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ABSTRACT9

Numerical modelling of geomechanical phenomena and geo–engineering problems often in-10

volves complex issues related to several variables and corresponding coupling effects. Under11

certain circumstances, both soil and rock may experience a non-linear material response, due to12

e.g. plastic, viscous or damage behavior, and even a non-linear geometric one, due to large defor-13

mations/displacements of the solid. Furthermore, the presence of one or more fluids (water, oil,14

gas, etc.) within the skeleton must be accounted for when evaluating the interaction between the15

different phases of the continuum body. A multiphase three-dimensional coupled model in finite16

strains, suitable for dealing with solid-displacements/fluid-diffusion problems, is here described17

and an elasto-plastic behavior for the solid phase is assumed. Particularly, a 3Dmixed finite element18

is implemented to fulfill stability requirements of the adopted formulation, as well as a permeability19

tensor dependent on deformation is introduced. A consolidation scenario induced by filling of silos20

is investigated and the effects of the adoption of finite strains discussed.21

22

Keywords: Porous media, multiphase problems, finite strains, elasto-plasticity, Finite Element23

Method.24
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INTRODUCTION25

Geomaterials such as soil, rock or concrete, are basic materials in the civil engineering field,26

with many different applications. The description of their mechanical behavior is a challenging27

task, requiring sophisticated numerical analyses. Particularly, such materials must be considered28

as multiphase porous media, composed by a solid skeleton and one (or even more) fluid within29

the pores. Hence, geomechanical problems are characterized by solid-fluid interaction, due to the30

presence of overlapping phases, and correspondingly a coupled analysis is required (Lewis and31

Schrefler 1998). Further, geomaterials can also experience material non-linearities of the solid32

skeleton, e.g. due to plasticity, creep or damage. Even in the elastic regime, the mechanical33

behavior of geomaterials is often non-linear.34

Depending on the phenomenon to model, it may be necessary to take into account finite deforma-35

tions, so introducing a source of geometric non-linearity in the formulation of the problem (Wang36

et al. 2009). Examples of geomechanical problems where finite deformations are involved are the37

inception of slopes (Lee et al. 2012; Zhu and Randolph 2009; Mohammadi and Taiebat 2014), the38

consolidation of heavy structures over soft soils (Bienen et al. 2015; Andresen et al. 2010), the39

excavation of tunnels (Meguid et al. 2002) and wellbores (Spiezia et al. 2016), the consolidation40

settlements around pile foundations (Osman and Randolph 2011; Zhang et al. 2015) and the con-41

solidation of mine waste tailings (Caldwell et al. 1984), just to recall a few.42

In the last two decades, theoretical and computational research has provided wide support for the43

solution of this kind of problems, where large deformations are encountered. Although several44

innovative methods have been proposed in literature, such as the Smoothed Particle Hydrodinamics45

(SPH) (Wang et al. 2016), the Material Point Method (MPM) (Abe et al. 2013), the Particle Finite46

Element Method (PFEM) (Carbonell et al. 2009) and the Meshless Local Petrov-Galerkin (MLPG)47

(Atluri and Zhu 1998), the Finite Element Method (FEM) is still probably the most widely used48

tool. It allows to solve the set of differential equations arising from the imposition of the balance49

equations to a continuum multiphase body, computing displacements, stress and strain fields, pres-50

sures etc. for the solid-fluid mixture. By using a FEM approach (Hughes 2012; Wriggers 2008),51
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finite strains can be rigorously taken into account as an extension of the infinitesimal framework,52

adopting an adequate formulation for both the balance laws and the constitutive model.53

Even though the theory for coupled poromechanics in finite strains, solved within the framework of54

FEM, has been proposed in the late nineties by the pioneer works of Simo et al. (Simo andMeschke55

1993), Borja et al. (Borja and Alarcón 1995; Borja et al. 1998) and Armero et al. (Armero 1999),56

this subject presents still some aspects that are worth being studied further.57

In fact, even if in some recent works the effects of assuming finite strains when simulating geotech-58

nical problems have been investigated (Nazem et al. 2006; Kardani et al. 2013; Zhang et al. 2018),59

only a few take into account the coupling between the different phases (Huang et al. 2014; Singh60

et al. 2016; Qi et al. 2017), which is an aspect of relevance when dealing with porous materials.61

Hence in this work a coupled hygro–mechanical model in finite strains (Borja 2013) based on the62

modified mixture theory (Borja et al. 1998) is presented, following the lines of (Spiezia et al. 2016)63

for saturated porous media.64

Particularly, the approach takes advantage of a constitutive model (Borja and Tamagnini 1998)65

which has demostrated to be particularly suitable in predicting different features of the granular66

materials as pressure sensitivity, hardening response with large plastic volumetric compaction,67

softening response with plastic dilation and coupled volumetric deviatoric plastic deformations.68

