

Università
 degli Studi
 di Padova

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Effects of finite strains in fully coupled 3D geomechanical simulations

Original Citation:

Availability:
This version is available at: 11577/3287007 since: 2019-01-25T16:04:36Z

Publisher:
American Society of Civil Engineers (ASCE)

Published version:
DOI: 10.1061/(ASCE)GM.1943-5622.0001362

Terms of use:
Open Access
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

International Journal of Geomechanics Finite strains effects in 3D fully coupled geomechanical simulations --Manuscript Draft--

Manuscript Number:	GMENG-3287R1	
Full Title:	Finite strains effects in 3D fully coupled geomechanical simulations	
Manuscript Region of Origin:	ITALY	
Article Type:	Technical Paper	
Manuscript Classifications:	1.1: Finite Element Methods; 2.1: Soils: Clays and Sands; 4.6: Seepage \& Groundwater Flow	
Funding Information:	Italian Ministry of Education, University and Research (MIUR) (Project PRIN "COAN 5.50.16.01" - code 2015JW9NJT)	Not applicable
Abstract:	Numerical modelling of geomechanical phenomena and geo-engineering problems often involves complex issues related to several variables and corresponding coupling effects. Under certain circumstances, both soil and rock may experience a non-linear material response, due to e.g. plastic, viscous or damage behavior, and even a nonlinear geometric one, due to large deformations/displacements of the solid. Furthermore, the presence of one or more fluids (water, oil, gas, etc.) within the skeleton must be accounted for when evaluating the interaction between the different phases of the continuum body. A multiphase three-dimensional coupled model in finite strains, suitable for dealing with solid-displacements/fluid-diffusion problems, is here described and an elasto-plastic behavior for the solid phase is assumed. Particularly, a 3D mixed finite element is implemented to fulfill stability requirements of the adopted formulation, as well as a permeability tensor dependent on deformation is introduced. A consolidation scenario induced by filling of silos is investigated and the effects of the adoption of finite strains discussed.	
Corresponding Author:	Nico De Marchi, M.E. Universita degli Studi di Padova Padova, Padova ITALY	
Corresponding Author E-Mail:	nico.demarchi@dicea.unipd.it	
Order of Authors:	Nico De Marchi, M.E.	
	Valentina A. Salomoni, Prof.	
	Nicolò Spiezia, Ph.D.	
Suggested Reviewers:	Kaspar Willam, Prof. University of Colorado Boulder willam@colorado.edu Expert in the field of non-linear modelling of porous media	
	Francesco Marotti de Sciarra, Prof. Universita degli Studi di Napoli Federico II francesco.marottidesciarra@unina.it Expert in the field of non-linear modelling of porous media	
	Angelo Marcello Tarantino, Prof. Universita degli Studi di Modena e Reggio Emilia angelomarcello.tarantino@unimore.it Expert in the field of non-linear modelling of porous media	
Opposed Reviewers:		
Additional Information:		
Question	Response	

Authors are required to attain permission
No
to re-use content, figures, tables, charts,
maps, and photographs for which the
authors do not hold copyright. Figures
created by the authors but previously
published under copyright elsewhere may
require permission. For more information
see
http://ascelibrary.org/doi/abs/10.1061/978
O78479018.ch03. All permissions must
be uploaded as a permission file in PDF
format. Are there any required
permissions that have not yet been
secured? If yes, please explain in the
comment box.

Each submission to ASCE must stand on its own and represent significant new information, which may include disproving the work of others. While it is acceptable to build upon one's own work or replicate other's work, it is not appropriate to fragment the research to maximize the number of manuscripts or to submit papers that represent very small incremental changes. ASCE may use tools such as CrossCheck, Duplicate Submission Checks, and Google Scholar to verify that submissions are novel. Does the manuscript constitute incremental work (i.e. restating raw data, models, or conclusions from a previously published study)?	No
Authors are expected to present their papers within the page limitations described in <u><i>Publishing in ASCE Journals: A Guide for Authors</u></i>. Technical papers and Case Studies must not exceed 30 double-spaced manuscript pages, including all figures and tables. Technical notes must not exceed 7 double-spaced manuscript pages. Papers that exceed the limits must be justified. Grossly overlength papers may be returned without review. Does this paper exceed the ASCE length limitations? If yes, please provide justification in the comments box below.	No
All authors listed on the manuscript must have contributed to the study and must approve the current version of the manuscript. Are there any authors on the paper that do not meet these criteria? If the answer is yes, please explain in the comments.	No
Was this paper previously declined or withdrawn from this or another ASCE journal? If so, please provide the previous manuscript number and explain what you have changed in this current version in the comments box below. You may upload a separate response to reviewers if your comments are extensive.	Yes
Please provide the previous manuscript number and explain what you have changed in this current version in the comments box below. You may upload a separate response to reviewers if your comments are extensive. as follow-up to "Was this paper previously declined or withdrawn from this or another ASCE journal? If so, please	Please consider that the previous manuscript GTENG-6840 was examined by the Chief Editor Prof. Mohammed (ASCE Journal of Geotechnical and Geoenvironmental Engineering) who suggested us to submit it to IJOG because "the scope is a better match for our companion journal IJOG (...) I believe the innovation and scope best fit/serve the journal" (i.e. IJOG). The manuscript has been examined by the Editor only, it has NOT been reviewed

provide the previous manuscript number and explain what you have changed in this current version in the comments box below. You may upload a separate response to reviewers if your comments are extensive.
"
Companion manuscripts are discouraged as all papers published must be able to stand on their own. Justification must be provided to the editor if an author feels as though the work must be presented in two parts and published simultaneously. There is no guarantee that companions will be reviewed by the same reviewers, which complicates the review process, increases the risk for rejection and potentially lengthens the review time. If this is a companion paper, please indicate the part number and provide the title, authors and manuscript number (if available) for the companion papers along with your detailed justification for the editor in the comments box below. If there is no justification provided, or if there is insufficient justification, the papers will be returned without review.

If this manuscript is intended as part of a Special Issue or Collection, please provide the Special Collection title and name of the guest editor in the comments box below.

Recognizing that science and engineering are best served when data aremade available during the review and discussion of manuscripts andjournal articles, and to allow others to replicate and build on workpublished in ASCE journals, all reasonable requests by reviewers formaterials, data, and associated protocols must be fulfilled. If you are restricted from sharing your data and materials, please explain below.

Papers published in ASCE Journals must make a contribution to the core body of knowledge and to the advancement of the field. Authors must consider how their new knowledge and/or innovations add value to the state of the art and/or state of the practice. Please outline the specific contributions of this research in the comments box.

Within the research field of non-linear modelling of porous media, the paper contributes to underline the consequences of accounting for finite strains when studying soilstructure interactions in consolidation scenarios. Particularly, it is evidenced that for realistically reconstructing the hazard of silos rotation and tilting, a non-linear geometric approach must be followed. The model is improved by a dependence of the permeability tensor from deformation, as well as by the introduction of an enriched Finite Element able to fulfill stability requirements of the adopted approach.

The flat fee for including color figures in
print is $\$ 800$, regardless of the number of color figures. There is no fee for online only color figures. If you decide to not print figures in color, please ensure that
the color figures will also make sense when printed in black-and-white, and remove any reference to color in the text. Only one file is accepted for each figure. Do you intend to pay to include color figures in print? If yes, please indicate which figures in the comments box.

If there is anything else you wish to
communicate to the editor of the journal, please do so in this box.

Finite strains effects in 3D fully coupled geomechanical simulations

Nico De Marchi ${ }^{1}$, Valentina Salomoni ${ }^{2}$, and Nicolò Spiezia ${ }^{3}$
${ }^{1}$ Dr., Dept. of Civil, Environmental and Architectural Engineering, University of Padua, via
Marzolo 9, 35121 Padua, Italy. E-mail: nico.demarchi@dicea.unipd.it
${ }^{2}$ Prof., Dept. of Management and Engineering, University of Padua, via Stradella S. Nicola 3, 36100 Vicenza, Italy.E-mail: valentina.salomoni@unipd.it
${ }^{3}$ Dr., Dept. of Civil, Environmental and Architectural Engineering, University of Padua, via
Marzolo 9, 35121 Padua, Italy. E-mail: nicolo.spiezia@dicea.unipd.it

Abstract

Numerical modelling of geomechanical phenomena and geo-engineering problems often involves complex issues related to several variables and corresponding coupling effects. Under certain circumstances, both soil and rock may experience a non-linear material response, due to e.g. plastic, viscous or damage behavior, and even a non-linear geometric one, due to large deformations/displacements of the solid. Furthermore, the presence of one or more fluids (water, oil, gas, etc.) within the skeleton must be accounted for when evaluating the interaction between the different phases of the continuum body. A multiphase three-dimensional coupled model in finite strains, suitable for dealing with solid-displacements/fluid-diffusion problems, is here described and an elasto-plastic behavior for the solid phase is assumed. Particularly, a 3D mixed finite element is implemented to fulfill stability requirements of the adopted formulation, as well as a permeability tensor dependent on deformation is introduced. A consolidation scenario induced by filling of silos is investigated and the effects of the adoption of finite strains discussed.

Keywords: Porous media, multiphase problems, finite strains, elasto-plasticity, Finite Element Method.

INTRODUCTION

Geomaterials such as soil, rock or concrete, are basic materials in the civil engineering field, with many different applications. The description of their mechanical behavior is a challenging task, requiring sophisticated numerical analyses. Particularly, such materials must be considered as multiphase porous media, composed by a solid skeleton and one (or even more) fluid within the pores. Hence, geomechanical problems are characterized by solid-fluid interaction, due to the presence of overlapping phases, and correspondingly a coupled analysis is required (Lewis and Schrefler 1998). Further, geomaterials can also experience material non-linearities of the solid skeleton, e.g. due to plasticity, creep or damage. Even in the elastic regime, the mechanical behavior of geomaterials is often non-linear.

