16,242 research outputs found

    A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution

    Get PDF
    Soil fabric and its evolving nature underpin the non-coaxial, anisotropic mechanical behaviour of sand, which has not been adequately recognized by past studies on constitutive modelling. A novel three-dimensional constitutive model is proposed to describe the non-coaxial behaviour of sand within the framework of anisotropic critical state theory. The model features a plastic potential explicitly expressed in terms of a fabric tensor reflecting the anisotropy of soil structure and an evolution law for it. Under monotonic loading, the fabric evolution law characterizes a general trend of the fabric change to gradually become co-directional with the loading direction before the soil reaches the critical state. When sand is subjected to rotation of principal stress directions, the fabric evolves with the plastic strain increment which is further dependent on the current stress state, the current fabric and the direction of stress increment. During its evolution, the fabric rotates towards the loading direction and reaches a final degree of anisotropy proportional to a normalized stress ratio. With the incorporation of fabric and fabric evolution, the non-coaxial sand behaviour can be easily captured, and the model response converges to be coaxial at the critical state when the stress and fabric are co-directional. The model has been used to simulate the mechanical behaviour of sand subjected to either monotonic loading or continuous rotation of principal stress directions. The model predictions agree well with test data

    Plastic anisotropy of soft reconstituted clays

    Get PDF
    The aim of the paper is to extend the experimental validation of the S-CLAY1 model, which is a recently proposed elastoplastic constitutive model that accounts for initial and plastic strain-induced anisotropy. Drained stress path controlled tests were performed on reconstituted samples of four Finnish clays to study the effects of anisotropy in the absence of the complexities of structure present in natural undisturbed clays. Each test involved several loading, unloading, and reloading stages with different values of stress ratio and, hence, induced noticeable changes in the fabric anisotropy. Comparisons between test results and model predictions with the S-CLAY1 model and the modified Cam clay model demonstrate that despite its simplicity, the S-CLAY1 model can provide excellent predictions of the behaviour of unstructured soil

    A time-dependent anisotropic model for argillaceous rocks: application to an underground excavation in Callovo-Oxfordian claystone

    Get PDF
    The paper presents a constitutive model for argillaceous rocks, developed within the framework of elastoplasticity, that includes a number of features that are relevant for a satisfactory description of their hydromechanical behaviour: anisotropy of strength and stiffness, behaviour nonlinearity and occurrence of plastic strains prior to peak strength, significant softening after peak, time-dependent creep deformations and permeability increase due to damage. Both saturated and unsaturated conditions are envisaged. The constitutive model is then applied to the simulation of triaxial and creep tests on Callovo-Oxfordian (COx) claystone. Although the main objective has been the simulation of the COx claystone behaviour, the model can be readily used for other argillaceous materials. The constitutive model developed is then applied, via a suitable coupled hydromechanical formulation, to the analysis of the excavation of a drift in the Meuse/Haute-Marne Underground Research Laboratory. The pattern of observed pore water pressures and displacements, as well as the shape and extent of the damaged zone, are generally satisfactorily reproduced. The relevance and importance of rock anisotropy and of the development of a damaged zone around the excavations are clearly demonstrated.Peer ReviewedPostprint (author's final draft

    Deep ductile shear localization facilitates near-orthogonal strike-slip faulting in a thin brittle lithosphere

    Get PDF
    Some active fault systems comprise near-orthogonal conjugate strike-slip faults, as highlighted by the 2019 Ridgecrest and the 2012 Indian Ocean earthquake sequences. In conventional failure theory, orthogonal faulting requires a pressure-insensitive rock strength, which is unlikely in the brittle lithosphere. Here, we conduct 3D numerical simulations to test the hypothesis that near-orthogonal faults can form by inheriting the geometry of deep ductile shear bands. Shear bands nucleated in the deep ductile layer, a pressure-insensitive material, form at 45 degree from the maximum principal stress. As they grow upwards into the brittle layer, they progressively rotate towards the preferred brittle faulting angle, ~30 degree, forming helical shaped faults. If the brittle layer is sufficiently thin, the rotation is incomplete and the near-orthogonal geometry is preserved at the surface. The preservation is further facilitated by a lower confining pressure in the shallow portion of the brittle layer. For this inheritance to be effective, a thick ductile fault root beneath the brittle layer is necessary. The model offers a possible explanation for orthogonal faulting in Ridgecrest, Salton Trough, and Wharton basin. Conversely, faults nucleated within the brittle layer form at the optimal angle for brittle faulting and can cut deep into the ductile layer before rotating to 45 degree. Our results thus reveal the significant interactions between the structure of faults in the brittle upper lithosphere and their deep ductile roots

