
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1998

A Java Implementation of a Portable Desktop
Manager
Scott J. Griswold
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 1998 All Rights Reserved

Suggested Citation
Griswold, Scott J., "A Java Implementation of a Portable Desktop Manager" (1998). UNF Graduate Theses and Dissertations. 95.
https://digitalcommons.unf.edu/etd/95

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/129588205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

A JAVA IMPLEMENTATION OF A PORTABLE DESKTOP MANAGER

by

Scott J. Griswold

A thesis submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

April, 1998

The thesis "A Java Implementation of a Portable Desktop
Manager" submitted by Scott J. Griswold in partial
fulfillment of the requirements for the degree of Master of
Science in Computer and Information Sciences has been

APpr ee Date

Dr. Ralph Butler
Thesis Advisor and Committee Chairperson

Dr. Yap S. Chua

Accepted for the Department of Computer and Information
Sciences

i/2-{/1~
Dr. Charles N. Winton
Chairperson of the Department

Accepted for the College of Computing

E

Dr. Charles N. Winton
Acting Dean of the College

Accepted for the University:

Dr. William J. Wilson
Dean of Graduate Studies

- ii -

Sciences and

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

I thank Dr. Ralph M. Butler, my thesis advisor, for his

advice and guidance during the development of this thesis.

His knowledge and encouragement were greatly appreciated. I

am deeply grateful for the advice and contributions of Dr.

Yap S. Chua and Dr. Judith L. Solano, the thesis committee

members. I also thank my wife, Janet, for her encouragement

and support.

- iii -

CONTENTS

List of Figures .. vi

Abstract ... vii

Chapter 1: Introduction 1

1.1 Problem Review 2

1.2 Objective 4

Chapter 2 : Background Research........................ 5

2.1 Portability 5

2.2 Desktop Manager Programs 8

2.3 Survey of Existing Programs 11

2.4 Standardization 13

2.5 Java Programming Language 15

Chapter 3: Program Requirements 22

3.1 Desktop Manager............................ 22

3.2 Utility Programs 26

Chapter 4: Detailed Program Design 29

4.1 GUI Features 29

4.2 Event Model 35

4.3 Class Loading 37

4.4 Remote Object Access 39

4.5 Operating System Access.................... 41

Chapter 5: Conclusion 44

5.1 Future Research 48

References ... 50

- iv -

Appendix A: WIMP Terminology 53

Appendix B: Java Class Hierarchy Index 55

Appendix C: Java Development Kit 56

Appendix D: Source Code 58

Vita ... 59

- v -

FIGURES

Figure 1: X Windows Desktop Manager 10

Figure 2: Java Virtual Machine Architecture............ 16

Figure 3: Desktop Manager with Motif Look 31

Figure 4: Desktop Manager with Java Look 32

Figure 5: Model View Controller (MVC) Architecture..... 34

Figure 6: Desktop Manager Event Diagram................ 37

Figure 7: Remote Method Invocation (RMI) Operation..... 40

Figure 8: JVM Operating System Access.................. 41

Figure 9: Desktop Manager with Windows Look............ 44

- vi -

ABSTRACT

Computers equipped with a Graphical User Interface (GUI) and

connected to the Internet are common in both the business

and educational communities. These computers, using a web

browser, easily share programs written in the Java

programming language that are able to execute on a variety

of heterogeneous machines.

While programs written in many languages will not execute

unmodified on different computing platforms because of

portability restrictions, Java has overcome these

limitations and provides a platform independent language.

However, every programming language is limited, and no

language provides all the features required for every

program. Therefore, creation of any portable program must

consider not only the language, but also the architecture

and operating system constraints of the target machines. A

desktop manager program was developed using the Java

programming language. This program provides a uniform user

interface to manage other programs and executes on multiple

computer platforms.

- vii -

Chapter 1

INTRODUCTION

Portability of software involves many issues such as machine

resources, operating systems, software languages, and the

functionality of the software being ported. Problems of

software portability were investigated by developing a

desktop manager and several desktop utility programs that

present a consistent user interface across multiple

platforms. These programs were written using the Java

programming language that is capable of running on mUltiple

environments without code modification.

This thesis document consists of five chapters. Chapter 1 is

an introduction to the problem and the thesis' objective.

Chapter 2 details the research on portability and different

desktop manager programs. Chapter 3 provides an analysis of

the design requirements for a Desktop Manager written in the

Java language and the resolution of the portability

impediments. Chapter 4 looks at the Java language features

that support the program design requirements. Chapter 5

concludes by reviewing the results of the program, areas of

success and limitation, and recommendations for future areas

of research.

- 1 -

1.1 Problem Review

Portability of software has long been an area of study in

computing science. Portability issues gain increasing

attention as more computers become connected to networks and

especially the Internet. While heterogeneous computers can

communicate because they use a common protocol, they are

often unable to share programs thus limiting their exchanges

solely to data transfer. A notable exception is the Java

programming language, developed by Sun Microsystems, Inc.,

that has demonstrated cross platform portability. One common

use for Java allows heterogeneous computers, using a web

browser and the HTTP protocol, to transfer Java Applet

programs to a client computer where they run locally.

Another example of Java's platform independence is shown by

Corel Corporation's conversion of their Office Suite

programs (WordPerfect, Quattro Pro) to the Java language

[Corel197]. This allows their customers to purchase a single

copy of the program that will operate on mUltiple platforms.

Previously each program was dependent on the operating

system which had to be specified at the time the program was

purchased.

Portability is desirable for programs that have a broad

market because it allows them to operate on many different

platforms. Programs such as text processors, library catalog

systems, and payroll processing are used on many different

- 2 -

computers. Often these programs have to be modified or

rewritten in another language for them to operate on a

different computer. This effort does not enhance the

performance or capabilities of the program, but just

overcomes the restrictions to portability. "At its most

basic level, portability is an economic issue" [Rowley96,

page 80] since portability increases the potential market

for the software by removing platform restrictions.

Developing a program in a portable language expands its

operating domain and therefore increases its value.

A desktop manager program provides a Graphical User

Interface (GUI) that allows users to control and manage

other application and utility programs. Operating systems

like Macintosh's and Microsoft's Windows 95 offer desktops

as part of their operating system. On systems like UNIX,

desktops are available as a separate program. Consequently,

none of these have the same look or operation and each is

tied to the underlying operating system and not easily

ported.

A Desktop manager program written in Java would benefit from

portability because it could execute on multiple platforms

providing a consistent interface to the user. However, the

software language is just one of the impediments to porting

a program. Other obstacles are the machine architecture and

operating system of the host machine. Therefore, developing

- 3 -

a desktop manager in Java requires the identification and

resolution of all limitations that restrict portability.

1.2 Objective

The issues of software portability are investigated by using

the Java programming language to develop a desktop manager

and several desktop utilities. These programs present a

consistent computing interface to the user while being

capable of running on the mUltiple platforms without

modification.

