
Electronic Communications of the EASST
Volume 69 (2013)

Guest Editors: Judy Bowen, Steve Reeves
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the

5th International Workshop on

Formal Methods for Interactive Systems

(FMIS 2013)

Analysis of WIMP and Post WIMP Interactive Systems based on

Formal Specification

J. L. Silva1, C. Fayollas1, A. Hamon1, P. Palanque1, C. Martinie1, E. Barboni1

15 Pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ECEASST

2 / 15 Volume 69 (2013)

Analysis of WIMP and Post WIMP Interactive Systems based on

Formal Specification

J. L. Silva1, C. Fayollas1, A. Hamon1, P. Palanque1, C. Martinie1, E. Barboni1

1IRIT, Université Paul Sabatier, 118, route de Narbonne

31062 Toulouse Cedex 9, France

{silva, fayollas, hamon, palanque, martinie, barboni}@irit.fr

Abstract: While designing interactive software, the use of a formal specification

technique is of great help by providing non-ambiguous, complete and concise

descriptions. The advantages of using such a formalism is widened if it is provided by

formal analysis techniques that allow to prove properties about the design, thus giving an

early verification to the designer before the application is actually implemented. This

paper presents how models built using the Interactive Cooperative Objects formalism

(ICOs) are amenable to formal verification. The emphasis is on the behavioral part of the

description of the interactive systems and more precisely on the properties at the

interaction technique level. However, the process and the associated tools can be

generalized to the other parts of the interactive systems (including the non-interactive

parts).

Keywords: Formal methods, interactive systems, object oriented Petri nets, colored Petri

nets, Analysis.

1 Introduction

The design and engineering of interactive systems presents several challenges. Advanced

software engineering techniques and tools are required to meet critical requirements such as

reliability, dependability, safety or resilience. The analysis in the early phases of development

plays an important role for a successful development. Therefore, for a development that

anticipates potential problems, the analysis of solutions in the early phases of development is

crucial as their results can then be iteratively injected in the development cycle. The aim of

this paper is to present an approach for the analysis as prescription for implementation of

interactive systems formally described using the formal description technique called ICO [19]

(which stands for Interactive Cooperative Objects) for the engineering and development of

usable and reliable user interfaces. ICO models are used for the design and engineering of

interactive systems due to its several associated advantages such as unambiguity of

descriptions, underlying semantics in terms of High-Level Petri nets (making models amenable

to formal verification) etc. [19]. The paper describes an effort to analyze ICO-based interactive

systems through the use of the advancements of the Petri net community and in particular in

the area of Colored Petri Nets (CPN). Colored Petri net models support checking of properties

based on patterns [23]. These patterns help analysts to generate and verify relevant properties

on models. When a property is not true for a given model, the extraction of scenarios leading

to states in which the property is not true provides an important aid to redesign. The analysis

power of the approach and how it can support the analysis of various aspects of user interfaces

are demonstrated in this paper. While applicable to all the elements of an interactive system,

we focus on the analysis of interaction techniques (both WIMP and post-WIMP, cf. section 3)

that are illustrated through two examples.

mailto:camille.fayollas
mailto:%7d@irit.fr

Analysis of WIMP and Post-WIMP Interactive Systems based on Formal Specification

Proc. FMIS 2013 3 / 15

The paper makes two contributions:

 It introduces an analysis technique for ICO-based interactive systems that is

independent of the interaction technique;

 It shows that this analysis based on property patterns is an adequate approach for the

verification of properties of interactive systems.

The next section of the paper presents an overview of the state of the art of interactive systems

engineering approaches providing analysis support. The paper then moves from the description

of the proposed approach to the analysis results demonstrated through application examples.

2 Background

Currently the vast majority of approaches used to develop different interaction techniques are

tackled by the use of usual programming languages. The use of programming languages poses

some advantages when compared to the use of models but also disadvantages such as reduced

analysis support. In fact the approaches addressing the analysis of source code (e.g. static and

dynamic program analysis) are limited to the analysis of reduced subsets of the language.

Additionally some techniques need the creation of models from the source code. The analysis

of programming languages using static program analysis are commonly presented as fast and

inaccurate [26]. Alternatively the use of dynamic program analysis must be executed with

sufficient test inputs to produce interesting results [26]. The development of interaction

techniques based on models provides by itself an advantage in terms of analysis support. Some

approaches based on models providing analysis support are presented. The IVY tool [8]

enables systematic analysis of properties of interactive behavior using Modal Action Logic

(MAL) and the SMV model checker [17]. Marigold [27] addresses limited validation and

verification analysis of interactive systems based on reachability graph analysis. The analysis

addresses only properties concerning correctness (i.e. safety, liveness and mode confusion).

