avaliar a tendência apresentada pelos dados com respeito à mudança na confiabilidade do sistema.Conclusões: uma série de critérios de comparação foi calculada para avaliar o rendimento do modelo proposto em relação com o modelo de crescimento de confiabilidade do software (srgm) de múltiplos lançamentos baseado unicamente no tempo.Originalidade: em geral, o número de falhas eliminadas não é o mesmo que o número de falhas existentes em intervalos de tempo determinados, sendo assim, a inclusão do frf no modelo o torna melhor e mais realista. Foi observada uma mudança de paradigma no desenvolvimento de software, que passa de um lançamento único a uma plataforma de múltiplos lançamentos.Limitações: o modelo proposto pode ser utilizado pelos desenvolvedores de software para tomar decisões com respeito ao tempo de lançar diferentes versões, seja para minimizar o custo de desenvolvimento ou maximizar a confiabilidade e determinar as políticas de garantia

    Modelling Open-Source Software Reliability Incorporating Swarm Intelligence-Based Techniques

    Full text link
    In the software industry, two software engineering development best practices coexist: open-source and closed-source software. The former has a shared code that anyone can contribute, whereas the latter has a proprietary code that only the owner can access. Software reliability is crucial in the industry when a new product or update is released. Applying meta-heuristic optimization algorithms for closed-source software reliability prediction has produced significant and accurate results. Now, open-source software dominates the landscape of cloud-based systems. Therefore, providing results on open-source software reliability - as a quality indicator - would greatly help solve the open-source software reliability growth-modelling problem. The reliability is predicted by estimating the parameters of the software reliability models. As software reliability models are inherently nonlinear, traditional approaches make estimating the appropriate parameters difficult and ineffective. Consequently, software reliability models necessitate a high-quality parameter estimation technique. These objectives dictate the exploration of potential applications of meta-heuristic swarm intelligence optimization algorithms for optimizing the parameter estimation of nonhomogeneous Poisson process-based open-source software reliability modelling. The optimization algorithms are firefly, social spider, artificial bee colony, grey wolf, particle swarm, moth flame, and whale. The applicability and performance evaluation of the optimization modelling approach is demonstrated through two real open-source software reliability datasets. The results are promising.Comment: 14 pages, 11 figures, 7 table

    Dynamic Modeling and Statistical Analysis of Event Times

    Get PDF
    This review article provides an overview of recent work in the modeling and analysis of recurrent events arising in engineering, reliability, public health, biomedicine and other areas. Recurrent event modeling possesses unique facets making it different and more difficult to handle than single event settings. For instance, the impact of an increasing number of event occurrences needs to be taken into account, the effects of covariates should be considered, potential association among the interevent times within a unit cannot be ignored, and the effects of performed interventions after each event occurrence need to be factored in. A recent general class of models for recurrent events which simultaneously accommodates these aspects is described. Statistical inference methods for this class of models are presented and illustrated through applications to real data sets. Some existing open research problems are described.Comment: Published at http://dx.doi.org/10.1214/088342306000000349 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Bayesian modification to the Jelinski-Moranda software reliability growth model

    Get PDF
    The Jelinski-Moranda (JM) model for software reliability was examined. It is suggested that a major reason for the poor results given by this model is the poor performance of the maximum likelihood method (ML) of parameter estimation. A reparameterization and Bayesian analysis, involving a slight modelling change, are proposed. It is shown that this new Bayesian-Jelinski-Moranda model (BJM) is mathematically quite tractable, and several metrics of interest to practitioners are obtained. The BJM and JM models are compared by using several sets of real software failure data collected and in all cases the BJM model gives superior reliability predictions. A change in the assumption which underlay both models to present the debugging process more accurately is discussed
    corecore