- 4 -

2.1 Portability

Chapter 2

BACKGROUND RESEARCH

Olivier Lecarme defines software portability as a

quantitative measure of the effort to modify a software

program to make it operate on another platform [Lecarme89,

page 10]. The platform or environment is the combination of

hardware and software (operating system). According to this

definition, a software program is 100% portable if no effort

is required to port it and 0% portable if the effort to port

it is equal to the effort to originally develop the

software. Since portability is a quantitative measurement,

degrees of portability exist.

Reusable and interchangeable software have been called the

silver bullet that will stop the increasing costs of

software development [Cox90, page 210]. Also, Lecarme states

that "Computer hardware is only as useful as its available

software II [Lecarme89, page 1]. Therefore, portable software

should improve the capability of a computer and reduce the

cost of software development.

- 5 -

There are four major areas that may pose impediments to

porting software [Lecarme89, pp. 11-17]. One area is the

computer or processor. Processor speed and the number of

processors vary on different machines. Additionally, the

machine representation of data and memory organization is

not uniform for all processors. Programs cannot be ported to

machines that do not provide the minimum necessary processor

capabilities. This is evidenced by software vendors who

provide minimum machine and operating system requirements

for their products. However, sometimes the processor can be

hidden by software, as is the case with the UNIX operating

system that runs on a variety of different processors. In

these cases the software often just needs minor

modifications for it to run on a different machine.

The machine hardware peripherals like printers, graphic

monitors, tape drives, disks, and networks that are used by

the software are not the same on all environments. Clearly,

if those do not exist or operate in a different manner, the

software needs to change. A program that scans data through

a scanner would not port to a machine that does not support

the use of a scanner. Often device drivers are used to hide

the implementation details of peripherals. Then, if devices

are changed or new devices installed, only a new software

driver has to be written.

- 6 -

Another consideration of porting software is the operating

system, itself a software language with semantics and

syntax, that controls the hardware resources [Lacarme, page

14]. This creates two distinct problems: porting the

operating system to a different machine and porting the

applications to a different operating system. Porting the

operating system is often a difficult task, but systems such

as UNIX have been ported to mUltiple hardware platforms

[Friesenhahn97]. Having the same operating system that can

run on many different hardware platforms increases the use

of application programs. Porting of application software to

different UNIX platforms is easier than porting from UNIX to

a different operating system.

All computer programs ultimately result in execution of

machine language instructions on a hardware processor. The

machine language is all the processor "understands."

However, this language is difficult for humans to

comprehend, so most programs are developed in a higher level

language that provides a layer of abstraction. Typically,

higher level languages are more portable than lower level

ones, since they go through translations before becoming

machine instructions. While a machine language only runs on

one machine's processor, a C program can run on many

different systems with the only effort being recompilation

on the host machine. The higher level languages often

utilize the features of the operating system. Different

- 7 -

operating systems usually provide similar features, but in

different ways. For example, UNIX and Microsoft both support

sockets, but each uses a different implementation. Utilizing

these features in a high-level language like C requires

different function calls for each operating system. These

calls have to be modified to port the software to each

system. Often other programs are created to facilitate these

changes. An example is the Autoconf program that is used to

discover differences between environments and automate the

changes required to port C source code [Friesenhahn97].

In addition to these impediments to portability, the

requirements of the program need to be considered. Clearly,

some programs do not have a wide application, such as one

that controls a missile's guidance, while other programs

have an almost universal use, such as text editors.

Therefore, a program should have a need to run on the

receiving environment before making the effort to port it.

2.2 Desktop Manager Programs

Graphical User Interfaces and window manager programs are

found on most desktop computers today. Macintosh is credited

with creating the first computer offering a GUI that was

widely used in homes [Hargh86, page 2]. The operating system

provided the user with a graphical method of interface

rather than a command line that was typical for small

- 8 -

machines at that time. This introduced a new paradigm of

user interaction with the computer. A new terminology, WIMP

(windows, icons, menus, and pointers) describes many of

these concepts [Rubin88, pp. 94-106]. Definitions of WIMP

terms are provided in Appendix A. A key area of WIMP is the

window concept where a program on the monitor is identified

by a rectangular border. These windows are hierarchical in

nature allowing an application's parent window to display

one or more child windows.

The windows interface allows multiple programs to be visible

on the computer's monitor simultaneously, each one usually

in a separate window. Desktop or window manager programs

were created to manage the program resources that are

displayed on the computer screen. They allow the user to

open, close, resize, and relocate programs.

The desktop paradigm is that the computer monitor represents

the top of the user's desk and the computer programs

represent papers on the desktop [Evans96]. Using the window

concept, the programs, like papers on a desk, can be

repositioned and can totally or partially cover, or be

covered by other programs.

The virtual desktop paradigm is that a bank of desks

surrounds a user only allowing access to one at a time. The

computer monitor shows the contents of the current desktop

- 9 -

[Evans96]. A Virtual Window, a grid composed of mUltiple

logical screens, is displayed on the monitor. The user

selects which logical screen, each representing a desktop,

to display on the monitor [Husain96, page 459]. These

virtual features aid in program management, by allowing many

programs to be easily accessed without cluttering the

screen. Figure 1 is an example of an X Windows manager with

a virtual window shown in the upper left corner.

Figure 1: X Windows Desktop Manager

GUI programs also support event driven programming. The user

generates mouse and keystroke events that control program

- 10 -

operation. This user control contrasts with procedural

programs that have one starting point and then continue to

completion.

2.3 Survey of Existing Programs

Macintosh, Microsoft Windows, and UNIX operating systems are

three operating systems found on desktop computers. These

all support the GUI and desktop paradigm. As previously

stated, Macintosh widely used in the educational community,

was the first windowing interface provided for desktop

computers.

Microsoft, the dominant operating system of business desktop

computers, originally used a command line operating system

(Disk Operating System or DOS). As processors grew more

powerful and less expensive, Microsoft created a windows

system GUI that ran on top of DOS. This was later replaced

by their Windows 95 and NT systems which were designed as

windowing systems and contain an integrated desktop manager.

Both Macintosh and Microsoft Windows are proprietary

operating systems containing desktop managers integrated

into their operating system. Both these systems were

designed with GUI interfaces and the integrated desktop

manager provided cannot be disabled. Microsoft Windows

allows many of the operating system commands to be accessed

- 11 -

either with a GUI utility program started from the desktop

or from a command line interface. This is not surprising

since the GUI evolved to replace the command line interface

on that software vendor's system. Macintosh does not offer a

command line interface. Neither Macintosh nor Microsoft

offer virtual features with their window managers, although

several add-on virtual managers are available.