However to reduce this limitation Marigold has the ability to export the specification to a file

format loadable by the integrated net analyser tool [21] offering other analysis facilities.

Proton++ [14] enables the modeling of post-WIMP interfaces but only provides static analysis

support in terms of gesture conflict detection between models. The VEG (Visual Event

Grammars) specification based on grammars [7] enable, with the model checker Spin [9], the

verification of properties and the detection of deadlocks and unreachable states. ICO [19]

provides support for validation and verification but only through invariant analysis

(Place/Transition invariants) provided by the Petshop tool. Finally, colored Petri nets (CPN) is

the more complete approach in terms of analysis enabling validation, verification and

performance analysis accomplished by all the different types of analysis techniques except

invariant. The analysis of CPN models is supported by the CPN Tools [12].

Recent advances identified the lack of a formal description technique that adequately provides

executable models and expressive power to deal with the formal specification of different

interactive systems (e.g. ICO) and providing adequate analysis supports (e.g. CPN Tools).

Martinie et al. [16] introduced an approach to reduce this gap converting ICO models into

CPN models. Based on this advance, this paper shows the CPN analysis benefits provided to

the development of ICO-based interactive systems. This goes beyond previous work we did on

property verification which were only based on basic Petri nets [20].

3 WIMP and Post-WIMP Examples

This paragraph aims at describing the differences between WIMP and post-WIMP interaction

techniques paradigms; and will illustrate them through various examples. WIMP interaction

 ECEASST

4 / 15 Volume 69 (2013)

paradigms and their associated HMIs (Human-Machines Interfaces) are defined as GUIs

composed of widgets, graphical components that allow the user to trigger systems commands

while manipulating them. A complete description of this interaction paradigm can be found in

[6]. From this definition, every interaction technique which enriches the WIMP paradigm is

thus tagged as post-WIMP ([22]).

As this paper context lies with critical embedded systems, and interactive cockpits in

particular, the following examples will illustrate the case studies supporting our research. On

one hand, we intend to target actual CDS (Control and Display Systems) while on the other

hand we evaluate our specification/analysis capabilities with regards to future HMI concepts

for more integrated interactive cockpits.

The actual CDS is the interactive system in the cockpit. It allows the display of aircraft

parameters on output devices called Display Units but it also allows the pilots to interact with

these parameters, using devices called KCCUs (Keyboard Cursor Control Units) gathering a

keyboard and a mouse for each pilot. Pilots-CDS interactions are based on the WIMP

paradigm and mostly rely on the KCCUs input modality. Figure 1 presents an aircraft cockpit

together with a screen shot of an interactive application: a part of the Flight Control Unit

Backup responsible for the back-up of the configuration of navigation displays and the settings

of the autopilot state and parameters. For sake of safety, the WIMP paradigm has been studied

and standardized to be used in aircraft cockpits [3].We also proposed a mechanism to secure

these interactive components in order to extend their use in the cockpits towards more critical

HMIs which extends previous work [25].

Figure 1 - Example of an aircraft cockpit and screen shot (left) of a WIMP aircraft application (right)

While WIMP HMIs have thus been thoroughly tested and validated over the years; this is not

the case for touch-based interfaces for which no standards are available. Since multi-touch

interactions combine several concurrent touch inputs, their multimodal nature makes them fall

into the post-WIMP category. And because this interaction paradigm is envisioned for future

cockpit we propose a tool-supported method to analyze their specifications. Beyond the always

evolving ones provided by major players such as Microsoft [18] or Apple [2] which are of

course conflicting, no dedicated programming environments and no long-term experience to

build upon. This ends up with even less dependable interfaces where faults are distributed to

the hardware, the operating systems, the interaction drivers and finally the application itself.

However, the technological maturity and the potential gain such HMI will provide lead the

major aeronautical actors to study their implementation inside their future cockpits.

Analysis of WIMP and Post-WIMP Interactive Systems based on Formal Specification

Proc. FMIS 2013 5 / 15

This paper aims at conciliate these new interaction paradigms with the usability and reliability

they need to provide to enter newest cockpits. For this demonstration purpose, we consider a

multi-touch display providing pilots with a navigation application. This application enables

multi-touch interactions such as Pinch for zooming (presented in Figure 7), 2-Fingers

rotations, etc.

