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Abstract
Tuberculosis (TB) is an ancient disease that, although curable, still accounts for over 1
million deaths worldwide. Shortening treatment time is an important area of research
but is hampered by the lack of models that mimic the full range of human pathology.
TB shows distinct localisations during different stages of infection, the reasons for
which are poorly understood. Greater understanding of how heterogeneity within the
human lung influences disease progression may hold the key to improving treatment
efficiency and reducing treatment times.
In this work, we present a novel in silico software model which uses a networked
metapopulation incorporating both spatial heterogeneity and dissemination
possibilities to simulate a TB infection over the whole lung and associated lymphatics.
The entire population of bacteria and immune cells is split into a network of patches:
members interact within patches and are able to move between them. Patches and
edges of the lung network include their own environmental attributes which influence
the dynamics of interactions between the members of the subpopulations of the
patches and the translocation of members along edges.
In this work, we detail the initial findings of a whole-organ model that incorporates
distinct spatial heterogeneity features which are not present in standard differential
equation approaches to tuberculosis modelling. We show that the inclusion of
heterogeneity within the lung landscape when modelling TB disease progression has
significant outcomes on the bacterial load present: a greater differential of oxygen,
perfusion and ventilation between the apices and the basal regions of the lungs
creates micro-environments at the apex that are more preferential for bacteria, due to
increased oxygen availability and reduced immune activity, leading to a greater overall
bacterial load present once latency is established.
These findings suggest that further whole-organ modelling incorporating more
sophisticated heterogeneities within the environment and complex lung topologies
will provide more insight into the environments in which TB bacteria persist and thus
help develop new treatments which are factored towards these environmental
conditions.
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Introduction
Tuberculosis (TB) is ranked by the World Health Organization as the world’s
deadliest infectious disease, accounting for over 1 million deaths in 2016 (World Health
Organization 2017). Despite TB being an ancient disease and knowledge of effective
treatments for it being available since the 1940s, TB remains prevalent, mostly due
to its complex pathology within the human body which is still not fully understood.
Treatment for TB infection is a long and arduous process, with the standard regimen
for drug-susceptible forms of TB requiring a minimum of 6 months of multiple-drug
chemotherapy. This lengthy duration poses a possible global threat as incomplete or
inadequate treatment can lead to the development of drug resistance within theMycobac-
terium tuberculosis (Mtb) bacilli (Gillespie 2002), the causative agent for TB infection.
Reducing the length of treatment regimens is thus of great importance in TB, as this could
improve adherence and reduce emergence of resistance (Gillespie et al. 2014). Creation of
improved regimens requires a greater understanding of the disease pathology, including
the interactions that occur between the invading bacilli and the host immune responses
as well as the environments that these interactions occur upon.
It is known that TB disease shows differing localisations at different stages, with the ini-

tial infection often occurring in the basal regions of the lung. This infection is typically
resolved by the immune system containing, but not eradicating, the bacteria, known as
latent TB. In cases where this latent TB breaks down, a new disease is established, known
as post-primary TB, and this typically occurs in the lung’s apical regions. The cause of
these localisations has typically been attributed to the differences in environmental con-
ditions throughout the lung: with the high ventilation of the lower regions resulting in
an increased likelihood of particle deposition and thus initial infection there; whilst the
environmental factors of the apices provide a favourable environment for Mtb bacteria
to proliferate if they can disseminate there. But exactly how these various environmen-
tal conditions each contribute to the establishment of a TB infection, and the means of
bacterial dissemination across the lung environment, are still poorly understood.
In this work, we first present a brief background of the pathology of TB infection,

focusing on the localisation within the lungs during different stages of infection and the
factors that may influence it. We investigate the routes of dissemination that allow bac-
teria to reach the apical regions and the environmental conditions there that make for a
suitable region of bacterial proliferation during post-primary TB. We then present pre-
vious in silico work on TB in the lungs and show how these models have often focused
only on TB at the level of a single lesion and have not explored the macro-level dynamics
acting at the scale of the whole organ. We then give a background on how metapopu-
lation modelling can be used to simulate scenarios of populations that are localised to
distinct spatial regions. For the main body of this work, we present a novel network-based
metapopulation model that incorporates the spatial heterogeneity and dissemination
opportunities to explore how they affect bacterial growth during a TB infection. We first
present MetapopPy, a generalised framework to create metapopulation models and apply
asynchronous time dynamics upon them. This framework is then extended to create a
TB-specific model that simulates the lung and surrounding lymphatics as a network, with
TB pathology and immunological events applied upon it. We use this model to explore
the differences in results on models that use a single patch representation of the lung and
those that separate the lung into distinct regions, each of which contains environmental
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attributes that influence bacterial growth and immune response; thereby creating an envi-
ronment with regions that may provide bacteria with preferential conditions in which to
proliferate, provided they can disseminate there.

Background
TB pathology

A TB infection is typically initiated by the inhalation of airborne Mtb bacteria which
are deposited within the alveolar tissue of the lung. Once there, bacteria encounter the
body’s resident immune cells. Two of the main immune cells that engage in host defence
against TB are alveolar macrophages (AMs) and dendritic cells (DCs). AMs are phago-
cytes, cells whose primary function is to locate, ingest and destroy invading particles that
may cause damage to the organ tissue. AMs ingest Mtb efficiently, but Mtb have evolved
to inhibit the destructive capabilities of the AM (Pieters 2008), and thus many bacteria
that are ingested remain alive inside the cell, which provides a niche for the bacteria to
replicate uninhibited (Collins and Kaufmann 2001). These AMs which are ‘infected’ with
bacteria have reduced destructive capabilities. Bacteria then proceed to replicate both
intracellularly and extracellularly and cause tissue damage; this is known as ‘primary’ TB.
In order to overcome this subversion of the innate immune system, the body must