The X Window System was created at MIT in the 1980s to

provide a network-transparent and vendor-independent GUI for

workstations. It is architecturally neutral and allows

dissimilar machines to communicate. This system consists of

the X protocol (communication), the Xlib (library of

subroutines), and X toolkits (for application design)

[Jones89, pp. 2-5]. X Windows is multiple software programs

that communicate using a standard protocol. X Windows uses

the client server model where the X server controls the

display and X clients are applications that are served and

presented on the display. Both transmission of events and

graphic information are supported. X Windows also allows one

server to control mUltiple monitors.

By conforming to the X Windows standard protocol, X Windows

applications can communicate with the X server that can run

on a different machine. These programs are typically written

in C and must be ported to the machine where they run.

- 12 -

Porting these programs requires recompiling on the host

machine and possibly some code changes.

x Windows is typically the GUI used on UNIX systems. A

variety of X Windows window managers (FWM, MWM, OLWM, TWM)

are available for UNIX systems. Many of these are free while

others are sold by companies who also produce a version of

UNIX. Additionally, most offer virtual features. Although X

Windows can be ported to many platforms, it is not commonly

used on the Macintosh or Microsoft Windows operating system.

A wide selection of window manager programs exist that all

have many similarities [Hopgood88, page 72]. Despite these

similarities each has a different look and operation and is

closely coupled to the underlying operating system. Since

none of them are commonly available on all the platforms

mentioned, the default window manager of the operating

system is usually used. Consequently each platform presents

a different interface to the user.

2.4 Standardization

Standards are one method used to facilitate portability. Two

general approaches have been taken: one is the development

of open standards, the other the development of proprietary

standards [Tanner96, page 88]. The X window system is an

example of the former, while Microsoft1s Win32 API is an

- 13 -

example of the latter. The API (Application Programming

Interface) is also a type of standard that facilitates

portability when multiple vendors agree to use the same API

[Rowley96, page 80] .

Standards originated for hardware and were later applied to

software, as for example, the ANSI standard for the C

language. There are many non-proprietary standards:

national, international, governmental, and industrial.

Examples include ISO, NIST, ANSI, and IEEE. Also many

manufacturers have developed proprietary standards.

Standards can improve portability by removing differences

between systems. They can also create problems if they are

ambiguous or manufacturers do not adhere to them. Some

standards have succeeded in increasing portability while

others have not [Rowley, page 82]. Many people continue to

support standards as is evident by the new ones that are

continually created.

Commercial vendors and independent organizations have both

demonstrated the desire for standardization. Microsoft made

efforts to standardize their desktops to have Windows 95 and

Windows NT present the same GUI to the user [King94, page

96]. Sun Microsystems made efforts to standardize the

desktop user interface with their Common Desktop Environment

[Evans96]. The Common Open Software Environment specifies

- 14 -

Motif as the standard interface for UNIX [Husain96, page

397]. These attempts to standardize desktops that are not

available on all operating systems have a limited scope.

However, the development of a Java desktop manager that

could run on many operating systems without code

modification would give the user a consistent presentation

regardless of the operating platform.

2.S Java Programming Language

Java was originally developed for consumer electronic

devices that use many different microprocessors. This

resulted in an architecturally neutral language that made it

ideal for use on the Internet, which is a heterogeneous

collection of computers that communicate using a common

protocol [Flanagan97, page 4]. The Java Applet (a program

that executes within a host browser program) demonstrated

the language's cross platform capabilities on the Internet.

The same Applet program, often containing animation, could

execute in a web browser running on many different platforms

[Gosling9S]. The capabilities of the language have

continually improved since its creation. Now, many programs,

not just Applets, are written that execute on multiple

platforms without modification.

Java achieves architectural neutrality by executing on a

Java Virtual Machine (JVM). Java source code is compiled

- IS -

into Java byte code that is interpreted by a JVM. Java's

motto "Write Once, Run Anywhere" really means run anywhere

there is a JVM. Java programs only run on one machine, the

JVM. This virtual machine isolates the byte code from the

underlying environment making compiled Java programs

portable to wherever a JVM exists. Figure 2 illustrates the

architecture of the JVM.

Java Compiler

Java Virtual Machine

Java Interpreter

Operating System

Hardware

Figure 2: Java Virtual Machine Architecture

- 16 -

The Java Language is a high-level language providing

abstraction from the underlying operating system and

hardware. The language is 100% portable since it only runs

on one machine, the JVM. No changes or compilation are

required to run a program on any machine where the JVM

exists. This is the appeal of Java, a powerful language that

can be ported without changes. Portability comes at the

expense of other programmers providing the JVM

implementation and class package, certainly not a trivial

task. Java programmers reap these benefits since this work

has already been accomplished.

The Java language is used to create both Applets and

application programs. Applet programs are typically loaded

from a remote location and execute on a JVM implemented in a

browser program. Their access to files and other resources

on the host machine is restricted for security. Java

application programs execute on the JVM running as a

separate process (not connected to a browser) and are not

subject to these security restrictions. The distinction

between these two types of programs can be subtle and a

program can be created that executes as an Applet or an

application. All the programs developed for this thesis are

Java programs that operate on a JVM outside of a browser.

The Java language is object-oriented and provides many

classes that define the Application Programming Interface

- 17 -

(API) of the language. These classes are required along with

the JVM to interpret the byte code. The classes are bundled

into packages and include AWT classes for windowing and GUI

features, I/O classes for file access, and Network classes

for sockets. A complete listing of the API classes is

provided in Appendix B. These classes provide the power of

the language, as they encapsulate the implementation

details. This allows the programmer to concentrate on the

programls desired function.

Javals architectural neutrality only applies to the

programming language, the JVM is platform dependent, but has

been ported to Macintosh, Microsoft IS Windows, and UNIX

operating systems thus allowing the same Java compiled code

to execute, without changes, on different machines

[Gosling95, section 1.2.3]. Additionally, the JVM has been

implemented as software that runs at the machine level in

hardware used in portable electronic devices. This thesis

will only be concerned with the JVM implemented on top of an

operating system. The Java platform hides many of the issues

of portability stated in the previous chapter. Moving the

portability issue to a layer below the Java language allows

a programmer to develop programs that can run on many

different platforms without additional effort.

The implementation details of the Java Virtual Machine are

beyond the scope of this thesis, but are specified in a

- 18 -

document by Tim Lindholm [Lindholm96]. Sun offers

implementations of a JVM that run on top of the three

operating systems previously mentioned. Others have

developed implementations for additional systems like Linux.

This thesis will not be concerned with these portability

issues, because from the programmer1s perspective, the JVM

is the same consistent platform regardless of where it

resides.

Java1s device support is limited to satisfying the

functionality of the language. Presently devices such as

mice, graphic monitors, networks, sound cards, and printers

are supported. As Sun introduces new features, like speech

recognition and fax processing, the necessary class and

virtual machine changes are also provided to support these

enhancements. Accessing an unsupported peripheral device can

be accomplished using native methods and C program calls.

Doing this requires porting the C code along with the Java

program that uses the device.