Depending on the phenomenon to model, it may be necessary to take into account finite deformations, so introducing a source of geometric non-linearity in the formulation of the problem (Wang et al. 2009). Examples of geomechanical problems where finite deformations are involved are the inception of slopes (Lee et al. 2012; Zhu and Randolph 2009; Mohammadi and Taiebat 2014), the consolidation of heavy structures over soft soils (Bienen et al. 2015; Andresen et al. 2010), the excavation of tunnels (Meguid et al. 2002) and wellbores (Spiezia et al. 2016), the consolidation settlements around pile foundations (Osman and Randolph 2011; Zhang et al. 2015) and the consolidation of mine waste tailings (Caldwell et al. 1984), just to recall a few.

In the last two decades, theoretical and computational research has provided wide support for the solution of this kind of problems, where large deformations are encountered. Although several innovative methods have been proposed in literature, such as the Smoothed Particle Hydrodinamics (SPH) (Wang et al. 2016), the Material Point Method (MPM) (Abe et al. 2013), the Particle Finite Element Method (PFEM) (Carbonell et al. 2009) and the Meshless Local Petrov-Galerkin (MLPG) (Atluri and Zhu 1998), the Finite Element Method (FEM) is still probably the most widely used tool. It allows to solve the set of differential equations arising from the imposition of the balance equations to a continuum multiphase body, computing displacements, stress and strain fields, pressures etc. for the solid-fluid mixture. By using a FEM approach (Hughes 2012; Wriggers 2008),
finite strains can be rigorously taken into account as an extension of the infinitesimal framework, adopting an adequate formulation for both the balance laws and the constitutive model.

Even though the theory for coupled poromechanics in finite strains, solved within the framework of FEM, has been proposed in the late nineties by the pioneer works of Simo et al. (Simo and Meschke 1993), Borja et al. (Borja and Alarcón 1995; Borja et al. 1998) and Armero et al. (Armero 1999), this subject presents still some aspects that are worth being studied further.

In fact, even if in some recent works the effects of assuming finite strains when simulating geotechnical problems have been investigated (Nazem et al. 2006; Kardani et al. 2013; Zhang et al. 2018), only a few take into account the coupling between the different phases (Huang et al. 2014; Singh et al. 2016; Qi et al. 2017), which is an aspect of relevance when dealing with porous materials. Hence in this work a coupled hygro-mechanical model in finite strains (Borja 2013) based on the modified mixture theory (Borja et al. 1998) is presented, following the lines of (Spiezia et al. 2016) for saturated porous media.

Particularly, the approach takes advantage of a constitutive model (Borja and Tamagnini 1998) which has demostrated to be particularly suitable in predicting different features of the granular materials as pressure sensitivity, hardening response with large plastic volumetric compaction, softening response with plastic dilation and coupled volumetric deviatoric plastic deformations. The model has been upgraded via the introduction of a permeability tensor variable with the deformation of the solid skeleton, as well as of a specific type of hexahedral elements, developed to guarantee solvability and stability of mixed formulations (Brezzi and Bathe 1990). The paper is organized as follows.

First, the balance equations, together with the constitutive laws for both the fluid and the solid phase, are briefly recalled (Borja and Alarcón 1995; Borja et al. 1998; Song and Borja 2014). Section 2 presents the numerical implementation of the developed equations, describing in detail the formulation of the three-dimensional code and its novel features.

Section 3 presents the validation of the code, by comparing the results with the benchmark cases described in (Borja et al. 1998) and with the experimental results reported in (Callari et al. 1998;

Al-Tabbaa 1987).
Section 4 presents the numerical simulation of a consolidation process due to the filling of two tall structures over a fully saturated domain, evidencing the code capabilities in simulating soilstructure interaction.

Notations and symbols used throughout the paper are as follows: bold-face letters denote matrices and vectors; the symbol ' \cdot ' denotes an inner product of two vectors (e.g. $\boldsymbol{a} \cdot \boldsymbol{b}=a_{i} b_{i}$) or a single contraction of adjacent indices of two tensors (e.g. $\boldsymbol{c} \cdot \boldsymbol{d}=c_{i j} d_{j k}$); the symbol ' \because ' denotes an inner product of two second-order tensors (e.g. $\boldsymbol{c}: \boldsymbol{d}=c_{i j} d_{i j}$), or a double contraction of adjacent indices of tensor of rank two and higher (e.g. $\boldsymbol{C}: \boldsymbol{\epsilon}^{e}=C_{i j k l} \epsilon_{k l}^{e}$); the symbol ' \otimes ' denotes a juxtaposition, e.g. $(\boldsymbol{a} \otimes \boldsymbol{b})_{i j}=a_{i} b_{j}$. For any symmetric second-order tensor $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ we have $(\boldsymbol{\alpha} \otimes \boldsymbol{\beta})_{i j k l}=\alpha_{i j} \beta_{k l},(\boldsymbol{\alpha} \ominus \boldsymbol{\beta})_{i j k l}=\alpha_{i l} \beta_{j k}$ and $(\boldsymbol{\alpha} \oplus \boldsymbol{\beta})_{i j k l}=\alpha_{j l} \beta_{i k}$. A positive stress is also assumed for tension according to the solid mechanics convention.

THEORETICAL FRAMEWORK

This section briefly recalls the coupled balance laws for a fully saturated porous media (Borja and Alarcón 1995), together with the constitutive model for both solid and fluid phase.

Balance laws

In agrement with the mixture theory and by assuming incompressibility of the two phases, the balance of linear momentum and the balance of mass for a fully saturated porous medium in the quasi static regime are

$$
\begin{align*}
\rho \boldsymbol{g}+\operatorname{div} \tilde{\boldsymbol{\sigma}} & =0 ; \tag{1}\\
\operatorname{div} \boldsymbol{v}+\operatorname{div}\left[\varphi\left(\boldsymbol{v}^{F}-\boldsymbol{v}\right)\right] & =0, \tag{2}
\end{align*}
$$

where $\rho_{0}=J \rho$ is the reference mass density, \boldsymbol{g} the vector of gravity acceleration, $\tilde{\boldsymbol{\sigma}}$ the total Cauchy stress tensor, related to the total Kirchhoff stress tensor $\tilde{\tau}$ and the total first Piola-Kirchhoff tensor
$\tilde{\boldsymbol{P}}$ (Marsden and Hughes 1994) via the following expression

$$
\begin{equation*}
\tilde{\boldsymbol{P}}=\tilde{\boldsymbol{\tau}} \cdot \boldsymbol{F}^{-T}=J \tilde{\boldsymbol{\sigma}} \cdot \boldsymbol{F}^{-T} . \tag{3}
\end{equation*}
$$

The term J is the Jacobian defined from the deformation gradient \boldsymbol{F} of the motion $\boldsymbol{\phi}$

$$
\begin{equation*}
J=\operatorname{det}(\boldsymbol{F}) ; \quad \boldsymbol{F}=\frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{X}} ; \quad \boldsymbol{\phi}=\boldsymbol{X}+\boldsymbol{u} . \tag{4}
\end{equation*}
$$

In Eq. (2), \boldsymbol{v} is the vector the solid phase velocity vector, \boldsymbol{v}^{F} is the fluid phase intrinsic velocity and φ is the porosity of the soil skeleton defined through the Jabocobian as

$$
\begin{equation*}
\varphi=\frac{J d V-\left(1-\varphi_{0}\right) d V}{J d V}=1-\frac{\left(1-\varphi_{0}\right)}{J} . \tag{5}
\end{equation*}
$$

The term $\varphi\left(\boldsymbol{v}^{F}-\boldsymbol{v}\right)$ represents the Darcy velocity $\tilde{\boldsymbol{v}}$, defined as the relative volumetric rate of fluid per unit area through the deforming soil mass.

Constitutive models

Solid phase

For the description of the elasto-plastic mechanical behavior of the solid we employ the multiplicative decomposition of the deformation gradient and the product formula algorithm described by Simo (Simo 1992)

$$
\begin{equation*}
\boldsymbol{F}=\frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{x}^{u}} \cdot \frac{\partial \boldsymbol{x}^{u}}{\partial \boldsymbol{X}} \equiv \boldsymbol{F}^{e} \cdot \boldsymbol{F}^{p} ; \quad \forall \boldsymbol{X} \in \mathscr{B} ; \quad t \geq 0, \tag{6}
\end{equation*}
$$

where \boldsymbol{x}^{u} is the intermediate unloaded configuration. From the second law of thermodynamics we can define the following set of constitutive relations describing the elastoplastic process

$$
\begin{equation*}
\boldsymbol{\tau}=2 \frac{\partial \boldsymbol{\Psi}}{\partial \boldsymbol{b}^{e}} \cdot \boldsymbol{b}^{e} ; \quad-\frac{1}{2} \mathscr{L}_{v} \boldsymbol{b}^{e}=\dot{\gamma} \frac{\partial \mathscr{F}}{\partial \boldsymbol{\tau}} \cdot \boldsymbol{b}^{e} ; \quad \dot{\xi}=\dot{\gamma} \frac{\partial \mathscr{F}}{\partial \chi}, \tag{7}
\end{equation*}
$$

where $\boldsymbol{\Psi}=\boldsymbol{\Psi}\left(\boldsymbol{X}, \boldsymbol{b}^{e}, \xi\right)$ is the stored energy function, $\boldsymbol{b}^{e}=\boldsymbol{F}^{e} \cdot \boldsymbol{F}^{e^{T}}$ the left elastic Cauchy-Green strain tensor, ξ a plastic variable and $\chi=\partial \Psi / \partial \xi$ the hardening response of the solid matrix. The quantity $\mathscr{L}_{v} \boldsymbol{b}^{e}$ is the Lie derivative of \boldsymbol{b}^{e}, while \mathscr{F} is the yield function and $\dot{\gamma}$ is a non-negative plastic multiplier satisfying the Kuhn-Tucker conditions: $\dot{\gamma} \geq 0, \mathscr{F}(\tau, \chi) \leq 0$ and $\dot{\gamma} \mathscr{F}(\tau, \chi)=0$.

