232 research outputs found

    ESTIMATING LAND SURFACE ALBEDO FROM SATELLITE DATA

    Get PDF
    Land surface albedo, defined as the ratio of the surface reflected incoming and outgoing solar radiation, is one of the key geophysical variables controlling the surface radiation budget. Surface shortwave albedo is widely used to drive climate and hydrological models. During the last several decades, remotely sensed surface albedo products have been generated through satellite-acquired data. However, some problems exist in those products due to instrument measurement inaccuracies and the failure of current retrieving procedures, which have limited their applications. More significantly, it has been reported that some albedo products from different satellite sensors do not agree with each other and some even show the opposite long term trend regionally and globally. The emergence of some advanced sensors newly launched or planned in the near future will provide better capabilities for estimating land surface albedo with fine resolution spatially and/or temporally. Traditional methods for estimating the surface shortwave albedo from satellite data include three steps: first, the satellite observations are converted to surface directional reflectance using the atmospheric correction algorithms; second, the surface bidirectional reflectance distribution function (BRDF) models are inverted through the fitting of the surface reflectance composites; finally, the shortwave albedo is calculated from the BRDF through the angular and spectral integration. However, some problems exist in these algorithms, including: 1) "dark-object" based atmospheric correction methods which make it difficult to estimate albedo accurately over non-vegetated or sparsely vegetated area; 2) the long-time composite albedo products cannot satisfy the needs of weather forecasting or land surface modeling when rapid changes such as snow fall/melt, forest fire/clear-cut and crop harvesting occur; 3) the diurnal albedo signature cannot be estimated in the current algorithms due to the Lambertian approximation in some of the atmospheric correction algorithms; 4) prior knowledge has not been effectively incorporated in the current algorithms; and 5) current observation accumulation methods make it difficult to obtain sufficient observations when persistent clouds exist within the accumulation window. To address those issues and to improve the satellite surface albedo estimations, a method using an atmospheric radiative transfer procedure with surface bidirectional reflectance modeling will be applied to simultaneously retrieve land surface albedo and instantaneous aerosol optical depth (AOD). This study consists of three major components. The first focuses on the atmospheric radiative transfer procedure with surface reflectance modeling. Instead of executing atmospheric correction first and then fitting surface reflectance in the previous satellite albedo retrieving procedure, the atmospheric properties (e.g., AOD) and surface properties (e.g., BRDF) are estimated simultaneously to reduce the uncertainties produced in separating the entire radiative transfer process. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua are used to evaluate the performance of this albedo estimation algorithm. Good agreement is reached between the albedo estimates from the proposed algorithm and other validation datasets. The second part is to assess the effectiveness of the proposed algorithm, analyze the error sources, and further apply the algorithm on geostationary satellite - the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). Extensive validations on surface albedo estimations from MSG/SEVIRI observations are conducted based on the comparison with ground measurements and other satellite products. Diurnal changes and day-to-day changes in surface albedo are accurately captured by the proposed algorithm. The third part of this study is to develop a spatially and temporally complete, continuous, and consistent albedo maps through a data fusion method. Since the prior information (or climatology) of albedo/BRDF plays a vital role in controlling the retrieving accuracy in the optimization method, currently available multiple land surface albedo products will be integrated using the Multi-resolution Tree (MRT) models to mitigate problems such as data gaps, systematic bias or low information-noise ratio due to instrument failure, persistent clouds from the viewing direction and algorithm limitations. The major original contributions of this study are as follows: 1) this is the first algorithm for the simultaneous estimations of surface albedo/reflectance and instantaneous AOD by using the atmospheric radiative transfer with surface BRDF modeling for both polar-orbiting and geostationary satellite data; 2) a radiative transfer with surface BRDF models is used to derive surface albedo and directional reflectance from MODIS and SEVIRI observations respectively; 3) extensive validations are made on the comparison between the albedo and AOD retrievals, and the satellite products from other sensors; 4) the slightly modified algorithm has been adopted to be the operational algorithm of Advanced Baseline Imager (ABI) in the future Geostationary Operational Environmental Satellite-R Series (GOES-R) program for estimating land surface albedo; 5) a framework of using MRT is designed to integrate multiple satellite albedo products at different spatial scales to build the spatially and temporally complete, continuous, and consistent albedo maps as the prior knowledge in the retrieving procedure

    Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign

    Get PDF
    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and groundwater supplies are being depleted at unsustainable rates to support irrigated agriculture as well as municipal and industrial uses. Gridded evapotranspiration (ET) information at field scales can be obtained periodically using land–surface temperature-based surface energy balance algorithms applied to moderate resolution satellite data from systems like Landsat, which collects thermal-band imagery every 16 days at a resolution of approximately 100 m. The challenge is in finding methods for interpolating between ET snapshots developed at the time of a clear-sky Landsat overpass to provide complete daily time-series over a growing season. This study examines the efficacy of a simple gap-filling algorithm designed for applications in data-sparse regions, which does not require local ground measurements of weather or rainfall, or estimates of soil texture. The algorithm relies on general conservation of the ratio between actual ET and a reference ET, generated from satellite insolation data and standard meteorological fields from a mesoscale model. The algorithm was tested with ET retrievals from the Atmosphere–Land Exchange Inverse (ALEXI) surface energy balance model and associated DisALEXI flux disaggregation technique, which uses Landsat-scale thermal imagery to reduce regional ALEXI maps to a finer spatial resolution. Daily ET at the Landsat scale was compared with lysimeter and eddy covariance flux measurements collected during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment of 2008 (BEAREX08), conducted in an irrigated agricultural area in the Texas Panhandle under highly advective conditions. The simple gap-filling algorithm performed reasonably at most sites, reproducing observed cumulative ET to within 5–10% over the growing period from emergence to peak biomass in both rainfed and irrigated fields

    Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management

    Get PDF
    Global information on the spatio-temporal variation of parameters driving the Earth’s terrestrial water and energy cycles, such as evapotranspiration (ET) rates and surface soil moisture (SSM), is of key significance. The water and energy cycles underpin global food and water security and need to be fully understood as the climate changes. In the last few decades, Earth Observation (EO) technology has played an increasingly important role in determining both ET and SSM. This paper reviews the state of the art in the use specifically of operational EO of both ET and SSM estimates. We discuss the key technical and operational considerations to derive accurate estimates of those parameters from space. The review suggests significant progress has been made in the recent years in retrieving ET and SSM operationally; yet, further work is required to optimize parameter accuracy and to improve the operational capability of services developed using EO data. Emerging applications on which ET/SSM operational products may be included in the context specifically in relation to agriculture are also highlighted; the operational use of those operational products in such applications remains to be seen

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF

    Mapping Regional Turbulent Heat Fluxes via Assimilation of MODIS Land Surface Temperature Data into an Ensemble Kalman Smoother Framework

    Get PDF
    Estimation of turbulent heat fluxes via variational data assimilation (VDA) approaches has been the subject of several studies. The VDA approaches need an adjoint model that is difficult to derive. In this study, remotely sensed land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are assimilated into the heat diffusion equation within an ensemble Kalman smoother (EnKS) approach to estimate turbulent heat fluxes. The EnKS approach is tested in the Heihe River Basin (HRB) in northwest China. The results show that the EnKS approach can estimate turbulent heat fluxes by assimilating low temporal resolution LST data from MODIS. The findings indicate that the EnKS approach performs fairly well in various hydrological and vegetative conditions. The estimated sensible (H) and latent (LE) heat fluxes are compared with the corresponding observations from large aperture scintillometer systems at three sites (namely, Arou, Daman, and Sidaoqiao) in the HRB. The turbulent heat flux estimates from EnKS agree reasonably well with the observations, and are comparable to those of the VDA approach. The EnKS approach also provides statistical information on the H and LE estimates. It is found that the uncertainties of H and LE estimates are higher over wet and/or densely vegetated areas (grassland and forest) compared to the dry and/or slightly vegetated areas (cropland, shrubland, and barren land)

    Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA

    Get PDF
    The Evaporative Stress Index (ESI) quantifies temporal anomalies in a normalized evapotranspiration (ET) metric describing the ratio of actual-to-reference ET (fRET) as derived from satellite remote sensing. At regional scales (3–10 km pixel resolution), the ESI has demonstrated the capacity to capture developing crop stress and impacts on regional yield variability in water-limited agricultural regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded due to spatial and temporal limitations in the standard ESI products. In this study, we investigated potential improvements to ESI by generating maps of ET, fRET, and fRET anomalies at high spatiotemporal resolution (30-m pixels, daily time steps) using a multi-sensor data fusion method, enabling separation of landcover types with different phenologies and resilience to drought. The study was conducted for the period 2010–2014 covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of maize yield were investigated at both the field and county level to assess the potential of ESI as a yield forecasting tool. To examine the role of crop phenology in yield-ESI correlations, annual input fRET time series were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). At the resolution of the operational U.S. ESI product (4 km), adjusting fRET alignment to a regionally reported emergence date prior to anomaly computation improves r2 correlations with county-level yield estimates from 0.28 to 0.80. At 30-m resolution, where pure maize pixels can be isolated from other crops and landcover types, county-level yield correlations improved from 0.47 to 0.93 when aligning fRET by emergence date rather than calendar date. Peak correlations occurred 68 days after emergence, corresponding to the silking stage for maize when grain development is particularly sensitive to soil moisture deficiencies. The results of this study demonstrate the utility of remotely sensed ET in conveying spatially and temporally explicit water stress information to yield prediction and crop simulation models

    A physics-constrained machine learning method for mapping gapless land surface temperature

    Full text link
    More accurate, spatio-temporally, and physically consistent LST estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a physics-constrained ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable physical constraints are incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which uses only remote sensing data as input, serves as the pure ML model. Physical constraints (PCs) are coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the PC-LGBM model, which incorporates surface energy balance (SEB) constraints underlying the data in CLM-LST modeling within a biophysical framework. Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST. It also demonstrates a good extrapolation ability for the responses to extreme weather cases, suggesting that the PC-LGBM model enables not only empirical learning from data but also rationally derived from theory. The proposed method represents an innovative way to map accurate and physically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation

    Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document

    Get PDF
    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget

    Biomass Burning in the Conterminous United States: A Comparison and Fusion of Active Fire Observations from Polar-Orbiting and Geostationary Satellites for Emissions Estimation

    Get PDF
    Biomass burning is an important source of atmospheric greenhouse gases and aerosol emissions that significantly influence climate and air quality. Estimation of biomassburning emissions (BBE) has been limited to the conventional method in which parameters (i.e., burned area and fuel load) can be challenging to quantify accurately. Recent studies have demonstrated that the rate of biomass combustion is a linear function of fire radiative power (FRP), the instantaneous radiative energy released from actively burning fires, which provides a novel pathway to estimate BBE. To obtain accurate and timely BBE estimates for near real-time applications (i.e., air quality forecast), the satellite FRP-based method first requires a reliable biomass combustion coefficient that converts fire radiative energy (FRE), the temporal integration of FRP, to biomass consumption. The combustion coefficient is often derived in controlled small-scale fire experiments and is assumed a constant, whereas the coefficient based on satellite retrievals of FRP and atmospheric optical depth is suggested varying in a wide range. Undoubtedly, highly variable combustion coefficient results in large uncertainty of BBE estimates. Further, the FRP-based method also depends on high-spatiotemporalresolution FRP retrievals that, however, are not available in any active fire products from current polar-orbiting and geostationary satellites due to their sampling limitations. To address these challenges, this study first investigates the combustion coefficient for landscape-scale wildfires in the Conterminous United States (CONUS) by comparing FRE from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Operational Environmental Satellite system (GOES) with the Landsat-based biomass consumption. The results confirms that biomass consumption is a linear function of FRE for wildfires. The derived combustion coefficient is 0.374 kg Β· MJ- 1 for GOES FRE, 0.266 kg Β· MJ-1 for MODIS FRE, and 0.320 kg Β· MJ-1 considering both GOES and MODIS FRE in the CONUS. Limited sensitivity analyses indicate that the combustion coefficient varies from 0.301 to 0.458 kg Β· MJ-1, which is similar to the reported values in small fire experiments. Then, this study reconstructs diurnal FRP cycle to derive high-spatiotemporal-resolution FRP by fusing MODIS and GOES FRP retrievals and estimates hourly BBE at a 0.25°×0.3125Β° grid across the CONUS. The results indicate that the reconstructed diurnal FRP cycle varies significantly in magnitude and shape among 45 CONUS ecosystems. In the CONUS, the biomass burning annually releases approximately 690 Gg particulate matter (smaller than 2.5 ΞΌm in diameter, PM2.5). The diurnal-FRP-cycle-based BBE estimates compare well with BBE derived from Landsat burned areas in the western CONUS and with the hourly carbon monoxide emissions simulated using a biogeochemical model over the Rim Fire in California. Moreover, the BBE estimates show a similar seasonal variation to six existing BBE inventories but with variable magnitude. Finally, this study examines potential improvements in fires characterization capability of the Visible Infrared Imaging Radiometer Suite (VIIRS), which is the follow-on sensor of the MODIS sensor, for integrating VIIRS FRP retrievals into the FRP-based method for BBE estimation in future work. The results indicate that the VIIRS fire characterization capability is similar across swath, whereas MODIS is strongly dependent on satellite view zenith angle. VIIRS FRP is generally comparable with contemporaneous MODIS FRP at continental scales and in most fire clusters. At 1-degree grid cells, the FRP difference between the two sensors is, on average, approximately 20% in fire-prone regions but varies significantly in fire-limited regions. In summary, this study attempts to enhance the capability of the FRP-based method by addressing challenges in its two parameters (combustion coefficient and FRP), which should help to improve estimation of BBE and advance our understanding of the effects of BBE on climate and air quality. This research has resulted in two published papers and one paper to be submitted to a peer-reviewed journal so far

