Abstract

Features of rheological laws applied to solid-like granular materials are recalled and confronted to microscopic approaches via discrete numerical simulations. We give examples of model systems with very similar equilibrium stress transport properties -- the much-studied force chains and force distribution -- but qualitatively different strain responses to stress increments. Results on the stability of elastoplastic contact networks lead to the definition of two different rheological regimes, according to whether a macroscopic fragility property (propensity to rearrange under arbitrary small stress increments in the thermodynamic limit) applies. Possible consequences are discussed.Comment: Published in special issue of "Comptes-Rendus Physique" on granular material

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019