The elastic left Cauchy-Green tensor \boldsymbol{b}^{e} and the Kirchhoff effective stress tensor $\boldsymbol{\tau}$ can be expressed through the spectral decomposition

$$
\begin{equation*}
\boldsymbol{b}^{e}=\sum_{A=1}^{3}\left(\lambda_{A}^{e}\right)^{2} \boldsymbol{m}^{(A)} ; \quad \boldsymbol{\tau}=\sum_{A=1}^{3} \boldsymbol{\beta}_{A} \boldsymbol{m}^{(A)}, \quad \boldsymbol{m}^{(A)}=\boldsymbol{n}^{(A)} \otimes \boldsymbol{n}^{(A)} \tag{8}
\end{equation*}
$$

where λ_{A}^{e} are the the elastic principal stretches, $\boldsymbol{\beta}_{A}$ the principal Kirchhoff effective stresses and $\boldsymbol{n}^{(A)}$ the principal direction for both strains and stresses thanks to isotropy assumption. Together with frame indifference assumption, the free energy can be written as a function of the elastic principal strains

$$
\begin{equation*}
\Psi\left(\boldsymbol{X}, \boldsymbol{b}^{e}\right)=\Psi\left(\boldsymbol{X}, \varepsilon_{1}^{e}, \varepsilon_{2}^{e}, \varepsilon_{3}^{e}\right) ; \quad \varepsilon_{A}^{e}=\ln \left(\lambda_{A}^{e}\right) ; \quad A=1,2,3 \tag{9}
\end{equation*}
$$

where ε_{A}^{e} are the principal elastic logarithmic strains, and from the first relation of Eq. (7) we obtain the following relation

$$
\begin{equation*}
\boldsymbol{\beta}_{A}=\frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}_{A}^{e}} ; \quad A=1,2,3 . \tag{10}
\end{equation*}
$$

In the present work, we adopt the following stored energy function (Borja and Tamagnini 1998) describing the elastic response of the soil in terms of volumetric ε_{v}^{e} and deviatoric ε_{s}^{e} elastic strain invariants

$$
\begin{gather*}
\Psi\left(\varepsilon_{v}^{e}, \varepsilon_{s}^{e}\right)=\tilde{\Psi}\left(\varepsilon_{v}^{e}\right)+\frac{3}{2} \mu^{e} \varepsilon_{s}^{e 2}, \tag{11}\\
\tilde{\Psi}\left(\varepsilon_{v}^{e}\right)=-P_{0} \hat{k} \exp \Omega ; \quad \Omega=-\frac{\varepsilon_{v}^{e}-\varepsilon_{v 0}^{e}}{\hat{k}} ; \quad \mu^{e}=\mu_{0}+\frac{\alpha}{\hat{k}} \tilde{\Psi}, \tag{12}
\end{gather*}
$$

where $\tilde{\Psi}$ is the contribution given by the isotropic part, \hat{k} the elastic compressibility index, μ^{e} the elastic shear modulus, μ_{0} a constant term, α a parameter coupling shear and volumetric parts and
finally P_{0} the mean reference normal Kirchhoff stress invariant. The yield function is given by

$$
\begin{equation*}
\tilde{\mathscr{F}}\left(P, Q, P_{c}\right)=\frac{Q^{2}}{M^{2}}+P\left(P-P_{c}\right)=0 \tag{13}
\end{equation*}
$$

where P and Q are the effective Kirchhoff stress invariants, P_{c} the Kirchhoff preconsolidation pressure defining the size of the ellipsoid and M the slope of the critical state line, as shown in Fig. 1.

The model assumes a bi-logarithmic hardening law, as shown in Fig. 2, described by the following equation

$$
\begin{equation*}
\ln \left(\frac{v}{v_{0}}\right)=-\hat{\lambda} \ln \left(\frac{P_{c}}{P_{c 0}}\right) \tag{14}
\end{equation*}
$$

where $\hat{\lambda}$ is the virgin compression index, $v=V / V_{S}=1+e$ the specific volume of the soil and v_{0} a reference value.

The hardening law governing the expansion/contraction of the ellipse through the parameter P_{c} is given by

$$
\begin{equation*}
\frac{\dot{P}_{c}}{P_{c}}=-\Theta \dot{\varepsilon}_{v}^{p} \tag{15}
\end{equation*}
$$

with $\Theta=1 /(\hat{\lambda}-\hat{\kappa})$.

Fluid phase

For the fluid phase, assuming laminar flow, the model adopts the generalized Darcy's law

$$
\begin{equation*}
\tilde{v}=-\boldsymbol{k} \cdot \operatorname{grad} \Pi, \tag{16}
\end{equation*}
$$

where $\tilde{\boldsymbol{v}}=\varphi\left(\boldsymbol{v}^{F}-\boldsymbol{v}\right)$ is the Darcy velocity and Π is the total fluid potential defined as

$$
\begin{equation*}
\Pi=\Pi^{p}+\Pi^{e}=\frac{p}{g \rho_{F}}-\Pi^{e} \tag{17}
\end{equation*}
$$

where Π^{p} is the pressure potential with p the the Cauchy pore pressure and ρ_{F} the mass density of the fluid; Π^{e} is the elevation potential. Finally, \boldsymbol{k} is the second order permeability tensor,
which is assumed to be dependent on the deformation of the solid skeleton through the Jacobian J, introducing therefore an additional source of non-linearity with respect to the original formulation proposed in (Borja et al. 1998).

According to the Kozeny-Carman equation (Song and Borja 2014), the permeability reads

$$
\begin{equation*}
\boldsymbol{k}(J)=\frac{\rho_{F} g}{\mu} \frac{D^{2}}{180} \frac{\left[J-\left(1-\varphi_{0}\right)\right]^{3}}{J\left(1-\varphi_{0}\right)^{2}} \mathbf{1}, \tag{18}
\end{equation*}
$$

where D is the effective diameter of the grains, μ the dynamic viscosity of water, φ_{0} the initial porosity of the solid and $\mathbf{1}$ the second order identity tensor.

NUMERICAL IMPLEMENTATION

Variational equations

For developing the variational counterpart of Eqs. (1) and (2), following the approach proposed in (Borja and Alarcón 1995), we consider a fully saturated solid domain $\mathscr{B} \in R^{n_{s d}}$ and define the motion of the solid phase ϕ, its first variation $\boldsymbol{\eta}$, the Cauchy pore pressure p and its first variation ψ. The variational equation of the linear momentum G reads

$$
\begin{equation*}
G(\phi, p, \boldsymbol{\eta})=\int_{\mathscr{B}}\left(\operatorname{grad} \boldsymbol{\eta}: \tilde{\boldsymbol{\tau}}-\rho_{0} \boldsymbol{\eta} \cdot \boldsymbol{g}\right) d V-\int_{\partial \mathscr{B} t} \boldsymbol{\eta} \cdot \boldsymbol{t} d A=0, \tag{19}
\end{equation*}
$$

and the variational equation of the mass balance equation H reads

$$
\begin{equation*}
H(\phi, p, \psi)=\int_{\phi_{\mathrm{t}}(\mathscr{B})}(\psi \operatorname{div} \boldsymbol{v}-\operatorname{grad} \psi \cdot \tilde{\boldsymbol{v}}) d v-\int_{\partial \phi_{\mathrm{t}}^{\mathrm{h}}(\mathscr{B})} \psi q d a=0 . \tag{20}
\end{equation*}
$$

These field equations G and H are expressed in the Eulerian form for developing an updated Lagrangian formulation, allowing for obtaining the solution of the non-linear coupled problem. We rewrite the equations in the following way

$$
\begin{equation*}
G(\phi, p, \boldsymbol{\eta})=\int_{\mathscr{B}}(\operatorname{grad} \boldsymbol{\eta}: \boldsymbol{\tau}-J p \operatorname{div} \boldsymbol{\eta}-J \rho \boldsymbol{\eta} \cdot \boldsymbol{g}) d V-\int_{\partial \mathscr{B} t} \boldsymbol{\eta} \cdot \boldsymbol{t} d A \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
H(\phi, p, \psi)=\int_{\mathscr{B}} \psi \dot{J} d V+\int_{\mathscr{B}} \operatorname{grad} \psi \cdot \frac{J \boldsymbol{k}}{g \rho_{F}} \cdot\left(\operatorname{grad} p-\rho_{F} \boldsymbol{g}\right) d V-\int_{\partial \mathscr{B} \mathrm{h}} \psi Q d A . \tag{22}
\end{equation*}
$$

In the first equation, the total Kirchhoff stress tensor has been decomposed into the effective part τ and the pore pressure part $J p$, through the classical Terzaghi's formula. The second equation is obtained from the definition of the Darcy's velocity, recalling that the time derivative of the Jacobian J is equal to $\dot{J}=J \operatorname{div} \boldsymbol{v}$ (Marsden and Hughes 1994). Furthermore this integral is formulated with respect to the initial configuration \mathscr{B}, and hence $d v=J d V$ has been substituted. \boldsymbol{t} is the prescribed stress vector on the boundary $\partial \mathscr{B}^{\mathrm{t}}$ and Q is the prescribed rate of flux across the boundary $\partial \mathscr{B}^{\mathrm{h}}$, assumed as positive when the fluid goes into the solid matrix. The condition $q=Q=0$ means that no fluid flows through the boundary. The presence of \dot{J} inside Eq. (22) requires the semi-discretization of the second variational equation

$$
\begin{align*}
H_{\Delta t}(\phi, \theta, \psi)= & \int_{\mathscr{B}} \frac{\psi}{\Delta t}\left(J_{n+1}-J_{n}\right) d V \\
& -\int_{\mathscr{B}}\left[\beta(\operatorname{grad} \psi \cdot J \tilde{v})_{n+1}+(1-\beta)(\operatorname{grad} \psi \cdot J \tilde{v})_{n}\right] d V \\
& \int_{\partial \mathscr{B}} \psi\left[\beta Q_{n+1}+(1-\beta) Q_{n}\right] d A \tag{23}
\end{align*}
$$

where $\Delta t=t_{n+1}-t_{n}$ and β is the trapezoidal integration parameter defining the three time integration schemes: for $\beta=0$ the Explicit Eulero, for $\beta=1 / 2$ the Crank-Nicolson and for $\beta=1$ the Implicit Eulero scheme, respectively.