increase the scale and strength of its immune response. This is done through increasing
the number of immune cells recruited to the site of infection (Wager and Wormley 2014)
and the triggering of an adaptive immune response, a function which is performed by the
DCs. These cells come into contact with bacteria and absorb antigens. Doing so cause
the DCs to change from an immature state to a mature state, and these mature cells then
migrate from the lungs to the lymphatic system (Alvarez et al. 2008; Bousso 2008; Mihret
2012). There, they act as antigen-presenting cells (APCs), whose role is to present anti-
gens to naïve T-cells and thus trigger an adaptive immune response. This presentation
causes naïve T-cells to differentiate and activate, and then proceed into the lung tissue
through the blood in order to help fight the infection. Whilst DCs are viewed as the pri-
mary APC in TB infection, it has been shown that AMs may also function as antigen
presenters (Kirby et al. 2009).
Within the lungs, the presence of T-cells causes a profound impact on the immune

response to TB through a variety of functions. These cells release cytokines - signalling
chemicals which cause the AMs that come into contact with them to change their
behaviour. Uninfectedmacrophagesmay be triggered by these cytokines to activate; doing
so changes the macrophage state to an activated one whereby the macrophage has greatly
enhanced bactericidal capabilities (Pieters 2008). T-cells also perform cytotoxic killing of
cells that have become infected with bacteria.
The increased immune response results in a battle between host and bacteria that typ-

ically (in 95% of cases) results in a stalemate: the immune response can contain bacterial
growth but is unable to completely eradicate the bacteria from the body. This state is
known as Latent TB, and containment occurs through structures known as granulomas,
which are complex arrangements of activated immune cells and fibrosis surrounding
infected immune cells and bacteria in the centre, preventing bacterial replication by
restricting the space and nutrient supply available.Mtb are able to persist within this gran-
uloma structure by entering a dormant state (Ehlers 2009), whereby the bacteria increase
their resistance to chemotherapeutic destruction (Lipworth et al. 2016), but at the cost
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of also significantly lowering their replication rate. The exact triggers for this process are
still unclear. Latent TB patients are asymptomatic and cannot pass infection onto others,
and they may remain in this state for years. But latent TB poses a risk of future infection
(Gomez andMcKinney 2004) in cases where the immune system weakens: the granuloma
structures may break down, releasing bacteria and allowing them to replicate and cause
tissue damage, known as ‘post-primary’, or ‘reactivation’ TB.

TB localisation within the lung

TB has been shown to exhibit distinct localisations within the lungs during these differ-
ent stages of infection (Elkington and Friedland 2015). Upon initial infection, Mtb are
typically deposited towards the basal regions of the lungs, due to a difference in ven-
tilation within the lungs caused by the effects of gravity and bronchial tree anatomy
(Drake et al. 2015) that forces more inhaled air (and thus also any inhaled
particles) into the lower regions (West 2005). However, reactivation TB occurs
within the apical regions of the lungs (Murray 2003; Balasubramanian et al. 1994).
These findings suggest two important factors concerning pulmonary TB infec-
tions: i) the bacteria are able to disseminate within the lung and surrounding sys-
tems during infection and ii) the apical regions present an environment that is
favourable for bacterial proliferation during post-primary infection. The exact causes
for this difference in localisation are poorly understood, both in terms of how
the bacteria disseminate and the factors that make the apical region favourable
to Mtb.

Dissemination

Bacterial dissemination may occur through a variety of possible routes. When APCs
migrate to the lymphatic system to trigger the adaptive immune response, they also pro-
vide any internalised bacteria with a means of transport to the lymphatics (Humphreys
et al. 2006). From here, it has been hypothesised that the bacteria can either re-enter
the lung through damage to the lymphatic tissue (Behr and Waters 2014), or access from
the lymphatics to the blood stream may provide an alternative route of dissemination
to previously uninfected areas (Hunter 2016), which may be more beneficial to bacterial
growth.

Spatial heterogeneity

The lung environment is heterogeneous, with a variety of environmental attributes dif-
fering over regions of the lung. Both ventilation (the amount of air passed into a region of
the lung during inhalation) and perfusion (the amount of blood supplied to a region of the
lung for oxygen exchange) show regional variances, with both increasing in value towards
the lower regions. As perfusion shows a more rapid increase, with much lower perfusion
occurring at the apices, this creates a differential in oxygen tension (calculated as venti-
lation divided by perfusion), with the apical regions being oxygen-rich (as little oxygen
exchange occurs) and the basal regions being oxygen-poor (as all oxygen is exchanged).
It has been hypothesised that this localisation of TB to the apical regions is due to these

environmental attribute differentials (Goodwin and Des Prez 1983; Murray 2003). Mtb
are an aerobic bacilli, requiring oxygen for their metabolism, and a hypoxic environment
has been shown to be a trigger to convert the bacilli into a dormant state (Hammond
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et al. 2015; Lipworth et al. 2016). Thus, the relatively higher partial pressure of oxygen
at the apical regions may mean the bacteria present there are able to enter a replicating
state easier and thus proliferate faster. Perfusion differentials may also impact disease
progression, as reduced perfusion results in a weakened immune response due to the
reduced recruitment of immune cells through the blood (Hunter et al. 2014).
Furthermore, transfer of immune cells to the lymphatics also serves as a means of bacte-

ria clearance from the lungs. The rate of clearance shows heterogeneity within the lungs,
with the apices having a reduced clearance rate (Goodwin and Des Prez 1983). This may
result in fewer bacteria being trafficked out of the lungs and thus increasing the bacterial
load at the apices.