The model has been upgraded via the introduction of a permeability tensor variable with the de-69

formation of the solid skeleton, as well as of a specific type of hexahedral elements, developed to70

guarantee solvability and stability of mixed formulations (Brezzi and Bathe 1990). The paper is71

organized as follows.72

First, the balance equations, together with the constitutive laws for both the fluid and the solid73

phase, are briefly recalled (Borja and Alarcón 1995; Borja et al. 1998; Song and Borja 2014).74

Section 2 presents the numerical implementation of the developed equations, describing in detail75

the formulation of the three-dimensional code and its novel features.76

Section 3 presents the validation of the code, by comparing the results with the benchmark cases77

described in (Borja et al. 1998) and with the experimental results reported in (Callari et al. 1998;78
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Al-Tabbaa 1987).79

Section 4 presents the numerical simulation of a consolidation process due to the filling of two80

tall structures over a fully saturated domain, evidencing the code capabilities in simulating soil–81

structure interaction.82

Notations and symbols used throughout the paper are as follows: bold-face letters denote matrices83

and vectors; the symbol ‘·’ denotes an inner product of two vectors (e.g. a · b = aibi) or a single84

contraction of adjacent indices of two tensors (e.g. c · d = ci j d j k); the symbol ‘:’ denotes an85

inner product of two second-order tensors (e.g. c : d = ci j di j), or a double contraction of adjacent86

indices of tensor of rank two and higher (e.g. C : ε e = Ci j klε
e
kl); the symbol ‘⊗’ denotes a87

juxtaposition, e.g. (a ⊗ b)i j = aib j . For any symmetric second-order tensor α and β we have88

(α ⊗ β)i j kl = αi j βkl , (α 	 β)i j kl = αil β j k and (α ⊕ β)i j kl = α jl βik . A positive stress is also89

assumed for tension according to the solid mechanics convention.90

THEORETICAL FRAMEWORK91

This section briefly recalls the coupled balance laws for a fully saturated porous media (Borja92

and Alarcón 1995), together with the constitutive model for both solid and fluid phase.93

Balance laws94

In agrement with the mixture theory and by assuming incompressibility of the two phases, the95

balance of linear momentum and the balance of mass for a fully saturated porous medium in the96

quasi static regime are97

ρ g + divσ̃ = 0 ; (1)

div v + div
[
ϕ(vF− v)

]
= 0 , (2)

where ρ0 = Jρ is the reference mass density, g the vector of gravity acceleration, σ̃ the total Cauchy98

stress tensor, related to the total Kirchhoff stress tensor τ̃ and the total first Piola-Kirchhoff tensor99
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P̃ (Marsden and Hughes 1994) via the following expression100

P̃ = τ̃ ·F−T = Jσ̃ ·F−T . (3)101

The term J is the Jacobian defined from the deformation gradient F of the motion φ102

J = det(F) ; F =
∂φ

∂X
; φ = X+u . (4)103

In Eq. (2), v is the vector the solid phase velocity vector, vF is the fluid phase intrinsic velocity and104

ϕ is the porosity of the soil skeleton defined through the Jabocobian as105

ϕ =
JdV − (1 − ϕ0)dV

JdV
= 1 −

(1 − ϕ0)
J

. (5)106

The term ϕ(vF− v) represents the Darcy velocity ṽ, defined as the relative volumetric rate of fluid107

per unit area through the deforming soil mass.108

Constitutive models109

Solid phase110

For the description of the elasto-plastic mechanical behavior of the solid we employ the multi-111

plicative decomposition of the deformation gradient and the product formula algorithm described112

by Simo (Simo 1992)113

F =
∂φ

∂xu ·
∂xu

∂X
≡ Fe · Fp ; ∀X ∈ B ; t ≥ 0 , (6)114

where xu is the intermediate unloaded configuration. From the second law of thermodynamics we115

can define the following set of constitutive relations describing the elastoplastic process116

τ = 2
∂Ψ

∂be · b
e; −

1
2
Lvb

e = γ̇
∂F

∂τ
· be; ξ̇ = γ̇

∂F

∂χ
, (7)117
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where Ψ = Ψ(X, be, ξ) is the stored energy function, be = Fe · FeT the left elastic Cauchy-Green118

strain tensor, ξ a plastic variable and χ = ∂Ψ/∂ξ the hardening response of the solid matrix. The119

quantity Lvb
e is the Lie derivative of be, while F is the yield function and γ̇ is a non-negative120

plastic multiplier satisfying the Kuhn-Tucker conditions: γ̇ ≥ 0, F (τ, χ) ≤ 0 and γ̇F (τ, χ) = 0.121