The first variation of the variational equations $G(\phi, \theta, \boldsymbol{\eta})$ and $H(\phi, \theta, \psi)$, necessary for the solution of the problem through a Newton-Raphson scheme, is reported in Appendix A. By comparing the equations with those proposed in (Borja et al. 1998), a new contribution arises (see Eq. (45)), due to the permeability variation of the porous medium. The variation of the second order permeability tensor \boldsymbol{k} with respect to the Jacobian of the gradient tensor J gives

$$
\begin{equation*}
\boldsymbol{k}^{\prime}(J)=\frac{\partial \boldsymbol{k}}{\partial J}=\frac{\rho_{F} g}{\mu} \frac{D^{2}}{180} \frac{3\left[J-\left(1-\varphi_{0}\right)\right]^{2} J-\left[J-\left(1-\varphi_{0}\right)\right]^{3}}{J^{2}\left(1-\varphi_{0}\right)^{2}} \mathbf{1} . \tag{24}
\end{equation*}
$$

Numerical integration

A three-dimensional mixed finite element has been implemented within the research code, which combines a three-quadratic 20 -node displacement interpolation with a three-linear 8-node pore pressure interpolation (Fig. 3), so to fulfill the necessary stability requirements, satisfy the ellipticity requirement and the Ladyzhenskaya-Babuška-Brezzi (LBB) condition (Brezzi and Bathe 1990; Arnold 1990). The adopted element belongs to the Taylor-Hood family (Arnold et al. 1984; Guzmán and Sánchez 2015), in which the displacement interpolation is one-order higher than the pressure one. By assuming a quadratic order function for the displacement field, the continuity for the stress/strain field is also guaranteed.

Correspondingly, $\boldsymbol{N}^{\phi}(\boldsymbol{x})$ and $\boldsymbol{N}^{p}(\boldsymbol{x})$ indicate the shape function for the solid phase ϕ and the pore pressure field p. The displacements field $\boldsymbol{u}^{h}(\boldsymbol{x}) \in R^{n_{s d}}$, with $n_{s d}=3$ becomes

$$
\begin{equation*}
u^{h}(x)=N^{\phi}(x)\left\{d+d_{g}\right\}, \tag{25}
\end{equation*}
$$

where $\boldsymbol{d} \in R^{N Q}$ and \boldsymbol{d}_{g} are the unknown nodal displacements and the prescribed nodal displacements vector, respectively, $N Q=20$. In the same way, the pore pressure field $p^{h}(\boldsymbol{x}) \in R^{1}$ is expressed as

$$
\begin{equation*}
p^{h}(\boldsymbol{x})=\boldsymbol{N}^{p}(\boldsymbol{x})\left\{\boldsymbol{p}+\boldsymbol{p}_{r}\right\}, \tag{26}
\end{equation*}
$$

where $\boldsymbol{p} \in R^{N P}$ is the unknown nodal pore pressures vector while \boldsymbol{p}_{r} is the prescribed nodal pore pressures vector, with $N P=8$. The weight functions $\boldsymbol{\eta}$ and ψ may be written as

$$
\begin{equation*}
\boldsymbol{\eta}^{h}(\boldsymbol{x})=\boldsymbol{N}^{\phi}(\boldsymbol{x}) \tilde{\boldsymbol{\eta}} ; \quad \psi^{h}(\boldsymbol{x})=\boldsymbol{N}^{p}(\boldsymbol{x}) \tilde{\psi}, \tag{27}
\end{equation*}
$$

where $\tilde{\boldsymbol{\eta}} \in R^{N Q}$ and $\tilde{\psi} \in R^{N P}$. The discretized form of Eq. (21) becomes

$$
\begin{equation*}
G^{h}(\phi, p, \tilde{\boldsymbol{\eta}})=\tilde{\boldsymbol{\eta}}^{T}\left[\boldsymbol{N}^{S}(\boldsymbol{d})+\boldsymbol{N}^{F}(\boldsymbol{p})-\boldsymbol{F}_{E X T}\right]=\mathbf{0}, \tag{28}
\end{equation*}
$$

where:

$$
\begin{align*}
& \boldsymbol{N}^{S}(\boldsymbol{d})=\int_{\mathscr{B}} \boldsymbol{B}^{T} \hat{\boldsymbol{\tau}} d V \tag{29a}\\
& \boldsymbol{N}^{F}(\boldsymbol{p})=-\int_{\mathscr{B}} \boldsymbol{b}^{T}\left(\boldsymbol{N}^{p} \boldsymbol{p}+\boldsymbol{N}_{r}^{p} \boldsymbol{p}_{r}\right) J d V \tag{29b}\\
& \boldsymbol{F}_{E X T}=\int_{\mathscr{B}} \rho_{0} \boldsymbol{N}^{\phi T} \boldsymbol{G} d V+\int_{\partial \mathscr{B}} \boldsymbol{N}^{\phi T} \boldsymbol{t} d A . \tag{29c}
\end{align*}
$$

The quantity $\hat{\tau}=\left\{\tau_{11}, \tau_{22}, \tau_{33}, \tau_{12}, \tau_{23}, \tau_{13},\right\}^{T}$ is the vector containing the components of the symmetric Kirchhoff effective stress and $\rho_{0}=J \rho$ is the reference mass density of the soil watermixture. $\boldsymbol{B}=\left[\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \ldots, \boldsymbol{B}_{N Q}\right]$ is the classical strain-displacement matrix in spatial form, with \boldsymbol{B}_{A} $(A=1, \ldots, N Q)$

$$
\boldsymbol{B}_{A}=\left[\begin{array}{ccc}
N_{A, 1}^{\phi} & 0 & 0 \\
0 & N_{A, 2}^{\phi} & 0 \\
0 & 0 & N_{A, 3}^{\phi} \\
N_{A, 2}^{\phi} & N_{A, 1}^{\phi} & 0 \\
0 & N_{A, 3}^{\phi} & N_{A, 2}^{\phi} \\
N_{A, 3}^{\phi} & 0 & N_{A, 1}^{\phi}
\end{array}\right] .
$$

Matrix \boldsymbol{b} is given by the product $\boldsymbol{b}=\boldsymbol{m}^{T} \boldsymbol{B}$, where $\{\boldsymbol{m}\}=\{1,1,1,0,0,0\}^{T}$ for $n_{s d}=3$, and $\boldsymbol{G} \equiv \boldsymbol{g}$ is the gravity acceleration vector.

Time integration of the mass balance equation (Eq. (23)) leads to

$$
\begin{equation*}
\Delta t H_{\Delta t}^{h}(\phi, p, \tilde{\psi})=-\tilde{\psi}^{T}\left[\boldsymbol{J}(\boldsymbol{d})+\Delta t \boldsymbol{\Phi}(\boldsymbol{p})+\Delta t \boldsymbol{H}_{E X T}\right]=\mathbf{0}, \tag{30}
\end{equation*}
$$

with

$$
\begin{align*}
& \boldsymbol{J}(\boldsymbol{d})=-\int_{\mathscr{B}} \boldsymbol{N}^{p T}\left(J_{n+1}-J_{n}\right) d V \tag{31a}\\
& \boldsymbol{\Phi}(\boldsymbol{p})=\beta \int_{\mathscr{B}} \boldsymbol{E}^{T} J_{n+1} \tilde{\boldsymbol{v}}_{n+1} d V+(1-\beta) \int_{\mathscr{B}} \boldsymbol{E}_{n}^{T} J_{n} \tilde{\boldsymbol{v}}_{n} d V \tag{31b}\\
& \boldsymbol{H}_{E X T}=\int_{\partial \mathscr{B}} \boldsymbol{N}^{p T}\left[\beta Q_{n+1}+(1-\beta) Q_{n}\right] d A, \tag{31c}
\end{align*}
$$

where $\boldsymbol{N}^{p T}$ is the shape function matrix for the pressure field, $\boldsymbol{E}=\left[\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \ldots, \boldsymbol{E}_{N P}\right]$ the gradientpressure transformation matrix, with $\boldsymbol{E}_{A}(A=1, \ldots, N P)$

$$
\boldsymbol{E}_{A}=\operatorname{grad} N_{A}^{p}=\left[\begin{array}{c}
N_{A, 1}^{p} \\
N_{A, 2}^{p} \\
N_{A, 3}^{p}
\end{array}\right] .
$$