    μ‹œκ³΅κ°„ 해상도 ν–₯상을 ν†΅ν•œ 식생 λ³€ν™” λͺ¨λ‹ˆν„°λ§

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : ν™˜κ²½λŒ€ν•™μ› ν˜‘λ™κ³Όμ • μ‘°κ²½ν•™, 2023. 2. λ₯˜μ˜λ ¬.μœ‘μƒ μƒνƒœκ³„μ—μ„œ λŒ€κΈ°κΆŒκ³Ό μƒλ¬ΌκΆŒμ˜ μƒν˜Έ μž‘μš©μ„ μ΄ν•΄ν•˜κΈ° μœ„ν•΄μ„œλŠ” 식생 λ³€ν™”μ˜ λͺ¨λ‹ˆν„°λ§μ΄ ν•„μš”ν•˜λ‹€. 이 λ•Œ, μœ„μ„±μ˜μƒμ€ μ§€ν‘œλ©΄μ„ κ΄€μΈ‘ν•˜μ—¬ 식생지도λ₯Ό μ œκ³΅ν•  수 μžˆμ§€λ§Œ, μ§€ν‘œλ³€ν™”μ˜ μƒμ„Έν•œ μ •λ³΄λŠ” κ΅¬λ¦„μ΄λ‚˜ μœ„μ„± μ΄λ―Έμ§€μ˜ 곡간 해상도에 μ˜ν•΄ μ œν•œλ˜μ—ˆλ‹€. λ˜ν•œ μœ„μ„±μ˜μƒμ˜ μ‹œκ³΅κ°„ 해상도가 식생지도λ₯Ό ν†΅ν•œ κ΄‘ν•©μ„± λͺ¨λ‹ˆν„°λ§μ— λ―ΈμΉ˜λŠ” 영ν–₯은 μ™„μ „νžˆ λ°ν˜€μ§€μ§€ μ•Šμ•˜λ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” 고해상도 식생 지도λ₯Ό μΌλ‹¨μœ„λ‘œ μƒμ„±ν•˜κΈ° μœ„μ„± μ˜μƒμ˜ μ‹œκ³΅κ°„ 해상도λ₯Ό ν–₯μƒμ‹œν‚€λŠ” 것을 λͺ©ν‘œλ‘œ ν•˜μ˜€λ‹€. 고해상도 μœ„μ„±μ˜μƒμ„ ν™œμš©ν•œ 식생 λ³€ν™” λͺ¨λ‹ˆν„°λ§μ„ μ‹œκ³΅κ°„μ μœΌλ‘œ ν™•μž₯ν•˜κΈ° μœ„ν•΄ 1) 정지ꢀ도 μœ„μ„±μ„ ν™œμš©ν•œ μ˜μƒμœ΅ν•©μ„ 톡해 μ‹œκ°„ν•΄μƒλ„ ν–₯상, 2) μ λŒ€μ μƒμ„±λ„€νŠΈμ›Œν¬λ₯Ό ν™œμš©ν•œ 곡간해상도 ν–₯상, 3) μ‹œκ³΅κ°„ν•΄μƒλ„κ°€ 높은 μœ„μ„±μ˜μƒμ„ 토지피볡이 κ· μ§ˆν•˜μ§€ μ•Šμ€ κ³΅κ°„μ—μ„œ 식물 κ΄‘ν•©μ„± λͺ¨λ‹ˆν„°λ§μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. 이처럼, μœ„μ„±κΈ°λ°˜ μ›κ²©νƒμ§€μ—μ„œ μƒˆλ‘œμš΄ 기술이 λ“±μž₯함에 따라 ν˜„μž¬ 및 과거의 μœ„μ„±μ˜μƒμ€ μ‹œκ³΅κ°„ 해상도 μΈ‘λ©΄μ—μ„œ ν–₯μƒλ˜μ–΄ 식생 λ³€ν™”μ˜ λͺ¨λ‹ˆν„°λ§ ν•  수 μžˆλ‹€. 제2μž₯μ—μ„œλŠ” μ •μ§€κΆ€λ„μœ„μ„±μ˜μƒμ„ ν™œμš©ν•˜λŠ” μ‹œκ³΅κ°„ μ˜μƒμœ΅ν•©μœΌλ‘œ μ‹λ¬Όμ˜ 광합성을 λͺ¨λ‹ˆν„°λ§ ν–ˆμ„ λ•Œ, μ‹œκ°„ν•΄μƒλ„κ°€ ν–₯상됨을 λ³΄μ˜€λ‹€. μ‹œκ³΅κ°„ μ˜μƒμœ΅ν•© μ‹œ, ꡬ름탐지, μ–‘λ°©ν–₯ λ°˜μ‚¬ ν•¨μˆ˜ μ‘°μ •, 곡간 등둝, μ‹œκ³΅κ°„ μœ΅ν•©, μ‹œκ³΅κ°„ 결츑치 보완 λ“±μ˜ 과정을 κ±°μΉœλ‹€. 이 μ˜μƒμœ΅ν•© μ‚°μΆœλ¬Όμ€ κ²½μž‘κ΄€λ¦¬ λ“±μœΌλ‘œ 식생 μ§€μˆ˜μ˜ μ—°κ°„ 변동이 큰 두 μž₯μ†Œ(농경지와 λ‚™μ—½μˆ˜λ¦Ό)μ—μ„œ ν‰κ°€ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, μ‹œκ³΅κ°„ μ˜μƒμœ΅ν•© μ‚°μΆœλ¬Όμ€ 결츑치 없이 ν˜„μž₯관츑을 μ˜ˆμΈ‘ν•˜μ˜€λ‹€ (R2 = 0.71, μƒλŒ€ 편ν–₯ = 5.64% 농경지; R2 = 0.79, μƒλŒ€ 편ν–₯ = -13.8%, ν™œμ—½μˆ˜λ¦Ό). μ‹œκ³΅κ°„ μ˜μƒμœ΅ν•©μ€ 식생 μ§€λ„μ˜ μ‹œκ³΅κ°„ 해상도λ₯Ό μ μ§„μ μœΌλ‘œ κ°œμ„ ν•˜μ—¬, 식물 생μž₯κΈ°λ™μ•ˆ μœ„μ„±μ˜μƒμ΄ ν˜„μž₯ 관츑을 κ³Όμ†Œ 평가λ₯Ό μ€„μ˜€λ‹€. μ˜μƒμœ΅ν•©μ€ 높은 μ‹œκ³΅κ°„ ν•΄μƒλ„λ‘œ κ΄‘ν•©μ„± 지도λ₯Ό μΌκ°„κ²©μœΌλ‘œ μƒμ„±ν•˜κΈ°μ— 이λ₯Ό ν™œμš©ν•˜μ—¬ μœ„μ„± μ˜μƒμ˜ μ œν•œλœ μ‹œκ³΅κ°„ ν•΄μƒλ„λ‘œ λ°ν˜€μ§€μ§€ μ•Šμ€ μ‹λ¬Όλ³€ν™”μ˜ 과정을 λ°œκ²¬ν•˜κΈΈ κΈ°λŒ€ν•œλ‹€. μ‹μƒμ˜ 곡간뢄포은 정밀농업과 토지 피볡 λ³€ν™” λͺ¨λ‹ˆν„°λ§μ„ μœ„ν•΄ ν•„μˆ˜μ μ΄λ‹€. 고해상도 μœ„μ„±μ˜μƒμœΌλ‘œ 지ꡬ ν‘œλ©΄μ„ κ΄€μΈ‘ν•˜λŠ” 것을 μš©μ΄ν•˜κ²Œ ν•΄μ‘Œλ‹€. 특히 Planet Fusion은 μ΄ˆμ†Œν˜•μœ„μ„±κ΅° 데이터λ₯Ό μ΅œλŒ€ν•œ ν™œμš©ν•΄ 데이터 결츑이 μ—†λŠ” 3m 곡간 ν•΄μƒλ„μ˜ μ§€ν‘œ ν‘œλ©΄ λ°˜μ‚¬λ„μ΄λ‹€. κ·ΈλŸ¬λ‚˜ κ³Όκ±° μœ„μ„± μ„Όμ„œ(Landsat의 경우 30~60m)의 곡간 ν•΄μƒλ„λŠ” μ‹μƒμ˜ 곡간적 λ³€ν™”λ₯Ό 상세 λΆ„μ„ν•˜λŠ” 것을 μ œν•œν–ˆλ‹€. 제3μž₯μ—μ„œλŠ” Landsat λ°μ΄ν„°μ˜ 곡간 해상도λ₯Ό ν–₯μƒν•˜κΈ° μœ„ν•΄ Planet Fusion 및 Landsat 8 데이터λ₯Ό μ‚¬μš©ν•˜μ—¬ 이쀑 μ λŒ€μ  생성 λ„€νŠΈμ›Œν¬(the dual RSS-GAN)λ₯Ό ν•™μŠ΅μ‹œμΌœ, 고해상도 μ •κ·œν™” 식생 μ§€μˆ˜(NDVI)와 식물 근적외선 λ°˜μ‚¬(NIRv)도λ₯Ό μƒμ„±ν•˜λŠ” ν•œλ‹€. νƒ€μ›ŒκΈ°λ°˜ ν˜„μž₯ μ‹μƒμ§€μˆ˜(μ΅œλŒ€ 8λ…„)와 λ“œλ‘ κΈ°λ°˜ μ΄ˆλΆ„κ΄‘μ§€λ„λ‘œ the dual RSS-GAN의 μ„±λŠ₯을 λŒ€ν•œλ―Όκ΅­ λ‚΄ 두 λŒ€μƒμ§€(농경지와 ν™œμ—½μˆ˜λ¦Ό)μ—μ„œ ν‰κ°€ν–ˆλ‹€. The dual RSS-GAN은 Landsat 8 μ˜μƒμ˜ 곡간해상도λ₯Ό ν–₯μƒμ‹œμΌœ 곡간 ν‘œν˜„μ„ λ³΄μ™„ν•˜κ³  식생 μ§€μˆ˜μ˜ κ³„μ ˆμ  λ³€ν™”λ₯Ό ν¬μ°©ν–ˆλ‹€(R2> 0.96). 