The elastic left Cauchy-Green tensor be and the Kirchhoff effective stress tensor τ can be122

expressed through the spectral decomposition123

be =

3∑
A=1

(λe
A)2m(A); τ =

3∑
A=1

βAm
(A) , m(A) = n(A) ⊗ n(A) , (8)124

where λe
A are the the elastic principal stretches, βA the principal Kirchhoff effective stresses and125

n(A) the principal direction for both strains and stresses thanks to isotropy assumption. Together126

with frame indifference assumption, the free energy can be written as a function of the elastic127

principal strains128

Ψ(X, be) = Ψ(X, εe
1, ε

e
2, ε

e
3); εe

A = ln(λe
A); A = 1, 2, 3 , (9)129

where εe
A are the principal elastic logarithmic strains, and from the first relation of Eq. (7) we obtain130

the following relation131

βA =
∂Ψ

∂εe
A

; A = 1, 2, 3 . (10)132

In the present work, we adopt the following stored energy function (Borja and Tamagnini 1998)133

describing the elastic response of the soil in terms of volumetric εe
v and deviatoric εe

s elastic strain134

invariants135

Ψ(εe
v, ε

e
s) = Ψ̃(εe

v) +
3
2
µeεe

s
2, (11)136

137

Ψ̃(εe
v) = −P0 k̂ expΩ ; Ω = −

εe
v − ε

e
v0

k̂
; µe = µ0 +

α

k̂
Ψ̃ , (12)138

where Ψ̃ is the contribution given by the isotropic part, k̂ the elastic compressibility index, µe the139

elastic shear modulus, µ0 a constant term, α a parameter coupling shear and volumetric parts and140
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finally P0 the mean reference normal Kirchhoff stress invariant. The yield function is given by141

F̃ (P,Q, Pc) =
Q2

M2 + P(P − Pc) = 0 , (13)142

where P and Q are the effective Kirchhoff stress invariants, Pc the Kirchhoff preconsolidation143

pressure defining the size of the ellipsoid and M the slope of the critical state line, as shown in144

Fig. 1.145

The model assumes a bi-logarithmic hardening law, as shown in Fig. 2, described by the146

following equation147

ln
(
v

v0

)
= −λ̂ln

( Pc

Pc0

)
, (14)148

where λ̂ is the virgin compression index, v = V/VS = 1 + e the specific volume of the soil and v0 a149

reference value.150

The hardening law governing the expansion/contraction of the ellipse through the parameter Pc is151

given by152

Ṗc

Pc
= −Θε̇

p
v, (15)153

with Θ = 1/(λ̂ − κ̂).154

Fluid phase155

For the fluid phase, assuming laminar flow, the model adopts the generalized Darcy’s law156

ṽ = −k · grad Π, (16)157

where ṽ = ϕ(vF− v) is the Darcy velocity and Π is the total fluid potential defined as158

Π = Πp + Πe =
p

gρF

− Πe, (17)159

where Πp is the pressure potential with p the the Cauchy pore pressure and ρF the mass density160

of the fluid; Πe is the elevation potential. Finally, k is the second order permeability tensor,161
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which is assumed to be dependent on the deformation of the solid skeleton through the Jacobian J,162

introducing therefore an additional source of non-linearity with respect to the original formulation163

proposed in (Borja et al. 1998).164

According to the Kozeny-Carman equation (Song and Borja 2014), the permeability reads165

k (J) =
ρFg

µ

D2

180

[
J − (1 − ϕ0)

]3

J (1 − ϕ0)2 1, (18)166

where D is the effective diameter of the grains, µ the dynamic viscosity of water, ϕ0 the initial167

porosity of the solid and 1 the second order identity tensor.168

NUMERICAL IMPLEMENTATION169

Variational equations170

For developing the variational counterpart of Eqs. (1) and (2), following the approach proposed171

in (Borja and Alarcón 1995), we consider a fully saturated solid domain B ∈ Rnsd and define the172

motion of the solid phase φ, its first variation η, the Cauchy pore pressure p and its first variation173

ψ. The variational equation of the linear momentum G reads174

G(φ, p, η) =
∫

B

(
grad η : τ̃ − ρ0η ·g

)
dV −

∫
∂Bt

η · t dA = 0 , (19)175

and the variational equation of the mass balance equation H reads176

H (φ, p, ψ) =
∫
φt(B)

(
ψdiv v − grad ψ · ṽ

)
dv −

∫
∂φht (B)

ψq da = 0 . (20)177

These field equations G and H are expressed in the Eulerian form for developing an updated178

Lagrangian formulation, allowing for obtaining the solution of the non-linear coupled problem.179

We rewrite the equations in the following way180

G(φ, p, η) =
∫

B

(
grad η : τ − Jp divη − J ρη ·g

)
dV −

∫
∂Bt

η · t dA ; (21)181
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182

H (φ, p, ψ) =
∫

B
ψ J̇dV +

∫
B
grad ψ ·

Jk
gρF

·
(
grad p − ρFg

)
dV −

∫
∂Bh

ψQ dA . (22)183

In the first equation, the total Kirchhoff stress tensor has been decomposed into the effective part184

τ and the pore pressure part Jp, through the classical Terzaghi’s formula. The second equation185

is obtained from the definition of the Darcy’s velocity, recalling that the time derivative of the186