In silicomodelling

These factors of dissemination and heterogeneity are hypothesised to affect the progres-
sion and localisation of a TB infection, but their exact contributions are still controversial
(Elkington and Friedland 2015), and studies into how these factors impact TB disease are
difficult due to the lack of fully viable models: in vivo animal models often do not display
completely human-like pathology, whilst in vitro models cannot replicate the broad spec-
trum of physiological conditions found within the human body (Guirado and Schlesinger
2013). In silico mathematical and computational models provide the means to simulate
environmental conditions that cannot be produced with real-world studies.
With regard to TB, in silico modelling has been used to model TB disease within-

host (see Kirschner et al. (2017) for an extensive review), particularly to investigate
factors surrounding the development of a single lesion in the lung (Guirado and
Schlesinger 2013), including the important factors in granuloma formation and control
(Segovia-Juarez et al. 2004; Cilfone et al. 2013) as well as models that simu-
late the transfer of immune cells between the lung and the lymphatics during
infection (Marino and Kirschner 2004; Marino et al. 2010). Previous work has
also investigated the effects of bacterial cell state on the formation of a lesion
(Bowness et al. 2018). The majority of TB in-host models only simulate a small
region of lung tissue (enough to contain a single lesion) or treat the lung as a homo-
geneous environment with identical environmental conditions throughout the simu-
lated landscape; to our knowledge, there are no models that attempt to determine
how the heterogeneities across the whole human lung influence the progression of a
TB infection or include dissemination of bacteria between these different regions of
the lung.

Metapopulations

Spatial heterogeneities in the landscape have been shown to have profound effects on
the dynamics of populations within an environment. Real-world populations in a vari-
ety of scenarios are not well-mixed; populations tend to cluster into distinct spatial
regions (‘patches’), thus creating a ‘population of populations’ or ‘metapopulation’. In typ-
ical metapopulation modelling, members within the subpopulation present at a patch
are assumed to be well-mixed. Each patch is spatially distinct, but patches may influence
each other through the dispersal of members between patches. Thus, this combination
of patches and dispersal routes can be seen as a network, where patches represent the
nodes of the network and dispersal routes represent the edges. Understanding how the
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environmental factors that differ between patches affect the interactions that take place
upon patches and between them can provide greater insight into the overall system
dynamics, and can be utilised to create effective control measures in the case of disease
containment (Levins 1969).
Metapopulations have seen many implementations in a variety of different disciplines,

with significant use in the fields of ecology and epidemiology. Thesemodels have explored
the concepts of colonisation and extinction of a species (Hanski and Gilpin 1991; Grenfell
and Harwood 1997), where each patch is either occupied by the species or is unoccupied,
with an occupied patch providing the opportunity for its immediate, unoccupied neigh-
bours to become occupied as well (colonisation) or for the patch to become unoccupied
(extinction). Local extinction of a species across all patches results in a global extinction
of the species. Epidemiological models of this nature take a similar approach, with occu-
pation of a patch indicating the presence of a disease within the host members located
there (Foley et al. 1999). Rather than an occupied/unoccupied view, somemetapopulation
models have used a more granular approach, whereby various subpopulations of species
are modelled explicitly within the patches and allowed to interact with one another. These
are particularly used in epidemiology (Arino and van den Driessche 2006; Hickson et al.
2012), where the species represent individuals in different states of disease or susceptibil-
ity and have been used to show that greater understanding of the differentials within the
global population can allow researchers to understand and better control the dynamics of
global infections (Helbing et al. 2014) and how spatial heterogeneities in aspects like con-
tact rates, vaccination uptake and demographics can alter the effectiveness of intervention
programs to prevent disease transmission (Wang et al. 2016).
Ganguli et al. (2005) use this approach in modelling the formation of a single TB lesion,

with a grid of compartments modelling a small portion of alveolar tissue, each of which
contains a variety of species including bacteria and various immune cells. Their metapop-
ulation model incorporates spatial heterogeneity by restricting the interactions between
agents of the system to only those in the same spatial compartment, with some agents
able to move between compartments. Environmental heterogeneity is included through
the diffusion of chemokine (a signalling chemical produced by immune cells) from the
source of infection to adjacent compartments. However, their model simulates the forma-
tion of a single lesion and does not incorporate environmental factors such as oxygen and
perfusion differentials as discussed previously.

Networkedmetapopulationmodel framework
Metapopulation modelling provides the means of modelling scenarios where the main
population is localised to specific distinct spatial regions, which may differ from one
another in terms of environmental resources. TB infections within the lung can be seen
as such a scenario, with bacteria and immune cells being restricted to different regions
of the lung, each of which varies in terms of attributes such as oxygen availability and
blood perfusion. Therefore, to model the whole-organ impact of a TB infection within
the lung, a metapopulation model is appropriate, as it allows the incorporation of spa-
tial heterogeneity within the environment on which a population resides. In this section,
we detail the creation of a generalised framework for creating metapopulation mod-
els called MetapopPy, which is then used as the basis of a specific model to simulate
TB infections within the human lungs. MetapopPy is written in Python and allows for
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the simple creation of networked metapopulational simulation models. As this is an
abstract framework, the models created can be applied to any field of study involving
spatially distributed populations. This modelling framework is described in full detail in
the Additional file 1.
The framework consists of a metapopulation network of patches, connected by edges,

and a set of events. Each patch of the network contains a subset of the entire system pop-
ulation divided into compartments: members of the subpopulation may belong to only
one compartment at any time, but may transfer between compartments based on the
system dynamics. The events are attached to patches based on where they may occur.
The event modelling within the MetapopPy system uses the Gillespie Algorithm1 to
perform events asynchronously (Gillespie 1976). Although this algorithm was initially
developed to model chemical reactions, it is applicable to any scenario that involves inter-
actions between members of a population, including infection spreading over networks
(Vestergaard and Génois 2015).
When a simulation begins, each event is initialised with a static reaction parameter,