Java imposes requirements on the operating system such as

support for multi-threading. Java programs using GUI

features require the operating system to support GUI

displays. Both Macintosh and Microsoft systems support GUI,

but UNIX requires additional X Windows programs. Therefore,

Java GUI programs executing on UNIX must start in an X

Window to function correctly. Since implementations of X

- 19 -

Windows are commonly found wherever the hardware supports a

GUI, this will not be considered a restriction. Other issues

such as data representation and file operations are hidden

by the JVM, so the programmer does not have to consider

these issues.

The Java language allows access to the operating system and

supports programming native methods that allow access to

executable programs written in other languages such as c.
Native methods limit the portability of the Java program

because the local code also has to be ported along with the

Java code. While the Java code can be ported without any

changes, C programs usually have to be compiled on the

target machine and often require other changes.

The Java API classes, included with the implementation of

the JVM, provide the functionality and power of the language

as explained in the next chapter. Often programmers create

new class packages providing features not supported by the

API. For example ObjectSpace, Inc. created classes to

support sorting and searching using different algorithms.

The programmer assumes that the Java API classes will be

available wherever the JVM runs, but must provide all other

classes necessary for program execution. Java provides tools

for packaging and transporting new class packages with a

program.

- 20 -

Currently no approved standards exist for the Java platform.

Sun Microsystems provides most implementations of Java, but

has licensed the technology to other companies. Sun tries to

enforce standardization, but this is not always possible as

evidenced by a suit Sun brought against Microsoft in October

of 1997 [Sun97]. Sun Microsystems is attempting to make the

Java Platform a standard by registering it with the ISO/IEC

JTC 1 (International Organization for Standardization /

International Electrotechnical Commission Joint Technical

Committee 1) as a Publicly Available Specification (PAS)

[Sun97A]. In addition Sun has established a procedure for

programs to be certified as "100% Pure Java" assuring that

they will run anywhere the JVM exists [Sun9S]. This is a

voluntary procedure, but developers whose software passes

these tests label it as "100% Pure Java".

- 21 -

Chapter 3

PROGRAM REQUIREMENTS

The requirements of the Java desktop manager program will be

specified based upon the features of the manager programs

that exist for the three operating systems previously

mentioned. The utility programs were selected to provide

platform independent features that are normally included

with a desktop manager. Some of these programs allow

customization of the manager, while others provide access to

system resources. Since these Java programs are portable,

they do not provide platform specific features.

3.1 Desktop Manager

A desktop manager has two functions: one is to manage the

presentation, the other is to manage the operations. The

presentation is concerned with window size, layout, and

maintaining an iconic representation of the window. The

operations respond to user input from mouse and keyboard

actions [Hopgood88, page 67] .

The requirements for the Java desktop manager with virtual

features are as follows:

- 22 -

• Be portable to a JVM running on a Macintosh, Microsoft,

or UNIX operating system.

• Present a uniform background to the user with a virtual

window on the monitor, composed of multiple logical

screens, that allows the user to select the logical

screen to be displayed.

• Allow the user to change virtual window features of size,

location, number of logical screens, and color.

• Provide a pop up menu to allow the user to select

programs to open. Programs shall be able to be loaded

both from local disk and remote computers. Local programs

shall be selected from a file that contains the available

application classes.

• Place an icon representing each open application on the

logical screen representing the current view. The

program's name will display when the cursor is positioned

over its icon.

• Respond to the application's window movements and size

changes by changing its icon location and size. Display

the icon of the application in focus differently from all

other icons.

- 23 -

Java provides many features and classes that support the

program design. The first design decision is selecting the

method of communication between the desktop manager and the

applications since this is critical for program operation.

Java provides the following three mechanisms [Campione97]:

1. Object methods - One object calls the method of another

object. Java is object oriented and supports the event

driven programming model using event classes.

2. Sockets - Java includes network classes that allow access

to sockets through the operating system.

3. Applets - Multiple Applets running on the same browser

are able to communicate through the JVM.

The object model is the best choice for communication in the

desktop manager, since it provides the most flexibility.

This will allow asynchronous communication, in response to

user key and mouse action events. Additionally, this model

allows all the applications to be Java programs rather than

Applets.

The socket model was not selected, because it adds

additional overhead to the communication mechanism. Sockets

would be better suited if a distributed desktop manager were

- 24 -

being developed, but this manager will only control programs

running on one computer.

Requiring programs to be Applets forces them to adhere to

the Applet security restrictions that limit file and socket

access. Additionally, it would require the desktop manager

program to be a browser, placing further restrictions on the

program. Therefore, this model was not chosen.

The application and utility programs to be managed will be

Java Programs using GUI features. Java provides an Abstract

Windowing Toolkit that is a set of classes which support the

windowing requirements and the WIMP (Appendix A) model.

These classes are used to control the desktop display and

provide iconic representations of the open programs.

The virtual window is shown as sticky or present, regardless

of which logical screen is displayed, so that a mouse click

on it at anytime provides access to the other logical

screens. If this were not the case, an application window

could cover it and prevent the user from accessing it

[Husain96, page 461]. Java has classes that support these

requirements.

Java programs run on the JVM, which runs as one process on

the operating system. Java programs run in a window on

systems that have an integral window manager. The desktop

- 25 -

manager will try to hide this by maximizing its window to

cover the screen and hide the existing manager.

Additionally, this should prevent mouse events that change

window focus from reaching other windows, thereby allowing

the desktop manager to handle all these events. It would be

preferable to remove the existing manager, but since this

program is being developed to investigate Java and

portability issues, this inconvenience is accepted.

3.2 Utility Programs

Utility or accessory programs such as a clock, calculator,

file manager, games, terminal window, and text editor are

usually available on desktop computers. These programs are

included in order to evaluate their portability

requirements.

The clock requires knowing the date for which Java provides

a class that obtains this information from the operating

system. The clock is displayed as both a face with hands,

and in digital format.

The calculator uses GUI features to allow the user to

perform standard and scientific (exponential, logarithmic,

and trigonometric) calculations. Java1s AWT and Math classes

support these functions.

- 26 -

A file manager program provides access to the file system

displayed as a tree structure. The Java 10 class supports

local file access. The Java RMI (Remote Method Invocation)

classes provide methods to access remote files by allowing

local objects to invoke methods of remote objects using

sockets for communication. A security manager prevents

unauthorized access to remote files. Recently released Swing

AWT classes support a graphical display of the files.

A terminal window or emulator is a feature provided by a GUI

manager whose underlying operating system supports command

line execution. Both UNIX and Microsoft Windows provide

this, but Macintosh does not. While this is not the same as

executing native methods, it allows the program user to

execute OS specific commands. Obviously not all operating

systems support the same commands, therefore unsupported

commands will generate errors. The program will present

those errors to the user, but continue to operate. The Java

System class provides the capability to deliver this

feature.

A text editor utility is provided as an example program with

Java's Swing release. This program features selectable fonts

and printing capability.

