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The past two decades have witnessed an enormous growth of literature on
software reliability theory
 The preoccupation with model�building has re�
sulted in a large number of theoretical models which seem to lack immedi�
ate appeal from a statistical point of view
 The aim of this paper	 which is
entirely based on the author�s PhD�thesis �van Pul �������� is to attempt
to reduce the gap between statistical theory and applications in the area of
software reliability


In Section � a general introduction to software reliability is given
 We
discuss some basic concepts	 models and assumptions and describe some
di�erent approaches to the subject
 Section � provides most of the math�
ematical framework
 The relevant notions of counting process theory and
martingales are presented
 Section � gives a brief sketch of some of the
technical results	 recently obtained and more thoroughly described in van
Pul ������� Asymptotic properties of maximum likelihood estimators are
analysed for a broad class of models	 the validity of the parametric bootstrap
is derived in a software reliability context and a new	 more sophisticated soft�
ware reliability model incorporating imperfect repair is introduced
 In Section
� we consider an application
 The results of a software reliability case study
at Philips Medical Systems �PMS� are discussed


�� Introduction
To�day it is hard to think of any area in modern society in which computer
systems do not play a dominant role� In space� and air�navigation� defence�
telecommunication and health�care� to name a few� computers have taken over
the most life�critical tasks� Unlike most human beings� computers seem to
do their job perfectly� at all times and under all conditions� But do they
really� Well� most of the time� they do� Sometimes� however� for some reason

���

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301665149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a zillion dollar satellite goes o	 course� a patriot rocket misses its target or
a large telephone exchange gives up� Possible sources for such dissatisfactory
behaviour are physical deterioration or design faults in hardware components�
In the 
fties and sixties a general reliability theory was built for hardware�
Another source for malfunctioning of computer systems is the presence of bugs
in the software that controls the system� A beginning with the modelling of
the reliability of software was only made in the early seventies�
Obviously� also in the case of less delicate computer applications� all cus�

tomers want a high degree of reliability to be guaranteed� Of course� every
software�house claims to design and produce software in such a structured and
sophisticated way that the result is a perfect computer program� As in gen�
eral the logical complexity of software is much larger than that of hardware�
proving the correctness of a piece of software is in most cases an impossible
task� Software developers have to admit that in practice a completed program
is never perfect� but� more likely� still full of bugs� Therefore� the software is
tested intensively for quite a span of time before it is 
nally released� Here a
di�cult trade�o	 occurs between costs and schedule on the one side and qual�
ity on the other� The test time� which can mount up to more than a third
of the total development time� seems not productive and therefore extremely
expensive� Besides� there exists the risk� that a competitor will release the
same product a bit earlier� On the other hand� the sales of an unreliable prod�
uct will be disappointing and can do more bad than good to the image of the
software�house� It seems to make sense to study the evolution of the reliability
of computer software during the test and development phase� does the software
already satisfy certain criteria or how long should testing be continued�
In this paper mathematical and statistical aspects of software reliability the�

ory are presented� This 
rst section provides a general introduction to soft�
ware reliability theory� Two excellent handbooks on this topic are Musa et
al� ������ and Rook ������� In the next Section ��� we discuss how soft�
ware reliability relates to hardware reliability� In Section ��� some important
features related to software reliability are de
ned� In Section ��� we describe
several approaches � both static and dynamic � to estimation or prediction of
the reliability of a piece of software� The dynamic approach of counting process
models will be used throughout the rest of this paper� Classical assumptions
and models in this approach are discussed in Section ����

���� Software versus hardware
The 
eld of hardware reliability has been established for some time� Some
useful references are� Shooman ������	 Mann et al� ������ Barlow 

Proschan ������	 Lawless �����	 and Ascher 
 Feingold �������
One might ask how software reliability relates to it� In reality� the distinction
between hardware and software reliability is somewhat arti
cial� Both may be
de
ned in the same way� Therefore� you may combine hardware and software
reliability to get system reliability� Both depend on the environment�
The source of failures in software is design faults� while the main source in
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hardware has generally been physical deterioration� However� the models and
methods developed for software reliability could really be applied to any design
activity� including hardware design� Once a software defect is properly 
xed�
it is in general 
xed for all time� Failures usually occur only when a program
is exposed to an environment that it was not developed or tested for� Software
reliability tends to change continuously during test periods� due to the addition
of problems in new code or due to the removal of problems by repair actions�
Hardware reliability has� apart perhaps from an initial burn�in or end of useful
life period� a much greater tendency towards a constant value�
Also in hardware the presence of design faults is possible� but the design

reliability concept has not been applied to hardware to any extent� The prob�
ability of failure due to wear and other physical causes has usually been much
greater than that due to an unrecognised design problem� It was possible to
keep hardware design failures low because hardware was generally less complex
logically than software� Hardware design failures had to be kept low because
retro
tting of manufactured items in the 
eld was very expensive� The empha�
sis in hardware reliability is starting to change now� however� Awareness of the
work that is going on in software reliability� plus a growing realisation of the
importance of design faults may be having an e	ect�
Despite the forgoing di	erences� we can develop software reliability theory

in a way that is compatible with hardware reliability theory� Thus� system
reliability 
gures may be computed using standard hardware combinatorial
techniques �Shooman ������	 Lloyd 
 Lipow �������� In this paper at�
tention is restricted to problems related to the modelling of the reliability of
software only�

���� Basic concepts
First of all� we have to make clear what we mean� when using vague terms
like software faults and software reliability� In this section we give some intu�
itive descriptions� more formal de
nitions and mathematical expressions will
be given later on�
We speak of a software failure� if the program�output deviates from what

it should be according to the customer� This means that also errors in the
speci
cation can lead to software failures� A failure is a dynamic thing� the
program has to be executed to detect software failures�
A software fault or bug� is an error in the program source�text� which when

the program is executed under certain conditions can cause a software failure�
A software fault is hence generated at the moment a programmer or system
analyst makes a mistake�
Often one de
nes the reliability of a piece of software as the probability of

failure�free execution of the software for a speci
ed time in a speci
ed envi�
ronment� An operating system� for instance� with a reliability of ��� for �
hours for an average user� should work �� out of ��� periods of � hours without
problems�
A characteristic that is strongly correlated with the reliability is the expected
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failure intensity� sometimes called the rate of occurrence of failures ROCOF��
which is de
ned as the expected number of occurring failures per unit of time�
Strictly speaking� the expected failure intensity is the 
rst derivative of the
mean value function� which represents the expected cumulative number of fail�
ures detected up to each point in time�
Between the terms software fault and software failure there exists a cause and

e	ect relation� The terms software reliability and failure intensity both give a
measure for the quality of the software� Other interesting measures� that are
directly related to these two� are the mean time between failures MTBF� and
the time to release TTR��

���� Di�erent approaches
Since the early seventies� many researchers have paid attention to the problem
of estimation and prediction of software reliability� They used various starting�
points� assumptions� and techniques� all aiming at the same goal� In this section
we brie�y discuss four di	erent approaches to software reliability�

i� Fault seeding� One can estimate the number of inherent faults in soft�
ware programs by an empirical method� variously called fault seeding� er�
ror seeding or �bebugging� �Mills �����	 Basin ������	 Gilb ������
and Rudner �������� The test�leader introduces a certain number of
arti
cial faults into the program in some suitable random fashion� un�
known to the people who will test the software� It is assumed that these
seeded faults are equivalent to the inherent faults in terms of di�culty of
detection� Inherent and seeded faults discovered are counted separately�
The number of inherent faults can be predicted by using the observed
proportion of seeded faults found to total seeded faults� The reasoning
is based on the concept that with equal di�culty of discovery� the same
proportions of both types of faults will have been discovered at any point
in time� Unfortunately� it has proved di�cult to implement seeding in
practice� It is not easy to introduce arti
cial faults that are equivalent
to inherent faults in di�culty of discovery� In general� it is much easier
to 
nd the seeded faults� Consequently� the number of inherent faults is
usually underestimated with this technique�

ii� Iterated testing� An other approach is suggested in Nagel 
 Skrivan
����� and Nagel et al� ������ They investigate software reliability
by what they call replicated testing or repetitive run experimentation�
The idea is to test a large number of identical copies of a software pro�
gram simultaneously and independently of each other� In this way one
can calculate the average number of bugs found as a function of time very
precisely� This function can be used for the prediction of the number of
bugs that will be found before a certain point in time in the future� There
exists� however� a stronger motivation for this approach� Obviously� there
will be larger and smaller faults in the software program� Larger faults
tend to cause software failures earlier than the smaller ones� A conse�
quence of this is that the larger faults tend to be present in most of the
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test runs� while smaller faults occur only in a few of them� The key issue
of this method is that one can obtain a good empirical estimation of the
distribution of the occurrence rates of the di	erent bugs� This informa�
tion enables one to model the growth of reliability in an appropriate way�
A large disadvantage of this approach� however� is that to be of any use
iterated testing is enormously time consuming and therefore rarely used
in practical situations�

iii� Static complexity analysis� Following a completely other direction� one
can estimate the number of faults from program characteristics only� It
has long be assumed that the size of a program has the most e	ect on
the number of inherent faults it contains� Akiyama ������	 Thayer
������	 Motley 
 Brooks ������ and Feuer 
 Fowlkes ������
have veri
ed this hypothesis� They all more or less consider models in
which the number of inherent faults is proportional to some power of the
program length� Possibly� other measures of program complexity than
just program length can improve the prediction of number of inherent
faults� Complexity measures form an active current research area� Very
popular are McCabe�s cyclomatic number �McCabe ������� and Hal�
stead�s e	ort �Halstead �������� Other metrics can be found in
Grady 
 Caswell ������� However� most of the complexity mea�
sures developed to date show a high correlation with program size� They
provide little improvement over just program size alone in predicting in�
herent faults remaining at the start of system test �Sunohara et al�
�������

iv� Error�counting and debugging models� We consider the following experi�
ment� A computer program is tested for a speci
ed length of time� Inputs
are selected randomly from the input�space in a way that is representa�
tive for the operational pro
le� Either the program produces the correct
output� or a software failure occurs� That is� the software produces the
wrong answer or no answer at all� After the detection of a failure� the
CPU�clock is stopped and the program is sent to a team of debuggers�
When the fault is found and 
xed� available data concerning fault and
failure are gathered in a database� After this� the CPU�clock is started
again and testing continues with a new input until the end of the test
period is reached� Among others� the following data�items are of interest�
a� The failure times� times at which the failures occur� This could be
measured in seconds CPU�time� days real�time or even by the sequence
number of the test input� b� A description of the failure or of the prior�
ity of its e	ects�� so that a classi
cation of the e	ects of errors is possible�
It can be of use to distinguish failure intensities of di	erent types of fail�
ures� c� A description of the fault the cause� like errors in speci
cation�
design or code�� Also here a classi
cation can make sense� Certain kinds
of faults can indicate for instance a lack of accuracy or knowledge of the
programmer or the misinterpretation of possibly ill�posed speci
cations�
One should try to prevent such systematic errors in future� d� The lo�
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cation of the fault in the source text� When the program consists of a
number of modules� it is possible to 
nd local di	erences in the failure
intensity and hence to concentrate the testing e	ort in the most criti�
cal regions� e� A measure of the size of the correction of a fault for
example in bytes or new lines added or changed code or in man�hours��
When modelling imperfect repair that is� there exists a positive chance
of introducing new faults when repairing an old one� such information
would be very useful� Only the failure times are essential to be able to
conclude something about the evolution of the reliability during the test�
ing process� The class of Error�Counting and Debugging Models consists
of relatively simple models� considering the test experiment as described
above� characterised by the fact that they are only based on certain test
data� such as the occurrence times of failures� These error�counting and
debugging models do not explicitly depend on factors like the length and
the structure of the program� the language in which it is written� the skill
of the programmer� etcetera� By using the information obtained from the
experiment one can estimate the parameters of the underlying model� in
particular the total number of faults initially present in the software�
Certain functions of these model�parameters will yield estimates of other
interesting quantities such as the failure intensity� the reliability� the
mean time between failures and the release time�� In practice� however�
decisions about when to stop testing are rarely based solely on critical
values for such quantities� More often to 
nd an optimal stopping time�
the reliability model is extended by associating cost functions� modelling
the cost of testing versus the costs of faults in the 
eld� An optimal stop�
ping rule will tell to stop testing as soon as the cost of discovering and

xing the remaining faults is greater than the cost of repairs in the 
eld�

As stated earlier� approaches i� and ii� are nice theoretical concepts� but they
have considerable disadvantages that make them less practical� The static
approach iii� and the dynamic approach iv� are both used in practice� In this
paper we restrict ourselves mainly to the mathematical and statistical aspects
of approach iv�� that is of error�counting and debugging models�

���� Assumptions and models
E	orts in describing the evolution of the reliability of computer software dur�
ing testing resulted in the proposal of dozens of error�counting and debugging
models over the past twenty years� Each individual model is completely charac�
terised by a certain set of assumptions� Sometimes� we assume that failures in
the software will occur independently and that when a failure is detected� the
fault is 
xed immediately with no new faults introduced� This is the case for
some very well�known models� the Jelinski�Moranda 	JM
 model �Jelinski

 Moranda ������	 the Goel�Okumoto 	GO
 model �Goel 
 Okumoto
������� and the Littlewood 	L
 model �Littlewood ��������
The JM model is the oldest and one of the most elementary software relia�

bility models introduced so far� In this model the failure rate of the program
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is at any time proportional to the number of remaining faults and each fault
makes the same contribution to the failure rate�
In the GO model the failures occur according to a non�homogeneous Poisson

process� The failure rate does not depend on the debugging process� it is a
simple deterministic function which decreases exponentially in time� Both the
JM model and the GO model are in some sense special cases of a more general
model� the model of Littlewood�
The main di	erence with respect to the two previous models is the fact that

Littlewood does not assume that each fault makes the same contribution to the
failure intensity� He allows each fault to have its own occurrence probability�
Littlewood�s argument for this is that larger faults will produce failures earlier
than small ones� The way� however� in which Littlewood assigns occurrence
rates to the faults� is rather ad hoc� In practice� it turns out that for many
data�sets estimates based on the L model are not better than those based on
the JM model�
Assumptions like independence of the occurring faults� negligible repair time

and perfect repair are of course� not very realistic� It is unknown how large
the in�uence on the results is of such an assumption as the independence�
Without this assumption� however� the mathematical problem becomes a lot
more complicated� With respect to the assumption of negligible repair time
that is� stop CPU�clock when failure detected� one can add that there are ways
of transforming execution�time models into real�time models �Musa ��������
Moreover� immediate repair is not essential if we take care to count failures
due to the same software fault only once� A new and interesting idea seems
to be the modelling of imperfect repair and software growth simultaneously�
With software growth we mean the phenomenon that a piece of software is not
a static object� but on the contrary changes in time� Not only does each repair
cause a change in the software� but also in practice at certain moments in the
testing phase we will add new modules to the software as well�
In the Poisson Growth � Imperfect Repair 	PGIR
 model �van Pul �������

it is assumed that the expected number of new faults introduced at a certain
point in time� is proportional to the size of the change in the software at that
moment� This assumption makes it possible to model imperfect repair and soft�
ware growth simultaneously� Besides� the model will account for dependencies
between faults�
A more formal treatment of these software reliability models will be given in

Section ���� after we have introduced the necessary mathematical notations and
concepts� Finally� for a complete chronological catalogue of the most popular
software reliability models introduced since ���� we refer to Musa et al�
������

� Mathematical framework
An important statistical problem is the comparison of di	erent models� This is
usually done by goodness of 
t testing� The test statistics involved are in our
situation rather complex� and the derivation of their distributions can cause
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considerable di�culties�
Not only the choice of the best model does confront us with many questions�

but also the estimation of the parameters in the chosen model is a di�cult
problem� We usually use the maximum likelihood estimation procedure for
this purpose� We derive the chance likelihood� to get the data under the
parameters and maximise this likelihood as a function of the parameters� The
derivation of the likelihood function is not always possible analytically and the
numerical computation of its maxima can be unstable� In practice we will
use iterative techniques to approximate the roots of the system of likelihood
equations�
The sequel of this paper will consider the problem of parameter estimation�

First� we give some further relevant mathematical background� In Section ���
we present some important counting process theory results� We shed some
light on the way we treat asymptotics and limit theory in Section ���� In
Section ��� we describe the method of maximum likelihood estimation in the
context of counting processes and discuss some of the main statistical problems
in parameter estimation� We illustrate the theoretical concepts with some
examples and place the software reliability models� mentioned in Section ����
in a mathematical context in Section ����

���� Counting process theory
We are going to model the occurrence of discrete� random events in continuous
time� We 
x T � ��� � � for a given 
nite terminal time � � � � � ��� Recalling
approach iv� of Section ���� note that we are observing a non�deterministic
process through the 
xed time window T � The fact that the number of faults
detected in T will be stochastic is the reason why we cannot use classical max�
imum likelihood theory for i�i�d� observations in deriving asymptotic results�
Therefore we introduce a powerful mathematical instrument which we will use
to solve these problems� the theory of counting processes and martingales� For
a complete summary we refer to Andersen 
 Borgan ������ Jacod 

Shiryaev ����� or Andersen et al� ������ Before we are able to introduce
the important notions of martingales� counting processes and their intensities�
we have to give some other de
nitions 
rst�
Let ��F �P� be a probability space� A �ltration or history Ft � t � T � is an

increasing� right�continuous family of sub ��algebras of F � The ��algebra Ft is
interpreted as follows� it contains all events whose occurrence or not is 
xed by
time t� We write correspondingly Ft� for the available data just before time
t� A stochastic process X is just a time�indexed collection of random variables
Xt� � t � T �� The process X is called adapted to the 
ltration if Xt� is Ft�
measurable for each t and cadlag if its sample paths Xt� �� � t � T � for almost
all � are right continuous with left�hand limits� The set of all cadlag functions
on T is often denoted by DT �� the Skohorod space of weak convergence theory�
See Billingsley ������� The self�exciting �ltration Ft of a stochastic process
X is the ��algebra generated by Xs�� s �� t� Finally� a stochastic process X
is called integrable if for all t � T
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E
�jXt�j� ��

and predictable if as a function of t� �� � T ��� it is measurable with respect
to the ��algebra on T �� generated by the left continuous adapted processes�
So suppose a 
ltration Ft � t � T � on a probability space ��F �P� is given�

A martingale is a cadlag� adapted stochastic process m which is integrable and
satis
es the martingale property�

E
�
mt�jFs

�
� ms�� � � s � t� ��

That is� the increment of the stochastic process mt� over an arbitrary time
interval t� t h� given the past has zero expectation� A counting process n is
a stochastic process which can be thought of as registering the occurrences in
time of a number of discrete events� More formally� a counting process is an
adapted cadlag process� zero at time zero� with piecewise constant and non�
decreasing paths� having jumps of size one only� We say that n has intensity
process �� if � is a predictable process and

mt� �� nt��
tZ

�

�s�ds ��

satis
es the martingale property ��� The integral in the right�hand side of ��
is often referred to as the cumulative intensity process or compensator of n� We
can consider a martingale as being a pure noise process� The systematic part
of a counting process is its compensator� a smoothly varying and predictable
process� which subtracted from the counting process leaves unpredictable zero�
mean noise� Though m is pure noise� m� has a tendency to increase over time�
The systematic component compensator� of m� is called the predictable vari�
ation process of m and denoted by � m �� More generally� for martingales m�

and m� the predictable covariation process � m��m� � is de
ned as the unique

nite variation cadlag predictable process such that m�m�� � m��m� � is
a martingale� zero at time zero� If h� and h� are predictable processes� thenR
h�dm� and

R
h�dm� are martingales and

�

Z
h�dm��

Z
h�dm� � �

Z
h�h�d � m��m� ��

Martingales have been studied intensively during the past few decades and
a lot of nice mathematical properties have been derived by now� Some very
important martingale results are Kurtz� theorems� Lenglart�s inequality and the
Martingale Central Limit Theorem MCLT�� which can be seen as analogues of
the law of large numbers and the usual Central Limit Theorem in the classical
i�i�d� case� These results� which will be essential in the proofs of in probability
and weak convergence for the non�i�i�d� case� will be stated explicitly in the next
section� For a more comprehensive treatment of these and other martingale
results we refer to Andersen et al� ������
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Remark �� To get a better understanding of these theoretical concepts we
close this section by constructing a special class of counting processes� the order
statistics processes� It will turn out that this class contains most of but not
all� the popular software reliability models investigated so far� Let us consider
a sample of N independent� identically distributed survival or failure� times�
S�� � � � �SN � from a continuous survival function St� with hazard rate function
zt�� Hence zt� � ft�	� � F t�� where F t� is the cumulative distribution
function and ft� the density of the Si� Typically in survival analysis problems�
complete observation of S�� � � � �SN is not possible� In our situation one observes
only those Si that occur in a 
xed time interval ��� � �� We therefore de
ne the
counting process nt� for t � ��� � � as

nt� �� !fi � Si � tg �
NX
i��

IfSi � tg�

where If�g denotes the indicator function� Thus the stochastic process nt� is
a non�decreasing integer valued function of time with jumps of size one only� it
is right continuous and n�� � �� Furthermore we de
ne the stochastic process
Y t�� t � ��� � �� by

Y t� �� !fi � Si � tg �
NX
i��

IfSi � tg � N � nt���

Hence Y t� is the number at risk just before time t� or the size of the risk set�
We de
ne the intensity process �t�� the rate at which the counting process
nt� jumps� as�

�t� �� Y t�zt� �
�
N � nt���zt�� ��

Note that the intensity process � is random� through dependence on the past
of the stochastic process n� Given Ft� �� �fns�� s � tg� the strict past of
n� however� � is a predictable process� that is to say� given Ft� we know �t�
already� but not yet nt� for instance� It is not di�cult to check that in this
case the process

mt� �� nt��
tZ

�

�s�ds

indeed satis
es the martingale property ��� Counting process models� counting
the occurrences of i�i�d� events� and hence having an underlying intensity of
the form ��� we will call N � n homogeneous�

��� Asymptotics and limit theory
A major part of Section � will deal with the study of asymptotic properties of
estimators� Therefore we should make clear how we treat asymptotics� espe�
cially as our approach is rather unorthodox� A novel aspect of our approach�
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namely� is the fact that � in order to treat asymptotic theory � instead of in�
creasing the time variable or the number of data as is usually the case� we
conceptually� increase one of the model parameters itself�
Recall the formulation of the mathematical problem as sketched in Section

���� On a 
xed time�interval T � ��� � �� we are observing a counting process n
with underlying intensity process �� In the sequel we always assume that this
stochastic intensity function� depending on the past of n� is a member of some
parametric family�

�t� �� �
�
t� 
� nt���� 
 � " � R

k �

We assume the true parameter�value 
� is contained in "� In all typical cases

� � N�� ���� where N�� the parameter of most interest� represents the scale
or size of the problem sometimes N� � n���� while �� is a nuisance vector
parameter� To apply asymptotics it obviously would not make sense to let
tau� the stopping time� grow to in
nity� In the long run all failure times
will have occurred before time tau and the estimate of the total number of
faults N will trivially be equal to the true number of faults� It makes more
sense to conceptually� increase the number of faults N � itself� As we are
particularly interested in parameter estimation when N is large� we consider
the reparametrisation

N � �� � 	�� ��

In ��� � denotes the known scale of the problem size of the population or
some complexity measure of the software program�� which we let go to in
nity�
Furthermore�  represents the unknown proportion coe�cient of ill people or
software bugs�� which we are going to estimate� In order to make the parametri�
sation �� pro
table we have to put a constraint on �� N �n homogeneity i�e�
��� would be su�cient but is too strong� We require only that the intensity
function � is simultaneously linear in both N and n� that is�

�
�
t� N���� nt��� � ����

�
t� �N���� �nt���� � � �� ��

Models with intensity function satisfying �� will be called N�n� homogeneous�
We now consider a sequence of counting processes n� with increasing � and
underlying N�n� homogeneous intensities �� and de
ne for t � ��� � �

x�t� �� ���n�t��

The idea behind the transformation �� and N�n� homogeneity �� is that
����� only depends on � via x� � We therefore de
ne

�
�
t� � ��� x�t��

�
�� �����

�
t� �� ��� �x�t��

�
�

A function � � T � DT � 	 R is called non�anticipating if �t� x� depends
only on xj�o�t�� the past of the stochastic process x up to but not including
time t� It will turn out to be of great importance that under weak smoothness
conditions on �� that are readily satis
ed for the models most used in practice�
the stochastic process x�t� will converge in probability uniformly on ��� � � to
a deterministic function x�t�� which is the solution of the integral equation

���



xt� �

tZ
�

�
�
t� � ��� xs���ds� ��

This will follow directly from the next theorem�

Theorem �� Let �t�x� be a non�anticipating and non�negative function of
t � T and x � DT �� We assume that

sup
s�t

�t� xs��� � C�  C� sup
s�t

jxs�j�

sup
s�t

j�t� xs��� � �t� ys���j � C� sup
s�t

jxs�� ys�j�

for all x y � DT � and for certain constants C� C� and C�� Let a� 	� be
a sequence of positive constants� Let n� be a counting process with underlying
intensity process ��t� � a��t� a

��
� n�t���� for all t � T � Finally let x� be

the unique solution of the integral equation

xt� �

tZ
�

�t� xs���ds�

Then we have for all t � T as � 	��

sup
s��t

ja��� n�t�� x�t�j P	 ��

�

This theorem� also known as Kurtz� 
rst theorem� is just the law of large
numbers for counting processes� Kurtz� second theorem states that under
slightly stronger conditions a central limit theorem result can be obtained�
i�e��

p
�n�	� � x��	Z in distribution where Z is a Gaussian process� Both

results can be found in Kurtz ������� One of our main goals in Section �
will be to 
nd estimators for the model parameters and to derive asymptotic
properties such as consistency and asymptotic normality� An estimator 
� for

� is said to be consistent if 
� 	 
� in probability and asymptotically normal
if
p
�
� � 
�� 	 N ��#� in distribution� When deriving these kind of prop�

erties in a non�i�i�d� situation we will need the following important martingale
results�

Theorem � Let m be a local square integrable martingale� Then for any � � �
and � � � we have�

P
�
sup
t�T

jmj � �
� � �

��
 P

�
� m � �� � �

�
�

�

Theorem �� Consider a sequence n� of counting processes with intensity pro�
cess �� and a sequence of predictable processes H� � De�ne for t � ��� � �

���



Z�t� ��

tZ
�

H�s�
�
dn�s�� ��s�ds

�
�

Suppose as � 	� for all t � T �
� Z� � t�

P	 Gt�� ��

where G is a continuous function and suppose that for all � � � as � 	��

�Z
�

H�
� t��� t�IfjH�t�j � �gdt P	 �� ��

Then Z� converges in distribution to Z in the space DT � where Z is a Gaus�
sian martingale with variance function G and Z�� � �� �

Theorem �� Lenglart�s inequality� tells us that we can bound the probability
of a large value of m anywhere in the whole time�interval T in terms just of
the probability of a large value of � m � in the endpoint � � One says that
m is dominated by � m �� See Lenglart ������� Theorem � is a special
case of the martingale central limit theorem MCLT�� saying that two condi�
tions are required for a local square integrable martingale to be approximately
Gaussian� Condition �� states that its predictable variation process converges
in probability to a deterministic function� condition �� states that the jumps
of Z� become small as � 	 �� For more general formulations of the MCLT
and proofs we refer to Rebolledo ������ or Helland ������

���� Maximum likelihood estimation
We observe the counting process nt� on ��� � � with underlying N�n� homoge�
neous parametric intensity process

�t� � �
�
t� N���� nt���� ��

The question is now� of course� how to 
nd estimators for N and �� We will use
the method of Maximum Likelihood Estimation MLE� for this purpose� Using
the fact that �t�dt represents the conditional probability given the strict past
that the counting process nt� jumps in the interval �t� t dt�� we can write for
the likelihood�

L� N��� 

Y

��t��

�
�t�dt�dn�t��� �t�dt���dn�t�

�


 exp�
�Z

�

log�t�dnt� �
�Z

�

�t�dt
�
� ���

For a standard de
nition of the product integral in the upper expression of ���
we refer to Gill 
 Johansen ������� The lower expression in ��� is also
known as Jacod�s formula �Andersen et al� �������

���



Remark � Let us again consider the special class of order statistics processes
described in Remark �� Thus� given is a population consisting of an unknown
number N of failure times Si� We now furthermore assume that it is given that
these failure times are taken from some continuous� parametric distribution
function� say F � F� � We only observe those failure times Si� which take a
value in ��� � �� That is� we observe only the order statistics Ti �� S�i�� i �
� � � � n� where n is random� and know that S�n	�� � � � Equivalently stated in
terms of counting processes� we observe the counting process nt� on ��� � � with
underlying intensity process

�t� �
�
N � nt���zt� ��� ���

where zt� �� � f�t�	��F�t��� Again the problem is� how to estimateN and
�� Of course� we could again use Jacod�s expression for the likelihood� but we
could also follow the classical approach� Conditioned on the fact that the failure
times Si are i�i�d� F� � the total number of failures in ��� � � namely is binomially
distributed with parameters N and F���� Furthermore� conditioned on the
fact that Si is observed� it has a truncated distribution F�t�	F���� This
leads to the following alternative expression for the likelihood function�

L� N��� 

�
N

n

�
F���

n�� F����
N�nn$

nY
i��

f�Ti�

F���
� ���

where the extra factor n$ in front of the product of truncated densities in ���
is explained by the fact that the Ti are the order statistics of the Si�

Maximisation of expressions ��� or ���� is usually done by setting partial
derivatives of the log�likelihood to zero and solving the resulting system of
highly non�linear likelihood or score� equations�

�

�N
logL� N��� � �� ���

�

��
logL� N��� � �� ���

We have assumed in ��� that the model is also meaningful for non�integer N �
The direct algebraic solution of the system of non�linear equations �������
is usually impossible� The best we can realistically hope for is to solve these
equations for a subset of the parameters in terms of the remaining parameters�
The remaining parameters are then estimated using numerical methods� The
Newton�Raphson procedure �Carnahan 
 Wilkes ������� is based on 
rst
order Taylor series expansions and has two attractive features� First� if the
method converges� it will do so very fast quadratically�� Secondly� convergence
is assured if the initial estimate is close enough to a root of the system� This
also represents the main drawback of the method� for some initial estimates
the method will diverge� This problem becomes severe as the region of feasible

���



values is in
nite and high dimensional� Other iterative methods using gradient
information �Fletcher 
 Reeves ������� often also do not display suitable
convergence in software reliability practice� In fact� investigations �Musa et al�
������ indicated that searching schemes incorporating gradient information
are not particularly well suited for the problem at hand� The downhill simplex
method �Nelder 
 Mead ������� does not use any gradient information�
it uses only function evaluations no derivatives�� It is very robust and nearly
always converges to at least a local minimum of � logL� N����� The main
drawback here is that the method lacks any form of acceleration� per se� and
therefore tends to be slow� Musa et al� ����� suggest to combine the meth�
ods of Newton�Raphson and Nelder�Mead� The idea is that after a limited
number of Nelder�Mead iterations the estimate of the solution is close enough
to the roots of the system of equations for the fast Newton�Raphson method to
converge� Some care should be exercised that the procedure did not accidentally
locate a minimum or a saddle�point� More seriously� we should make sure that
a global maximum and not a local one has been found� The latter concern can
be a problem when using a small sample of failure times� to estimate multiple
parameters simultaneously� Here it is a good idea to have the procedure pick
several di	erent starting values and use the estimate with the largest value
of logL� N���� Once the sample size is reasonably large� multiple solutions
to the system of likelihood equations ������� are rare in typical software
reliability models �Moek ������	 Musa et al� ������� but not impossible
�Barendregt 
 van Pul ��������

���� Some software reliability models revisited
In this section we discuss the software reliability models� brie�y described in
Section ���� in more detail� In all examples we assume that software failures
are observed during a 
xed time�interval ��� � � only� We mean by Ti the failure
time of the i�th occurring failure� while ti � Ti � Ti�� denotes the interfailure
time� that is the time between the i � ���th and i�th failure� The unknown
number of faults initially present in the software is denoted by N��

Example �� The Jelinski�Moranda model 	JM
� In the JM�model introduced
by Jelinski 
 Moranda ����� the failure rate of the program is at any
time proportional to the number of remaining faults and the removal of each
fault makes the same contribution to the decay in failure rate� So in terms of
counting processes we can write�

�JM t� � ��
�
N� � nt����

where �t� denotes the failure rate at time t and where nt�� denotes the
cumulative number of faults detected up to but not including t� The interfailure
times ti are independent and exponentially distributed with parameter �i �
��N� � i ��� De
ning

�JM t� � ��� x� �� �
�
 � xt����

���



it is easy to check that the JM�model is N�n� homogeneous� that is has a
failure intensity � of the special form ��� Solving the integral equation ��
yields�

xJM� t� �� 
�
�� e��t

�
�

In fact� the JM intensity is even N �n homogeneous of the special form �����
with parametric hazard

zJM t� �� �� ��

associated to the exponential distribution� Hence in this case the failure times
Ti can be considered as the order statistics of independent and identically
distributed exponentials with parameter �� Using ��� we can write down the
log�likelihood for the JM model�

logLN��� �

n���X
i��

log�N � i ���
n���	�X
i��

�N � i ��ti�

hence the likelihood equations become

�

�N
logLN��� �

n���X
i��

�

N � i �
� �� � �� ���

�

��
logLN��� �

n��

�
�

n���	�X
i��

N � i ��ti � �� ���

It was shown byMoek ������ that this system of equations will have a unique

solution  %N� %�� if and only if the data satisfy�

�

�

n���	�X
i��

i� ��ti � n��� �
�

�

Moek�s criterion will be satis
ed with probability one as N� grows larger� if the
model is true�

Example � The Goel�Okumoto model 	GO
� In the GO model� suggested by
Goel 
 Okumoto ������	 the failures occur according to a non�homogeneous
Poisson�process with failure rate

�GOt� �� N���e
���t�

Notice that � does not depend on n� it is a simple deterministic function of
time� One can check that the expected number of failures in ����� equals

E
� �Z
�

�GOs�ds
�
� N��
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Thus we have N� faults or sources of failures� each producing failures at an
exponentially decreasing rate� The GO model is obviously not N � n linear�
but with

�GOt� � ��� x� �� �e��t�

the GO model satis
es ��� having the same deterministic solution x� of ��
as in the JM case� This means that the JM and GO model are asymptoti�
cally equivalent indistinguishable�� In fact� the models are indistinguishable
in a stronger sense� since the distribution of the process n in the GO model�
conditional on n�� � k� is the same as the distribution of the process n in
the JM model with N� � k� This means that on the basis of one realisation
you cannot distinguish between the models at all� Note that in the GO model
the failure rate never becomes zero� This is supposed to re�ect the fact that
a detected error may or may not be removed and may cause additional errors�
However� the exponential hazard rate is completely arbitrary and we feel that
the JM model is much more realistic than the GO model� Perhaps the GO
model should be considered as an easily analysable approximation to the JM
model�

Example �� The Littlewood model 	L
� The main di	erence in the L model�
introduced by Littlewood ������	 is the fact that each fault does not make
the same contribution to the failure rate �� He treats the occurrence rate �i of
an individual bug as a stochastic variable� Littlewood�s model is an empirical
Bayesian model and he himself suggests a gamma distribution &a�� b�� for the
a�priori probability distribution of the �i� It can be derived that the failure
rate of the program at time t is then given by

�Lt� ��
a�

b�  t

�
N� � nt����

So as in the JM model� � depends on the past of the counting process n� Again
the failure intensity is N�n� homogeneous and with

�Lt� � �� ��� x� ��
a

b t

�
 � xt���

the solution of the integral equation �� becomes

xL� �� 
�
�� �� t	b��a

�
�

Moreover� �L is of the special form ��� with hazard zt� a� b� � a	b t� and
the associated distribution is the Pareto�distribution mixture of exponentials��

�� Some recent results
In this section we give an overview of some of the theoretical results that
were recently presented in van Pul ������� In Section ��� a rather general
class of parametric intensity functions is considered� Following the lines of
Borgan ������ su�cient but weak� conditions are derived under which

���



some important asymptotic properties i�e� consistency� asymptotic normality
and e�ciency� of the maximum likelihood estimators can be proved�
In Section ��� we prove that for this general class of intensity functions the

parametric bootstrap works� i�e� is asymptotically consistent� Furthermore
we investigate how well the maximum likelihood estimators behave in practice
using simulated data according to the Jelinski�Moranda model and we compare
the coverage percentage of con
dence intervals constructed with the asymptotic
normal and the Wilks test statistic and one using the bootstrap method�
Finally� of course� one of our ultimate goals will be the study of more realistic

models� In Section ��� we present the so�called Poisson Growth ' Imperfect
Repair model PGIR� �van Pul �������� We combined the modelling of
imperfect repair and software growth in a natural way� Furthermore to a certain
extent the model will account for dependencies between faults� The model has
attractive statistical properties besides�

���� Asymptotic properties of the MLE
We consider a sequence of models �� �m� � x��� � � �� �� � � � as de
ned in the
previous section� For reasons of notational convenience we take 
 �� � ��T �
"�" � R

p for some integer p� In the sequel we assume that the intensity
function �� is of the form�

��t� 
� � ��t� 
� x��� ���

where � � ��� � ��"�K 	 R
	 is an arbitrary non�negative and non�anticipating

function� In fact� in most practical cases �t� 
� x� � will depend only on x�t���
On K �� D��� � ��� the space of right�continuous functions on ��� � � with left
limits so�called cadlag functions�� we put the usual supremum norm� The
likelihood function L�
� t� now becomes for 
 � "� t � ��� � � and � � �� �� � � ��

L�
� t� �� exp
� tZ
�

log ��s� 
� x��dn�s�� �

tZ
�

�s� 
� x��d�s
�
� ���

Furthermore� we de
ne for 
 � "� t � ��� � �� � � �� �� � � ��
C�
� t� �� logL�
� t�� ���

U�i
� t� ��
�

�
i
C�
� t�� ���

I�ij
� t� ��
��

�
i�
j
C�
� t�� ���

R�ijk
� t� ��
��

�
i�
j�
k
C�
� t�� ���

Consider the following global conditions�

���



G�� For all x � K and for all 
 � " the intensity function � satis
es

sup
t��

�t� 
� x� ���

G�� Lipschitz continuity� For all 
 � " there exists a constant L� such that
for all x� y � K and all t � ��� � �

j�t� 
� x� � �t� 
� y�j � L sup
s�t

jxs�� ys�j�

Under the global conditions G���G�� the stochastic process x�t�� as de
ned
in Section ���� converges uniformly on ���� � in probability to x�t� as � 	 ��
where x� � D��� � �� is the unique solution of

xt� �

tZ
�

�s� 
�� x�ds�

This was proved by Kurtz ������� Next� we consider the following local
conditions�

L�� There exist neighbourhoods "� and K� of 
�� x� respectively� such that
the function �t� 
� x� and its derivatives with respect to 
 of the 
rst�
second and third order exist� are continuous functions of 
 and x� bounded
on ��� � ��"� �K��

L�� The function �t� 
� x� is bounded away from zero on ��� � ��"� �K��
L�� The matrix #��ij
�� is positive de
nite� with for i� j ��������p� 
 � "��

�ij
� ��

�Z
�

�

�
i
�s� 
� x��

�

�
j
�s� 
� x���s� 
� x��ds� ���

We are now able to formulate the main result�

Theorem �� Consider a counting process with intensity function �t�N���
where N��� denotes an unknown p�dimensional parameter� As in Section ���
we can de�ne an associated sequence of experiments by letting � 	 �� Let

� � �� ��� be the true value of the parameter� Assume that for all � the
intensity function ��t� 
� in the ��th experiment is of the form 	��
 for a
certain function � satisfying conditions 	G�
�	G�
 and 	L�
�	L�
� Then we
have�

	i
 Consistency of ML�estimators� With probability tending to � the likeli�
hood equations

�

�

logL�
� �� � �� � � �� �� � � � ���

���



have exactly one consistent solution %
� � Moreover this solution provides
a local maximum of the likelihood function 	��
�

	ii
 Asymptotic normality 	LAN
 of the ML�estimators� Let %
� be the consis�
tent solution of the maximum likelihood equations 	��
 then

p
�%
� � 
��	D���� N ��#���� � 	��

where # is given by 	��
 and can be estimated consistently from the ob�
served information matrix I�  given in 	��
�

	iii
 Local asymptotic normality 	LAN
 of the model� With U� � U�
�� ��
given by 	��
 we have for all h � R

p �

log
dP��
dP��

� ��
�
�hTU�  

�

�
hT#h	P��

�� � 	�� ���

where 
� � 
�  ��
�
�h and ��

�
�U� 	D N ��#��

	iv
 Asymptotic e�ciency of the ML�estimators� %
� is asymptotically e�cient
in the sense that it is regular and the limit distribution for any other
regular estimator (
� for 
� satis�es

p
�(
� � 
��	D���� Z  Y�

where Z �d N ��#��� Z and Y independent� 	For a de�nition of the
regularity of an estimator we refer to Van der Vaart ������	 Ibragi�
mov 
 Khas�minskii �������

Proof� Although our model ��� is not a special case of the multiplicative
intensity model considered in Borgan ������	 the proof of Theorem �� which
is given in van Pul ������	 follows the lines of Borgan ������ and is
omitted here� Borgan starts with slightly weaker conditions and uses the same
standard argumentation as given by Cram�er ������	 who derived similar re�
sults for the classical case of independent� identically distributed i�i�d� random
variables� Compared with the i�i�d� case the di	erence is that in the present
context Lenglart�s inequality is used to establish the convergence in probability
results instead of the law of large numbers in the classical case�� while we have
to use the martingale central limit theorem to establish the weak convergence
result� which in the classical case is proved by the central limit theorem for
i�i�d� random variables� �

Remark �� In van Pul ������ it is shown that ��� still holds for sequences

� � 
� ���	�h oh�� that is the model satis
es the strong local asymptotic
normality SLAN� property�� Together with the asymptotic normality this
implies strong regularity of the maximum likelihood estimator� �

���



Remark �� A nearly immediate consequence of these results about the
asymptotic distribution of the maximum likelihood estimator %
� is the fact
that the Wald test statistic

�%
� � 
��
T I�%
� � ��%
� � 
���

with I� given by ���� is asymptotically chi�squared distributed with p degrees
of freedom under the simple hypothesis H� � 
 � 
�� With C� � U� and I� given
by ������� the Rao test or score� statistic

�U�
�� ��T I�
�� ����U�
�� ��
and the Wilks test or likelihood ratio� statistic

�
�
C�%
� � �� � C�
�� ��

�
���

have the same asymptotic distribution as the Wald test statistic� Equivalence
of these tests can be shown by the arguments of Rao �������

���� Consistency of the bootstrap
Simulations of the Jelinski�Moranda model show see van Pul ����b�� that
asymptotic convergence to the normal distribution is appearing very slowly and
that for values of � not extremely large the empirical distribution functions of
the components of %
� can be signi
cantly skew� Hence� con
dence intervals
based on approximate normal test statistics will turn out to be disappointing�
One solution� which is already suggested in van Pul ����a�	 is to make use
of Wilks likelihood ratio test statistic�

�
�
logL�%
� � ��� logL�
�� ��

�
� ���

which can be proved to be asymptotically ��p� distributed and is often thought
to have faster convergence�
Another way to deal with deviations from normality is to make use of boot�

strap methods� Suppose we want to construct con
dence intervals for a one�
dimensional real parameter 
� The concept of parametric bootstrapping in the
context of software reliability consists of simulating a so called bootstrap count�
ing process according to the failure intensity �t� %
�� where %
 is the maximum
likelihood estimator for 
� Repeating this simulation experiment� sayM times�
we get bootstrap estimators %
�i � i � �� � � � �M � We de
ne�

G� �� L��
�p

�%
� � 
��
�
� ���

G�� �� L
��

�p
�%
�� � %
��

�
� ���

We will say that the parametric bootstrap works or is asymptotically consis�
tent� if and only if

sup
x�R

jG��x� �G�x�j	P��
�� ���

���



See also Bickel 
 Freedman ������ and Singh ������� This result will
be derived in the next theorem� Note that� as G� converges to a continuous
distribution function� a consequence of ��� is that con
dence intervals for 

based on G�� will have asymptotically the right coverage probabilities�

P
�
%
� �

Z�� �� 

� �p

�
� 
� � %
� �

Z�� 


� �p
�

�	 �� ��

for � 	 �� where Z�� �� �� G���� ��� In practice one often uses studentised
versions of ��� and ���� i�e��

GST
� �� L��

�p�%
� � 
��

%��

�
�

GST�
� �� L
��

�p�%
�� � %
��
%���

�
�

expecting the second order terms of the Edgeworth expansions to be the same
too see for instance Helmers �������� In this section we will determine %��
and %��� simply by substituting respectively