Jacobian J is equal to J̇ = J div v (Marsden and Hughes 1994). Furthermore this integral is187

formulated with respect to the initial configuration B, and hence dv = JdV has been substituted.188

t is the prescribed stress vector on the boundary ∂Bt and Q is the prescribed rate of flux across189

the boundary ∂Bh, assumed as positive when the fluid goes into the solid matrix. The condition190

q = Q = 0 means that no fluid flows through the boundary. The presence of J̇ inside Eq. (22)191

requires the semi-discretization of the second variational equation192

H∆t (φ, θ, ψ) =
∫

B

ψ

∆t
(
Jn+1 − Jn

)
dV

−

∫
B

[
β(grad ψ · J ṽ)n+1 + (1 − β)(grad ψ · J ṽ)n

]
dV∫

∂B
ψ
[
βQn+1 + (1 − β)Qn

]
dA , (23)

where∆t= tn+1−tn and β is the trapezoidal integration parameter defining the three time integration193

schemes: for β = 0 the Explicit Eulero, for β = 1/2 the Crank-Nicolson and for β = 1 the Implicit194

Eulero scheme, respectively.195

The first variation of the variational equations G(φ, θ, η) and H (φ, θ, ψ), necessary for the solution196

of the problem through a Newton-Raphson scheme, is reported in Appendix A. By comparing the197

equations with those proposed in (Borja et al. 1998), a new contribution arises (see Eq. (45)), due198

to the permeability variation of the porous medium. The variation of the second order permeability199

tensor k with respect to the Jacobian of the gradient tensor J gives200

k′(J) =
∂k

∂J
=
ρFg

µ

D2

180
3
[
J − (1 − ϕ0)

]2 J −
[
J − (1 − ϕ0)

]3

J2(1 − ϕ0)2 1 . (24)201
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Numerical integration202

A three-dimensional mixed finite element has been implemented within the research code,203

which combines a three-quadratic 20–node displacement interpolation with a three-linear 8–node204

pore pressure interpolation (Fig. 3), so to fulfill the necessary stability requirements, satisfy the205

ellipticity requirement and the Ladyzhenskaya-Babuška-Brezzi (LBB) condition (Brezzi and Bathe206

1990; Arnold 1990). The adopted element belongs to the Taylor-Hood family (Arnold et al. 1984;207

Guzmán and Sánchez 2015), in which the displacement interpolation is one-order higher than the208

pressure one. By assuming a quadratic order function for the displacement field, the continuity for209

the stress/strain field is also guaranteed.210

Correspondingly, N φ(x) and N p(x) indicate the shape function for the solid phase φ and the pore211

pressure field p. The displacements field uh(x) ∈ Rnsd , with nsd = 3 becomes212

uh(x) = N φ(x)
{
d + dg

}
, (25)213

where d ∈ RNQ and dg are the unknownnodal displacements and the prescribed nodal displacements214

vector, respectively, NQ=20. In the same way, the pore pressure field ph(x) ∈ R1 is expressed as215

ph(x) = N p(x)
{
p + pr

}
, (26)216

where p ∈ RNP is the unknown nodal pore pressures vector while pr is the prescribed nodal pore217

pressures vector, with N P=8. The weight functions η and ψ may be written as218

ηh(x) = N φ(x)η̃; ψh(x) = N p(x)ψ̃ , (27)219

where η̃ ∈ RNQ and ψ̃ ∈ RNP. The discretized form of Eq. (21) becomes220

Gh(φ, p, η̃) = η̃T
[
N S (d) + N F (p) − FEXT

]
= 0 , (28)221
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where:222

N S (d) =
∫

B
BT τ̂dV ; (29a)

N F (p) = −
∫

B
bT (N pp + N

p
r pr )JdV ; (29b)

FEXT =

∫
B
ρ0N

φTGdV +
∫
∂B

N φT tdA . (29c)

The quantity τ̂ = {τ11, τ22, τ33, τ12, τ23, τ13, }
T is the vector containing the components of the sym-223

metric Kirchhoff effective stress and ρ0 = J ρ is the reference mass density of the soil water-224

mixture. B=
[
B1, B2, . . . , BNQ

]
is the classical strain-displacement matrix in spatial form, with BA225

(A = 1, . . . , NQ)226

BA =



Nφ
A,1 0 0

0 Nφ
A,2 0

0 0 Nφ
A,3

Nφ
A,2 Nφ

A,1 0

0 Nφ
A,3 Nφ

A,2

Nφ
A,3 0 Nφ

A,1



.227

Matrix b is given by the product b=mTB, where {m} = {1, 1, 1, 0, 0, 0}T for nsd =3, and G ≡ g is228

the gravity acceleration vector.229

Time integration of the mass balance equation (Eq. (23)) leads to230

∆t Hh
∆t (φ, p, ψ̃) = −ψ̃T

[
J (d) + ∆tΦ(p) + ∆t HEXT

]
= 0 , (30)231

with232
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J (d) = −
∫

B
N pT (Jn+1 − Jn

)
dV ; (31a)

Φ(p) = β

∫
B
ET Jn+1 ṽn+1dV + (1 − β)

∫
B
ET

n Jn ṽndV ; (31b)