- 27 -

The Tic Tac Toe game is provided as a program example with

the Java release. It utilizes Java's ability to display

images and respond to user events.

- 28 -

Chapter 4

DETAILED PROGRAM DESIGN

The Java language is young and continues to evolve with a

1.1 release in 1997 and a 1.2 release in 1998. Several major

changes, such as Version 1.1's introduction of a new event

handling model and Version 1.2's introduction of a new GUI

component model, resulted in changing the design of the

desktop manager during development. This chapter details how

the Java classes support the desktop manager's program

design.

4.1 GUI Features

The Java Abstract Windowing Toolkit (AWT) classes support

the GUI features of the desktop manager program. During

program design the Java AWT underwent major changes when the

"Swing" classes were introduced as part of the Java

Foundation Classes (JFC) release. The desktop manager

program uses many features offered by these newer classes.

AWT classes were originally implemented by accessing the

native AWT classes (Java calls them peer classes) of the

host operating system. This resulted in a Java widget, the

term used for GUI entities like buttons, labels, and text

- 29 -

boxes, being implemented using the widget of the operating

system underlying the JVM. Although the Java code would run

on all JVMs, the GUI component's presentation would be

determined by the operating system, not the program. This

did not compromise the "run anywhere" motto, but it did show

Java's dependence on the operating system.

Swing provides a different AWT component implementation that

is considered "light weight," because it is not tied to the

underlying operating system through peer classes. This is

accomplished by using a model that supports what Java calls

a "pluggable Look and Feel" (L&F) [Sun97B]. The Look refers

to how a widget is presented on the screen. A button, for

example, has a different border on Microsoft Windows than on

UNIX. The Feel refers to how the component responds to user

actions. For example, when "pressed," the border of a

Microsoft Windows button changes, while both the border and

color of a Motif button change.

The concept of Look and Feel is not usually addressed as a

portability issue. Java programs are considered 100%

portable even if they do not "look" the same on all JVMs.

Other software, like X Windows, has the capability of

displaying a platform independent look, as demonstrated by

the FVWM95 desktop manager that provides a Microsoft Windows

95 look while running on UNIX platforms. Since the Swing

classes were introduced, the appearance and actions of Java

- 30 -

programs no longer have to be tied to the native operating

system where they run. Swing GUI components can Look and

Feel the same on all JVMs, subject of course to copyright

restrictions [Sun97B]. This feature enhances Java's platform

independence by shielding the user from the underlying

environment. A Motif look, as shown in Figure 3, can now

exist on a Macintosh, Microsoft Windows, and UNIX operating

systems. Programmers can also develop a custom look not

associated with any specific platform. An example of Java's

custom look is shown in Figure 4.

Java's pluggable Look and Feel is accomplished by using a

variation of the Model/View/Controller (MVC) architecture

Figure 3: Desktop Manager with Motif Look

- 31 -

Figure 4: Desktop Manager with Java Look

used by Smalltalk which was developed at the Xerox Palo Alto

Research Center [Yourdon94, page 272]. The three elements of

the architecture control all aspects of an object. The Model

part determines the object's behavior, the View (the Look)

controls the presentation, and the Controller (the Feel)

changes parameters in the Model in response to events. The

View and Controller are platform independent, allowing

widgets to be developed without relying on the operating

system.

The MVC architecture provides two other benefits. The first

is the ability to change the View and/or Controller while

the program is running. The other is the ability to create

mUltiple views of the same model, allowing a single object

- 32 -

to be presented in different formats [Sun97B]. The File

Manager Utility uses this feature to display the list of

file elements as a tree, if they are directories, or as a

table, if they are files.

Sun modified the MVC architecture by combining the View and

Controller into a single User Interface (UI) object called

the delegate while retaining the Model as a separate object.

Since the Look and Feel of a component are closely related,

changing one often effects the other and requires them to

communicate. Combining the View and Controller simplifies

this communication allowing changes to either to be made

more efficiently [Sun97B].

A Swing GUI widget consists of three parts as shown in

Figure 5.

1. The widget object that sets the model and delegate

objects.

2. The model object that determines how the widget operates

by maintaining and changing its attributes.

3. The delegate object that has the methods that control

the widget's presentation and reaction to events.

Java uses the term frame for what has been referred to as a

window in this thesis. Java applications use a frame class

to display themselves. A frame is implemented as a peer

component and is subject to several restrictions. It cannot

- 33 -

Controls response to
events
Controls graphical
presentation

VI (User Interface)

Requests to change state

Model

Widget

Figure 5: Model View Controller (MVC) Architecture

contain other frames, which hinders the main objective of

the desktop manager - displaying and controlling mUltiple

applications that are enclosed in frames. Swing introduced

an "internal frame" class that is independent of the host

operating system and is not constrained by the restrictions

of frames. The desktop manager uses this feature to contain

and control mUltiple utility programs that are subclasses of

internal frames.

Internal frames also facilitated the creation of a "sticky"

virtual window. Since the virtual window must always be

visible for the user to select the logical screen to view,

another window should not cover it. However, in an

- 34 -

overlapping window environment this could happen, if another

window in focus were dragged over the virtual window. The

Swing classes allow setting the viewing hierarchy of

windows, thus enabling the program to control which window

is in the foreground covering other windows. The virtual

window is set so no other window can cover it.

Java animation often flickers because the mechanism used to

"paint" the screen first clears the screen before drawing an

image. The Swing components incorporate several of the

techniques developed to reduce flicker. Using those

components improved the presentation of the desktop manager.

4.2 Event Model

Java is an object-oriented language that provides support

for event driven communication between objects using event

classes. The desktop manager employs this feature to control

the utility programs and the virtual window.

Java's event model uses the terminology of sources and

listeners. Objects that generate events are sources and

objects that take actions in response to events are

listeners. An object interested in a specific type of event

notifies the source object by registering itself as a

listener. The source object keeps a list of these listener

objects and when an event occurs, it calls the method

- 35 -

associated with that event for every object in the list.

This is typically done asynchronously without any priority

given to the listeners. Swing classes provide methods to

access the event queue for synchronizing events.

The programmer can access events at two levels. This will be

illustrated by using a mouse click on a button. At the low

level, the click is a mouse event at a specific location on

the screen, but at the high level it is a button press. The

programmer accesses the event at the low level by overriding

the mouse action method of the button's parent AWT component

object. The high level event is accessed by overriding the

button pressed method of the button object. Objects can

listen for low or high level events or both by registering

with the desired event's source object.

Utility program actions that move or resize their windows

require the desktop manager to take actions to maintain

program icons on the virtual window. Additionally, user

selection of the logical screen to display requires

displaying the utilities on that screen. Prior to the Swing

class release, this was accomplished by the utility programs

generating a custom event for each of these actions. The

desktop manager listened for these custom events and then

responded with the required actions.