By adopting the implicit Eulero scheme ($\beta=1$), which is first order accurate and unconditionally stable, and referring to Darcy's velocity, $\tilde{\boldsymbol{v}}$ (Eq (31b)) can be rewritten as

$$
\begin{equation*}
\boldsymbol{\Phi}(\boldsymbol{p})=-\int_{\mathscr{B}} \boldsymbol{E}^{T} \frac{\boldsymbol{k}_{n+1}}{g \rho_{F}}\left[\boldsymbol{E}\left\{\boldsymbol{p}+\boldsymbol{p}_{r}\right\}_{n+1}-\rho_{F} \boldsymbol{g}\right] J_{n+1} d V \tag{32}
\end{equation*}
$$

with \boldsymbol{k} non-linear permeability tensor and $\left\{\boldsymbol{p}+\boldsymbol{p}_{r}\right\}$ vector of prescribed and unknown nodal pore pressures. For sake of brevity the reader is referred to (Borja and Alarcón 1995; Borja et al. 1998) for the discretized expression of G^{h} and $H_{\Delta t}^{h}$. Particularly, the first variation of G is:

$$
\begin{equation*}
\delta G^{h}(\phi, p, \tilde{\boldsymbol{\eta}})=\tilde{\boldsymbol{\eta}}^{T}\left[\boldsymbol{K}_{\phi \phi} \delta \boldsymbol{d}+\boldsymbol{K}_{\phi p} \delta \boldsymbol{p}\right], \tag{33}
\end{equation*}
$$

where

$$
\begin{align*}
\boldsymbol{K}_{\phi \phi} & =\int_{\mathscr{B}}\left[\boldsymbol{Z}^{T} \boldsymbol{a} \mathbf{Z}+\boldsymbol{Z}^{T}\left(J \boldsymbol{I}_{p}\right) \boldsymbol{Z}-\rho_{F} J \boldsymbol{N}^{\phi T} \boldsymbol{G} \boldsymbol{b}\right] d V \tag{34a}\\
\boldsymbol{K}_{\phi p} & =-\int_{\mathscr{B}} \boldsymbol{b}^{T} \boldsymbol{N}^{p} J d V \tag{34b}
\end{align*}
$$

$\boldsymbol{Z}=\left[\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{N Q}\right]$ is the full spatial gradient operator (see (de Souza Neto et al. 2011)), with components $\boldsymbol{Z}_{A}(A=1, \ldots, N Q)$

$$
\boldsymbol{Z}_{A}=\left[\begin{array}{c}
N_{A, 1}^{\phi} \mathbf{1} \\
N_{A, 2}^{\phi} \mathbf{1} \\
N_{A, 3}^{\phi} \mathbf{1}
\end{array}\right]
$$

where $\mathbf{1}$ is the second order identity tensor, with 3×3 dimension for $n_{s d}=3$. The quantity \boldsymbol{a} is the total tangent operator defined by

$$
\begin{equation*}
a=c+(\tau \oplus \mathbf{1})=\alpha-(\tau \ominus \mathbf{1}), \tag{35}
\end{equation*}
$$

where $\boldsymbol{\alpha}$ is the algorithmic tangent operator (Borja 2013)

$$
\begin{align*}
\boldsymbol{\alpha}= & \sum_{A=1}^{3} \sum_{B=1}^{3} a_{A B}^{e p} \boldsymbol{m}^{(A)} \otimes \boldsymbol{m}^{(B)} \\
& \sum_{A=1}^{3} \sum_{B \neq A}\left(\frac{\tau_{B}-\tau_{A}}{\lambda_{B}^{e t r}-\lambda_{A}^{e t r}}\right)\left(\lambda_{B}^{e t r} \boldsymbol{m}^{(A B)} \otimes \boldsymbol{m}^{(A B)}+\lambda_{A}^{e t r} \boldsymbol{m}^{(A B)} \otimes \boldsymbol{m}^{(B A)}\right), \tag{36}
\end{align*}
$$

with $\boldsymbol{m}^{(A)}=\boldsymbol{n}^{(A)} \otimes \boldsymbol{n}^{(A)}$, and $\boldsymbol{m}^{(A B)}=\boldsymbol{n}^{(A)} \otimes \boldsymbol{n}^{(B)}$ with \boldsymbol{n} (Eq. (8)). $\lambda_{A}^{e t r}$ is the trial elastic principal stretch and $a_{A B}^{e p}=\partial \tau_{A} / \partial \varepsilon_{B}$ (Borja and Tamagnini 1998) is the elastoplastic tangential modulus, obtained from the return mapping algorithm for determining the tensor $\boldsymbol{\tau}$.
\boldsymbol{I}_{p} is provided by the second and third integrals of Eq. (44), and gives

$$
\begin{equation*}
\boldsymbol{I}_{p}=p^{h}(\mathbf{1} \ominus \mathbf{1}-\mathbf{1} \otimes \mathbf{1}) \tag{37}
\end{equation*}
$$

then Eq. (30) holds

$$
\begin{equation*}
\Delta t \Delta H_{\Delta t}^{h}(\phi, p, \tilde{\psi})=-\tilde{\boldsymbol{\psi}}^{T}\left[\boldsymbol{K}_{p \phi} \delta \boldsymbol{d}+\boldsymbol{K}_{p p} \delta \boldsymbol{p}\right] \tag{38}
\end{equation*}
$$

where

$$
\begin{align*}
\boldsymbol{K}_{p \phi}= & -\int_{\mathscr{B}} J \boldsymbol{N}^{p T} \boldsymbol{b} d V-\beta \Delta t \int_{\mathscr{B}} \boldsymbol{E}^{T}\left(\frac{\boldsymbol{k}+\boldsymbol{k}^{\prime} J}{\rho_{F} g}\right)\left(\boldsymbol{E}\left\{\boldsymbol{p}+\boldsymbol{p}_{r}\right\}-\rho_{F} \boldsymbol{g}\right) \boldsymbol{b} J d V \\
& +\frac{\beta \Delta t}{\rho_{F} g} \int_{\mathscr{B}} \boldsymbol{E}^{T}(\boldsymbol{A}+\boldsymbol{W}) \boldsymbol{Z} J d V \tag{39a}\\
\boldsymbol{K}_{p p}= & -\frac{\beta \Delta t}{\rho_{F} g} \int_{\mathscr{B}} \boldsymbol{E}^{T} \boldsymbol{k} \boldsymbol{E} J d V \tag{39b}
\end{align*}
$$

\boldsymbol{k}^{\prime} operator is the first variation of the permeability tensor with respect to the Jacobian J of the deformation gradient $\boldsymbol{F} . \boldsymbol{A}$ has 3×9 dimension

$$
\begin{equation*}
\boldsymbol{A}=\left[\hat{v}_{1} \mathbf{1}, \hat{v}_{2} \mathbf{1}, \hat{v}_{3} \mathbf{1}\right], \tag{40}
\end{equation*}
$$

where \hat{v}_{i} are the components of the vector $\hat{\boldsymbol{v}}=\boldsymbol{k} \cdot\left(\boldsymbol{E}\left\{\boldsymbol{p}+\boldsymbol{p}_{r}\right\}-\rho_{F} \boldsymbol{g}\right) . \boldsymbol{W}=\left[\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \boldsymbol{W}_{3}\right]$ has 3×9 dimension as well

$$
\begin{aligned}
& \boldsymbol{W}_{1}=\left[\begin{array}{lll}
w_{111} & w_{121} & w_{131} \\
w_{211} & w_{221} & w_{231} \\
w_{311} & w_{321} & w_{331}
\end{array}\right] \\
& \boldsymbol{W}_{2}=\left[\begin{array}{lll}
w_{112} & w_{122} & w_{132} \\
w_{212} & w_{222} & w_{232} \\
w_{312} & w_{322} & w_{332}
\end{array}\right]
\end{aligned}
$$

$$
\boldsymbol{W}_{3}=\left[\begin{array}{lll}
w_{113} & w_{123} & w_{133} \\
w_{213} & w_{223} & w_{233} \\
w_{313} & w_{323} & w_{333}
\end{array}\right]
$$

where the components are obtained from $w_{i j k}=k_{i k} p_{, j}$.

The final discretized coupled system of equations can be written as

$$
\left\{\begin{array}{c}
\boldsymbol{r}_{\phi}(\boldsymbol{d}, \boldsymbol{p}) \tag{41}\\
\boldsymbol{r}_{p}(\boldsymbol{d}, \boldsymbol{p})
\end{array}\right\}=\left\{\begin{array}{c}
\boldsymbol{N}^{S}(\boldsymbol{d}) \\
\boldsymbol{J}(\boldsymbol{d})
\end{array}\right\}+\left\{\begin{array}{c}
\boldsymbol{N}^{F}(\boldsymbol{p}) \\
\beta_{0} \Delta t \boldsymbol{\Phi}(\boldsymbol{p})
\end{array}\right\}+\left\{\begin{array}{c}
-\boldsymbol{F}_{E X T} \\
\beta_{0} \Delta t \boldsymbol{H}_{E X T}
\end{array}\right\}=\left\{\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right\},
$$

and the Newton-Raphson incremental solution is calculated from

$$
\left[\begin{array}{cc}
K_{\phi \phi} & K_{\phi p} \tag{42}\\
K_{p \phi} & K_{p p}
\end{array}\right]_{k}\left\{\begin{array}{l}
\delta \boldsymbol{d} \\
\delta \boldsymbol{p}
\end{array}\right\}_{k+1}=\left\{\begin{array}{l}
\boldsymbol{r}_{\phi} \\
\boldsymbol{r}_{p}
\end{array}\right\}_{k}
$$

The tangent operator \boldsymbol{K} in Eq. (42) is in general non-symmetric and indefinite.

VALIDATION OF THE NUMERICAL CODE

The numerical analyses are performed by using GeoMatFEM, a Matlab research code for threedimensional coupled geomechanical simulations.

The code has been validated against two numerical examples (Borja et al. 1998), namely the uniform consolidation of a soil column and the consolidation of a strip foundation. Both numerical simulations assume fully saturated hyperelastic-plastic porous media.

Additionally, two experimental tests have been considered for validating the constitutive model.