which can be interpreted as the rate of a single reaction of the given event in the given
unit time, and each event contains a function to calculate a state variable, which can be
interpreted as the number of possible reactions of the event at the current time. The state
variable function is applied to every patch in the network, and the sum of the results of
these is the event’s state variable.
From these, a rate for every event is calculated, by taking the product of the event’s

reaction parameter and its current state variable. Having calculated the rate for every
event of the model, an event is chosen probabilistically to be performed (with a higher
rate resulting in a greater chance of selection). A timestep, τ , for this event to occur is
then chosen using Eq. 1 (as per Gillespie (1976)), with a being the total sum of the rate of
all events, and r being a randomly generated number in the range (0,1).

τ = 1
a
ln

(
1
r

)
(1)

The chosen event is then performed, and updates the network in its defined manner.
The simulation time is then incremented by τ and the process repeats, until a set time-
limit is exceeded or there is no possibility of any event occurring (i.e. a=0).

Pulmonary TB infectionmodel
The above MetapopPy framework has been extended to create TBMetapopPy, a
metapopulation-based model that simulates a tuberculosis infection within the human
pulmonary system, investigating how spatial heterogeneities of environmental factors
within the lungs and dissemination of bacteria within the lung and between the lung and
the lymphatics influence the spread of an infection. This model follows the same three-
package structure as above, with a specific environment and set of events to simulate the
early stages of a pulmonary TB infection.

Network

TBMetapopPy models the environment of the lung and lymphatics - the compartments
used represent the total population of bacteria and immune cells, with each compartment
denoting a unique cell type and cell state as detailed in Table 1. We define two distinct
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Table 1 Subpopulation compartments used in TBMetapopPy

Cell type Name Symbol Description

Bacteria Bacterium extracellular replicating BER Bacteria present on the alveolar
tissue which have a high replication
metabolism

Bacterium extracellular dormant BED Bacteria present on the alveolar
tissue which have a low replication
metabolism

Bacterium intracellular macrophage BIM Bacteria which are present inside
infected macrophages (MI)

Bacterium intracellular macrophage BID Bacteria which are present inside
mature dendritic cells (DCM)

Macrophages Macrophage resting MR Macrophages in a natural state

Macrophage activated MA Macrophages which have been
activated by the immune system to
increase cytotoxic capabilities

Macrophage infected MI Macrophageswhichhave internalised,
and become infected by, bacteria

Dendritic cells Dendritic cell immature DCI Dendritic cells in a natural, imma-
ture state

Dendritic cell mature DCM Dendritic cells which have come
into contact with bacteria and
have matured into an antigen-
presenting state

T-cells T-cell naïve TN T-cells in a natural, unactivated state

T-cell activated TA T-cells which have been activated
by antigen presentation

types of patches: LungPatch, which represents a portion of alveolar tissue found within
the lung, and LymphPatch, which simulates the tissue within the lymphatic system. Lung-
Patch instances contain 3 spatial attributes: Ventilation (V ), Perfusion (Q) and Oxygen
Tension (O2), while LymphPatch instances have none. Figure 1 shows the setup of the two
types of patches.
In order to create a network, edges are defined connecting the LungPatch instances

together, and joining those instances with the LymphPatch instances, as shown in Fig. 2.
Edges also contain environmental attributes influencing the rate of translocation of mem-
bers between the patches. LungEdge instances contain a WEIGHT attribute to indicate
the rate of air flow, and thus the rate of cell movement upon the air, between two Lung-
Patch instances. LymphEdge instances contain a DRAINAGE value to indicate the rate of

Fig. 1 Diagram of the two types of patches used in TBMetapopPy, along with the compartments (see Table 1)
and the environmental attributes present in each. LungPatch instances contain spatial attributes to allow for
the creation of a heterogeneous environment within the lung. Oxygen tension in each patch is always
calculated as the division of ventilation by perfusion
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Fig. 2 Diagram of the types of edges used in TBMetapopPy network, along with the attributes of each.
LungEdges (in black) indicate movement of bacteria within the air of the lungs, and thus connect two
LungPatch instances together, with a WEIGHT value indicating probability of movement. LymphaticEdges (in
blue) indicate the migration of cells from the lung to the lymphatic system, and connect a LungPatch to a
LymphPatch. DRAINAGE indicates the flow rate of cells to the lymphatic system. BloodEdges (in red) indicate
the movement of bacteria and cells into the lung via the bloodstream and thus connect a LymphPatch to a
LungPatch. These edges contain a PERFUSION value, set equal to the perfusion value of the LungPatch

migration of cells from the lung to the lymphatic system. BloodEdge instances represent
the movement of cells from the lymphatics to the blood stream from which they are re-
seeded back into the lung. These contain a PERFUSION attribute, set equal to the value
of perfusion in the destination LungPatch. This allows for differential lymphocyte (cells
originating from the lymphatics) immune responses throughout the lung.