HEXT =

∫
∂B

N pT [βQn+1 + (1 − β)Qn
]
dA , (31c)

where N pT is the shape function matrix for the pressure field, E=
[
E1, E2, . . . , ENP

]
the gradient-233

pressure transformation matrix, with EA (A = 1, . . . , N P)234

EA = grad N p
A =



N p
A,1

N p
A,2

N p
A,3



.235

By adopting the implicit Eulero scheme (β=1), which is first order accurate and unconditionally236

stable, and referring to Darcy’s velocity, ṽ (Eq (31b)) can be rewritten as237

Φ(p) = −
∫

B
ET kn+1

gρF

[
E

{
p + pr

}
n+1 − ρFg

]
Jn+1dV , (32)238

with k non-linear permeability tensor and {p + pr } vector of prescribed and unknown nodal pore239

pressures. For sake of brevity the reader is referred to (Borja and Alarcón 1995; Borja et al. 1998)240

for the discretized expression of Gh and Hh
∆t . Particularly, the first variation of G is:241

δGh(φ, p, η̃) = η̃T
[
Kφφδd + Kφpδp

]
, (33)242

where243
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Kφφ =

∫
B

[
ZT aZ + ZT (JIp)Z − ρF JN φTGb

]
dV ; (34a)

Kφp = −

∫
B
bTN p JdV . (34b)

Z =
[
Z1, Z2, . . . , ZNQ

]
is the full spatial gradient operator (see (de Souza Neto et al. 2011)), with244

components ZA (A = 1, . . . , NQ)245

ZA =



Nφ
A,11

Nφ
A,21

Nφ
A,31



246

where 1 is the second order identity tensor, with 3× 3 dimension for nsd = 3. The quantity a is the247

total tangent operator defined by248

a = c +
(
τ ⊕ 1

)
= α −

(
τ 	 1

)
, (35)249

where α is the algorithmic tangent operator (Borja 2013)250

α =
3∑

A=1

3∑
B=1

aep
ABm

(A) ⊗ m(B)

3∑
A=1

∑
B,A

(
τB − τA

λe tr
B − λe tr

A

) (
λe tr

B m(AB) ⊗ m(AB) + λe tr
A m(AB) ⊗ m(BA)) , (36)

with m(A) = n(A) ⊗ n(A), and m(AB) = n(A) ⊗ n(B) with n (Eq. (8)). λe tr
A is the trial elastic principal251

stretch and aep
AB = ∂τA/∂εB (Borja and Tamagnini 1998) is the elastoplastic tangential modulus,252

obtained from the return mapping algorithm for determining the tensor τ.253

Ip is provided by the second and third integrals of Eq. (44), and gives254

Ip = ph (1 	 1 − 1 ⊗ 1
)
. (37)255
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then Eq. (30) holds256

∆t ∆Hh
∆t (φ, p, ψ̃) = −ψ̃T

[
Kpφδd + Kppδp

]
, (38)257

where258

Kpφ = −

∫
B

JN pT b dV − β∆t
∫

B
ET

( k + k′J
ρFg

) (
E

{
p + pr

}
− ρFg

)
bJdV

+
β∆t
ρFg

∫
B
ET

(
A +W

)
Z JdV ; (39a)

Kpp = −
β∆t
ρFg

∫
B
ET kE JdV . (39b)

k′ operator is the first variation of the permeability tensor with respect to the Jacobian J of the259

deformation gradient F. A has 3 × 9 dimension260

A =
[
v̂11, v̂21, v̂31

]
, (40)261

where v̂i are the components of the vector v̂ = k · (E{p + pr } − ρFg). W =
[
W1,W2,W3

]
has 3× 9262

dimension as well263

W1 =



w111 w121 w131

w211 w221 w231

w311 w321 w331



264

265

W2 =



w112 w122 w132

w212 w222 w232

w312 w322 w332



266

267

W3 =



w113 w123 w133

w213 w223 w233

w313 w323 w333



268

where the components are obtained from wi j k = kik p, j .269
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The final discretized coupled system of equations can be written as270




rφ(d, p)

rp(d, p)



=




N S (d)

J (d)



+




NF (p)

β0∆tΦ(p)



+




−FEXT

β0∆t HEXT



=




0

0



, (41)271

and the Newton-Raphson incremental solution is calculated from272



Kφφ Kφp

Kpφ Kpp

 k




δd

δp


k+1

=




rφ

rp


k

. (42)273

The tangent operator K in Eq. (42) is in general non-symmetric and indefinite.274

VALIDATION OF THE NUMERICAL CODE275

The numerical analyses are performed by usingGeoMatFEM, a Matlab research code for three-276

dimensional coupled geomechanical simulations.277

The code has been validated against two numerical examples (Borja et al. 1998), namely the278

uniform consolidation of a soil column and the consolidation of a strip foundation. Both numerical279

simulations assume fully saturated hyperelastic-plastic porous media.280

Additionally, two experimental tests have been considered for validating the constitutive model.281