그리고 the dual RSS-GAN은 Landsat 8 식생 μ§€μˆ˜κ°€ ν˜„μž₯에 λΉ„ν•΄ κ³Όμ†Œ ν‰κ°€λ˜λŠ” 것을 μ™„ν™”ν–ˆλ‹€. ν˜„μž₯ 관츑에 λΉ„ν•΄ 이쀑 RSS-GANκ³Ό Landsat 8의 μƒλŒ€ 편ν–₯ κ°’ 각각 -0.8% μ—μ„œ -1.5%, -10.3% μ—μ„œ -4.6% μ˜€λ‹€. μ΄λŸ¬ν•œ κ°œμ„ μ€ Planet Fusion의 곡간정보λ₯Ό 이쀑 RSS-GAN둜 ν•™μŠ΅ν•˜μ˜€κΈ°μ— κ°€λŠ₯ν–ˆλ‹€. ν—€λ‹Ή 연ꡬ κ²°κ³ΌλŠ” Landsat μ˜μƒμ˜ 곡간 해상도λ₯Ό ν–₯μƒμ‹œμΌœ μˆ¨κ²¨μ§„ 곡간 정보λ₯Ό μ œκ³΅ν•˜λŠ” μƒˆλ‘œμš΄ μ ‘κ·Ό 방식이닀. κ³ ν•΄μƒλ„μ—μ„œ 식물 κ΄‘ν•©μ„± μ§€λ„λŠ” 토지피볡이 λ³΅μž‘ν•œ κ³΅κ°„μ—μ„œ νƒ„μ†Œ μˆœν™˜ λͺ¨λ‹ˆν„°λ§μ‹œ ν•„μˆ˜μ μ΄λ‹€. κ·ΈλŸ¬λ‚˜ Sentinel-2, Landsat 및 MODIS와 같이 νƒœμ–‘ 동쑰 ꢀ도에 μžˆλŠ” μœ„μ„±μ€ 곡간 해상도가 λ†’κ±°λ‚˜ μ‹œκ°„ 해상도 높은 μœ„μ„±μ˜μƒλ§Œ μ œκ³΅ν•  수 μžˆλ‹€. 졜근 λ°œμ‚¬λœ μ΄ˆμ†Œν˜•μœ„μ„±κ΅°μ€ μ΄λŸ¬ν•œ 해상도 ν•œκ³„μ„ 극볡할 수 μžˆλ‹€. 특히 Planet Fusion은 μ΄ˆμ†Œν˜•μœ„μ„± 자료의 μ‹œκ³΅κ°„ ν•΄μƒλ„λ‘œ μ§€ν‘œλ©΄μ„ κ΄€μΈ‘ν•  수 μžˆλ‹€. 4μž₯μ—μ„œ, Planet Fusion μ§€ν‘œλ°˜μ‚¬λ„λ₯Ό μ΄μš©ν•˜μ—¬ μ‹μƒμ—μ„œ λ°˜μ‚¬λœ 근적외선 볡사(NIRvP)λ₯Ό 3m 해상도 지도λ₯Ό μΌκ°„κ²©μœΌλ‘œ μƒμ„±ν–ˆλ‹€. 그런 λ‹€μŒ λ―Έκ΅­ μΊ˜λ¦¬ν¬λ‹ˆμ•„μ£Ό μƒˆν¬λΌλ©˜ν† -μƒŒ ν˜Έμ•„ν‚¨ λΈνƒ€μ˜ ν”ŒλŸ­μŠ€ νƒ€μ›Œ λ„€νŠΈμ›Œν¬ 데이터와 λΉ„κ΅ν•˜μ—¬ 식물 광합성을 μΆ”μ •ν•˜κΈ° μœ„ν•œ NIRvP μ§€λ„μ˜ μ„±λŠ₯을 ν‰κ°€ν•˜μ˜€λ‹€. μ „μ²΄μ μœΌλ‘œ NIRvP μ§€λ„λŠ” μŠ΅μ§€μ˜ μž¦μ€ μˆ˜μœ„ 변화에도 λΆˆκ΅¬ν•˜κ³  κ°œλ³„ λŒ€μƒμ§€μ˜ 식물 κ΄‘ν•©μ„±μ˜ μ‹œκ°„μ  λ³€ν™”λ₯Ό ν¬μ°©ν•˜μ˜€λ‹€. κ·ΈλŸ¬λ‚˜ λŒ€μƒμ§€ 전체에 λŒ€ν•œ NIRvP 지도와 식물 κ΄‘ν•©μ„± μ‚¬μ΄μ˜ κ΄€κ³„λŠ” NIRvP 지도λ₯Ό ν”ŒλŸ­μŠ€ νƒ€μ›Œ κ΄€μΈ‘λ²”μœ„μ™€ μΌμΉ˜μ‹œν‚¬ λ•Œλ§Œ 높은 상관관계λ₯Ό λ³΄μ˜€λ‹€. κ΄€μΈ‘λ²”μœ„λ₯Ό μΌμΉ˜μ‹œν‚¬ 경우, NIRvP μ§€λ„λŠ” 식물 광합성을 μΆ”μ •ν•˜λŠ” 데 μžˆμ–΄ ν˜„μž₯ NIRvP보닀 μš°μˆ˜ν•œ μ„±λŠ₯을 λ³΄μ˜€λ‹€. μ΄λŸ¬ν•œ μ„±λŠ₯ μ°¨μ΄λŠ” ν”ŒλŸ­μŠ€ νƒ€μ›Œ κ΄€μΈ‘λ²”μœ„λ₯Ό μΌμΉ˜μ‹œν‚¬ λ•Œ, 연ꡬ λŒ€μƒμ§€ κ°„μ˜ NIRvP-식물 κ΄‘ν•©μ„± κ΄€κ³„μ˜ κΈ°μšΈκΈ°κ°€ 일관성을 λ³΄μ˜€κΈ° λ•Œλ¬Έμ΄λ‹€. λ³Έ 연ꡬ κ²°κ³ΌλŠ” μœ„μ„± 관츑을 ν”ŒλŸ­μŠ€ νƒ€μ›Œ κ΄€μΈ‘λ²”μœ„μ™€ μΌμΉ˜μ‹œν‚€λŠ” κ²ƒμ˜ μ€‘μš”μ„±μ„ 보여주고 높은 μ‹œκ³΅κ°„ ν•΄μƒλ„λ‘œ 식물 광합성을 μ›κ²©μœΌλ‘œ λͺ¨λ‹ˆν„°λ§ν•˜λŠ” μ΄ˆμ†Œν˜•μœ„μ„±κ΅° 자료의 잠재λ ₯을 보여쀀닀.Monitoring changes in terrestrial vegetation is essential to understanding interactions between atmosphere and biosphere, especially terrestrial ecosystem. To this end, satellite remote sensing offer maps for examining land surface in different scales. However, the detailed information was hindered under the clouds or limited by the spatial resolution of satellite imagery. Moreover, the impacts of spatial and temporal resolution in photosynthesis monitoring were not fully revealed. In this dissertation, I aimed to enhance the spatial and temporal resolution of satellite imagery towards daily gap-free vegetation maps with high spatial resolution. In order to expand vegetation change monitoring in time and space using high-resolution satellite images, I 