61 research outputs found

    A spatially heterogeneous network-based metapopulation software model applied to the simulation of a pulmonary tuberculosis infection

    Get PDF
    This work was supported by the PreDiCT-TB consortium (IMI Joint undertaking grant agreement number 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution.Tuberculosis (TB) is an ancient disease that, although curable, still accounts for over 1 million deaths worldwide. Shortening treatment time is an important area of research but is hampered by the lack of models that mimic the full range of human pathology. TB shows distinct localisations during different stages of infection, the reasons for which are poorly understood. Greater understanding of how heterogeneity within the human lung influences disease progression may hold the key to improving treatment efficiency and reducing treatment times. In this work, we present a novel in silico software model which uses a networked metapopulation incorporating both spatial heterogeneity and dissemination possibilities to simulate a TB infection over the whole lung and associated lymphatics. The entire population of bacteria and immune cells is split into a network of patches: members interact within patches and are able to move between them. Patches and edges of the lung network include their own environmental attributes which influence the dynamics of interactions between the members of the subpopulations of the patches and the translocation of members along edges. In this work, we detail the initial findings of a whole-organ model that incorporates distinct spatial heterogeneity features which are not present in standard differential equation approaches to tuberculosis modelling. We show that the inclusion of heterogeneity within the lung landscape when modelling TB disease progression has significant outcomes on the bacterial load present: a greater differential of oxygen, perfusion and ventilation between the apices and the basal regions of the lungs creates micro-environments at the apex that are more preferential for bacteria, due to increased oxygen availability and reduced immune activity, leading to a greater overall bacterial load present once latency is established. These findings suggest that further whole-organ modelling incorporating more sophisticated heterogeneities within the environment and complex lung topologies will provide more insight into the environments in which TB bacteria persist and thus help develop new treatments which are factored towards these environmental conditions.Publisher PDFPeer reviewe

    In silico modelling of in-host tuberculosis dynamics : towards building the virtual patient

    Get PDF
    Tuberculosis (TB) accounts for over 1 million deaths each year, despite effective treatment regimens being available. Improving the treatment of TB will require new regimens, each of which will need to be put through expensive and lengthy clinical trials, with no guarantee of success. The ability to predict which of many novel regimens to progress through the clinical trial stages would be an important tool to TB research. as current models are constrained in their ability to reflect the whole spectrum of pathophysiology, particularly as there remains uncertainty around the events that occur. This thesis explores the use of computational techniques to model a pulmonary human TB infection. We introduce the first in silico model of TB occurring over the whole lung that incorporates both the environmental heterogeneity that is exhibited within different spatial regions of the organ, and the different bacterial dissemination routes, in order to understand how bacteria move during infection and why post-primary disease is typically localised towards the apices of the lung. Our results show that including environmental heterogeneity within the lung can have profound effects on the results of an infection, by creating a region towards the apex which is preferential for bacterial proliferation. We also present a further iteration of the model, whereby the environment is made more granular to better understand the regions which are afflicted during infection, and show how sensitivity analysis can determine the factors that contribute most to disease outcomes. We show that in order to simulate TB disease within a human lung with sufficient accuracy, better understanding of the dynamics is required. The model presented in this thesis is intended to provide insight into these complicated dynamics, and thus make progress towards an end goal of a virtual clinical trial, consisting of a heterogeneous population of synthetic virtual patients."“This work was supported by the PreDiCT TB consortium (IMI Joint undertaking grant agreement number 115337, resources of which are composed of ïŹnancial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EF-PIA companies’ in kind contribution.)” -- Acknowledgement

    Towards hybrid stochastic modeling and simulation of complex systems in multi-scale environments with case studies on the spread of tuberculosis in Democratic Republic of the Congo

