630 research outputs found

    Analysis of WIMP and Post WIMP Interactive Systems based on Formal Specification

    Get PDF
    While designing interactive software, the use of a formal specification technique is of great help by providing non-ambiguous, complete and concise descriptions. The advantages of using such a formalism is widened if it is provided by formal analysis techniques that allow to prove properties about the design, thus giving an early verification to the designer before the application is actually implemented. This paper presents how models built using the Interactive Cooperative Objects formalism (ICOs) are amenable to formal verification. The emphasis is on the behavioral part of the description of the interactive systems and more precisely on the properties at the interaction technique level. However, the process and the associated tools can be generalized to the other parts of the interactive systems (including the non-interactive parts)

    Multi-touch interaction for interface prototyping

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Improving Usability of Interactive Graphics Specification and Implementation with Picking Views and Inverse Transformations

    Get PDF
    Specifying and programming graphical interactions are difficult tasks, notably because designers have difficulties to express the dynamics of the interaction. This paper shows how the MDPC architecture improves the usability of the specification and the implementation of graphical interaction. The architecture is based on the use of picking views and inverse transforms from the graphics to the data. With three examples of graphical interaction, we show how to express them with the architecture, how to implement them, and how this improves programming usability. Moreover, we show that it enables implementing graphical interaction without a scene graph. This kind of code prevents from errors due to cache consistency management

    Evaluation of formal IDEs for human-machine interface design and analysis: the case of CIRCUS and PVSio-web

    Get PDF
    Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs) based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.This work is partially supported by: Project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) PhD scholarship

    Software support for multitouch interaction: the end-user programming perspective

    Get PDF
    Empowering users with tools for developing multitouch interaction is a promising step toward the materialization of ubiquitous computing. This survey frames the state of the art of existing multitouch software development tools from an end-user programming perspective.This research has been partially funded by the EUFP7 project meSch (grant agreement 600851 and CREAx grant (Spanish Ministry of Economy and Competitivity TIN2014-56534-R

    A reflective characterisation of occasional user

    Get PDF
    This work revisits established user classifications and aims to characterise a historically unspecified user category, the Occasional User (OU). Three user categories, novice, intermediate and expert, have dominated the work of user interface (UI) designers, researchers and educators for decades. These categories were created to conceptualise user's needs, strategies and goals around the 80s. Since then, UI paradigm shifts, such as direct manipulation and touch, along with other advances in technology, gave new access to people with little computer knowledge. This fact produced a diversification of the existing user categories not observed in the literature review of traditional classification of users. The findings of this work include a new characterisation of the occasional user, distinguished by user's uncertainty of repetitive use of an interface and little knowledge about its functioning. In addition, the specification of the OU, together with principles and recommendations will help UI community to informatively design for users without requiring a prospective use and previous knowledge of the UI. The OU is an essential type of user to apply user-centred design approach to understand the interaction with technology as universal, accessible and transparent for the user, independently of accumulated experience and technological era that users live in

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    A Java Implementation of a Portable Desktop Manager

    Get PDF
    Computers equipped with a Graphical User Interface (GUI) and connected to the Internet are common in both the business and educational communities. These computers, using a web browser, easily share programs written in the Java programming language that are able to execute on a variety of heterogeneous machines. While programs written in many languages will not execute unmodified on different computing platforms because of portability restrictions, Java has overcome these limitations and provides a platform independent language. However, every programming language is limited, and no language provides all the features required for every program. Therefore, creation of any portable program must consider not only the language, but also the architecture and operating system constraints of the target machines. A desktop manager program was developed using the Java programming language. This program provides a uniform user interface to manage other programs and executes on multiple computer platforms
    corecore