Hyperelastic-plastic consolidation of a column

Let's consider a column of fully saturated soil with square base of 1 m side and 5 m height, as shown in Fig. 4. The mesh is composed by 10 three-dimensional finite elements. The material parameters are in shown in Table 1.

The initial stress configuration is not stress-free, but it balances the gravity load (Borja et al. 1998; Borja and Tamagnini 1998); it is obtained by an uncoupled small strain analysis, applying self-weight in three steps and then determining the internal stresses. We recall that nonzero initial stresses are required to activate the procedure, so a small initial value p_{0} and preconsolidation pressure $p_{c 0}$ have been assumed at all Gauss points for the first run of the model. The displacements are subsequently reinitialized to zero, and the consolidation analysis is carried
out by applying a vertical downward load $\Delta w=0.09 \mathrm{MPa}$ at the top of the soil column in three equal time steps at a constant rate of $0.03 \mathrm{MPa} /$ day, while time steps are increased $t_{n+1}=1.5 \Delta t_{n}$. The results of the consolidation analysis are shown in Figs. 5(a) and 5(b) in terms of total fluid potential and average degree of consolidation versus time, respectively. The total fluid potential $\Pi=\Pi^{p}+\Pi^{e}=$ $p /\left(\rho_{W} g\right)+x_{z}$ is calculated at the Gauss point A, with $X_{P G A}=[0.106 \mathrm{~m} 0.106 \mathrm{~m} 0.106 \mathrm{~m}]$ close to the column base. The average degree of consolidation $\bar{U}_{\text {ave }}$ and the time factor T are computed as

$$
\begin{equation*}
\bar{U}_{\text {ave }}=\frac{\bar{u}_{z}(t)}{\bar{u}_{z}(\infty)} \quad T=\frac{c_{v} t}{H_{0}^{2}}=\frac{\mu_{0} k}{\rho_{W} g} \frac{t}{H_{0}^{2}} . \tag{43}
\end{equation*}
$$

Fig. 6 reports the isochrones of Cauchy pore pressure predicted by the small strains and finite strains approaches; the obtained results are superimposed to those reported in (Borja et al. 1998), so proving the correctness of the implemented procedure.

The convergence velocity (Fig. 7) exhibits a quadratic profile, typical of Newton-Raphson schemes, so configuring on this side the correct implementation of the tangent operator.

Hyperelastic-plastic footstrip consolidation

The consolidation of an half-space of clay subjected to a flexible footing strip (Fig. 8(a)) has been additionally considered following (Borja et al. 1998).

A constant value of total potential equal to $\Pi=20.0 \mathrm{~m}$ is applied, together with an initial hydrostatic Cauchy pore pressure distribution as shown in Fig. 8(b).

The material data of the clay are the same as in the previous example but the porosity and permeability parameters change with the deformation of the porous matrix. The material properties are reported in Table 2, assuming an hyperelastic behavior for sand and and hyperelastic-plastic one for clays.

Three preloading stages (case \#1, case \#2 and case \#3) have been considered, leading to different initial stress states, similarly to what performed in the previous example. For case \#1 an initial stress state due to the self-weight has been considered, while for case \#2 and \#3 both self-weight and two preloading conditions have been assumed, equal to 0.015 MPa and 0.030 MPa , producing
two different over-consolidation states. Fig. 9(a) shows the evolution of vertical displacements for a node on top surface located on the symmetry plane. Fig. 9(b) depicts the evolution of Cauchy pore pressure $p=\theta / J$ at Gauss point B with $X_{P G B}=[0.106 \mathrm{~m} 0.106 \mathrm{~m} 16.211 \mathrm{~m}]$.

Again, as observed in the previous example, the results are superimposed to the benchmark ones and the convergence velocity shows a quadratic profile (Fig. 10).

Experimental tests

The constitutive model has been further validated against an isotropic compression test and a standard drained triaxial test (Callari et al. 1998; Al-Tabbaa 1987); the material parameters are listed in Table 3.

Isotropic compression test

A normally consolidated sample with initial isotropic pressure $p_{0}=p_{c 0}=0.1 \mathrm{MPa}$ has been reconstructed and a set of loading-unloading cycles has been applied. Figure 11 depicts the evolution of the specific volume v with Kirchhoff isotropic pressure P, evidencing the agreement between numerical results and experimental data, both in the loading and in the unloading stages.

Drained triaxial test

A normally consolidate sample is now subjected to an initial isotropic pressure $p_{0}=p_{c 0}=$ 0.3 MPa . The soil has been loaded in order to reach a deviatoric stress $Q=0.12 \mathrm{MPa}$ and then unloaded. Again, by considering Fig. 12, the real material response appears to be correctly caught by the numerical model.

THREE-DIMENSIONAL ANALYSIS

A consolidation process due to the filling of two tall silos over a fully saturated clay domain is considered.

Most foundation failures in clayey soils occur when a silo is quickly loaded for the first time. The rapid filling process leads to a possibly hazardous increase in pore water pressure, so reproducing a typical undrained condition associated to a decrease in effective stress, with eventual large
irreversible strains and possible mechanical failure (Dogangun et al. 2009) (Fig. 13). Water overpressure hinders soil compaction and causes dangerous shear deformations that could compromise the structural stability.

The investigated example has been inspired by the case study presented in (Puzrin et al. 2010). The example describes the soil behavior underneath two adjacent silos built in the Red River Valley, Canada, which did not have strength enough to resist to the applied loads. The two silos were too close, and therefore pressure bulbs under the foundations overlapped. This caused large stresses and, in turn, large settlements under the parts of the ring foundations. The final result was tilting and touching.

This proposed example, although simple and straightforward, is particularly suitable to investigate the potentiality of the approach, and specifically to evaluate the effects of a finite strains assumption on the modeled scenario. In fact, this geomechanical problem is of interest: a three-dimensional simulation is required, furthermore both material and geometric non-linearities must be taken into account, along with the interaction between solid and fluid phases. Additionally, as reported below, even the so called $P-\Delta$ effect can be caught thanks only to the introduced geometric non linearity.

Two cylindrical silos with 10 m diameter, 40 m height and placed at a distance of 2 mm one to the other (Fig. 14) have been reconstructed. The silos are built on a normally consolidated and fully saturated clay layer of 30 m , resting on a rigid rock base. In order to reduce the number of elements, only half of the model has been realized, to take advantage of the symmetry with respect to the X-Z plane. Lateral surfaces are assumed to be horizontally restrained with the bottom surface fixed; free flux can occur on top and bottom of the clay layer.

The soil discretization is composed by 3542 D20P8 mixed finite elements, with a total of 3622 elements, with 16644 nodes for the displacement field, 4356 of which also for the pore pressure field; the total degrees of freedom are 54288.

As previously done, an initial stage accounting for the self-weight, plus a surface pressure $p_{i}=$ 0.2 MPa , has been considered.

By assuming that the silos are used for the storage of cereals, a load of $0.8 \mathrm{t} / \mathrm{m}^{3}$ is added
to the consolidation analysis. The silos are modeled as rigid elastic elements (Young's modulus $E=1 \times 10^{4} \mathrm{MPa}$ and Poisson ratio $v=0$). Permeability k is calculated via the Kozeny-Carman equation (Eq. 18), whereas for the small strain analysis the value indicated in Table 4 applies.

The two silos are simultaneously filled during four constant time steps of 12 h , then the weight is maintained during the consolidation stage. The time steps are increased according to the equation: $\Delta t_{n+1}=1.5 \Delta t_{n}$. Fig. 15 shows the time evolution of the vertical displacements for the central point of the silos base (points C and D of Fig. 14), evidencing pretty similar results when small or finite strains are considered: particularly, a difference of 0.9% in the final settlements have been obtained; when horizontal displacements of top of silos are taken into account (Fig. 16, points A and B), the difference reaches 68% and the silos rotation predicted by the finite strains analysis is about three times higher $\left(1.56^{\circ}\right)$ than that reported by the small strains one. Such a difference evidences the $P-\Delta$ contribution, essential in the correct description of the ultimate scenario. Correspondingly, the represented situation is particularly hazardous, implying that the silos under such a rotation can come into contact (at approximately 90 days when the analysis is then stopped).

Fig. 17 shows the evolution of Cauchy pore pressure at points E and F (Fig. 14), i.e. 3 m below the top of clay layer. After the fast filling of the two silos, the pore pressure reaches the maximum peak value of 0.26 MPa for both small and finite strains analysis (typical undrained condition). Since initially the load is sustained by the pore pressure, the skeleton does not deform, and therefore the two models give a very similar result in terms of pressure peak. Further, with the evolution of pore pressure in time (drained condition), the results show a slightly lower rate of pore pressure if finite strains are accounted for, due to the change in permeability with soil deformation. The final value of pore pressure is hence of 0.031 MPa , slightly higher than the initial hydrostatic pressure of 0.030 MPa . This is the consequence of imposing a constant hydraulic potential at the bottom of the clay layer, and represents a local artesian condition due to the deformation of the soil. Finally, an overview of pore pressure evolution in finite strains regime is visible in Fig. 18, which shows the contours of Cauchy pore pressure for some time steps. The typical consolidation bulbs is evidenced under the two silos, which slowly dissipates until the initial hydrostatic condition is
reached (Fig. 18.f).
The results in terms of plastic deformations are plotted in Figs. 19 and 20. Both analyses give similar values but those from finite strains model are higher, plus a wider zone of soil plasticization between the two silos, producing in turn a differential settlement at silos' foundation $\Delta u_{z}=26.4 \mathrm{~cm}$ ($\Delta u_{z}=8.5 \mathrm{~cm}$ for the small strain model). By considering Fig. 20, it is interesting to observe two conical zones characterized by high deviatoric plastic deformations, resembling hence typical 3D shear bands of strain localization.