Hyperelastic-plastic consolidation of a column282

Let’s consider a column of fully saturated soil with square base of 1 m side and 5 m height, as283

shown in Fig. 4. The mesh is composed by 10 three-dimensional finite elements.284

The material parameters are in shown in Table 1.285

The initial stress configuration is not stress-free, but it balances the gravity load (Borja et al.286

1998; Borja and Tamagnini 1998); it is obtained by an uncoupled small strain analysis, applying287

self-weight in three steps and then determining the internal stresses. We recall that nonzero initial288

stresses are required to activate the procedure, so a small initial value p0 and preconsolidation289

pressure pc0 have been assumed at all Gauss points for the first run of the model.290

The displacements are subsequently reinitialized to zero, and the consolidation analysis is carried291
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out by applying a vertical downward load ∆w= 0.09 MPa at the top of the soil column in three equal292

time steps at a constant rate of 0.03 MPa/day, while time steps are increased tn+1 = 1.5∆tn. The293

results of the consolidation analysis are shown in Figs. 5(a) and 5(b) in terms of total fluid potential294

and average degree of consolidation versus time, respectively. The total fluid potentialΠ=Πp+Πe=295

p/(ρWg) + xz is calculated at the Gauss point A , with XPG A = [ 0.106 m 0.106 m 0.106 m ] close296

to the column base. The average degree of consolidation Ūave and the time factor T are computed297

as298

Ūave =
ūz (t)

ūz (∞)
T =

cvt
H2

0

=
µ0 k
ρWg

t
H2

0

. (43)299

Fig. 6 reports the isochrones of Cauchy pore pressure predicted by the small strains and finite300

strains approaches; the obtained results are superimposed to those reported in (Borja et al. 1998),301

so proving the correctness of the implemented procedure.302

The convergence velocity (Fig. 7) exhibits a quadratic profile, typical of Newton-Raphson303

schemes, so configuring on this side the correct implementation of the tangent operator.304

Hyperelastic-plastic footstrip consolidation305

The consolidation of an half-space of clay subjected to a flexible footing strip (Fig. 8(a)) has306

been additionally considered following (Borja et al. 1998).307

A constant value of total potential equal toΠ = 20.0 m is applied, together with an initial hydrostatic308

Cauchy pore pressure distribution as shown in Fig. 8(b).309

The material data of the clay are the same as in the previous example but the porosity and310

permeability parameters change with the deformation of the porous matrix. The material properties311

are reported in Table 2, assuming an hyperelastic behavior for sand and and hyperelastic-plastic312

one for clays.313

Three preloading stages (case #1, case #2 and case #3) have been considered, leading to different314

initial stress states, similarly to what performed in the previous example. For case #1 an initial315

stress state due to the self–weight has been considered, while for case #2 and #3 both self-weight316

and two preloading conditions have been assumed, equal to 0.015 MPa and 0.030 MPa, producing317
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two different over-consolidation states. Fig. 9(a) shows the evolution of vertical displacements for318

a node on top surface located on the symmetry plane. Fig. 9(b) depicts the evolution of Cauchy319

pore pressure p=θ/J at Gauss point B with XPG B = [ 0.106 m 0.106 m 16.211 m ].320

Again, as observed in the previous example, the results are superimposed to the benchmark321

ones and the convergence velocity shows a quadratic profile (Fig. 10).322

Experimental tests323

The constitutive model has been further validated against an isotropic compression test and a324

standard drained triaxial test (Callari et al. 1998; Al-Tabbaa 1987); the material parameters are325

listed in Table 3.326

Isotropic compression test327

A normally consolidated sample with initial isotropic pressure p0 = pc0 = 0.1 MPa has been328

reconstructed and a set of loading-unloading cycles has been applied. Figure 11 depicts the329

evolution of the specific volume v with Kirchhoff isotropic pressure P, evidencing the agreement330

between numerical results and experimental data, both in the loading and in the unloading stages.331

Drained triaxial test332

A normally consolidate sample is now subjected to an initial isotropic pressure p0 = pc0 =333

0.3 MPa. The soil has been loaded in order to reach a deviatoric stress Q = 0.12 MPa and then334

unloaded. Again, by considering Fig. 12, the real material response appears to be correctly caught335

by the numerical model.336

THREE-DIMENSIONAL ANALYSIS337

A consolidation process due to the filling of two tall silos over a fully saturated clay domain is338

considered.339

Most foundation failures in clayey soils occur when a silo is quickly loaded for the first time.340

The rapid filling process leads to a possibly hazardous increase in pore water pressure, so repro-341

ducing a typical undrained condition associated to a decrease in effective stress, with eventual large342
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irreversible strains and possible mechanical failure (Dogangun et al. 2009) (Fig. 13). Water over-343

pressure hinders soil compaction and causes dangerous shear deformations that could compromise344

the structural stability.345

The investigated example has been inspired by the case study presented in (Puzrin et al. 2010). The346

example describes the soil behavior underneath two adjacent silos built in the Red River Valley,347

