271 research outputs found

    A Multi-Agent Architecture for the Design of Hierarchical Interval Type-2 Beta Fuzzy System

    Get PDF
    This paper presents a new methodology for building and evolving hierarchical fuzzy systems. For the system design, a tree-based encoding method is adopted to hierarchically link low dimensional fuzzy systems. Such tree structural representation has by nature a flexible design offering more adjustable and modifiable structures. The proposed hierarchical structure employs a type-2 beta fuzzy system to cope with the faced uncertainties, and the resulting system is called the Hierarchical Interval Type-2 Beta Fuzzy System (HT2BFS). For the system optimization, two main tasks of structure learning and parameter tuning are applied. The structure learning phase aims to evolve and learn the structures of a population of HT2BFS in a multiobjective context taking into account the optimization of both the accuracy and the interpretability metrics. The parameter tuning phase is applied to refine and adjust the parameters of the system. To accomplish these two tasks in the most optimal and faster way, we further employ a multi-agent architecture to provide both a distributed and a cooperative management of the optimization tasks. Agents are divided into two different types based on their functions: a structure agent and a parameter agent. The main function of the structure agent is to perform a multi-objective evolutionary structure learning step by means of the Multi-Objective Immune Programming algorithm (MOIP). The parameter agents have the function of managing different hierarchical structures simultaneously to refine their parameters by means of the Hybrid Harmony Search algorithm (HHS). In this architecture, agents use cooperation and communication concepts to create high-performance HT2BFSs. The performance of the proposed system is evaluated by several comparisons with various state of art approaches on noise-free and noisy time series prediction data sets and regression problems. The results clearly demonstrate a great improvement in the accuracy rate, the convergence speed and the number of used rules as compared with other existing approaches

    Review of Machine Learning Approaches In Fault Diagnosis applied to IoT System

    Get PDF
    International audienceWith increasing complex systems, low production costs, and changing technologies, for this reason, the automatic fault diagnosis using artificial intelligence (AI) techniques is more in more applied. In addition, with the emergence of the use of reconfigurable systems, AI can assist in self-maintenance of complex systems. The purpose of this article is to summarize the diagnosis research of systems using AI approaches and examine their application particularly in the field of diagnosis of complex systems. It covers articles published from 2002 to 2018 using Machine Learning tools for fault diagnosis in industrial systems

    Smart Buildings

    Get PDF
    This talk presents an efficient cyberphysical platform for the smart management of smart buildings http://www.deepint.net. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart building is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study at Salamanca - Ecocasa. This platform could enable smart building to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that

    Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences

    Get PDF
    Mathematical fuzzy logic (MFL) specifically targets many-valued logic and has significantly contributed to the logical foundations of fuzzy set theory (FST). It explores the computational and philosophical rationale behind the uncertainty due to imprecision in the backdrop of traditional mathematical logic. Since uncertainty is present in almost every real-world application, it is essential to develop novel approaches and tools for efficient processing. This book is the collection of the publications in the Special Issue “Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences”, which aims to cover theoretical and practical aspects of MFL and FST. Specifically, this book addresses several problems, such as:- Industrial optimization problems- Multi-criteria decision-making- Financial forecasting problems- Image processing- Educational data mining- Explainable artificial intelligence, etc