4 Generic Process Analysis

The Petri net formalism enables the use of several analysis capabilities. This set of capabilities

is divided into three groups addressed by different types of analysis techniques:

 validation, accomplished by interactive simulation (step by step), invariant, structural

and reachability graph analysis;

 verification, accomplished by invariant, structural and reachability graph analysis;

 performance analysis, accomplished by simulation and by computation of

performance according to quantitative information such as time [15].

Model based analysis techniques concerned with the validation and verification are considered

in this paper. In particular the focus is on invariant, structural and reachability graph analysis.

This section describes the tool support and analysis process.

Tool support and Process

To achieve the analysis of the formal description of interactive systems based on ICO models

the Petshop [4] and CPN tools [11] are used. Petshop, the tool supporting the ICO notation, is

used to perform the invariant analysis while the CPN Tools is used to accomplish the structural

analysis and reachability graph analysis. The expressive power of ICO notation is higher than

the one of CPN meaning that tools supporting analysis of CPN models are not directly

applicable. There is thus a need to convert ICO models to CPN to accomplish the analysis

using the associated tools (i.e. CPN tools). The translation from ICO models to CPN models

means that some information is lost. However, for analysis purpose those simplifications have

no negative implications since the features used for the analysis (e.g. behavior) remains

present in the translated model, i.e. bugs in ICO models are also bugs in CPN models and vice

versa. The description of the translation process is not described here as it is out of the scope

of this paper (see [16] for a description of this process). The focus here is to demonstrate that

the various analysis that can be performed on CPN models are useful to assess interactive

systems modeled in ICO. The analysis process accomplished is divided in two parts:

 Synchronous - accomplished while creating the ICO models. It is achieved using the

Petshop and enables invariant analysis;

 Asynchronous - accomplished after the creation of the ICO models (previously

converted into CPN models) using CPN Tools for performing structural analysis and

reachability analysis based on the creation and analysis of the corresponding

reachability graph.

The process for both invariant and structural analysis is straightforward, standard properties

like liveness and fairness are directly provided by CPN Tools. In contrast the process for

reachability graph analysis involves some work related the specification of properties over the

graph applying queries to relevant states. Queries are used to request information about the

generated reachability graph that demonstrates the truth of corresponding properties.

Particularly relevant is the State Space (SS) tool [10] that generates a reachability graph that

defines the states that can be reached from some starting state. Each node of the graph

represents an execution state. Arcs represent the binding of particular values (e.g. actions)

 ECEASST

6 / 15 Volume 69 (2013)

from one state to a new one. Figure 2 illustrates part of one of these graphs. The whole graph

represents all possible executions of a system showing which actions can be executed in each

system state. Each node is numbered and labeled with its number of input/output arcs. Arc and

node labels are hidden by default in the tool, but can be checked interactively. Figure 2 shows

the arc caption 3 from state 1 to 4 (in the top) and part of the node 1 content (right hand side).

Provided queries together with CPN ML code (an extension of the functional programming

language Standard ML) are used to write specific queries about the CPN models, for example

to demonstrate that the system always works as expected. The returned result is either that the

query is true of all relevant states or that the query fails to be true, in which case the path to the

failing state is deduced. This path can then be used to explore situations that may be of interest

from the perspective of the design of the system. More details about these tools are contained

in the CPN tools State Space manual [10]. Additionally, properties based on patterns can be of

interest. Silva et al. [23] proposes a set of algorithms for the identification and verification of

properties that are generic for different systems (e.g. consistency, reachability and

precedence). The pattern defines an algorithm skeleton describing how the reachability graph

is to be explored (which queries are needed) to perform the verification. These algorithms are

instantiated in order to accomplish the analysis for a particular example. More details about

how these algorithms are instantiated and verified are described in [23].

A description of each analysis technique for validation and verification are presented in the

following sub-sections.

Figure 2 –Reachability graph

Invariant Analysis

The Invariant analysis is used to avoid state-explosion problem and poor diagnostics. The

properties are independent of initial state and can be computed using linear algebraic

techniques. The invariant analysis is divided into two types:

 Place invariant (P-invariant) - provides support for verifying that some places will

always contain a token (i.e. no token loss). This means that whatever states the model

is in, and whatever events are produced, these places will never lose their resources i.e.

the number of tokens set in these places at the initial state remains unchanged.