Canada, which did not have strength enough to resist to the applied loads. The two silos were too348

close, and therefore pressure bulbs under the foundations overlapped. This caused large stresses349

and, in turn, large settlements under the parts of the ring foundations. The final result was tilting350

and touching.351

This proposed example, although simple and straightforward, is particularly suitable to investigate352

the potentiality of the approach, and specifically to evaluate the effects of a finite strains assumption353

on the modeled scenario. In fact, this geomechanical problem is of interest: a three-dimensional354

simulation is required, furthermore both material and geometric non-linearities must be taken into355

account, along with the interaction between solid and fluid phases. Additionally, as reported below,356

even the so called P −∆ effect can be caught thanks only to the introduced geometric non linearity.357

Two cylindrical silos with 10 m diameter, 40 m height and placed at a distance of 2 m m one358

to the other (Fig. 14) have been reconstructed. The silos are built on a normally consolidated and359

fully saturated clay layer of 30 m, resting on a rigid rock base. In order to reduce the number of360

elements, only half of the model has been realized, to take advantage of the symmetry with respect361

to the X–Z plane. Lateral surfaces are assumed to be horizontally restrained with the bottom surface362

fixed; free flux can occur on top and bottom of the clay layer.363

The soil discretization is composed by 3542 D20P8 mixed finite elements, with a total of 3622364

elements, with 16644 nodes for the displacement field, 4356 of which also for the pore pressure365

field; the total degrees of freedom are 54288.366

As previously done, an initial stage accounting for the self-weight, plus a surface pressure pi =367

0.2 MPa, has been considered.368

By assuming that the silos are used for the storage of cereals, a load of 0.8 t/m3 is added369
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to the consolidation analysis. The silos are modeled as rigid elastic elements (Young’s modulus370

E = 1×104MPa and Poisson ratio ν = 0). Permeability k is calculated via the Kozeny-Carman371

equation (Eq. 18), whereas for the small strain analysis the value indicated in Table 4 applies.372

The two silos are simultaneously filled during four constant time steps of 12 h, then the weight is373

maintained during the consolidation stage. The time steps are increased according to the equation:374

∆tn+1=1.5∆tn. Fig. 15 shows the time evolution of the vertical displacements for the central point375

of the silos base (points C and D of Fig. 14), evidencing pretty similar results when small or376

finite strains are considered: particularly, a difference of 0.9 % in the final settlements have been377

obtained; when horizontal displacements of top of silos are taken into account (Fig. 16, points A378

and B), the difference reaches 68 % and the silos rotation predicted by the finite strains analysis379

is about three times higher (1.56°) than that reported by the small strains one. Such a difference380

evidences the P − ∆ contribution, essential in the correct description of the ultimate scenario.381

Correspondingly, the represented situation is particularly hazardous, implying that the silos under382

such a rotation can come into contact (at approximately 90 days when the analysis is then stopped).383

Fig. 17 shows the evolution of Cauchy pore pressure at points E and F (Fig. 14), i.e. 3 m384

below the top of clay layer. After the fast filling of the two silos, the pore pressure reaches the385

maximum peak value of 0.26 MPa for both small and finite strains analysis (typical undrained386

condition). Since initially the load is sustained by the pore pressure, the skeleton does not deform,387

and therefore the two models give a very similar result in terms of pressure peak. Further, with the388

evolution of pore pressure in time (drained condition), the results show a slightly lower rate of pore389

pressure if finite strains are accounted for, due to the change in permeability with soil deformation.390

The final value of pore pressure is hence of 0.031 MPa, slightly higher than the initial hydrostatic391

pressure of 0.030 MPa. This is the consequence of imposing a constant hydraulic potential at the392

bottom of the clay layer, and represents a local artesian condition due to the deformation of the soil.393

Finally, an overview of pore pressure evolution in finite strains regime is visible in Fig. 18, which394

shows the contours of Cauchy pore pressure for some time steps. The typical consolidation bulbs395

is evidenced under the two silos, which slowly dissipates until the initial hydrostatic condition is396
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reached (Fig. 18.f).397

The results in terms of plastic deformations are plotted in Figs. 19 and 20. Both analyses give398

similar values but those from finite strains model are higher, plus a wider zone of soil plasticization399

between the two silos, producing in turn a differential settlement at silos’ foundation ∆uz = 26.4 cm400

(∆uz = 8.5 cm for the small strain model). By considering Fig. 20, it is interesting to observe two401

conical zones characterized by high deviatoric plastic deformations, resembling hence typical 3D402

shear bands of strain localization.403

Fig. 21 depicts the plastic deformations plotted along vertical Z-Z axis (see Fig. 14), evidencing404

the relevance of a finite strains approach. Both volumetric and deviatoric strains show their peak in405

proximity of the silos’ foundation, with a deformation mechanism essentially of deviatoric nature,406

as reported below. Finally, Fig. 22 plots the P–Q stress path for Gauss points G (see Fig. 14),407

showing no appreciable differences in terms of stress for small and finite strains analyses. Figs. 23408

evidences that, even if the predicted volumetric stress is always higher than the deviatoric one, the409

deformation mechanism is mainly driven by deviatoric strains in the undrained stage (I; higher410

deviatoric strains and higher deviatoric strain rate) and by volumetric strains in the drained stage411