- 36 -

Swing classes introduced a manager class, based on the MVC

concept, that receives all window change events from its

children. The desktop manager uses this class and overrides

its methods to take the necessary actions. This eliminated

the need to modify the utility programs to generate custom

events for the desktop manager. The desktop manager can

control any Java utility program that is a subclass of the

internal frame class as shown in Figure 6.

method
calls to
draw
changes on
virtual
window

desktop manager

event manager

window
movement and
resizing events

utility program

Figure 6: Desktop Manager Event Diagram

4.3 Class Loading

Java programs consist of one or more classes (compiled to

byte code) that are loaded into a JVM and instantiated to

objects. The JVM uses a "class loader" to load all classes

dynamically as they are required. Starting a Java program

- 37 -

(not an Applet) requires starting a JVM that then loads a

"public" class and invokes the "main" method to start a

program running. The JVM does not run by itself without a

Java class, but requires this "public" class argument when

it is started. Additional programs or classes are loaded as

necessary and all run on the same virtual machine as

different threads.

The desktop manager is the first class loaded after the JVM

is created. Subsequently the utility programs are loaded as

the user selects them. When the JVM is requested to load a

class, it searches to see if the class has already been

loaded. If it has not, a default class loader is used. The

programmer can override this feature and define a loader to

load files from local disk or across networks using sockets

[McManis97]. The desktop manager implements this feature to

allow access to both local and remote programs.

This class loader provides a consistent model for starting

all programs and provides security by only allowing classes

to be loaded from specified directories [Sun97C, section 9]

This is necessary since connecting a machine to a network

introduces the possibility of external programs corrupting

the system.

- 38 -

4.4 Remote Object Access

The class loader and file manager programs require access to

resources on remote computers. Java introduced the Remote

Method Invocation (RMI) feature in the 1.1 release that

allows access to the methods of remote objects. RMI provides

transparent access to an object's "public" methods across a

network, hiding the details from the programmer.

Other vendors provide similar ways to access remote

resources either as remote procedure calls or remote object

requests. COBRA, which Java supports, is a specification

allowing objects from different systems to communicate

[Morgan97]. RMI is used for the desktop manager, because it

uses only Java and is 100% portable to any JVM.

Remote access typically requires communication, translation

of data types, marshaling of arguments, and security. RMI

handles all these using Java code. Sockets are used for

communication while translation of data types is not

required, since both the local and remote objects are on the

same type of machine, a JVM. Since Java is object oriented,

the data transferred is an object. The contents of an object

are marshaled using the Java serialization technique which

compresses all the attributes and methods of an object into

a stream [Flanagan97, page 172]. The receiver decompresses

the stream to recreate the object. Security is provided by

- 39 -

only allowing access to objects from locations approved by

the RMI security manager object. Additionally, serialized

objects contain the URL of their origin, so that if

additional objects are required, they are only permitted

from that location [Sun97C, section 9] .

RMI operation requires the remote objects to register with a

RMI server that listens for all requests. When a request is

received, the server finds the registered object and

establishes the communication between the client object and

the remote object. A stub object on the client side and a

skeleton one on the server side handle the communication and

transfer of information as shown in Figure 7.

returned
object

Client Side

Calling
Program

~~
remote
method socket connect
request

,Ir remote method request

Stub
... ..

serialized ob· ect

Server Side

nni server

notification
of request

"
Skeleton .. Server Object with method ...

Figure 7: Remote Method Invocation (RMI) Operation

- 40 -

4.5 Operating System Access

Java programs execute on the JVM that normally shields them

from the operating system. However, the JVM does provide

access to the OS at several different levels as shown in

Figure 8.

System Class Runtime Class

Java Virtual Machine

Interpreter

Operating System

Figure 8: JVM Operating System Access

At the highest level of abstraction, the System Class allows

access to parameters like the user's home directory, type

and version of the OS, Java class path and directory, date,

and time. The same methods are used to obtain this

information on all implementations of the JVM. From the

programmer's perspective these are 100% portable because

- 41 -

they are available wherever the JVM exists. The clock

utility program uses the date and time.

Java's 10 class provides similar parameters for file and

directory access. For example, the path separator character

that is different on UNIX and Microsoft Windows, is provided

as a system parameter. Additionally, creating, listing or

modifying files or directories are all performed with Java

methods that are platform independent. Access to the disk

structure is, however, platform dependent. Microsoft Windows

uses different terminology than UNIX for physical and

logical disk drives. The file manager utility used a switch

statement to execute different code, depending on the

underlying operating system. This makes the code only

portable to the three operating systems mentioned

previously.

At a lower level, the Runtime Class provides direct access

to the operating system, allowing Java programs to execute

system dependent commands. The commands to be executed are

first written to a file, then executed by creating a process

separate from the JVM using the "exec" procedure. The

Runtime object maintains contact with the new process by

accessing stdin, stdout, and stderr. The Terminal Window

utility was developed, using the Runtime class to provide

the user with the ability to access the underlying operating

system with text commands.

- 42 -

Java supports running of other language programs, like C and

C++, on the operating system. Called native methods, these

are often used to improve program performance or provide a

feature not available in the Java language. Neither the

desktop manager nor the utility programs use any native

methods, because they negate the objective of having an 100%

portable program.

- 43 -

Chapter 5

CONCLUSION

The desktop manager program was developed and tested on a

Windows NT operating system. The compiled byte code from the

development machine was executed on a JVM running on a

Windows 95 (figure 9) and on a UNIX platform demonstrating

this Java GUI program to be 100% portable. A look at each of

the four areas of portability will provide details of how

the restrictions were overcome.

Figure 9: Desktop Manager with Windows Look

- 44 -

Determining the program requirements before choosing the

language and platform identified portability restrictions.

This design coriceded that the desktop manager would only run

where Sun has already ported the JVM and only use hardware

supported by the existing classes. Considerable effort would

be needed to program a new peripheral device, as this would

require different native code for each platform where Java

runs. Java supports the devices required by the desktop

manager and continues to create new classes that provide

additional features. Therefore, this constraint did not

limit the development or features of the desktop manager and

ensured 100~ portability.

Java programs execute on the JVM that runs as one process on

an operating system. GUI environments provide a window for

starting the JVM from a command line prompt. The desktop

manager maximized its display window to cover the entire

screen; giving the appearance that it was controlling the

monitor. This technique resulted in several difficulties

with the existing OS window's manager. On Microsoft Windows,

the task bar would cover a portion of the desktop, unless it

was set to not be "always on top." On UNIX, X Windows was

required, adding another software layer. Also, if X windows

had a virtual desktop manager running, its virtual window

would display on top of this desktop manager, resulting in

two virtual windows. Using a different X Windows manager

without virtual features eliminated this problem. Neither

- 45 -

problem prevented the program from operating, but they did

demonstrate that the Java program was just another program

running on that system. A desktop manager program should

operate at a lower level, to have more control of the

display.

The terminal window program demonstrated that Java has

limited access to the operating system. Direct access to the

underlying OS through the JVM was not obtainable as desired.