1) improved temporal resolution of satellite dataset through image fusion using geostationary satellites, 2) improved spatial resolution of satellite dataset using generative adversarial networks, and 3) showed the use of high spatiotemporal resolution maps for monitoring plant photosynthesis especially over heterogeneous landscapes. With the advent of new techniques in satellite remote sensing, current and past datasets can be fully utilized for monitoring vegetation changes in the respect of spatial and temporal resolution. In Chapter 2, I developed the integrated system that implemented geostationary satellite products in the spatiotemporal image fusion method for monitoring canopy photosynthesis. The integrated system contains the series of process (i.e., cloud masking, nadir bidirectional reflectance function adjustment, spatial registration, spatiotemporal image fusion, spatial gap-filling, temporal-gap-filling). I conducted the evaluation of the integrated system over heterogeneous rice paddy landscape where the drastic land cover changes were caused by cultivation management and deciduous forest where consecutive changes occurred in time. The results showed that the integrated system well predict in situ measurements without data gaps (R2 = 0.71, relative bias = 5.64% at rice paddy site; R2 = 0.79, relative bias = -13.8% at deciduous forest site). The integrated system gradually improved the spatiotemporal resolution of vegetation maps, reducing the underestimation of in situ measurements, especially during peak growing season. Since the integrated system generates daily canopy photosynthesis maps for monitoring dynamics among regions of interest worldwide with high spatial resolution. I anticipate future efforts to reveal the hindered information by the limited spatial and temporal resolution of satellite imagery. Detailed spatial representations of terrestrial vegetation are essential for precision agricultural applications and the monitoring of land cover changes in heterogeneous landscapes. The advent of satellite-based remote sensing has facilitated daily observations of the Earths surface with high spatial resolution. In particular, a data fusion product such as Planet Fusion has realized the delivery of daily, gap-free surface reflectance data with 3-m pixel resolution through full utilization of relatively recent (i.e., 2018-) CubeSat constellation data. However, the spatial resolution of past satellite sensors (i.e., 30–60 m for Landsat) has restricted the detailed spatial analysis of past changes in vegetation. In Chapter 3, to overcome the spatial resolution constraint of Landsat data for long-term vegetation monitoring, we propose a dual remote-sensing super-resolution generative adversarial network (dual RSS-GAN) combining Planet Fusion and Landsat 8 data to simulate spatially enhanced long-term time-series of the normalized