Fig. 21 depicts the plastic deformations plotted along vertical Z-Z axis (see Fig. 14), evidencing the relevance of a finite strains approach. Both volumetric and deviatoric strains show their peak in proximity of the silos' foundation, with a deformation mechanism essentially of deviatoric nature, as reported below. Finally, Fig. 22 plots the P-Q stress path for Gauss points G (see Fig. 14), showing no appreciable differences in terms of stress for small and finite strains analyses. Figs. 23 evidences that, even if the predicted volumetric stress is always higher than the deviatoric one, the deformation mechanism is mainly driven by deviatoric strains in the undrained stage (I; higher deviatoric strains and higher deviatoric strain rate) and by volumetric strains in the drained stage (II; consolidation, higher volumetric strain rate). Anyway, overall larger deviatoric strains (as reported by Fig. 21) show a typical soil behaviour more sensitive to shear straining, a mechanism appreciable via a finite strains approach only.

CONCLUSIONS

In this work a fully coupled hydro-mechanical model has been described and validated against available literature and experimental results. Particularly, the model has been developed within a 3D Finite Element research code by assuming material and geometric non-linearities, also introducing a dependence of permeability on deformation as well as a specific type of mixed finite element. The former allows for correctly reproducing fully saturated scenarios in finite strains, the latter for solving stability issues of the adopted formulation.

A consolidation case study has evidenced the potentialities of the code and the relevance of a finite strains approach, particularly when $P-\Delta$ effects must be accounted for in realistically reproducing
hazardous scenarios of soil-structure interaction. Together with the capability of reaching such an ultimate state of silos tilting, the upgraded code has even demonstrated to better describe the evolution of the deformation state for the foundation soil, experiencing a transition from higher deviatoric strains and higher deviatoric strain rates to higher volumetric strain rates when passing from an undrained stage to a drained one.

ACKNOWLEDGMENTS

Financial support from the Italian Ministry of Education, University and Research (MIUR) in the framework of the Project PRIN "COAN 5.50.16.01"- code 2015JW9NJT - is gratefully acknowledged.

APPENDIX I. FIRST VARIATION OF THE LINEAR MOMENTUM AND MASS BALANCE EQUATIONS

The variation of the linear momentum, Eq. (21), in the spatial form is written as:

$$
\begin{align*}
\delta G= & \int_{\mathscr{B}} \operatorname{grad} \boldsymbol{\eta}:(\boldsymbol{c}+\boldsymbol{\tau} \oplus \mathbf{1}): \operatorname{grad} \delta \boldsymbol{u} d V \\
& -\int_{\mathscr{B}} \operatorname{grad} \boldsymbol{\eta}:(\operatorname{Jp} \mathbf{1} \otimes \mathbf{1}): \operatorname{grad} \delta \boldsymbol{u} d V+\int_{\mathscr{B}} J^{\operatorname{Jg} \operatorname{grad}^{T} \boldsymbol{\eta}: \operatorname{grad} \delta \boldsymbol{u} d V} \\
& -\int_{\mathscr{B}} J \delta p \operatorname{div} \boldsymbol{\eta} d V-\int_{\mathscr{B}} \rho_{F} J \operatorname{div}(\delta \boldsymbol{u}) \boldsymbol{\eta} \cdot \boldsymbol{g} d V-\int_{\partial \mathscr{B}} \boldsymbol{\eta} \cdot \delta t d A, \tag{44}
\end{align*}
$$

where \boldsymbol{c} is the fourth order spatial tangent tensor (Borja and Alarcón 1995), $\boldsymbol{\tau} \oplus \mathbf{1}$ is a fourth order tensor representing the initial stress term and $J p \mathbf{1} \otimes \mathbf{1}$ is a fourth order tensor representing the pore pressure term. The quantities $\delta \boldsymbol{u}, \delta p$ and $\delta \boldsymbol{t}$ are the variation of the displacement vector, the Cauchy pore pressure and stress vector, respectively.

The first variation of mass balance, Eq. (23), integrated over a fixed Δt in the spatial configuration is:

$$
\begin{align*}
\delta H_{\Delta t}= & \int_{\mathscr{B}} \frac{\psi}{\Delta t} J \operatorname{div} \delta \boldsymbol{u} d V+\beta \int_{\mathscr{B}} \operatorname{grad} \psi \cdot \frac{J \boldsymbol{k}}{g \rho_{F}} \cdot \operatorname{grad} \delta \theta d V \\
& +\beta \int_{\mathscr{B}} \operatorname{grad} \psi \cdot\left(\frac{\boldsymbol{k}}{g \rho_{F}}+\frac{J}{g \rho_{F}} \frac{\partial \boldsymbol{k}}{\partial J}\right) \cdot\left[\operatorname{grad} p-\rho_{F} \boldsymbol{g}\right] J d V \\
& -\beta \int_{\mathscr{B}} \operatorname{grad} \psi \cdot \operatorname{grad} \delta \boldsymbol{u} \cdot \frac{\boldsymbol{k}}{g \rho_{F}} \cdot\left[\operatorname{grad} p-\rho_{F} \boldsymbol{g}\right] J d V \\
& -\beta \int_{\mathscr{B}} \operatorname{grad} \psi \cdot \frac{J \boldsymbol{k}}{g \rho_{F}} \cdot \operatorname{grad} d^{t} \delta \boldsymbol{u} \cdot \operatorname{grad} p d V-\beta \int_{\partial \mathscr{B}} \psi \delta Q d A, \tag{45}
\end{align*}
$$

where δQ is the variation of the flux Q through the surface $d A$.

REFERENCES

Abe, K., Soga, K., and Bandara, S. (2013). "Material point method for coupled hydromechanical problems." Journal of Geotechnical and Geoenvironmental Engineering, 140(3), 04013033.

Al-Tabbaa, A. (1987). "Permeability and stress-strain response of speswhite kaolin.." Ph.D. thesis, University of Cambridge, University of Cambridge.

Andresen, L., Petter Jostad, H., and Andersen, K. H. (2010). "Finite element analyses applied in design of foundations and anchors for offshore structures." International Journal of Geomechanics, 11(6), 417-430.

Armero, F. (1999). "Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions." Computer Methods in Applied Mechanics and Engineering, 171(3-4), 205-241.

Arnold, D. N. (1990). "Mixed finite element methods for elliptic problems." Computer Methods in Applied Mechanics and Engineering, 82(1-3), 281-300.

Arnold, D. N., Brezzi, F., and Fortin, M. (1984). "A stable finite element for the stokes equations." Calcolo, 21(4), 337-344.

Atluri, S. N. and Zhu, T. (1998). "A new meshless local petrov-galerkin (mlpg) approach in computational mechanics." Computational Mechanics, 22(2), 117-127.

Bienen, B., Ragni, R., Cassidy, M. J., and Stanier, S. A. (2015). "Effects of consolidation under a penetrating footing in carbonate silty clay." Journal of Geotechnical and Geoenvironmental Engineering, 141(9), 04015040.

Borja, R. I. (2013). Plasticity. Springer.
Borja, R. I. and Alarcón, E. (1995). "A mathematical framework for finite strain elastoplastic consolidation part 1: Balance laws, variational formulation, and linearization." Computer Methods in Applied Mechanics and Engineering, 122(1), 145-171.

Borja, R. I. and Tamagnini, C. (1998). "Cam-clay plasticity part iii: Extension of the infinitesimal model to include finite strains." Computer Methods in Applied Mechanics and Engineering, 155(1), 73-95.

Borja, R. I., Tamagnini, C., and Alarcón, E. (1998). "Elastoplastic consolidation at finite strain part 2: finite element implementation and numerical examples." Computer Methods in Applied Mechanics and Engineering, 159(1), 103-122.

Brezzi, F. and Bathe, K.-J. (1990). "A discourse on the stability conditions for mixed finite element formulations." Computer Methods in Applied Mechanics and Engineering, 82(1-3), 27-57.

Caldwell, J. A., Ferguson, K., Schiffman, R. L., and van Zyl, D. (1984). "Application of finite strain consolidation theory for engineering design and environmental planning of mine tailings impoundments."Sedimentation Consolidation Models—Predictions and Validation, ASCE, 581606.

Callari, C., Auricchio, F., and Sacco, E. (1998). "A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity." International Journal of Plasticity, 14(12), 1155-1187.

Carbonell, J. M., Oñate, E., and Suárez, B. (2009). "Modeling of ground excavation with the particle finite-element method." Journal of Engineering Mechanics, 136(4), 455-463.
de Souza Neto, E. A., Peric, D., and Owen, D. R. J. (2011). Computational methods for plasticity: theory and applications. John Wiley \& Sons.

Dogangun, A., Karaca, Z., Durmus, A., and Sezen, H. (2009). "Cause of damage and failures in silo structures." Journal of Performance of Constructed Facilities, 23(2), 65-71.

Guzmán, J. and Sánchez, M. A. (2015). "Max-norm stability of low order taylor-hood elements in three dimensions." Journal of Scientific Computing, 65(2), 598-621.

Huang, J., Xie, X., Zhang, J., Li, J., and Wang, W. (2014). "Nonlinear finite strain consolidation analysis with secondary consolidation behavior." Mathematical Problems in Engineering, 2014, $1-8$.

Hughes, T. J. (2012). The finite element method: linear static and dynamic finite element analysis. Courier Corporation.

Kardani, M., Nazem, M., Sheng, D., and Carter, J. P. (2013). "Large deformation analysis of geomechanics problems by a combined rh-adaptive finite element method." Computers and Geotechnics, 49, 90-99.

Lee, W. F., Liao, H., Chang, M., Wang, C., Chi, S., and Lin, C. (2012). "Failure analysis of a highway dip slope slide." Journal of Performance of Constructed Facilities, 27(1), 116-131.