Events

TBMetapopPy contains a number of events to simulate the growth of bacteria and the
interactions between the immune cells of the body and the bacteria. These events, along
with their respective state variable functions, are described in more detail within the
Additional file 1.
In order to investigate the effects of environmental spatial heterogeneity upon TB infec-

tion, some of these events are influenced by the environmental attributes present at each
patch. For example, we include events to switch bacteria from a replicating state (BER)
to a dormant one (BED), and conversely from dormancy to actively replicating. These
events have state variable functions that are dependent on the oxygen tension level of
the patch, which we hypothesise is the main driver between these metabolic states. The
switch to dormancy increases with lower oxygen, whilst the switch to a replication state
increases with greater oxygen (see Additional file 1: Table S1 State Variable functions).
Likewise, events which involve the recruitment of immune cells into lung compartments
are scaled by the perfusion value of the patch, and thus a greater immune response can be
established in patches where more blood is perfused.
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Dynamics

A TBModel class combines the topology and event packages. The chosen lung topol-
ogy is initialised and seeded with values for resident immune cells (MR and DCI in the
LungPatches,MR and TN in the LymphPatches) based on the recruitment and death val-
ues to calculate average equilibrium levels of these cells. A population of bacteria are
seeded, either in a defined location or probabilistically based on V values. The simulation
proceeds as per the MetapopPy framework until a simulated time limit is reached.

Results
Methods

In order to demonstrate the effects of spatial heterogeneity upon TB infection within
the lungs, we performed our experiments against two distinct topologies of the
TBMetapopPy model. In the first, topology A, the lung is modelled as a whole homoge-
neous unit, consisting of just one LungPatch coupled to a LymphPatch which models the
lymphatics. A LymphEdge and a BloodEdge allow movement of cells between the two.
This topology and the dynamics of the transition of members between compartments is
shown in Fig. 3.

Fig. 3 Schematic for the dynamics of TBMetapopPy using topology A. Arrows indicate possible transition
routes of members between compartments. Long-dash red arrows indicate translocation across a BloodEdge
from lymphatics to the lung, short-dashed blue arrows indicate translocation across a LymphEdge, from the
lung to the lymphatics. Numbers for each transition relate to the events that define the transition, as
described in the Additional file 1
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In the second, topology B, the lung is broken up into distinct instances of the LungPatch
class. Each of these patches represents a bronchopulmonary segment - an anatomical divi-
sion of the bronchial tree which is supplied by a segmental bronchus (Drake et al. 2015).
For the purposes of this simulation, we choose to model the right lung, and thus our lung
model contains 10 patches (as the right lung contains 10 bronchopulmonary segments).
Each of these patches is grouped into one of three zones depending on its approximate
vertical position in the lung: patches towards the apex of the lung are placed into the
Apical category, patches in the middle regions are placed into the Middle category, whilst
patches towards the base are placed into the Basal category. These categories determine
the values of the attributes within, as per Table 2. The structure of the bronchi within the
lung is that of a tree, with each patch of the model representing all the leaf nodes within
a particular branch of the tree. As air in one section should be able to access all other
sections (i.e. there is a path between all leaf nodes), we have chosen a fully-connected
topology with varying edge weights between different nodes of the network: each bron-
chopulmonary segment lies within a distinct lobe (of which there are 3 in the right lung),
and for this model we assume that movement of bacteria along the air is more likely to
occur between patches within the same lobe and less likely between patches in different
lobes. Topology B is shown in Fig. 4.
As the model is stochastic in nature, all experiments are run over 30 repetitions, with

the mean counts of members (and standard deviations) of each compartment over these
repetitions calculated at each timestep. For topology B, 5 BER members are placed into
one of the basal regions at the start of simulation. In topology A models, they are placed
in the single lung patch.
We are interested in overall bacterial growth, and our marker for this is the combined

total of the BER, BED, BIM and BID compartments in each patch of the lung.

Topology A: homogeneous systems require significant reduction in immune activity in

order to establish infection

Figure 5a shows the overall bacterial growth over time for the model using topology A
and parameters as per Tables 3, 4, 5 and 6. For this model, we set the V and Q values
of the patch to 9.0 and 9.1 respectively, chosen in order to match the sum of the total
ventilation and perfusion over an entire lung as seen in topology B. Bacterial growth is
severely limited, as the bacteria population is overwhelmed by the numbers of immune
cells, and the entire population of bacteria is eradicated within 750 days.
We then investigated the conditions necessary to establish a bacterial presence. In order

to do this, we reduced the recruitment rates of dendritic cells and macrophages (RDendritic
and RM_lung respectively) by arbitrary factors of 10 (shown in Fig. 5b) and then 20 (shown

Table 2 Values for attributes of West Zones used in simulations of multi-patch topology model,
unless specified in the text

V Q O2

Apical 0.6 0.5 1.2

Middle 0.8 0.8 1.0

Basal 1.2 1.3 0.923

V = Ventilation, Q = Perfusion, O2 = Oxygen tension
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Fig. 4 Structure of topology B. The lung is divided into 10 patches. Patches are assigned into zones based on
their vertical position (blue = Zone 1, yellow = Zone 2, red = Zone 3). All patches are connected, and patches
within the same lobe (S = Superior lobe, M = Middle lobe, I = Inferior lobe) have greater edge width. All lung
patches are connected to/from the LymphPatch by a LymphEdge and a BloodEdge (both edges denoted by
a single dotted red line)

in Fig. 5c). This severe weakening of the immune system recruitment throughout the
course of infection is enough to allow TB to establish a presence within the lungs.
This was explored further by instead reducing the Q value of the lung patch in topology A.

This has the effect of also weakening the adaptive immune response, which requires per-
fusion in order to increase macrophage and dendritic cell numbers and allow t-cells to
access the lung. Figure 6a and b show the effects of reducing the Q value of the single
patch to 4.5 and 1.3 respectively. Reducing perfusion allows the establishment of a bacte-
rial presence, with a higher bacterial load being establishedwith perfusion reduced to very
low levels. In Fig. 6c, perfusion of the whole lung is reduced to levels used in the apical
regions of topology B (i.e. 0.5). Here, a bacterial presence is firmly established. This sug-
gests that lack of perfusion may be the main cause for bacterial growth as low-perfused
patches experience high bacterial growth in both topologies.