Since the Java language was designed to run on an

architecturally neutral machine, this is not surprising. The

terminal window utility was a crude implementation, but it

did identify an area where Java does not provide support

that is available from other platform specific languages.

The File Manager utility had difficulty accessing the drive

structure of the host machine. Java does not provide a class

method that obtains this information, therefore an algorithm

was developed that executes differently, depending on the

underlying OS. The tree structure of the Swing classes

provided an excellent format for the display. Java API

classes do not support sorting of files and directories, but

a third party class can provide this feature.

Recent changes have greatly enhanced the power of the

language with features like multimedia, international

capabilities, drag and drop, enhanced drawing, a pluggable

- 46 -

look and feel, accessibility, and remote program execution.

Many of these changes facilitated the development of the

desktop manager. While these changes have greatly expanded

the language, they also have created portability problems.

Obviously the older versions do not support the features of

the newer versions, but the newer classes are not always

backward compatible. Specifically, some of the class methods

were changed to make them Java Bean (Java's model for

reusable software) compliant and older version code will not

compile with the newer class libraries. The byte code will

execute on the newer JVM, but if changes are needed to the

original code, it must be modified before recompiling. Java

provides a tool to facilitate the conversion of the older

source code, but 100% portability is compromised.

The language contains known bugs. For example, accessing

files in the root path of a drive requires different syntax

for Windows 95 and Windows NT. Most bugs appear to be a

result of a new language trying to quickly provide many

features.

The pluggable look and feel was a powerful feature that

allowed a graphical presentation independent of the

operating system. As computer networks expand, this feature

may become more valuable by allowing the programmer to give

the user a consistent interface on mUltiple environments.

- 47 -

Sun Microsystems, Inc. developed the Java technology and

licenses it to many users. They also developed the API

classes that are supplied with the JVM. As demand for Java

enhancements continue, other vendors will develop API

classes (e.g. Microsoft AFC classes) that could lead to

incompatibilities between implementations. As stated

previously, Sun is attempting to standardize Java to

maintain its portability and prevent multiple

implementations.

While Sun provides many implementations of the JVM, most

browsers use their own manufacturer's implementation. Other

vendors are also developing JIT (Just In Time) and HotSpot

compilers to improve the JVM performance [Armstrong98].

These new compilers increase processing speed by translating

the Java byte code into native machine code, thus bypassing

the interpreter. These multiple enhancements introduce the

possibility that not all JVMs will comply with the standard

and compromise 100% portability. However, the desktop

manager used only Sun's JVMs and did not experience any

problems.

5.1 Future Research

Networks and distributed computing are becoming more common.

The paradigm of a desktop computer being self-contained is

changing to align with Sun's motto "the network is the

- 48 -

computer." The network computer is one where all the

programs, perhaps even the OS, are external to the machine.

The Java language supports networking and portability and

can provide a solution for this computing paradigm.

While this desktop manager allowed loading of remote

programs, that was not its main intent. A desktop manager

will be needed for the network computer that may not contain

a disk drive. One challenge will be to provide transparent

access to remote programs and resources, perhaps including

the ability to obtain the JVM remotely. Another requirement

will be the capability of accessing remote drives for saving

and restoring files.

Since the network computer's hardware resources will be

minimal, programs may execute on a server machine and only

provide the client with a graphical representation. These

remotely executing programs would take advantage of the

server's greater resources and the network computer would

just provide a window to the process. Development of a

desktop manager program to control these remote resources is

another area of future research.

- 49 -

REFERENCES

[Armstrong98]
Armstrong, E., "HotSpot: A new breed of virtual
machines," Java World, March, 1998,
http://www.javaworld.com/javaworld/jw-03-1998/jw-03-
hotspot.html.

[Campione97]
Campione, M. and K. Walrath, The Java Tutorial, 1997,
http://java.sun.com/docs/books/tutorial/toc.html.

[Core197]
Corel Corporation, "Corel Office for Java Wins Its First
Award," May, 1997,
http://www.corel.com/news/1997/may/GONEcomtech97.htm

[Cox90]
Cox, B., "There Is a Silver Bullet," Byte, October,
1990, pp. 209-218.

[Evans96]
Evans, S., "Common Desktop Environment," Sun
Microsystems Inc., 1996,
http://www.sun.com/solaris/cde/cde-wpaper1.html.

[Flanagan97]
Flanagan, D., Java in a Nutshell, Second Edition,
O'Reilly and Associates, California, 1997.

[Friesenhahn97]
Friesenhahn, R., "Autoconf makes for Portable Software,"
Byte, November, 1997,
http://www.byte.com/art/9711/sec4/art2.html.

[Gosling95]
Gosling, J. and H. McGilton, "The Java Language
Environment: A White Paper," Sun Microsystems, Inc.,
1995, http://java.sun.com/doc/index.html.

[Hargh86]
Hargh, R. and L. Radford, Macintosh Logo, Wiley and Sons
Inc., New York, 1986.

- 50 -

[Hopgood88]
Hopgood, D., "Window Interfaces: A Taxonomy," IEEE
Computer Graphics and Applications, 8, 5 (September,
1988), pp. 65-84.

[Husain96]
Husain, K. and T. Parker, et al., Linux Unleashed Second
Edition, Sams Publishing, Indiana, 1996.

[Jones8 9]
Jones, 0., Introduction to the X Window System,
Prentice-Hall, New Jersey, 1989.

[King94]
King, A., Inside Windows 95, Microsoft Press,
Washington, 1994.

[Lecarme89]
Lecarme, 0., M. P. Gart, and M. Gart, Software
Portability, McGraw-Hill, California, 1989.

[Lee93]
Lee, G., Object-Oriented Application Development,
Prentice-Hall Inc., New Jersey, 1993.

[Lindholm96]
Lindholm, T. and F. Yellin, "The Java Virtual Machine
Specification," 1996
http://sun.java.com/docs/index.html.

[McManis97]
McManis, C., "The basics of Java class loaders," Java
World, October, 1997,
http://www.javaworld.com/javaworld/jw-10-1997/jw-10-
indepth.html.

[Morgan97]
Morgan, B. "COBRA meets Java," Java World, October,
1997, http://www.javaworld.com/javaworld/jw-10-1997/jw-
10-corbajava.html.

[Rowley96]
Rowley, D., "The business of Application Portability,"
StandardView 4, 2 (June, 1996), pp. 80-87.

[Rubin88]
Rubin, T., User Interface Design for Computer Systems,
Ellis Horwood Limited, England, 1988.