    Effects of finite strains in fully coupled 3D geomechanical simulations

    Get PDF
    Numerical modeling of geomechanical phenomena and geo-engineering problems often involves complex issues related to several variables and corresponding coupling effects. Under certain circumstances, both soil and rock may experience a nonlinear material response caused by, for example, plastic, viscous, or damage behavior or even a nonlinear geometric response due to large deformations or displacements of the solid. Furthermore, the presence of one or more fluids (water, oil, gas, etc.) within the skeleton must be taken into account when evaluating the interaction between the different phases of the continuum body. A multiphase three-dimensional (3D) coupled model of finite strains, suitable for dealing with solid-displacement and fluid-diffusion problems, is described for assumed elastoplastic behavior of the solid phase. Particularly, a 3D mixed finite element was implemented to fulfill stability requirements of the adopted formulation, and a permeability tensor dependent on deformation is introduced. A consolidation scenario induced by silo filling was investigated, and the effects of the adoption of finite strains are discusse

    Experimental investigation on the deformation characteristics of granular materials under drained rotational shear

    Get PDF
    Rotational shear is the type of loading path where samples are subjected to cyclic rotation of principal stress directions while the magnitudes of principal stresses are maintained constant. This paper presents results from an experimental investigation on the drained deformation behaviour of saturated sand in rotational shear conducted in a hollow cylinder apparatus. Two types of granular materials, Leighton Buzzard sand and glass beads are tested. A range of influential factors are investigated including the material density, the deviatoric stress level, and the intermediate principal stress. It is observed that the volumetric strain during rotational shear is mainly contractive and most of strains are generated during the first 20 cycles. The mechanical behaviour of sand under rotational shear is generally non-coaxial, i.e., there is no coincidence between the principal axes of stress and incremental strain, and the variation of the non-coaxiality shows a periodic trend during the tests. The stress ratio has a significant effect on soil response in rotational shear. The larger the stress ratio, the more contractive behaviour and the lower degree of non-coaxiality are induced. The test also demonstrates that the effect of the intermediate principal stress, material density and particle shape on the results is pronounced

    Quasistatic rheology and the origins of strain

    Full text link
    Features of rheological laws applied to solid-like granular materials are recalled and confronted to microscopic approaches via discrete numerical simulations. We give examples of model systems with very similar equilibrium stress transport properties -- the much-studied force chains and force distribution -- but qualitatively different strain responses to stress increments. Results on the stability of elastoplastic contact networks lead to the definition of two different rheological regimes, according to whether a macroscopic fragility property (propensity to rearrange under arbitrary small stress increments in the thermodynamic limit) applies. Possible consequences are discussed.Comment: Published in special issue of "Comptes-Rendus Physique" on granular material

    The anisotropy of granular materials

    Get PDF
    The effect of the anisotropy on the elastoplastic response of two dimensional packed samples of polygons is investigated here, using molecular dynamics simulation. We show a correlation between fabric coefficients, characterizing the anisotropy of the granular skeleton, and the anisotropy of the elastic response. We also study the anisotropy induced by shearing on the subnetwork of the sliding contacts. This anisotropy provides an explanation to some features of the plastic deformation of granular media.Comment: Submitted to PR

    A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding

    Get PDF
    This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ2 − σ3)/(σ1 − σ3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane
    • 

    corecore