 Transition invariant (T-invariant) - provides support for demonstrating liveness of

transitions. For example, it provides support for ensuring that the user will always be

able to perform a particular action or that at least one action will always be available

for the user.

Structural Analysis

Using this analysis technique several properties can be verified such as:

 Home properties - determines whether the marking of the specified node is a home

marking, i.e., whether it can be reached from all reachable markings. This property is

3:1->4 transducer'rawtouchEventDown 1: {f={id=1,posX=0,posY=0,timeSt=0}}

4
1:5

3
1:5

7
2:7

12
1:3

11
2:7

6
2:7

14
1:4

15
1:3

16
1:5

13
1:5

10
1:4

2
1:5

1
0:3

1:

transducer'fingerPool 1: 1`{id=1,posX=0,posY=0,timeSt=0}++

1`{id=2,posX=0,posY=0,timeSt=0}++

1`{id=3,posX=0,posY=0,timeSt=0}

transducer'Pressing 1: empty

transducer'EVTdown 1: empty

transducer'EVTup 1: empty

transducer'EVTmove 1: empty

pinch'nbFingerInModel 1: empty

pinch'p1 1: empty

pinch'p2 1: empty

pinch'temp 1: empty

pinch'EVTdown 1: empty

pinch'EVTup 1: empty

pinch'Pressing 1: empty

pinch'EVTmove 1: empty

1:

transducer'fingerPool 1: 1`{id=1,posX=0,posY=0,timeSt=0}++

1`{id=2,posX=0,posY=0,timeSt=0}++

1`{id=3,posX=0,posY=0,timeSt=0}

transducer'Pressing 1: empty

transducer'EVTdown 1: empty

transducer'EVTup 1: empty

transducer'EVTmove 1: empty

pinch'nbFingerInModel 1: empty

pinch'p1 1: empty

pinch'p2 1: empty

pinch'temp 1: empty

pinch'EVTdown 1: empty

pinch'EVTup 1: empty

pinch'Pressing 1: empty

pinch'EVTmove 1: empty

Analysis of WIMP and Post-WIMP Interactive Systems based on Formal Specification

Proc. FMIS 2013 7 / 15

the basis for demonstrating that a model is reinitializable (an important feature of

critical systems);

 Liveness properties - a net is live, if all its transitions are live in the initial marking,

i.e., no state is reachable in which a transition is dead (deadlock-freedom) [24];

 Fairness properties - a transition t is fair if t occurs infinitely often in every Infinite

Firing Sequences where t is enabled infinitely often [24]. This property is important to

ensure that no transition is delayed indefinitely.

Reachability Graph Analysis

As stated, this analysis technique enables the verification of generic properties based on

patterns (e.g. consistency) and specific properties only valid in a specific example.

5 Application to Interaction Techniques

This section describes the analysis accomplished following the stated approach on two

interactive systems formally described in Petshop. ICO models and some of the corresponding

CPN models obtained after the translation as well as analysis results are presented.

Examples focus on the description of two different interaction techniques (WIMP and post-

WIMP) by describing how raw events coming from the input devices are transformed into

higher-level events used by graphical components. For each interaction technique two models

at different levels of abstraction (low-level and higher-level) are presented.

Figure 3 – ICO mouse transducer model

WIMP Interactive System

In precedent work [19], we show how to describe every part of the interactive system from the

interaction technique to the application behavior. In this paper, we consider the example of

mouse interaction on a PushButton. For the post-WIMP interaction, we introduce in this paper

two levels of the interaction technique, (i) the low-level transducer model that describes how

raw events coming from the input device are translated into higher-level events and (ii) the

PushButton model that describes how widgets can handle higher-level events to finally

produce widget-level events. The mouse transducer model is presented in Figure 3. It shows

how to create higher-level events (click, doubleClick, beginDrag, drag and endDrag) from

handling raw events from a mouse (mouseMoved, mousePressed, mouseRealeased). An

example of important property to check in this model is to be sure that a click has been

preceded by a mousePressed.