    Get PDF
    Abstract in EnglishMathematical modeling of the spread of infectious diseases in a population has always been recognized as a powerful tool that can help decision-makers understand how a disease evolves over time. With the evolution of science and humanity, it has become evident that Mathematical models are too simplistic and have some limitations in modeling environmental phenomena, such as the spread of epidemics in a population, when they are applied without combining them with other sciences. In understanding the dynamics of epidemics in a population, the weakness of these models is their difficulty in grasping the complexity inherent in the spread of diseases in real life because, life is supported by human interactions and behaviors that are understood through networks of social and spatial interactions. Modeling the spread of epidemics which takes this reality into account requires the implementation of new tools to refine the results already obtained by mathematical models. The aim of this thesis is to explore and attempt to extend new developments in mathematical modeling of the spread of infectious diseases by proposing new tools based on mathematical models from differential equations and agent-based models from intelligent agents derived from artificial intelligence. To achieve this objective, the study starts from a comparative study of two ways of modeling and simulation of the spread of infectious diseases in the population, namely mathematical modeling and agent-based modeling with a concrete case study of the spread of tuberculosis based on data from the Democratic Republic of the Congo (DRC). Then comes a coupling study of these two approaches in a single model and its implementation in a multi-scale environment. The results show that the coupled model is more realistic compared to mathematical models generally implemented in the literature. Four case studies are presented in this thesis. Mathematical modeling based on differential equations is used in the first and second cases. The third case is based on intelligent agents model while the last one is based on the coupling of mathematical models and agent-based models. Application of implemented models to the spread of tuberculosis reveals that detection of people with latent tuberculosis and their treatment are among the actions to be taken into account in addition to those currently carried out by the Congolese health system. The models assert that the current TB situation in DRC remains endemic and that the necessary measures need to be taken to reduce the burden of TB, especially to control it, through the tuberculosis elimination strategy and its elimination in the future in accordance with the Sustainable Development Goals. Our hybrid model benefiting from the advantages of EBM and ABM confirms that taking the individual into account as a fully-fledged entity and managing their behavior gives the microscopic aspect of the model set up and brings it closer as much as possible to reality. Mathematical management of the spread of the disease in cities gives a macroscopic aspect to the model. Numerical simulations of this last model on a multi-scale virtual environment affirm that the mobility of individuals from city to city has a significant impact on the spread of tuberculosis in the population. Controlling the rate of population mobility from one city to another is one of the most important measures for large-scale disease control. This model therefore draws its richness from this dynamic at two different scales (two time scales modeling approaches: at the microscopic/individual level (ABM) and macroscopic/city level (ODE)), which gives the emergence of the model at the global level. As a result, it seems that the coupling of mathematical models to agent-based models should be applied when the dynamics of the complex system under consideration is at different scales. Based on our research results, it seems that the choice of an approach must depend on how the modeler would like to achieve the expected results. Mathematical models remain essential due to their analytical and synthetic aspect, but their coupling with intelligent agent-based models makes it possible to refine known results and thus reflect the reality of real life, because the resulting model integrate interactions of individuals and their heterogeneous behaviors that are necessary for understanding the spread of infectious diseases in the population that only mathematical models based on differential equations can not capture.Mathematical SciencesPh D. (Applied Mathematics

    Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle

    Get PDF
    Funding: This work was supported by the Medical Research Council [grant number MR/P014704/1] and the PreDiCT-TB consortium (IMI Joint undertaking grant agreement number 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EF-PIA companies’ in kind contribution.Progress in shortening the duration of tuberculosis (TB) treatment is hampered by the lack of a predictive model that accurately reflects the diverse environment within the lung. This is important as TB has been shown to produce distinct localisations to different areas of the lung during different disease stages, with the environmental heterogeneity within the lung of factors such as air ventilation, blood perfusion and oxygen tension believed to contribute to the apical localisation witnessed during the post-primary form of the disease. Building upon our previous model of environmental lung heterogeneity, we present a networked metapopulation model that simulates TB across the whole lung, incorporating these notions of environmental heterogeneity across the whole TB life-cycle to show how different stages of the disease are influenced by different environmental and immunological factors. The alveolar tissue in the lung is divided into distinct patches, with each patch representing a portion of the total tissue and containing environmental attributes that reflect the internal conditions at that location. We include populations of bacteria and immune cells in various states, and events are included which determine how the members of the model interact with each other and the environment. By allowing some of these events to be dependent on environmental attributes, we create a set of heterogeneous dynamics, whereby the location of the tissue within the lung determines the disease pathological events that occur there. Our results show that the environmental heterogeneity within the lung is a plausible driving force behind the apical localisation during post-primary disease. After initial infection, bacterial levels will grow in the initial infection location at the base of the lung until an adaptive immune response is initiated. During this period, bacteria are able to disseminate and create new lesions throughout the lung. During the latent stage, the lesions that are situated towards the apex are the largest in size, and once a post-primary immune-suppressing event occurs, it is the uppermost lesions that reach the highest levels of bacterial proliferation. Our sensitivity analysis also shows that it is the differential in blood perfusion, causing reduced immune activity towards the apex, which has the biggest influence of disease outputs.Publisher PDFPeer reviewe

    Tackling complexity in biological systems: Multi-scale approaches to tuberculosis infection

    Get PDF
    Tuberculosis is an ancient disease responsible for more than a million deaths per year worldwide, whose complex infection cycle involves dynamical processes that take place at different spatial and temporal scales, from single pathogenic cells to entire hosts' populations. In this thesis we study TB disease at different levels of description from the perspective of complex systems sciences. On the one hand, we use complex networks theory for the analysis of cell interactomes of the causative agent of the disease: the bacillus Mycobacterium tuberculosis. Here, we analyze the gene regulatory network of the bacterium, as well as its network of protein interactions and the way in which it is transformed as a consequence of gene expression adaptation to disparate environments. On the other hand, at the level of human societies, we develop new models for the description of TB spreading on complex populations. First, we develop mathematical models aimed at addressing, from a conceptual perspective, the interplay between complexity of hosts' populations and certain dynamical traits characteristic of TB spreading, like long latency periods and syndemic associations with other diseases. On the other hand, we develop a novel data-driven model for TB spreading with the objective of providing faithful impact evaluations for novel TB vaccines of different types
    • 

    corecore