Topology B: spatial heterogeneity increases overall bacterial load

In order to explore the effects of spatial heterogeneity (both in the separation of the overall
lung population into discrete patches and the variation of resources within those patches)
and translocation on these disease dynamics, we ran simulations over the spatially sep-
arated network of topology B. Figure 7a shows the results of simulation runs where no
attribute heterogeneity exists (all patch values are set equal). From this, we see that the
separation into distinct spatial regions results in much greater initial bacteria growth,
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a

b

c

Fig. 5 The overall bacterial growth (BER , BED , BIM and BID) within a single patch topology (Topology A). Line is
mean, shading is standard deviation. a shows results using event parameters as described in Tables 3, 4, 5
and 6. Infection is contained quickly and virtually eradicated. b shows the effects of a minimal reduction in
cell recruitment (RD = 50, RM_lung = 40) and c shows the effects of a major reduction in cell recruitment
(RD = 25, RM_lung = 20). As recruitment is reduced, the spike of initial infection (at around 50 days) increases. In
both cases, the infection is contained and remains at a reasonably steady state thereafter (latency)

due to the limitations on the number of immune cells that can encounter the bacteria
during the early stages on infection. An adaptive immune response begins to quell the
infection, but in doing so it results in transfer of the bacteria to other areas of the lung.
An oscillating process of bacterial growth occurs, with bacteria numbers increasing and
decreasing over time, but never reaching the levels of the initial growth explosion. This
can be seen as a latent form of TB: the bacteria levels are contained but not eradicated. As
all patches contain the same values for their attributes, the bacteria levels at each patch

Table 3 Bacterial event parameters used for experiments, unless specified in the text

Parameter Description Value (per day) Source

MCap Maximum number of bacteria that can
reside in a macrophage

50 (Marino and Kirschner 2004)

θ Intracellular bacteria replication sigmoid 2 (Marino and Kirschner 2004)

RER Replication rate of BER 0.25 (Wigginton and Kirschner 2001)

RED Replication rate of BED 0.005 (Wigginton and Kirschner 2001)

RIM Replication rate of BIM 0.005 Estimated

DB_R Destruction rate of BER and BED byMR 1.25E-8 (Marino and Kirschner 2004)

DB_A Destruction rate of BER and BED byMA 1.25E-4 Estimated

C Rate of conversion between BED and BER 1 Estimated

HC Half-sat value of O2 for conversion
between BED and BER

1 Estimated

λ Sigmoid value for conversion between
BED and BER

1 Estimated

TB_Lung Rate of translocation of BER and BED
along LungEdge

0.001 Estimated

(within lung)

TB_Blood Rate of translocation of BER and BED
along BloodEdge

0.05 Estimated

(lymph to lung)
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Table 4 Dendritic cell event parameters used for experiments, unless specified in the text

Parameter Description Value (per day) Source

DDCI Rate of death of DCI 0.01 (Marino and Kirschner 2004)

DDCM Rate of death of DCM 0.02 (Marino and Kirschner 2004)

U Rate of uptake of BER and BED by DCI , causing
maturation

1E-7 (Marino and Kirschner 2004)

RD Standard recruitment rate of DCI into lung 500 (Marino and Kirschner 2004)

ED Enhanced recruitment rate of DCI into lung
caused by BED

0.02 (Marino and Kirschner 2004)

and BER
HD Half-sat for enhanced recruitment rate of DCI into

lung caused by
6.5E5 (Marino and Kirschner 2004)

BED and BER
TD Rate of translocation of DCM along LymphEdge

(lung to lymph)
0.5 (Marino and Kirschner 2004)

remain approximately the same. The bacterial levels here far outweigh those seen in the
single-patch model, except in the case where perfusion is drastically reduced.
Wethen introduced spatial heterogeneity to the different zones, with values as per

Table 2, the results of which are shown in Fig. 7b. As per the previous experiment, bac-
terial growth occurs in the initial patch until the introduction of an adaptive immune
response, which brings the bacterial levels under control but at the consequence of
spreading bacteria to other regions. However, in this scenario the bacteria have access
to the oxygen-rich, immune-poor regions at the lung apices, and once there the popu-
lation explodes dramatically, reaching levels far higher than it did at the basal regions
during initial infection. Again, the adaptive immune response is able to bring the bacte-
rial levels down and reach an oscillating equilibrium. But in this scenario, we show that
the levels of bacteria at latency are different for each region, with far higher levels being
established at the apical regions than at the basal and middle regions. Figure 8 shows the
levels of replicating and dormant bacteria in each region of the multi-patch network. We
see that there are similar levels of replicating and dormant bacteria, with a slight majority
to replicating bacteria in all patches.

Table 5Macrophage event parameters used for experiments, unless specified in the text

Parameter Description Value (per day) Source

AM Rate of activation/deactivation ofMR by TA 0.3 (Marino and Kirschner 2004)

HMA Half-sat value for activation ofMR by TA 5E2 Estimated

I Rate of macrophage infection by BER and BED 0.4 (Marino and Kirschner 2004)

HMI Half-sat value for macrophage infection 1E6 (Marino and Kirschner 2004)

DMR Death rate ofMR 0.01 (Marino and Kirschner 2004)

DMA Death rate ofMA 0.01 (Marino and Kirschner 2004)

DMI Standard death rate ofMI 0.01 (Marino and Kirschner 2004)

B Rate of bursting ofMI due to BIM 0.25 (Marino and Kirschner 2004)

RM_lung Standard rate of recruitment ofMR into lung 400 (Wigginton and Kirschner 2001)

RM_lymph Standard rate of recruitment ofMR into lymph 53.465 (Marino et al. 2010)