difference vegetation index (NDVI) and near-infrared reflectance from vegetation (NIRv). We evaluated the performance of the dual RSS-GAN against in situ tower-based continuous measurements (up to 8 years) and remotely piloted aerial system-based maps of cropland and deciduous forest in the Republic of Korea. The dual RSS-GAN enhanced spatial representations in Landsat 8 images and captured seasonal variation in vegetation indices (R2 > 0.95, for the dual RSS-GAN maps vs. in situ data from all sites). Overall, the dual RSS-GAN reduced Landsat 8 vegetation index underestimations compared with in situ measurements; relative bias values of NDVI ranged from βˆ’3.2% to 1.2% and βˆ’12.4% to βˆ’3.7% for the dual RSS-GAN and Landsat 8, respectively. This improvement was caused by spatial enhancement through the dual RSS-GAN, which captured fine-scale information from Planet Fusion. This study presents a new approach for the restoration of hidden sub-pixel spatial information in Landsat images. Mapping canopy photosynthesis in both high spatial and temporal resolution is essential for carbon cycle monitoring in heterogeneous areas. However, well established satellites in sun-synchronous orbits such as Sentinel-2, Landsat and MODIS can only provide either high spatial or high temporal resolution but not both. Recently established CubeSat satellite constellations have created an opportunity to overcome this resolution trade-off. In particular, Planet Fusion allows full utilization of the CubeSat data resolution and coverage while maintaining high radiometric quality. In Chapter 4, I used the Planet Fusion surface reflectance product to calculate daily, 3-m resolution, gap-free maps of the near-infrared radiation reflected from vegetation (NIRvP). I then evaluated the performance of these NIRvP maps for estimating canopy photosynthesis by comparing with data from a flux tower network in Sacramento-San Joaquin Delta, California, USA. Overall, NIRvP maps captured temporal variations in canopy photosynthesis of individual sites, despite changes in water extent in the wetlands and frequent mowing in the crop fields. When combining data from all sites, however, I found that robust agreement between NIRvP maps and canopy photosynthesis could only be achieved when matching NIRvP maps to the flux tower footprints. In this case of matched footprints, NIRvP maps showed considerably better performance than in situ NIRvP in estimating canopy photosynthesis both for daily sum and data around the time of satellite overpass (R2 = 0.78 vs. 0.60, for maps vs. in situ for the satellite overpass time case). This difference in performance was mostly due to the higher degree of consistency in slopes of NIRvP-canopy photosynthesis relationships across the study sites for flux tower footprint-matched maps. Our results show the importance of matching satellite observations to