%
� and %

�
� for 
� in the expected

information matrix #� given by ���� An alternative way to estimate � consis�
tently� is to make use of the observed information matrix

I�
� �� logL�
� ��� ���

Supposing we are in the counting process context� sketched in the beginning
of this section and hence in particular in our software reliability situation� we
can prove ���� The following two lemma�s will be very useful�

Lemma �� Under the conditions of Theorem � we have SLAN 	strong local
asymptotic normality
 that is� there exist a sequence U� � � � �� �� � � � such that
for all h � R

p �

log
dP��
dP��

� hTU�  
�

�
hT#h	P��

��

for � 	� where U� 	d N ��#� # given by 	��
 but now with


� � 
�  ���	�h o���	��� ���

�

Lemma � Under the conditions of Theorem � asymptotic normality and
SLAN imply S�regularity 	strong regularity
 that is�

p
�
�
%
� � 
�

�	D���� N ��#���
for all sequences 
� of the form 	��
� �

���



The proofs of Lemma�s � and � are slight modi
cations of the proofs of Theorem
�� iii�'iv�� given in van Pul ������	 and are therefore omitted here� We
are now able to formulate the following result�

Theorem �� The parametric bootstrap is asymptotically consistent�

Proof� The asymptotic normality of the MLE yields�

lim
���

sup
x�R

jG�x� �Gx�j � ��

where Gx� �� N ��#���� So to prove ��� it is su�cient to show that for all
� � ��

lim
���

P
�
sup
x�R

jG��x� �Gx�j � �
�
� �� ���

De
ning Z� ��
p
�%
� � 
�� the asymptotic normality assures that

Z� 	D Z

where L��Z� � G � N ��#���� The almost�sure�representation theorem see
for instance Pollard ������� states that there exist (Z� �d Z� and a (Z �d Z
such that

(Z� 	a�s�
(Z�

As for 
xed �� 
� and
p
� are constants� Z� is only a function of %
� � So� we

can write

(Z� ��
p
�(
� � 
��

for some (
� � R
p � that is

(
� �� 
�  ���	� (Z� � 
�  ���	� (Z  o���	��� a�s�

Now the S�regularity of %
� gives under P (
���

p
�
�
%
� � (
�

�	D G� a�s�

or in other words

(G�� �� L���

�p
�%
�� � (
��

�	D G� a�s�

But this is to say

sup
x�R

j (G��x� �Gx�j 	a�s ��

which implies

sup
x�R

j (G��x� �Gx�j 	P �� ���
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Because (G� is a function of (
� or equivalently (Z�� only� and because (Z� �d Z� �
we have (G�� �d G

�
� and can conclude from ��� that

sup
x�R

jG��x� �Gx�j 	P��
��

So we have derived ��� and Theorem � is proved completely� �

Remark �� The result of Theorem � also holds for studentised versions of the
parametric bootstrap�

���� Modelling imperfect repair
Many of the di	erent software reliability models that have been proposed� are
for technical reasons restricted by the assumptions of�

A�� Perfect repair� no new faults are introduced during a repair with prob�
ability ��

A�� Fixed software size� there is no addition of new software during testing�

A�� Independence of faults� faults and hence their failure times� are inde�
pendent�

As there exist no perfect testers and programmers� there will always be a pos�
itive chance of introducing new faults� while repairing an old one� Secondly�
development and testing of software usually takes place simultaneously in prac�
tice� Because the addition of software� that has never been tested before� will
have an e	ect on the reliability� it seems reasonable to take also software growth
during testing into account� Furthermore certain bugs will prevent parts of the
software to be inspected and therefore will hide other bugs� thus violating the
assumption of independence of faults� Dropping A��� however� would cause the
mathematical problem to become highly complicated and almost untractable�
In this section we introduce a new model� the Poisson Growth and Imper�

fect Repair PGIR� model� We combined the modelling of imperfect repair
and software growth in a natural way� Furthermore to a certain extent the
model will account for dependencies between faults� The model has attractive
statistical properties� besides�
Let � � �� We consider a test experiment as described in the introduction�

Let T� �� � and Ti� i � �� �� � � � the failure times of the occurring failures�
Repair takes place immediately after a failure is detected� After each repair
the addition of new software is allowed� Due to the correction of a fault and
eventually due to the addition of new software at time Ti� there is a change in
software of size Ki� i � �� �� � � �� We assume that at time Ti apart from deleting
one fault� Ni new faults are introduced� We assume that Ni is a stochastic
variable� Poisson distributed with mean �Ki� i � �� �� � � �� We consider the
testing process during ��� � �� observing say n�� faults� Let

nt� ��

n���X
i��

IfTi � tg� t � ��� � �� ���
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the number of failures detected faults deleted� during ��� t� and let

Nt� ��

n���X
i��

NiIfTi � tg� t � ��� � �� ���

the number of faults introduced during ��� t�� We assume that the failure in�
tensity �� like in the JM model� at any time is proportional to the remaining
number of faults� that is�

�t� �� ��Nt��� nt���� t � ��� � �� ���

where � denotes the constant occurrence rate per fault� With use of the data
Ti�Ki�� i � �� �� � � � � n��� obtained from the experiment as described above�
one can estimate the parameters �� �� of the underlying PGIR model� We use
the maximum likelihood estimation MLE� procedure for this purpose� The
following lemma will be very useful�

Lemma �� For all m � N and all a�� a�� � � � am� � R
m	�
	  we have

�X
N���

N�
a�

N�

N�$

�X
N���

N�  N� � ��a�
N�

N�$
� � �

�X
Nm��

N�  � � � Nm �m�
am

Nm

Nm$

� a�a�  a�� � � � a�  a�  � � � am�e
a�	a�	���	am � ���

Proof� By induction� �

We now return to the derivation of the likelihood function for the PGIR
model� as described by �������� Aalen ������ showed� that the likelihood
function for estimating the parameters of the intensity function of a counting
process� observed on a 
xed time interval ��� � � is given by�

L� �� ��T�� T�� � � � � Tn���� �

n���Y
i��

�Ti�� exp�
�Z

�

�s�ds��

As the Ni are independent Poisson distributed stochastic variables with mean
�Ki� and de
ning�

ai �� �Kie
�����Ti�� ���

bi �� IfN�  � � � Ni�� � ig� ���

for i � �� � � � � n��� we get for the likelihood function under the 
ner 
ltration
observing also the sizes of the software changes��

L� �� �� Ti�Ki�� i � �� �� � � � � n��� �
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� ���n��� exp
�
�

n���X
i��

� � Ti�� �

n���X
i��

Ki�� e�����Ti��
�

n�����Y
i��

�
� iX
j��

Kje
�����Tj�

	

 � ���

We note that if N�  � � � Ni�� � i� that is� if bi � �  so we have to sum Ni

from � to ��� then the coe�cient N�  � � �  Ni � i� in the i�th sum equals
zero for Ni � �� So we can take all lower�bounds equal to zero and use Lemma
� to get ����
Taking the logarithm of the likelihood function ��� yields

logL� �� �� � n�� log��� � �

n���X
i��

Ki

�
�� e�����Ti�

�

 �

n���X
i��

� � Ti�  

n�����X
i��

log
� iX
j��

Kje
�����Tj�

�
�

So we 
nd the likelihood equations�
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��
logL� �� �� �

n��

�
�

n���X
i��

Ki

�
�� e�����Ti�

�
� ���

� �
�

��
logL� �� �� �

n��

�
� �

n���X
i��
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�����Ti�

 

n���X
i��

� � Ti��
n�����X
i��

�Pi
j��Kj� � Tj�e

�����Tj�Pi
j��Kje�����Tj�

�
� ���

Solving the system of equations �������� we get the maximum likelihood

estimators %��%��� where

%� ��
n��Pn���

i�� Ki

�
�� e�
����Ti�

�
and %� the solution of g%�� � � with

g�� ��
�

n��

n���X
i��

� � Ti�  
�

�
�
Pn���

i�� Ki� � Ti�e
�����Ti�Pn���

i�� Ki

�
�� e�����Ti�

�

� �

n��

n�����X
i��

�Pi
j��Kj� � Tj�e

�����Tj�Pi
j��Kje�����Tj�

�
�

Let us consider the PGIR model as given by �������� Note that we do not
observe the process Nt� itself� Thus de
ning the 
ltrations

Ft� �� fns� � � � s � tg�

Gt �� fns�� Ns� � � � s � tg�

we notice that the intensity � given in ��� is actually �G� the intensity function
of the counting process with respect to the 
ltration Gt� With use of the
Innovation Theorem see Aalen ������ or Bremaud �������	 we get

�F t� �� E
�
�Gt�jFt�

�
� E

�
��Nt��� nt���jFLt��

� � �ENt��jFt� �� nt��� � ���

It is not di�cult to derive see van Pul ������� that

ENt��jFt� � � �

n�t��X
i��

Ki
���t�Ti�  nt��� ���

���



From ��� and ��� we now see that the intensity function under the 
ltration
Ft� only observing the counting process ns�� � � s � t and the software
changes Ki� i � ���nt��� is given by