EM_MI Enhanced rate of recruitment of MR into lung
byMI

0.0056 (Marino and Kirschner 2004)

EM_MA Enhanced rate of recruitment of MR into lung
byMA

0.04 (Marino and Kirschner 2004)

TM Rate of translocation of MI along LymphEdge
(lung to lymph)

0.25 Estimated
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Table 6 T-cell event parameters used for experiments, unless specified in the text

Parameter Description Value (per day) Source

K Rate of destruction ofMI by TA 1.3 (Marino and Kirschner 2004)

HK Half-sat value for destruction ofMI by TA 0.5 (Marino and Kirschner 2004)

AT_MI Rate of T-cell activation by antigen presentation
byMI

1E-5 Estimated

AT_DCM Rate of T-cell activation by antigen presentation
by DCM

1E-5 (Marino and Kirschner 2004)

DTN Rate of death of TN 0.102 (Marino and Kirschner 2004)

DTA Rate of death of TA 0.3333 (Marino and Kirschner 2004)

RT Standard rate of recruitment of TN into lymph 1000 (Marino and Kirschner 2004)

ET_DCM Enhanced rate of recruitment of TN into lymph
due to DCM

0.1 (Marino and Kirschner 2004)

ET_MI Enhanced rate of recruitment of TN into lymph
due toMI

0.1 Estimated

TT Rate of translocation of TA along BloodEdge
(lymph to lung)

0.6 (Marino and Kirschner 2004)

Bacterial translocation

To investigate the effects of translocation within the lung on bacterial growth, we ran
experiments using different weight values on the LungEdges connecting the patches
within topology B. Figure 7b shows the effects of no translocation within the lung (all
WEIGHT values set to 0), whilst Fig. 7c shows the effects with translocation allowed
between patches which reside in the same lobe (WEIGHT attribute of edges between
patches in the same lobe is set to 1.0, and 0.0 for all other edges). Figure 7d shows the
effects of allowing translocation between all areas of the lung. WEIGHT values are set as
per Table 7.

a

b

c

Fig. 6 The overall bacterial growth (BER , BED , BIM and BID) within a single patch topology (Topology A) when
perfusion is reduced to a 4.5, b 1.3, c 0.5. Line is mean, shading is standard deviation. Reducing perfusion
allows a bacterial presence to be established. In a no major initial infection takes place and the infection level
remains fairly constant throughout. In b a pattern similar to the reduced recruitment rate in Fig. 5 is seen. In c,
the reduced perfusion results in a saw-tooth pattern, whereby latency is now involves an oscillating, rather
than constant, level of bacteria
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a b

Fig. 7 The overall bacterial growth (BER , BED , BIM and BID) upon amultiple patch topology. Patches are grouped
by spatial location (base, middle and apex). Line is mean, shading is standard deviation. All simulations use
event parameters as per Tables 3, 4, 5 and 6. a shows the results of a network that includes no spatial
heterogeneity - initial infection spikes in the initial, basal patch and spreads to other patches, where infection
is established at consistent levels throughout. b shows the effects of introducing heterogeneity (with values
as per Table 2). Infection spreads to other patches, with the bacterial load dependent on the spatial location

In Fig. 9, we tested the effects of removing a) long-scale inter-lung transmission b) all
inter-lung transmission and c) bloodstream transmission from the lymphatics to the lung.
In all cases, the overall pattern of bacterial growth in the lungs remains fairly robust,
with minor changes in the amplitude of the resulting oscillations of bacteria levels. These
findings suggest that the means of translocation across the pulmonary system are not as
important as the heterogeneity therein. So long as bacteria can reach the favourable apical
locations in some manner, they will be able to proliferate and establish a greater infection
there.

Discussion
Our results have shown that differentials in the lung environment, such as perfusion
and oxygen tension, can drastically alter the levels of bacteria present once the immune

a

b

c

Fig. 8 The bacterial levels of BER and BED in a apical patches, bmiddle patches and c basal patches. Line is
mean, shading is standard deviation. All three regions show similar levels between replicating (blue) and
dormant (red) bacteria, with a slight majority to replicating bacteria in all
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Table 7WEIGHT values for edges between patches in different lobes

superior Middle Inferior

Superior 1.0 0.5 0.25

Middle - 1.0 0.5

Inferior - - 1.0

system has contained the initial infection and established a latent form of disease. The
heterogeneity of the lung environment creates a region at the apices that is highly oxy-
genated, thus affording the bacteria the opportunity to become highly replicating, and
poorly perfused, thus providing less resistance to bacterial growth by immune cells; and
we have shown that these factors significantly contribute to the progression of disease
within our simulations. This demonstrates the necessity of in silicomodelling of TB infec-
tions to take a broad view of the disease as it occurs within the lung: environmental factors
play an important role in determine the scale of infection before latency is established.
Developing new treatment regimens requires a better understanding of exactly which
environments bacteria persist in within the lungs - computational models such as the one
introduced here can help shed light on these niches.
The differences in routes of bacterial translocation across the pulmonary system appear

to have little effect on the disease outcome; so long as bacteria have some means of
reaching the preferential apical regions (i.e. through dissemination in the blood after
establishing lymphatic disease or via direct transfer within the air of the lung), this will
be enough to cause an enhanced population growth of bacteria in the region due to its
favourable environment.