 ECEASST

8 / 15 Volume 69 (2013)

Figure 4 presents an excerpt of the behavior of a PushButton. It presents the inner state of the

PushButton as Visible (token in place Visible) and Enabled (token in place Enabled). This

inner state allows the widget to produce the widget-level event A661_EVT_SELECTION upon

a mouse click: when the widget receives a higher-level event click from the mouse transducer

(token in place SIP_processMouseClicked), it raises the A661_EVT_SELECTION if its inner

state is Visible and Enable. A synchronized transition of an hidden part of the PushButton

model is responsible to put a token in the SIP_processMouseClicked place when the click

event is received. This property is also an important one to verify, the event

A661_EVT_SELECTION cannot not be send if the widget is not visible and enabled. Places

Visible and NotVisible (resp. Enabled and NotEnabled) represent the visibility (resp.

activation) state of the widget, they must be in mutual exclusion, indeed, the widget cannot be

both Visible and NotVisible (resp. Enabled and NotEnabled).

Figure 4 – Extract of ICO PushButton model

Analysis Results

The invariant analysis results indicated the presence of P-invariants and T-invariants. For

example the PushButton model contains two P-invariants, one with the places Visible and

NotVisible and the other with the places Enabled and NotEnabled. Whatever states the model

is in, and whatever events are produced, the number of tokens set in these places at the initial

state remains unchanged. As the initial number of tokens is one this means that the button

states Visible and NotVisible are in mutual exclusion as desired. The same is verified for the

states Enabled and NotEnabled.

Considering the structural analysis some dead markings were identified due to the use of a

partial reachability graph. In respect to fairness, all transitions are impartial.

Using the reachability graph analysis the verification of the property that a click must be

preceded by a mousePressed was verified instantiating the precedence property pattern [23]

(see Figure 10) explained in more detail in the next Analysis Results section. Additionally, in

Analysis of WIMP and Post-WIMP Interactive Systems based on Formal Specification

Proc. FMIS 2013 9 / 15

the PushButton model the verification of the non-existence of a state where a selection is

accomplished (execution of the transition Selection – Figure 4) without the reception of a

mouse click (token into the SIP_processMouseClicked place) and without the button being

visible and enabled was verified. This property was verified instantiating the same precedence

property algorithm. The resulting instantiation is presented in Figure 5 (instantiated values of

the CPN model are underlined). This concrete algorithm identifies those nodes where the

button is not visible and not enabled (originalNodes) and the nodes (targetNodes) when the

event A661_EVT_SELECTION was triggered (state mouseClicked1 – Figure 5). After the

identification of these nodes the algorithm identifies counter examples (i.e. nodes) hold in the

variable PRECEDENCE where the event is sent and the button is not visible or not enabled.

The resulting list of nodes is empty. This means that for the analyzed scenario there is no

system execution containing a node where the event A661_EVT_SELECTION was triggered

while the button being invisible or disabled.

Figure 5 - Instantiated precedence pattern algorithm

A more detailed description of the analysis made is presented using the post-WIMP example.

Post-WIMP Interactive System

The low level transducer model is the one linked to the hardware touch events. An excerpt of

this model is presented Figure 6. It parses the features of the received event into a java finger

object. The FingerPool place acts as a limiter on the allowed number of distinct fingers input.

This transducer packages events, forwards them to models listeners (i.e. higher-level events

handlers) such as the Pinch (Figure 7) or the TapAndHold… as defined in [1]. Indeed, a

toucheventf_move or toucheventf_up event will only be triggered if the event corresponds to a

registered finger.

The following paragraph describes the model of the “standard” interaction technique called

Pinch and presented in Figure 7. These interaction techniques consist in touching the display

with two fingers and then bring them closer. This technique can be used for zooming. When

the interaction transducer is in initial state, all places of the models are free of tokens. The

model may receive the low level event toucheventf_down handled by the synchronized

transition toucheventf_down_1. When this event occurs, a token is set in the place p1. This

token comprises a finger object synthetizing the touch information encompassed by the low

level event. Another token (empty this time) is added in the place nbFingerModel and enables

to toucheventf_up_1 transition, allowing the model to handle toucheventf_up events.

 ECEASST

10 / 15 Volume 69 (2013)

Figure 6 – ICO low level event transducer model

Figure 7 – ICO pinch interaction model

In this configuration, two low level events may be handled:

 toucheventf_down: another toucheventf_down received event behaves the same way on

the PetriNet. Then if two tokens are stored in the p1 place, the eagerFusion transition

is automatically crossed, grouping both fingers into the same token in place p2.

 toucheventf_up: as long at the transducer contains information about at least one

finger, the event handler toucheventf_up_1 is fireable. Each time such an event is

received, a token containing the corresponding finger information is added to temp

place, leading to two cases:

o The toucheventf_up event corresponds to a finger stored in place p1: the

transition endInteraction1 is fired, removing the finger’s related token in p1

and temp as well as one token from nbFingerModel place.

o The toucheventf_up event corresponds to a finger stored in place p2: the

transition endInteraction2 is fired, subtracting the finger’s related token in p2

and temp; and two tokens from nbFingerModel place since to fingers are

composing tokens in place p2.