(I I; consolidation, higher volumetric strain rate). Anyway, overall larger deviatoric strains (as412

reported by Fig. 21) show a typical soil behaviour more sensitive to shear straining, a mechanism413

appreciable via a finite strains approach only.414

CONCLUSIONS415

In this work a fully coupled hydro-mechanical model has been described and validated against416

available literature and experimental results. Particularly, themodel has been developedwithin a 3D417

Finite Element research code by assuming material and geometric non-linearities, also introducing418

a dependence of permeability on deformation as well as a specific type of mixed finite element.419

The former allows for correctly reproducing fully saturated scenarios in finite strains, the latter for420

solving stability issues of the adopted formulation.421

A consolidation case study has evidenced the potentialities of the code and the relevance of a finite422

strains approach, particularly when P−∆ effects must be accounted for in realistically reproducing423
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hazardous scenarios of soil-structure interaction. Together with the capability of reaching such424

an ultimate state of silos tilting, the upgraded code has even demonstrated to better describe the425

evolution of the deformation state for the foundation soil, experiencing a transition from higher426

deviatoric strains and higher deviatoric strain rates to higher volumetric strain rates when passing427

from an undrained stage to a drained one.428
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APPENDIX I. FIRST VARIATION OF THE LINEAR MOMENTUM AND MASS BALANCE433

EQUATIONS434

The variation of the linear momentum, Eq. (21), in the spatial form is written as:435

δG =
∫

B
grad η : (c + τ ⊕ 1) : grad δu dV

−

∫
B
grad η : (Jp1 ⊗ 1) : grad δu dV +

∫
B

Jp gradT η : grad δudV

−

∫
B

Jδp div η dV −
∫

B
ρF J div(δu)η · g dV −

∫
∂B

η · δt dA , (44)

where c is the fourth order spatial tangent tensor (Borja and Alarcón 1995), τ ⊕ 1 is a fourth order436

tensor representing the initial stress term and Jp1 ⊗ 1 is a fourth order tensor representing the437

pore pressure term. The quantities δu, δp and δt are the variation of the displacement vector, the438

Cauchy pore pressure and stress vector, respectively.439

The first variation ofmass balance, Eq. (23), integrated over a fixed∆t in the spatial configuration440

is:441

δH∆t =

∫
B

ψ

∆t
J div δu dV + β

∫
B
grad ψ ·

J k

gρF

· grad δθ dV

+ β

∫
B

grad ψ ·
( k

gρF

+
J

gρF

∂k

∂J

)
·
[
grad p − ρFg

]
J dV

− β

∫
B
grad ψ · grad δu ·

k

gρF

·
[
grad p − ρFg

]
J dV

− β

∫
B
grad ψ ·

J k

gρF

· gradt δu · grad p dV − β
∫
∂B

ψ δQ dA , (45)

where δQ is the variation of the flux Q through the surface dA.442
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TABLE 1

Parameter U.M. Small strains Finite strains
µ0 MPa 0.2 0.2
α 0.0 0.0
k̃ 0.0476 -
λ̃ 0.1667 -
k̂ - 0.05
λ̂ - 0.2
M 1.00 1.00
p0 MPa -0.01 -0.01
pc0 MPa -0.01 -0.01
ε e
v0 0.00 0.00
ρS t/mm3 2.7×10−9 2.7×10−9

ρW t/mm3 1.0×10−9 1.0×10−9

ϕ 0.7024 0.7024
k mm/s 1.0×10−5 1.0×10−5
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TABLE 2

Sand layer
Parameter U.M. Small strains Finite strains
ν 0.0 0.0
ϕ0 - 0.4118
ρS t/mm3 - 2.7×10−9

ρW t/mm3 - 1.0×10−9

ρ t/mm3 2,00×10−9 -

Clay layer
Parameter U.M. Small strains Finite strains
ϕ 0.5441 0.5441
k mm/s 1.0×10−6 1.0×10−6
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TABLE 3

Parameter U.M. Values
α 90.0
k̂ 0.013
λ̂ 0.93
M 0.80
ε e
v0 0.00
v0 2.37
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TABLE 4

Parameters U.M. Small strain Finite strain
µ0 MPa 5.0 5.0
α 0.0 0.0
k̃ 0.0196 -
λ̃ 0.0385 -
k̂ - 0.02
λ̂ - 0.04
M 1.00 1.00
p0 MPa -0.050 -0.050
pc0 MPa -0.050 -0.050
ε e
v0 0.00 0.00
ρS t/mm3 2.7×10−9 2.7×10−9

ρW t/mm3 1.0×10−9 1.0×10−9

ϕ 0.36 0.36
k mm/s 0.6328×10−5 -
D mm - 1.0×10−3

µ MPa·s - 1.0×10−9
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