a

b

c

Fig. 9 The overall bacterial growth (BER , BED , BIM and BID) upon a multiple patch topology with different
routes of bacterial dissemination. Patches are grouped by spatial location (base, middle and apex). Line is
mean, shading is standard deviation. All simulations use event parameters as per Tables 3, 4, 5 and 6. a shows
the results of a network where translocation within the lung can only occur within the same lobe (i.e.
small-distance translocation). b shows the effects of completely removing translocation within the lung. c
shows the effects of removing translocation of bacteria via the lymphatics and bloodstream back to the lung.
In all cases, removing options of translocation results in a similar pattern of growth to when all methods are
viable (Fig. 7)
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Figure 8 indicates that the bacterial population in all regions is composed of both repli-
cating and dormant bacteria in almost equal measure. Whilst it is believed that a latent
form of infection involves the host maintaining a population of dormant, non-replicating
bacteria (Nuermberger et al. 2004), there is evidence that some bacterial replication
occurs during latency (Karakousis 2014; Houk et al. 1968), which may explain the pres-
ence of a population of BER bacteria after initial infection and the oscillating bacteria
levels in our model. However, the current model uses the environmental oxygen levels as
the only influence on the switch between replication and dormancy - in reality, a wide
range of factors are believed to initiate dormancy, including oxygen deficiency, nutrient
deficiency, hyper-acidity and antibiotics (Lipworth et al. 2016). These stresses may drive
bacteria to dormancy all over the lung, with the oxygen availability at the apices then pro-
viding the ideal environment for future reactivation. Future models should incorporate
more of these factors to better mimic the dormancy phenomenon of Mtb.
This model is a highly abstracted representation of the actual conditions found during

a TB infection, but it is nevertheless based on gross-scale real world pathology. These
abstractions are necessitated by the current lack of understanding of how the disease
pathology is influenced by its surroundings. We have shown that the introduction of a
small amount of heterogeneity, by dividing the lung into a network consisting of 10 nodes,
can have significant impact on the results of simulations in contrast withmodels that treat
the lung as a homogeneous environment.
The purpose of this model is not, presently, to be predictive; it serves to provide insight

into the complex factors that drive TB infections to their apical localisation. This insight
can provide the basis for models which can build on this work to further study the impact
of lung environment on TB. We have identified some parameters whose spatial het-
erogeneity is significant to apical localisation (such as reduced perfusion at the apices),
but others may exist. Where possible, we have used parameters taken directly from the
scientific literature.

Conclusion
TB mortality represents a heavy burden on global health, with over 1 million people
dying from the disease each year. In order to reduce this mortality, improved treatment
regimens are desperately needed, but creating novel treatments requires a greater under-
standing of the environments within the lung in which bacteria proliferate and disease
is established. Previous trials of new regimens have been unsuccessful possibly due to
differential distribution of drugs into TB lesions (Prideaux et al. 2015). Understanding
how the heterogeneous environment within the lungs contributes to disease formation is
an important first step in creating treatment regimens with greater efficacy over shorter
timeframes, thus improving patient adherence and reducing mortality and reducing the
emergence of of drug-resistant strains of bacteria.
In silicomodelling of TB disease has been used previously to model a single lesion of TB

(Segovia-Juarez et al. 2004; Bowness et al. 2018) and to look at bacterial proliferation over
the whole lung and the lymphatic system (Marino andKirschner 2004;Marino et al. 2010).
In this work, we have built what we believe to be the first in silico in-host model of tuber-
culosis that incorporates environmental heterogeneities to determine the impact they
have of disease formation. To do this, we have chosen to use a networked metapopulation
model whereby the alveolar tissue in the lung (where interactions between the bacteria
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and immune system occur) is modelled as an interconnected series of patches, each of
which are given attribute values for environmental factors such as oxygen and perfusion
based on their vertical position in the lung, thus creating a heterogeneous environment.
We have shown that even a simple model with modest heterogeneity of environment has
profound effects on the bacterial loads present in the body: the increased oxygen ten-
sion and reduced perfusion at the apical regions of the lung provides bacteria with an
ideal niche in which to switch to a replicating cell-state, in a location where a strong
immune response is difficult to establish. These findings can provide the groundwork for
future modelling efforts which can incorporate more sophisticated dynamics and hetero-
geneities to investigate the impact the environment within the human lung has on both
disease and its subsequent treatment.
Future iterations of the model will expand upon the work presented here; in partic-

ular, we hope to establish which specific processes during an infection drive bacterial
dissemination to apices of the lungs and thus give rise to the apical localisation of post-
primary TB, as well as which processes result in the oscillating bacterial levels seen. As
the dynamics during infection are currently poorly understood, providing insight requires
understanding which model parameters are significant in creating the dynamics seen in
our model results. To do this, model reduction and sensitivity analysis will be required
(Marino et al. 2008). Understanding which parameters are crucial to the emergent dynam-
ics of the system can serve as a spur to further laboratory work, clinical trials or in silico
work to refine these parameters.
Furthermore, more sophisticated anatomical dynamics can be included, through the

use of more complex networks and space-filling trees to mimic the human bronchial
tree structure and include a wider spectrum of environmental heterogeneities. Increasing
the path length between patches may result in more heterogeneous patterns of bacteria
spread across the network and thus translocation of bacteria may have a larger influence
of disease outcome. Anatomical data should also be incorporated in order to provide a
more accurate basis for the choice of attribute values.
We also aim to incorporate further aspects of a TB infection, such as a weakening of the

immune system that occurs through immune-system suppressing drugs, human immun-
odeficiency virus (HIV) neoplasm or advancing age resulting in the deterioration of latent
TB into post-primary TB. Additionally, the model will enable us to alter the pharmacoki-
netics and pharmacodynamics of multiple-drug chemotherapeutic treatments, and thus,
investigate what effects lung heterogeneities have on the treatment of an established dis-
ease. If this development were to be successful, it would be a significant step towards a
model that could be used to build a virtual clinical trial simulation.

Endnote
1 The Gillespie Algorithm is named after its creator, Daniel Gillespie, who is no relation

to the author of this work.
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