[Sun97]
Sun Microsystems, Inc., "Sun Sues Microsoft for Breach
of Java Contract," October, 1997,
http://java.sun.com/pr/1997/oct/pr971007.html

- 51 -

[Sun97A]
Sun Microsystems, Inc., "International Standards
Organization Members Approve Sun's PAS Application,"
November, 1997,
http://java.sun.com/pr/1997/nov/pr971117.html

[Sun97B]
Sun Microsystems, Inc., "Swing Architecture (Pre-beta
Material) ," Version 0.5, 1997,
http://www.java.sun.com/jfc/swinf-0.6/doc/overview2.html

[Sun97C]
Sun Microsystems, Inc., "JDK 1.1.5 Documentation," 1997,
http://java.sun.com/java/jdk/1.1.5/docs/index.html.

[Sun98]
Sun Microsystems, Inc., "100% Pure Java Program"
http://java.sun.com/100percent/cert.html

[Tanner96]
Tanner, P., "Software Portability: Still an Open
Issue?," StandardView 4, 2 (June, 1996), pp. 88-93.

[Yourdon94]
Yourdon, E., Object-Oriented Systems Design - An
Integrated Approach, Prentice-Hall Inc., 1994, pp. 269-
270.

- 52 -

APPENDIX A

WIMP TERMINOLOGY

WINDOWS, ICONS, MENUS, POINTERS

Windows: An area generally defined by a rectangular border
in which a program displays information.

Tiled - windows are tiled if they do not overlap each
other when displayed on the monitor.

Overlapped - windows overlap if one window covers a
portion of another window.

Sizing - changing the window size.

Scrolling - a method that changes the information
visible in a window.

Iconifying - replacing the window with an icon
representing the window.

Title Bar - area of the window that contains text (and
often an icon) identifying the program that owns the
window.

Icons: A pictorial representation of a screen object.
Usually a bitmap image of the logo or trademark of the
program.

Menus: A method allowing user selection of commands by
selection of a textual representation.

Menu Bar - a horizontal array of menu choices usually
located below the title bar.

Pull down - a menu that appears vertically as a result
of selecting another menu item.

Pop up - a menu that appears as a result of a user
action such as a mouse click. Their location is not
fixed, but usually occurs at the location of the mouse
click.

- 53 -

Pointers: A method for selecting objects on the monitor. A
cursor identifies the pointer's location on the
monitor.

Mouse or trackball - a device that controls the
position of a cursor on the screen and is equipped with
one to three buttons.

Entered, Exited - refers to the cursor location
relative to a specific window.

Up, Down, Click, Double Click - refer to mouse button
actions. These usually result in some program action.
[Rubin88, pp.94-106]

- 54 -

Appendix B

Java Class Hierarchy Index

Java (tm) Platform 1.1.5 Core API

Java API Packages

package java.applet
package java.awt
package java.awt.datatransfer
package java.awt.event
package java.awt.image
package java.beans
package java.io
package java. lang
package java.lang.reflect
package java. math
package java.net
package java.rmi
package java.rmi.dgc
package java.rmi.registry
package java.rmi.server
package java. security
package java.security.acl
package java. security. interfaces
package java.sql
package java. text
package java.util
package java.util.zip

Copyright 1996, 1997 Sun Microsystems, Inc.
[Sun97C]

- 55 -

APPENDIX C

Contents of the Java (tm) Development Kit - JDK(tm) 1.1.5

Taken from readme file of JDK1.1.5 [Sun97C]

- Java Compiler (javac)
Compiles programs written in the Java programming
language into bytecodes.

- Java Interpreter (java)
Executes Java bytecodes. In other words, it runs
programs written in the Java programming language.

- Java Runtime Interpreter (jre)
Similar to the Java Interpreter (java), but
intended for end users who do not require all the
development-related options available with the
java tool.

- Java AppletViewer (appletviewer)
Used for testing and running applets.

Java Debugger (jdb)
Helps you find bugs in Java programs.

- Class File Disassembler (javap)
Disassembles compiled Java files and prints out a
representation of the Java bytecodes.

- Java Documentation Generator (javadoc)
Parses the declarations and documentation comments
in a set of Java source files and produces a set
of HTML pages describing the public and protected
classes, interfaces, constructors, methods, and
fields. Also produces a class hierarchy and an
index of all members.

- C Header and Stub File Generator (javah)
For attaching native methods to Java code.

- Java Archive Tool (jar)
Combines many Java class files and other resources
into a single jar file.

- Digital Signing Tool (javakey)
Manages entities, including their keys,
certificates, and the trust associated with them.

- 56

- Native-To-ASCII Converter (native2ascii)
Converts a native encoding file to an aSCll file
that includes the \udddd Unicode notation.

- Java RMI Stub Converter (rmic)
Generates objects from the names of compiled Java
classes that contain remote object
implementations.

- Java Remote Object Registry (rmiregistry)
Creates and starts a remote object registry on the
specified port of the current host.

- Serial Version Command (serialver)
Returns the serialVersionUID for one or more
classes in a form suitable for copying into an
evolving class.

- AWT 1.1 Conversion Tool (updateAWT)
Included with the JDK AWT documentation, rather
than in the bin directory. Updates deprecated 1.0
AWT names to new 1.1 AWT names (for Sun Solaris
and UNIX systems, or Windows systems with the MKS
toolkit) .

- Various C libraries and include files

- Java Core Classes (classes. zip)
This file contains all of the compiled .class
files for the JDK.

- Java Source Files for Public Classes
(src.zip file or src directory)
This is the set of source files used to create the
classes included in the Java Core Classes
classes. zip file (above).

- 57 -

APPENDIX D

The source code and compiled byte code for the desktop

manager and utility programs are included on a compact disk

inside the back cover of this thesis.

- 58 -

VITA

Scott Griswold received a Bachelor of Science degree in

Electrical Engineering from Tufts University in 1972.

Scott expects to receive a Master of Science in

Computer and Information Sciences from the University

of North Florida in May of 1998.

Scott has held various design, field installation, and

field service engineering positions since graduating

from Tufts. He worked for over eight years exploring

for oil and gas in Louisiana and Texas before moving to

Florida. While in Florida he gained several years

experience in the paper and process industry, and over

ten years experience in electrical generation. Scott's

interests lie in computer applications that aid in

manufacturing and process control.

- 59 -

	UNF Digital Commons
	1998

	A Java Implementation of a Portable Desktop Manager
	Scott J. Griswold
	Suggested Citation

	Title page
	Contents
	List of figures
	Abstract
	Chapter 1: Introduction
	1.1: Problem review
	1.2: Objective

	Chapter 2: Background research
	2.1: Portability
	2.2: Desktop manager programs
	2.3: Survey of existing programs
	2.4: Standardization
	2.5: Java programming language

	Chapter 3: Program requirements
	3.1: Desktop manager
	3.2 : Utility programs

	Chapter 4: Detailed program design
	4.1: GUI features
	4.2: Event model
	4.3: Class loading
	4.4: Remote object access
	4.5: Operating system access

	Chapter 5: Conclusion
	5.1: Future research

	References
	Appendix A: WIMP terminology
	Appendix B: Java class hierarchy index
	Appendix C: Java development kit
	Appendix D: Source code