While waiting in place p2, the transition toucheventf_move_1 is enabled and can handle move

events from the low level transducer. When such an event occurs, the transition is fired and

updates the corresponding finger’s information. Finally the transition triggers a “pinch” event.

Analysis of WIMP and Post-WIMP Interactive Systems based on Formal Specification

Proc. FMIS 2013 11 / 15

The corresponding CPN models obtained following the translation proposed by Martinie et al.

[16] are presented in Figure 8 and Figure 9. Their main differences are the usage of fusion

places (e.g. EVTmove or EVTdown places) to represent the trigger of events in the ICO

models. Others differences are present, however, the behavior remains present enabling the

analysis using CPN tools without losing relevant information.

Figure 8 - CPN translated low level event transducer model

Analysis Results

The analysis results for this example are divided into the stated three analysis techniques (i.e.

invariant, structural and reachability graph analysis). Analyzing the low level event transducer

model (Figure 8) invariants were identified. The net is covered by P-invariants therefore there

is no token loss. Additionally, the net is covered by T-invariant, therefore all transitions are

live. For the designer/developer this means that there are no dead branches in the specification.

Figure 9 – CPN translated pinch interaction model

()

()

()

f

f

fupdate(f)

ff

touchEventMove

rawtouchEventUp

rawtouchEventDown EVTmove

move
EVT

EVTup

up
EVT

EVTdown

down
EVT

Pressing

Pressing
FINGER

fingerPool

1`{id=1,posX=0,posY=0,timeSt=0}++
1`{id=2,posX=0,posY=0,timeSt=0}++
1`{id=3,posX=0,posY=0,timeSt=0}

FINGER
Pressing

down

up

move

()

f

()

()

f

f

f

f

f3

f f

f

(f1,f2)
(f1,f2)

(f1,f2)
f1

f2

f

toucheventf_down

toucheventf_up

endInteraction2

[(#id f = #id f3)]

toucheventf_Move

eagerFusion

endInteraction1

EVTmove

move
EVT

Pressing

Pressing FINGER

EVTup

up
EVT

EVTdown

down
EVT

temp

FINGER

p2

FINGERxFINGER

p1

FINGER

nbFingerInModel

FINGER

down

up

Pressing

move

 ECEASST

12 / 15 Volume 69 (2013)

Considering the pinch interaction transducer model (Figure 9) together with the low level

event transducer model (Figure 8) the following structural analysis results were identified:

 Home property - no home marking (see home property definition in section 4);

 Liveness properties - Some dead marking were identified because the generated

reachability graph was partial;

 Fairness properties - no infinite occurrence sequences were identified meaning that all

transitions are impartial.

This analysis was made considering both models together because if analyzed separately

wrong conclusions can be obtained. For example, analyzing the pinch interaction transducer

model (Figure 7) separately we can conclude that it is possible to execute the

toucheventf_down_1 transition for a finger several times without triggering any finger up event

for this finger. This is not true because models work together and this situation never occurs

because it is restricted by the low level event transducer model.

To illustrate the reachability graph analysis technique the results of two properties based on the

stated example are presented:

 For each finger the UP and MOVE events cannot occur without being preceded by a

DOWN event.

 A pinch cannot be completed without the occurrence of an UP event.

The first property is verified using one of the algorithms based on property patterns provided

by Silva et al. [23] (precedence - see Figure 10). The verification is made by instantiating the

algorithm with adequate values relative to this example. The instantiated algorithm consists in

firstly identifying the nodes where events UP or MOVE were made and secondly analyzing

their predecessors to check the absence of a node where the event DOWN occurred. Nodes

correspond to states of the reachability graph. The return of zero nodes means that for the

selected scenario the property is always true. The instantiation of the property is made by

substituting the underlined expressions of the algorithm (see Figure 10) by relevant places and

tokens (instantiated algorithm - Figure 11). Below the instantiation used is presented:

 expression 1 - places of the CPN model where UP and MOVE events were made (in

this example it corresponds to the places EVTup and EVTmove of Figure 8);

 expression 2 and 4 - tokens to be used in the analysis that should be present in the

selected scenario (in this case they are fingers);

 expression 3 - places of the CPN model where DOWN event occurred (in this example

it corresponds to the place Pressing of Figure 8).

