318 research outputs found

    Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review

    Full text link
    [EN] Magnetic flux analysis is a condition monitoring technique that is drawing the interest of many researchers and motor manufacturers. The great enhancements and reduction in the costs and dimensions of the required sensors, the development of advanced signal processing techniques that are suitable for flux data analysis, along with other inherent advantages provided by this technology are relevant aspects that have allowed the proliferation of flux-based techniques. This paper reviews the most recent scientific contributions related to the development and application of flux-based methods for the monitoring of rotating electric machines. Particularly, aspects related to the main sensors used to acquire magnetic flux signals as well as the leading signal processing and classification techniques are commented. The discussion is focused on the diagnosis of different types of faults in the most common rotating electric machines used in industry, namely: squirrel cage induction machines (SCIM), wound rotor induction machines (WRIM), permanent magnet machines (PMM) and wound field synchronous machines (WFSM). A critical insight of the techniques developed in the area is provided and several open challenges are also discussed.This work was supported by the Spanish 'Ministerio de Ciencia Innovación y Universidades' and FEDER program in the framework of the "Proyectos de I+D de Generación de Conocimiento del Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" reference PGC2018-095747-B-I00 and by the Consejo Nacional de Ciencia y Tecnología under CONACyT Scholarship with key code 2019-000037-02NACF. Paper no. TII-20-5308.Zamudio-Ramírez, I.; Osornio-Rios, RA.; Antonino-Daviu, J.; Razik, H.; Romero-Troncoso, RDJ. (2022). Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE Transactions on Industrial Informatics. 18(5):2895-2908. https://doi.org/10.1109/TII.2021.30705812895290818

    Electrical and magnetic faults diagnosis in permanent magnet synchronous motors

    Get PDF
    Permanent magnet synchronous motors (PMSMs) are an alternative in critical applications where high-speed operation, compactness and high efficiency are required. In these applications it is highly desired to dispose of an on-line, reliable and cost-effective fault diagnosis method. Fault prediction and diagnosis allows increasing electric machines performance and raising their lifespan, thus reducing maintenance costs, while ensuring optimum reliability, safe operation and timely maintenance. Consequently this thesis is dedicated to the diagnosis of magnetic and electrical faults in PMSMs. As a first step, the behavior of a healthy machine is studied, and with this aim a new 2D finite element method (FEM) modelbased system for analyzing surface-mounted PSMSs with skewed rotor magnets is proposed. It is based on generating a geometric equivalent non-skewed permanent magnet distribution which accounts for the skewed distribution of the practical rotor, thus avoiding 3D geometries and greatly reducing the computational burden of the problem. To diagnose demagnetization faults, this thesis proposes an on-line methodology based on monitoring the zero-sequence voltage component (ZSVC). Attributes of the proposed method include simplicity, very low computational burden and high sensibility when compared with the well known stator currents analysis method. A simple expression of the ZSVC is deduced, which can be used as a fault indicator parameter. Furthermore, mechanical effects arising from demagnetization faults are studied. These effects are analyzed by means of FEM simulations and experimental tests based on direct measurements of the shaft trajectory through self-mixing interferometry. For that purpose two perpendicular laser diodes are used to measure displacements in both X and Y axes. Laser measurements proved that demagnetization faults may induce a quantifiable deviation of the rotor trajectory. In the case of electrical faults, this thesis studies the effects of resistive unbalance and stator winding inter-turn short-circuits in PMSMs and compares two methods for detecting and discriminating both faults. These methods are based on monitoring and analyzing the third harmonic component of the stator currents and the first harmonic of the ZSVC. Finally, the Vold-Kalman filtering order tracking algorithm is introduced and applied to extract selected harmonics related to magnetic and electrical faults when the machine operates under variable speed and different load levels. Furthermore, different fault indicators are proposed and their behavior is validated by means of experimental data. Both simulation and experimental results show the potential of the proposed methods to provide helpful and reliable data to carry out a simultaneous diagnosis of resistive unbalance and stator winding inter-turn faults

    Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Recently, research concerning electrical machines and drives condition monitoring and fault diagnosis has experienced extraordinarily dynamic activity. The increasing importance of these energy conversion devices and their widespread use in uncountable applications have motivated significant research efforts. This paper presents an analysis of the state of the art in this field. The analyzed contributions were published in most relevant journals and magazines or presented in either specific conferences in the area or more broadly scoped events.Riera-Guasp, M.; Antonino-Daviu, J.; Capolino, G. (2015). Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art. IEEE Transactions on Industrial Electronics. 62(3):1746-1759. doi:10.1109/TIE.2014.2375853S1746175962

    Fault signal propagation through the PMSM motor drive systems

    Get PDF
    This paper describes how a mechanical disturbance on the shaft of a variable speed permanent magnet motor (PMSM) is propagated to the supply input side of the drive system, and therefore may be detected by monitoring specific frequency components in the rectifier input current. The propagation of the disturbance from the torque disturbance, to the motor current, then to the dc link current and finally to the rectifier input current is derived as a series of transfer functions so that both the frequency and the amplitude of the disturbance component in the rectifier input current can be predicted for a specific mechanical disturbance. The limitations to detect the mechanical fault by monitoring only the supply currents are also addressed. Simulation and experimental results are presented to demonstrate the accuracy of the quantitative analysis, and the potential for fault detection using the rectifier input currents

    Condition Monitoring System of Wind Turbine Generators

    Get PDF
    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators\u27 faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential failures during operation due to high generator temperatures. In addition, the use of some advanced statistical techniques, such as regression models, is proposed to perform a CMS on wind generators. Further, the mechanical and thermal characteristics are employed to diagnose the faults that can occur in wind generators. The rate of change in the generator temperature with respect to the induced electrical torque; for instance is considered as an indicator to the occurrence of faults in the generators. The behavior of the driving torque of the rotating permanent magnet with respect to the permanent magnet temperature can also utilize to indicate the operation condition. The permanent magnet model describes the rotating permanent magnet condition during operation in the normal and abnormal situations. In this context, a set of partial differential equations is devolved for the characterization of the rotations of the permanent. Finally, heat transfer analysis and fluid mechanics methods are employed to develop a suitable CMS on the wind generators by analyzing the operation conditions of the generator\u27s heat exchanger. The proposed methods applied based on real data of different wind turbines, and the obtained results were very convincing

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    Broken Bar Detection in Synchronous Machines Based Wind Energy Conversion System

    Get PDF
    Electrical machines are subject to different types of failures. Early detection of the incipient faults and fast maintenance may prevent costly consequences. Fault diagnosis of wind turbine is especially important because they are situated at extremely high towers and therefore inaccessible. For offshore plants, bad weather can prevent any repair actions for several weeks. In some of the new wind turbines synchronous generators are used and directly connected to the grid without the need of power converters. Despite intensive research efforts directed at rotor fault diagnosis in induction machines, the research work pertinent to damper winding failure of synchronous machines is very limited. This dissertation is concerned with the in-depth study of damper winding failure and its traceable symptoms in different machine signals and parameters. First, a model of a synchronous machine with damper winding based on the winding function approach is presented. Next, simulation and experimental results are presented and discussed. A specially designed inside-out synchronous machine with a damper winding is employed for the experimental setup. Finally, a novel analytical method is developed to predict the behavior of the left sideband amplitude for different numbers and locations of the broken bars. This analysis is based on the magnetic field theory and the unbalanced multiphase circuits. It is found that due to the asymmetrical structure of damper winding, the left sideband component in the stator current spectrum of the synchronous machine during steady state asynchronous operation is not similar to that of the induction machine with broken bars. As a result, the motor current signature analysis (MCSA) for detection rotor failures in the induction machine is usable to detect broken damper bars in synchronous machines. However, a novel intelligent-systems based approach is developed that can identify the severity of the damper winding failure. This approach potentially can be used in a non-invasive condition monitoring system to monitor the deterioration of a synchronous motor damper winding as the number of broken bars increase over time. Some other informative features such as speed spectrum, transient time, torque-speed curve and rotor slip are also found for damper winding diagnosis
    corecore