Lewis, R. W. and Schrefler, B. A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley.

Marsden, J. E. and Hughes, T. J. (1994). Mathematical foundations of elasticity. Courier Corporation.

Meguid, M. A., Rowe, R., and Lo, K. (2002). "3d effects of surface construction over existing subway tunnels." International Journal Geomechanics, 2(4), 447-469.

Mohammadi, S. and Taiebat, H. (2014). "H-adaptive updated lagrangian approach for largedeformation analysis of slope failure." International Journal of Geomechanics, 15(6), 04014092.

Nazem, M., Sheng, D., and Carter, J. P. (2006). "Stress integration and mesh refinement for large deformation in geomechanics." International Journal for Numerical Methods in Engineering, 65(7), 1002-1027.

Osman, A. S. and Randolph, M. F. (2011). "Analytical solution for the consolidation around a laterally loaded pile." International Journal of Geomechanics, 12(3), 199-208.

Puzrin, A. M., Alonso, E. E., and Pinyol, N. M. (2010). Geomechanics of failures. Springer Science \& Business Media.

Qi, S., Simms, P., and Vanapalli, S. (2017). "Piecewise-linear formulation of coupled large-strain consolidation and unsaturated flow. i: Model development and implementation." Journal of Geotechnical and Geoenvironmental Engineering, 143(7), 04017018.

Simo, J. (1992). "Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory." Computer Methods in Applied Mechanics and Engineering, 99(1), 61-112.

Simo, J. and Meschke, G. (1993). "A new class of algorithms for classical plasticity extended to finite strains. application to geomaterials." Computational Mechanics, 11(4), 253-278.

Singh, R. P., Ojha, C. S., Prasad, O., and Singh, M. (2016). "Finite volume approach for finite strain consolidation." International Journal for Numerical and Analytical Methods in Geomechanics,

40, 117-140.
Song, X. and Borja, R. I. (2014). "Mathematical framework for unsaturated flow in the finite deformation range." International Journal for Numerical Methods in Engineering, 97(9), 658682.

Spiezia, N., Salomoni, V. A., and Majorana, C. E. (2016). "Plasticity and strain localization around a horizontal wellbore drilled through a porous rock formation." International Journal of Plasticity, 78, 114-144.

Wang, C., Wang, Y., Peng, C., and Meng, X. (2016). "Smoothed particle hydrodynamics simulation of water-soil mixture flows." Journal of Hydraulic Engineering, 142(10), 04016032.

Wang, D., Hu, Y., and Randolph, M. F. (2009). "Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay." Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 355-365.

Wriggers, P. (2008). Nonlinear finite element methods. Springer Science \& Business Media.
Zhang, J., Cui, X., Huang, D., Jin, Q., Lou, J., and Tang, W. (2015). "Numerical simulation of consolidation settlement of pervious concrete pile composite foundation under road embankment." International Journal of Geomechanics, 16(1), B4015006.

Zhang, W., Yuan, W., and Dai, B. (2018). "Smoothed particle finite-element method for large-deformation problems in geomechanics." International Journal of Geomechanics, 18(4), 04018010.

Zhu, H. and Randolph, M. F. (2009). "Large deformation finite-element analysis of submarine landslide interaction with embedded pipelines." International Journal of Geomechanics, 10(4), 145-152.

List of Tables

1 Material parameters for the hyperelastic-plastic MCC model. 28
2 Material parameters for plane strain footstrip consolidation problem. 29
3 Material parameters adopted for the speswhite kaolin (Callari et al. 1998; Al-Tabbaa 1987). 30

4 Material parameters for the clay layer (3D analysis). 31

TABLE 1

Parameter	U.M.	Small strains	Finite strains
μ_{0}	MPa	0.2	0.2
α		0.0	0.0
\tilde{k}		0.0476	-
$\tilde{\lambda}$		0.1667	-
\hat{k}		-	0.05
$\hat{\lambda}$		-	0.2
M		1.00	1.00
p_{0}	MPa	-0.01	-0.01
$p_{c 0}$	MPa	-0.01	-0.01
$\epsilon_{v 0}^{e}$		0.00	0.00
ρ_{S}	$\mathrm{t} / \mathrm{mm}^{3}$	2.7×10^{-9}	2.7×10^{-9}
ρ_{W}	$\mathrm{t} / \mathrm{mm}^{3}$	1.0×10^{-9}	1.0×10^{-9}
φ		0.7024	0.7024
k	$\mathrm{~mm} / \mathrm{s}$	1.0×10^{-5}	1.0×10^{-5}

TABLE 2

Sand layer					
Parameter	U.M.	Small strains	Finite strains		
v		0.0	0.0		
φ_{0}		-	0.4118		
ρ_{S}	$\mathrm{t} / \mathrm{mm}^{3}$	-	2.7×10^{-9}		
ρ_{W}	$\mathrm{t} / \mathrm{mm}^{3}$	-	1.0×10^{-9}		
ρ	$\mathrm{t} / \mathrm{mm}^{3}$	$2,00 \times 10^{-9}$	-		
Clay layer					
Parameter	U.M.	Small strains	Finite strains		
φ	0.5441				0.5441
k	$\mathrm{~mm} / \mathrm{s}$	1.0×10^{-6}	1.0×10^{-6}		

TABLE 3

Parameter	U.M.	Values
α		90.0
\hat{k}		0.013
$\hat{\lambda}$		0.93
M		0.80
$\epsilon_{v 0}^{e}$		0.00
ν_{0}		2.37

TABLE 4

Parameters	U.M.	Small strain	Finite strain
μ_{0}	MPa	5.0	5.0
α		0.0	0.0
\tilde{k}		0.0196	-
$\tilde{\lambda}$		0.0385	-
\hat{k}		-	0.02
$\hat{\lambda}$		-	0.04
M		1.00	1.00
p_{0}	MPa	-0.050	-0.050
$p_{c 0}$	MPa	-0.050	-0.050
$\epsilon_{v 0}^{e}$		0.00	0.00
ρ_{S}	$\mathrm{t} / \mathrm{mm}^{3}$	2.7×10^{-9}	2.7×10^{-9}
ρ_{W}	$\mathrm{t} / \mathrm{mm}^{3}$	1.0×10^{-9}	1.0×10^{-9}
φ		0.36	0.36
k	$\mathrm{~mm} / \mathrm{s}$	0.6328×10^{-5}	-
D	mm	-	1.0×10^{-3}
μ	$\mathrm{MPa} \cdot \mathrm{s}$	-	1.0×10^{-9}

List of Figures

1 Yield Surface for the Modified Cam-Clay model and Critical State Line in the $P-Q$ plane. 35
2 Bi-logarithmic hardening law in terms of P and v 36
3 The displacement-pressure coupled finite element. 37
4 Hyperelastic-plastic consolidation of a column (Δw is the vertical load and f indicates the free volumetric flow). 38
5 One-dimensional hyperelastic-plastic consolidation. 39
(a) Total potential Π, at Gauss point A 39
(b) Average degree of consolidation versus time factor 39
6 One dimensional hyperelastic-plastic consolidation: isochrones of Cauchy pore pressures. 40
(a) Small strain 40
(b) Finite strain 40
7 Convergence profile of Newton-Raphson iterations. 41
(a) Small strain 41
(b) Finite strain 41
8 Plane strain footstrip consolidation problem. 42
(a) Finite element mesh. (The dark elements are the drainage sand layer, Δw is the vertical load and f indicates the free volumetric flow) 42
(b) Initial pore water pressure 42
9 Plane strain hyperelastic-plastic consolidation. Case \#1, \#2 and \#3 assume finite strains. Empty markers reproduce benchmark results (Borja et al. 1998). 43
(a) Ground surface settlement at centerline 43
(b) Cauchy pore pressure at point B 43
10 Convergence profile of Newton-Raphson iterations. 44
(a) Small strain 44
(b) Finite strain 44
11 Isotropic compression test, comparison between FEM model and experimental data 45
12 Drained triaxial test, comparison between FEM model and experimental data. 46
(a) Stress invariants ratio versus volumetric deformation 46
(b) Stress invariants ratio versus deviatoric deformation 46
13 Examples of silos failure (Dogangun et al. 2009). 47
(a) 47
(b) 47
14 Finite element model of the two silos. 48
(a) Three-dimensional view 48
(b) X -Z plane view 48
15 Vertical displacement at the silos base. 49
16 Horizontal displacement with respect to the Z-Z axis. 50
17 Cauchy pore pressure. 51
18 Deformed meshes and contours of Cauchy pore pressure assuming finite strains. 52
(a) $t=48 \mathrm{~h}$ 52
(b) $t=54 \mathrm{~h}$ 52
(c) $\mathrm{t}=92 \mathrm{~h}$ 52
(d) $t=270 \mathrm{~h}$ 52
(e) $\mathrm{t}=1170 \mathrm{~h}$ 52
(f) $t=5730 \mathrm{~h}$ 52
19 Volumetric plastic strain at the end of consolidation analysis. 53
(a) Finite strain analysis 53
(b) Small strain analysis 53
20 Deviatoric plastic strain at the end of consolidation analysis. 54
(a) Finite strain analysis 54
(b) Small strain analysis 54
21 Plastic strain along vertical Z-Z axis at the end of consolidation analysis. 55
(a) Volumetric plastic strain 55
(b) Deviatoric plastic strain 55
22 Stress path at Gauss point G. 56
23 Stress - strain curves for Gauss point G 57
(a) Isotropic stress versus volumetric plastic strain 57
(b) Deviatoric stress versus deviatoric plastic strain 57

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

(a)

(b)

Fig. 19

(a)

(b)

Fig. 20

Fig. 21

Fig. 22

Fig. 23