Figure 10 - Precedence property algorithm

Analysis of WIMP and Post-WIMP Interactive Systems based on Formal Specification

Proc. FMIS 2013 13 / 15

After being instantiated the algorithm checks the predecessors of the target nodes to check the

presence of counter examples, which means in this case, the identification of nodes that are not

present in the set of original nodes (hold in the PRECEDENCE variable). This situation, if

exists, means that there are situations where for a finger a DOWN event was not made before

an UP or MOVE event. For the selected scenario (3 fingers and can be extended to n fingers)

the result returned means that the property is always true (zero nodes in the variable

PRECEDENCE).

Figure 11 – Instantiated precedence property algorithm

The second property is verified following the same reasoning. The functions of the algorithm

are used to identify, in the reachability graph, counter examples (i.e. a pinch being completed

without the occurrence of a UP event) by the identification of relevant nodes. The algorithm

(Figure 12) is applied to the selected scenario and the resulting list of nodes (hold in the

PRECEDENCE variable - Figure 12) indicates if the property holds. In this example, for the

selected scenario (i.e. 3 fingers), counter examples were not identified. More properties can be

analyzed by instantiating this or other provided algorithms or alternatively developing new

ones. Counter examples identified when properties are not verified provide an important aid to

the redesign process.

It is important to emphasize the fact that the invariant analysis can be made to models

separately, however, the structural analysis and reachability graph analysis must be done

joining all models to avoid wrong analysis results.

Figure 12 - Instantiated precedence property algorithm

 ECEASST

14 / 15 Volume 69 (2013)

6 Conclusion

This paper introduces a method for evaluating interactive systems formally described using

ICO models through exhaustive analysis, applying an approach based on property patterns.

Both WIMP and post-WIMP interactive techniques were analyzed demonstrating that the

approach is independent of the interaction technique. Furthermore, it was demonstrated that

the approach enables developers to validate and verify the interaction techniques they are

developing (e.g. fault detection) playing an important role in the development process. The

analysis support provided is complete and provides an improvement when compared with the

isolated use of Petshop. Additionally, analysis results can be fruitfully re-injected in the design

process improving the interactive system.

ICO models aims to be used for the formal description of interactive systems addressing

usability, reliability and scalability while being able to describe various aspects of user

interfaces namely different interaction techniques (e.g. multimodal, WIMP, post-WIMP),

interactive components (e.g. widgets), the dialogue and the functional core [19]. This paper

presented a generic approach to analysis ICO specifications that was missing. Results

demonstrated that the approach enables the identification of several analysis results completing

the currently limited analysis support provided by Petshop.

Even though the current analysis is mainly based on behavioral properties, current work on

ICOs aims at integrating behavioral descriptions with graphical representation [4]. This will

make it possible to verify properties on the graphical part of the interactive system such as

objects’ overlapping, color’s matching, … and integration of behavioral and graphical aspects.

Acknowledgements

This work is partly funded by Airbus under the contract CIFRE PBO D08028747-788/2008

and R&T CNES (National Space Studies Center) Tortuga R-S08/BS-0003-029. Special thanks

to Yannick Deleris for his support.

References

1. Accot J., Chatty S., Maury S. and Palanque P. Formal Transducers: Models of Devices and

Building Bricks for Highly Interactive Systems DSVIS, Springer, pp. 234-259. 1997.

2. Apple Corp. iOS Human Interface Guidelines.

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/Mobile

HIG. Date of Access: 04/03/2011.

3. ARINC 661 Cockpit Display System Interfaces to User Systems. ARINC Specification

661. Airlines Electronic Engineering Committee 2002.

4. Barboni E., Martinie C., Navarre D., Palanque P. & Winckler M. Bridging the Gap

between a Behavioural Formal Description Technique and User Interface Description

Language: Enhancing ICO with a Graphical User Interface Markup Language. Science of

Computer Programming Journal, 2013.

5. Bastide, R., Navarre, D. & Palanque, P. A model-based tool for interactive. prototyping of

highly interactive applications. CHI '02., demonstration, ACM, 516-517. 2002.