�F t� �� ��

n�t��X
i��

Ki
���t�Ti�� ���

Furthermore� we have�

Theorem �� Let � � �� We assume that the failure data are generated by the
PGIR intensity function � in 	��
 with true parameter value 
� �� ��� ���

satisfying � � �� � � and � � �� � �� Then the ML�estimators %� and %�
suggested above are consistent asymptotically normal distributed and e�cient�

Proof� The proof of Theorem � is tedious but routine and therefore omitted
here� Choosing�

"� �� ����M��� ����M��� � � �� � �� � M� ���

� � �� � �� � M� � ��

the desired result follows immediately from Theorem � by verifying the condi�
tions GC���GC��'LC���LC��� See van Pul ������ for details� �

Remark �� An interesting idea seems to set all the Ki equal to some )K except
for K� �� )K� With parameters N� �� �K� and )N �� � )K the failure intensity
becomes

�t���N�� )N� �� N��e
��t  )N�

n�t��X
i��

Kie
���t�Ti��

In this three parameter model� )N � the average number of faults introduced per
repair action� can be interpreted to account for dependencies between faults�
Whenever hidden faults become observable because of a fault repair� this can
be considered as the introduction of new faults� Finally note that for )N � �
the above model reduces to the well�known model of Goel�Okumoto�

Remark �� The PGIR model can be seen as a a special case within a general
class of regression models� In the previous section we assumed that the Ni were
Poisson distributed with a parameter depending on a single software measure�
Because the process of introducing new faults is so di�cult to understand� it
seems appropriate to use explanatory variables and apply regression analysis�
We therefore suggest the following class of models given by ������� and

Ni �d POIXi��
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Xi �� exp
�
��z

�
i  � � � �mz

m
i

�
�

where the zji � j � � � � �m� are the known realisations of m software measures
Zj like e�g� size� complexity� number�of�loops� at time Ti and where the
�j � j � � � � �m� denote the corresponding regression coe�cients we have to
estimate� Statistical methods are available to investigate whether certain ex�
planatory variables are redundant or not� and whether their in�uence is linear�
via another power� or say logarithmic�

�� A software reliability case�study
Nowadays software is used in all kinds of systems� that improve the quality
of life� A good example of this is the increasing use of computer systems in
medical imaging applications such as X�ray� MRI and ultrasound scanners� It
is obvious that the software involved should be highly reliable� In this case�
study we will investigate the failure behaviour of the application software for a
particular system development at Philips Medical Systems PMS� in Best The
Netherlands� during a particular phase of the testing process�
In Section ��� we brie�y describe how software development and testing is

organised at PMS and which test data were collected� In Section ��� we will
present most of the collected data� estimations and predictions are given of some
characteristics of the software� In Section ��� we sketch some of the practical
problems encountered� we give some recommendations and concluding remarks�

���� Software development and testing at PMS
PMS has started the development of products containing large software pack�
ages in the late seventies� Of these products about every year an updated
version is released� Each release supports new hardware� introduces new func�
tionality� but also includes internal structural improvements� From annual
project�start up to release one can roughly distinguish the following develop�
ment and test phases�

a� development phase � several months�

b� pi�test several weeks�� Preliminary installation test� This is a test to
get a basic part of the system operational and ready for a clinical tryout
on some probe sites�

c� development phase � several months�

d� alpha�test several weeks�� This is a software test performed by the
software developers� Hardware is not tested� but only used to test the
software�

e� SIT a few weeks�� System integration test� Software is run on the
de
nitive hardware with the aim of testing the complete system�

f� beta�test a few weeks�� During the beta�test the complete system is
tested by the software management group� which is responsible for re�
leased software products� by service and manufacturing in co�operation
with people from outside application specialists and system�operators of
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the instrumentation in hospitals�� This test serves mostly as acceptance
test� Hereafter the new product is released�

In practice there is some limited� controlled overlap between development� and
testing phases� Sometimes the alpha�test and the SIT are combined� From
mathematical point of view the pi�test seems to be very appropriate to predict
future software behaviour� In practice� however� immediately after the pi�test a
second large development phase takes place� In this case�study we will consider
therefore failure behaviour of the application software ASW� during alpha�test�
this is also the phase where most of the software failures are detected and cor�
rected� The application software ASW� is divide into several subsegments� See
Table �� An eloc stands for an executable line of code� Note that during devel�
opment a large proportion of the elocs is left unchanged� Before alpha�testing

subsegment ! modules ! kilo elocs
� ca� ��� ca� ��
� ca� ��� ca� ��
� ca� ��� ca� ��
� ca� ��� ca� ��
� ca� ��� ca� ��
� ca� �� ca� ��
� ca� �� ca� ��
� ca� �� ca� ��
� ca� �� ca� ��
�� ca� �� ca� ��

Table �� Number of modules and kilo elocs for some subsegments of ASW�

starts� the test�leader has made a thorough alpha�test�plan� This plan states
exactly which subsegment is tested by whom and when� Time is also reserved
for problem solving� The software developers are assumed to prepare the test
sessions for the testers by writing tests specs� Software bugs are reported via
an Internal� Problem Report I�PR� and gathered in a database� Moreover�
testers have to 
ll in a detailed log�form with information such as times of
start and end of test� description of test items� which of them were successful
and which not� and eventually other comments concerning mal� functioning of
hardware� Twice a week newly entered PR�s are inspected at a so called Soft�
ware Progress Meeting and assigned to the for this bug most capable problem
solver�
Both the pi�test and alpha�test under consideration lasted about �� weeks

�� working days�� During these test�phases for each occurring software bug
the following test data were collected in the PR database�

�� The problem report number that identi
es the fault�
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�� The occurrence date of the problem� Note that usually in software relia�
bility failure times are gathered� Here we are confronted with �grouped
data�� the total number of faults detected per day� We will discuss the
mathematical consequences of this in the next section�

�� The subsegment to which the PR is assigned�

�� The priority of the fault� routine RO�� urgent UR� or very urgent VU��
Stack�dumps are typically very urgent� minor display problems routine�
The priority of faults may be changed as deadlines come closer� The
priority 
eld is hence used to control SW engineers and therefore is not
a very objective measure�

Moreover� during the alpha�test via the log�forms record was kept of

�� The total test e	ort per day in testing hours�

We had in mind to collect also other test data such as the solving time of
a problem in man�hours�� the size of the change in the software in lines
of code� and an estimation of the occurrence probability of each fault� The
collection of these data caused either too much practical di�culties or caused
that the signi
cance of the data would be highly doubtful� due to inevitable
subjectivities� It should be mentioned that also in the data collected some
subjectivity or non�consistency� could not be excluded completely� Moreover�
the data of �� su	er from inaccuracy� due to late or incomplete submission of
the log�forms� We will return to this later� when discussing the results�

��� Statistical inference on the test data
Before concentrating ourselves completely on the data collected during the
pi� and alpha�test of the current release� we will give a global idea of the
failure history from project start� After about half a year of development a

rst test phase� the so�called pi�test� was performed for several weeks� After
another development period of several months� a second test phase� the alpha�
test began� The complete failure�history from project start is visualised in
Figure �a� The 
rst bug was found and reported near the end of development
phase �� The upper dotted line represents the total number of bugs found
versus time� the other three lines correspond to the number of bugs with priority
routine RO�� urgent UR� and very urgent VU�� Time is giving in working
days� that is weekends and holidays are not counted�
In Figure �b the distribution of the ASW�bugs over those subsegments is

shown� The 
gures above the bars represent number of faults per ���� elocs of
existing code� The relatively large number ���� for subsegment � in comparison
with other subsegments�� indicating a high failure intensity� may be explained
by the fact that subsegment � consists of almost ���� new software and only
little reuse of old software� See Grady 
 Caswell ������ for generally
accepted 
gures of statistical prediction models on productivity and reliability�
In Figure � the failure behaviour of individual subsegments during alpha

test is compared� The failure rate for most of the subsegments seems to remain
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constant during alpha�test� This can be explained by the fact that during
the alpha�test the functionality of the system is tested in a very systematic
way� part by part� Hence every now and then a new subsegment is inspected�
Therefore the number of detected failures will tend to grow linearly in time�
The three most critical subsegments �� � and �� have almost identical failure
behaviour� The same can be said about the four smallest subsegments� �� �� �
and ��� The three remaining subsegments� �� � and �� subsegments of about
same size and number of bugs found� show however di	erent failure histories�
The failure intensity of subsegment � seems to be constant as seems the case for
most of the subsegments in this project�� the failure intensity of subsegment � is
nicely decreasing� whereas the failure intensity of subsegment � is still growing�
This suggests� that at least for this subsegment� the alpha test was too short�
Indeed� in sequel tests SIT and beta� relatively large numbers of component
� faults were observed�
We will compare the JM model and the L model� mentioned earlier� We

will try to 
t both models to the PMS data of the alpha�test� As during
alpha�test also testing�hours were registered we will investigate the following
two approaches�

i� Assume the test intensity is constant time in working days��

ii� Estimate the test intensity by the number of testing hours�

Estimation of the model parameters is �as usually� done by the method of
Maximum Likelihood Estimation MLE�� For practical computations of the
likelihood functions of the two models� we refer to van Pul ����a	 ���b��
Parameter estimations and standard deviations are given in Table �� From
Table � we see that when trying to 
t the L model� the parameter epsilon turns
out to be zero� indicating that the JM model is the best model within the larger
Littlewood class� The di	erences in the estimates of N and � between Table �a
and �b come from instabilities of the numerical procedures involved and their
stop�criteria� Contour curves of the likelihood function in the neighbourhood
of the maximum take the form of extremely �at ellipses� The estimation of the
failure intensity �� a software characteristic which seems more relevant than
just the total number of bugs N � is more stable� Covariances for the model
parameters can be easily derived� See again van Pul ����b�� Although we
were suspicious about the accuracy of the test�intensity data� it turns out out
that using approach ii� reduces both estimate of N and its variance� Standard
deviations for %N of the pi�test are very reasonable� those of the alpha�test
quite large� showing again that the alpha�test was not the most appropriate
test phase to apply software reliability theory�
In Figure � we give estimates and ��� con
dence bands of the mean value

function for the alpha�test data� using approach i�� Further research would
be needed to develop a prediction band for the future course of the stochastic
process n itself� The 
gure suggests that another test e	ort of �� or ��� working
days would yield about ��� or ��� new bugs� respectively� In Figure � also the
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Figure �� ASW�failures since project start� a� Evolution in time b� Distri�
bution over the ASW�subsegments�

total number of bugs detected at the end of SIT and beta�test are indicated�
respectively ���� and ����� We see that these added points are not far from
the predicted values�

���� Problems recommendations and concluding remarks
During the course of these case�studies we encountered several practical prob�
lems� related to collecting data in the real world of software development� These
problems� which are likely to occur in practice with any software development
group� in one way or the other obstructed a direct application of the devel�
oped software reliability theory� In this section we will mention the 
ve most
eye�catching ones� discuss the actions taken to reduce the negative e	ects they
have on our software reliability results� and 
nally give recommendations how
in our opinion the test process should be adapted in order that these problems
will not appear at all in future�

�� The test process is hardly or not automated� In software reliability theory
we more or less take for granted that the test process is fully automated�
which means that test inputs are generated� software bugs detected and
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Figure � ASW�failures during alpha test� Evolution in time for the di	erent
ASW subsegments�

all kinds of test data stored automatically� In practice� however� only a
few software development companies have realised this kind of testing�
more often conventional testing methods are used� In many software
applications testing does not lend itself to automation� Based on what
a tester perceives on a screen� he will push certain buttons and hence
follow a certain test�path� Automatisation is here di�cult to establish�
There are many consequences of this� First of all� exact failure times
of the error counting process will in general not be known but only the
number of bugs detected per day grouped data�� This loss of information
will lead to less accurate parameter estimations� Secondly� the stream of
test data will be a*icted with larger inaccuracies than otherwise would
be the case� Figures for test intensity or test e	ort per day will� if not
registered in CPU time automatically� be liable to large subjectivities
of individual testers� This will occur for the data concerning priority
and subsegment of the faults too� not necessarily due to incapability or
unwillingness of testers� but more often due to vagueness or ambiguities
in de
nitions Is a bug routine� urgent or very urgent� etcetera�� The best
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pi RO UR VU TOTAL
� �� �� � ��
� �� �� � ��
� �� � � ��
� �� �� � ��
� �� � � ��
� �� � � ��
� �� � � ��
� �� �� � ���
� � � � �
�� �� �� � ��

TOTAL ��� ��� �� ���
alpha RO UR VU TOTAL
� �� �� � ���
� �� �� � ���
� �� �� � ��
� �� �� � ��
� �� �� � ��
� � � � �
� � � � ��
� �� �� � ���
� �� � � ��
�� �� � � ��

TOTAL ��� ��� �� ���

Table � Classi
cation of ASW�failures during pi�test and alpha�test�

way to overcome all this simply is to automate the whole test process�
If this is not possible� one should pay a lot of attention to the data
collection� Make clear agreements with the testers and avoid ambiguities
in de
nitions� Finally� motivate the testing team to co�operate and make
them aware of the fact that successful application of software reliability
theory fully depends on the accuracy of the data�

�� Testing is not random at all� Although this problem is related to the
problem of automation random testing cannot be performed without
some automation of the test process�� it is not a direct consequence of
it and important enough to mention it here as a second problem� As
described in Section � we assume in software reliability theory that in
some sense software testing is a random process� It is sometimes wrongly
understood� that for random testing all inputs should have equal prob�
abilities of selection uniform distribution�� This is not true� We speak
of random testing� if inputs are selected in a non�deterministic way with
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JM pi alpha i� alpha ii�
%N ���  �� �������� �������
%� ������������ ������������ ������������
%��� ���� ����� ����

L pi alpha i� alpha ii�
%N ����� ������� �������
%� ������������ ������������ ������������
%� � � �
%��� ���� ����� ����

Table �� Parameter estimations and standard deviations for the JM model
and the L model�

occurrence probabilities that coincide with the input distribution in the
operational pro
le� Random testing takes place in practice only rarely�
Besides an healthy aversion of management against any time�absorbing
and ine�cient looking methods� random testing can be di�cult to put
into practice� because the process cannot be automated problem �� or
because no information about the input distribution in the operational
pro
le is available� If one is testing by verifying the functionality of di	er�
ent subsegments one by one which means that systematically from time
to time new parts of the software are inspected� or if one is only using
extraordinary inputs with small occurrence probabilities�� software reli�
ability theory cannot be expected to give reasonable answers� During the
alpha test at PMS this was the case� Therefore the alpha�test is not the
most suitable test�period for applying software theory� More appropriate
are the pi�test and perhaps the beta�test� To make software reliability
theory applicable we strongly recommend to spend at least a part of the
available time and personnel to random testing� As input distribution one
could ultimately choose the uniform distribution if all other information
about the use in the 
eld fails� If no proper random testing is possible
but the number of tests is huge� one could decide to perform the speci
ed
tests in a random order pseudo random testing�� This will overcome a
part of the problem� One should have in mind that if the tested inputs
are not representative of the operational pro
le� translating the software
reliability test results to practice can be very di�cult�

	�
 Hardware and software are closely related� In principle� we are inves�
tigating the behaviour of the software� Sometimes� however� only after
closer examination of a system failure it is found out that it was not
caused by a bug in the software but by one in the hardware� Hardware

���



Figure �� Estimates and ��� con
dence bands for the mean value function
of the Jelinski�Moranda and Littlewood models for the alpha�test data using
approach i��

used during testing is often not exactly identical to the hardware used
in the 
eld� We do not want to take these hardware bugs into account�
Another consequence of this strong relationship between software and
hardware is that software test plans sometimes have to be changed be�
cause of hardware problems� This may lead to a decrease in test intensity
or better test e�ciency�� which is hard to measure precisely� It can also
lead to a con�ict with respect to the randomness of testing� Certain parts
of the software are temporarily not inspected because of bugs in the hard�
ware that interacts with this software� One should hence count only real
software bugs and keep good track of when hardware is misbehaving� Try
to quantify the test intensity in testing hours per day� as accurate as
possible�

	�
 Minor faults show an occurrence behaviour which is completely di�erent
from that of major ones� The number of minor aesthetical� faults
detected tends to grow linearly in time� as occurrence of those kind of
faults heavily depends on the available time to analyse and solve them�

���



That is� the intensity of minor faults will be strongly in�uenced by the
intensity of major faults� but not vice versa� Applying software reliability
theory will therefore only make sense for major problems�

	�
 Available time computer facilities and personnel are limited� Finally�
in practical applications everything turns on money� deadlines have to
be kept� budgets have to be observed� This premise induces software
managers to take actions and decisions which are in contradiction with
the original software reliability theory assumptions� Such decisions are�
i� due to delays and deadlines� development and testing of parts of the
software takes place simultaneously� ii� alpha�test starts with too many
bugs in the software� iii� priorities of bugs are changed to speed up their
solution� The second point is illustrated by the large number of bugs
detected during alpha�test at PMS� This causes an enormous overhead
i�e� writing problem reports� updating database� weekly evaluation of
new bugs� writing problem report answers� etcetera�� The number of
bugs found each day is therefore limited by the available manpower for
testing and not by the quality of the software� Hence� in our opinion
thorough testing takes place too late in the development phase to let the
alpha�test be appropriate for application of the software reliability theory�

We have only mentioned 
ve of the main problems to illustrate the complica�
tions arising when applying software reliability theory in practical situations�
As stated earlier these problems are not typical for the software development
at Philips� but are due to the complex process of software development itself�
and to the many human factors involved�
Finally� we summarise our conclusions� The software reliability models and

methods investigated so far can be applied to the data available at PMS� but
the results are not very promising� The small number of 
eld problems indi�
cate that the released software is highly reliable� Because of the nature of the
testing process and the quality of the test�data� it is not possible at this stage
to use the results to provide the customer with strong reliability guarantees�
The test process environment should be adapted see the recommendations in
the beginning of this section� in order to apply software reliability theory with
more success� Of course there are also other more simple� static� approaches to
software reliability� We think of static models� Humphrey�s regression method
�Humphrey 
 Polson ������� etcetera� Of course� also software reliabil�
ity models and methods should be further improved� We are� as Grady 

Caswell ������ strongly convinced that a thorough quantitative analysis of
the software and of the software test process will lead to an increase of both
e�ciency and quality�
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