the flux tower footprint and demonstrate the potential of CubeSat constellation imagery to monitor canopy photosynthesis remotely at high spatio-temporal resolution.Chapter 1. Introduction 2 1. Background 2 1.1 Daily gap-free surface reflectance using geostationary satellite products 2 1.2 Monitoring past vegetation changes with high-spatial-resolution 3 1.3 High spatiotemporal resolution vegetation photosynthesis maps 4 2. Purpose of Research 4 Chapter 2. Generating daily gap-filled BRDF adjusted surface reflectance product at 10 m resolution using geostationary satellite product for monitoring daily canopy photosynthesis 6 1. Introduction 6 2. Methods 11 2.1 Study sites 11 2.2 In situ measurements 13 2.3 Satellite products 14 2.4 Integrated system 17 2.5 Canopy photosynthesis 21 2.6 Evaluation 23 3. Results and discussion 24 3.1 Comparison of STIF NDVI and NIRv with in situ NDVI and NIRv 24 3.2 Comparison of STIF NIRvP with in situ NIRvP 28 4. Conclusion 31 Chapter 3. Super-resolution of historic Landsat imagery using a dual Generative Adversarial Network (GAN) model with CubeSat constellation imagery for monitoring vegetation changes 32 1. Introduction 32 2. Methods 38 2.1 Real-ESRGAN model 38 2.2 Study sites 40 2.3 In situ measurements 42 2.4 Vegetation index 44 2.5 Satellite data 45 2.6 Planet Fusion 48 2.7 Dual RSS-GAN via fine-tuned Real-ESRGAN 49 2.8 Evaluation 54 3. Results 57 3.1 Comparison of NDVI and NIRv maps from Planet Fusion, Sentinel 2 NBAR, and Landsat 8 NBAR data with in situ NDVI and NIRv 57 3.2 Comparison of dual RSS-SRGAN model results with Landsat 8 NDVI and NIRv 60 3.3 Comparison of dual RSS-GAN model results with respect to in situ time-series NDVI and NIRv 63 3.4 Comparison of the dual RSS-GAN model with NDVI and NIRv maps derived from RPAS 66 4. Discussion 70 4.1 Monitoring changes in terrestrial vegetation using the dual RSS-GAN model 70 4.2 CubeSat data in the dual RSS-GAN model 72 4.3 Perspectives and limitations 73 5. Conclusion 78 Appendices 79 Supplementary material 82 Chapter 4. Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates 85 1. Introduction 85 2. Methods 89 2.1 Study sites 89 2.2 In situ measurements 92 2.3 Planet Fusion NIRvP 94 2.4 Flux footprint model 98 2.5 Evaluation 98 3. Results 105 3.1 Comparison of Planet Fusion NIRv and NIRvP with in situ NIRv and NIRvP 105 3.2 Comparison of instantaneous Planet Fusion NIRv and NIRvP with against tower GPP estimates 108 3.3 Daily GPP estimation from Planet Fusion -derived NIRvP 114 4. Discussion 118 4.1 Flux tower footprint matching and effects of spatial and temporal resolution on GPP estimation 118 4.2 Roles of radiation component in GPP mapping 123 4.3 Limitations and perspectives 126 5. Conclusion 133 Appendix 135 Supplementary Materials 144 Chapter 5. Conclusion 153 Bibliography 155 Abstract in Korea 199 Acknowledgements 202λ°•
    • …
    corecore