6. Beaudouin-Lafon M. Instrumental interaction: an interaction model for designing post-

WIMP user interfaces. Proceedings of the CHI’00 conference. 2000.

7. Berstel J., Reghizzi S., Roussel G. & Pietro P. A scalable formal method for the design and

automatic checking of user interfaces. ACM Transactions on Software Engineering and

Methodology 14(2):124–167, 2005.

Analysis of WIMP and Post-WIMP Interactive Systems based on Formal Specification

Proc. FMIS 2013 15 / 15

8. Campos J. & Harrison M. Systematic analysis of control panel interfaces using formal

tools. DSVIS’08. Springer LNCS 5136, pp. 72–85.Springer-Verlag, 2008.

9. Holzmann G. The SPIN Model Checker, Primer and Reference Manual. Addison Wesley,

2003.

10. Jensen K. & Christensen S. CPN Tools State Space Manual. Aarhus Univ., pp. 1-49. 2006.

11. Jensen K., Kristensen L. M., & Wells, L. Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems. International Journal on Software Tools

for Technology Transfer, 9(3-4), 213-254. 2007.

12. Jensen K., Kristensen L. M., & Wells, L. Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems. Intern. Journ. on Software Tools for

Technology Transfer, 9(3-4), 213-254. 2007.

13. Katsurada, K., Nakamura Y., Yamada H., and Nitta T. XISL: A language for describing

multimodal interaction scenarios. In Proc. of the 5th Int. Conf. on Multimodal Interfaces

(ICMI’03). ACM, N-Y, 281–284. 2003.

14. Kin K., Hartmann B., DeRose T., and Agrawala M. Proton++: a customizable declarative

multitouch framework. In Proc. of the 25th annual ACM Symp. on User Interface Software

and Technology (UIST '12). ACM, 477-486. 2012.

15. Lacaze X., Palanque P., Navarre D., Bastide R.: Performance Evaluation as a Tool for

Quantitative Assessment of Complexity of Interactive Systems. LNCS, 208-222. 2002

16. Martinie C., Palanque P., Silva J.L., Navarre D. Properties verification of interactive

systems by tool-supported analysis of its formal specification. Diffusion scientifique. April

2013. Available at: www.irit.fr/~Celia.Martinie-De-

Almeida/Technical_report_on_properties_verification_April_2013.pdf

17. McMillan, K. L. Symbolic Model Checking, Kluwer Academic Publishers. 1993.

18. Microsoft Corporation. Microsoft Surface User Experience Guidelines. Available on

MSDNAA. 2009.

19. Navarre D., Palanque P., Ladry J-F., & Barboni E. ICOs: A model-based user interface

description technique dedicated to interactive systems addressing usability, reliability and

scalability. ACM Trans. Comput.-Hum. Interact. 16, 4, Article 18 , 56 pages. 2009.

20. Palanque P. & Bastide R.: Verification of an interactive software by analysis of its formal

specification. INTERACT 1995: 191-196

21. Roch, S. and P. H. Starke . INA Integrated Net Analyser. Humboldt-Univ. Berlin. 1999.

22. Shneiderman B. 1981. Direct manipulation: A step beyond programming languages

(abstract only). SIGSOC Bull. 13, 2-3 (May 1981), 143. 2000.

23. Silva J.L., Campos J.C. , & Harrison M. D., Formal Analysis of Ubiquitous Computing

Environments through the APEX Framework. EICS’12: ACM DL, pp. 131-140. 2012.

24. Starke, Peter H.: Analyse von Petri-Netz-Modellen. Stuttgart : B. G. Teubner, (Leitfäden

und Monographien der Informatik).1990.

25. Tankeu-Choitat A., Fabre J-C., Palanque P., Navarre D. & Deleris Y. Self-Checking

Components for Dependable Interactive Cockpits. 13th European Workshop on

Dependable Computing EDCC, ACM DL. 2011.

26. Vorobyov, K. & Krishnan, P. Comparing model checking and static program analysis: A

case study in error detection approaches. 5th int. workshop on Systems Software

Verification. 2010.

27. Willans, J. S. and Harrison, M. D. Prototyping pre-implementation designs of virtual

environment behavior. In Proc. of the 8th IFIP Int. Conf. on Engineering for Hum.-

Comput. Interact., Lecture Notes In Comput. Sc., vol. 2254. Springer, 91–10. 2001.