    Algumas aplicações da Inteligência Artificial em Biotecnologia

    Get PDF
    The present work is a revision about neural networks. Initially presents a little introduction to neural networks, fuzzy logic, a brief history, and the applications of Neural Networks on Biotechnology. The chosen sub-areas of the applications of Neural Networks on Biotechnology are, Solid-State Fermentation Optimization, DNA Sequencing, Molecular Sequencing Analysis, Quantitative Structure-Activity Relationship, Soft Sensing, Spectra Interpretation, Data Mining, each one use a special kind of neural network like feedforward, recurrent, siamese, art, among others. Applications of the Neural-Networks in spectra interpretation and Quantitative Structure-activity relationships, is a direct application to Chemistry and consequently also to Biochemistry and Biotechnology. Soft Sensing is a special example for applications on Biotechnology. It is a method to measure variables that normally can’t be directly measure. Solid state fermentation was optimized and presenting, as result, a strong increasing of production efficiency.O presente trabalho é uma revisão sobre redes neurais. Inicialmente apresenta uma breve introdução a redes neurais, lógica difusa, um breve histórico, e aplicações de Redes Neurais em Biotecnologia. As subáreas escolhidas para aplicação das redes neurais são, Otimização da Fermentação no Estado-Sólido, Sequenciamento de DNA, Análise Molecular Sequencial, Relação Quantitativa Strutura-Atividade, Sensores inteligentes, Interpretação de espectros, Mineração de Dados, sendo que cada um usa um tipo especial de rede neural, tais como feed forward, recorrente, siamesa, art, entre outros. Aplicações de Redes Neurais em interpretação de espectros e Relação Quantitativa Estrutura-Atividade, como uma aplicação direta à química e consequentemente também para a Bioquímica e Biotecnologia. Os sensores Inteligentes são um exemplo especial de aplicação em Biotecnologia. É um método de medir variáveis que normalmente não podem ser medidas de forma direta. Fermentações no Estado-sólido foram otimizadas e, apresentaram como resultado um forte aumento do rendimento na produção final

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Підсистема прийняття рішень на базі нечітких нейронних мереж

    Get PDF
    Робота публікується згідно наказу ректора від 29.12.2020 р. №580/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії НАУ".Керівник дипломної роботи: д.т.н., проф., завідувач кафедри авіаційних комп’ютерно-інтегрованих комплексів, Синєглазов Віктор МихайловичThe purpose of scientific work: development of a subsystem for decision-making on the basis of fuzzy neural networks, improvement of existing algorithms. The thesis considers theoretical and software part of the development of the decision-making subsystem for solving the classification problem. The author substantiates the relevance of using fuzzy neural networks to solve the problem of classification, analyzes the existing topologies of fuzzy neural networks and fuzzy classifiers, basic algorithms to improve results and combine them into a single structure, identified their shortcomings and proposed a solution to eliminate them An optimization and improvement algorithm for solving the classification problem based on the creation of an ensemble of fuzzy neural networks, namely, a fuzzy TSK classifier, is proposed. This software architecture allows you to create a neural classifier that improves the results of an existing solution. And expands the range of calculations performed to classify the input data.Мета наукової роботи: розробка підсистеми для прийняття рішень на базі нечітких нейронних мереж, покращення існуючих алгоритмів. В дипломній роботі розглядається теоретична та програмна частина розробки підсистеми прийняття рішень для розв’язання задачі класифікації. Автором обґрунтовано актуальність використання нечітких нейронних мереж для вирішення задачі класифікації, проведено аналіз існуючих топологій нечітких нейронних мереж та нечітких класифікаторів, основних алгоритмів для покращення результатів та поєднання їх в єдину структуру, виявлено їх недоліки та запропоноване рішення, що дозволяє їх усунути Запропоновано алгоритм оптимізації та покращення для вирішення задачі класифікації на основі створення ансамблю з нечітких нейронних мереж а саме, нечіткого класифікатора TSK. Дана програмна архітектура дозволяє створити нейронний класифікатор який покращує результати уже існуючого рішення. Та розширює спектр виконуваних обчислювань для класифікації вхідних даних

    The Application of Artificial Intelligence in Project Management Research: A Review

    Get PDF
    The field of artificial intelligence is currently experiencing relentless growth, with innumerable models emerging in the research and development phases across various fields, including science, finance, and engineering. In this work, the authors review a large number of learning techniques aimed at project management. The analysis is largely focused on hybrid systems, which present computational models of blended learning techniques. At present, these models are at a very early stage and major efforts in terms of development is required within the scientific community. In addition, we provide a classification of all the areas within project management and the learning techniques that are used in each, presenting a brief study of the different artificial intelligence techniques used today and the areas of project management in which agents are being applied. This work should serve as a starting point for researchers who wish to work in the exciting world of artificial intelligence in relation to project leadership and management
    corecore