540 research outputs found

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature

    Lightweight cryptography for IoT devices

    Get PDF
    Tese de Mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de CiênciasLightweight cryptography is a field that has been growing fast recently due to the demand for secure Internet of Things (IoT) applications. These algorithms provide se curity for computational power, memory, and energy-constrained devices. In this work, we propose a new protocol based on lightweight cryptography algorithms that enables the generation and distribution of keys for symmetric systems to be used in private communi cations on a wireless sensor network (WSN). The proposed protocol is designed to work in multi-hop communication networks, where nodes out of range of the Base Station can be part of the network, offering the same security mechanisms that a node in the commu nication range of the Base Station has. Experimental results and a detailed comparison with other architectures show how fast and energy-efficient the protocol is, while ensuring a high level of authenticity, confidentiality and integrity

    Storing IOT Data Securely in a Private Ethereum Blockchain

    Full text link
    Internet of Things (IoT) is a set of technologies that enable network-connected devices to perform an action or share data among several connected devices or to a shared database. The actions can be anything from switching on an Air Conditioning device remotely to turning on the ignition of a car through a command issued from a remote location or asking Alexa or Google Assistant to search for weather conditions in an area. IoT has proved to be game-changing for many industries such as Supply Chain, Shipping and Transportation providing updates on the status of shipments in real time. This has resulted in a huge amount of data created by a lot of these devices all of which need to be processed in real time. In this thesis, we propose a method to collect sensor data from IoT devices and use blockchain to store and retrieve the collected data in a secure and decentralized fashion within a closed system, suitable for a single enterprise or a group of companies in industries like shipping where sharing data with each other is required. Much like blockchain, we envision a future where IoT devices can connect and disconnect to distributed systems without causing downtime for the data collection or storage or relying on a cloud-based storage system for synchronizing data between devices. We also look at how the performance of some of these distributed systems like Inter Planetary File System (IPFS) and Ethereum Swarm compare on low-powered devices like the raspberry pi

    System-on-chip architecture for secure sub-microsecond synchronization systems

    Get PDF
    213 p.En esta tesis, se pretende abordar los problemas que conlleva la protección cibernética del Precision Time Protocol (PTP). Éste es uno de los protocolos de comunicación más sensibles de entre los considerados por los organismos de estandarización para su aplicación en las futuras Smart Grids o redes eléctricas inteligentes. PTP tiene como misión distribuir una referencia de tiempo desde un dispositivo maestro al resto de dispositivos esclavos, situados dentro de una misma red, de forma muy precisa. El protocolo es altamente vulnerable, ya que introduciendo tan sólo un error de tiempo de un microsegundo, pueden causarse graves problemas en las funciones de protección del equipamiento eléctrico, o incluso detener su funcionamiento. Para ello, se propone una nueva arquitectura System-on-Chip basada en dispositivos reconfigurables, con el objetivo de integrar el protocolo PTP y el conocido estándar de seguridad MACsec para redes Ethernet. La flexibilidad que los modernos dispositivos reconfigurables proporcionan, ha sido aprovechada para el diseño de una arquitectura en la que coexisten procesamiento hardware y software. Los resultados experimentales avalan la viabilidad de utilizar MACsec para proteger la sincronización en entornos industriales, sin degradar la precisión del protocolo

    Low-complexity, low-area computer architectures for cryptographic application in resource constrained environments

    Get PDF
    RCE (Resource Constrained Environment) is known for its stringent hardware design requirements. With the rise of Internet of Things (IoT), low-complexity and low-area designs are becoming prominent in the face of complex security threats. Two low-complexity, low-area cryptographic processors based on the ultimate reduced instruction set computer (URISC) are created to provide security features for wireless visual sensor networks (WVSN) by using field-programmable gate array (FPGA) based visual processors typically used in RCEs. The first processor is the Two Instruction Set Computer (TISC) running the Skipjack cipher. To improve security, a Compact Instruction Set Architecture (CISA) processor running the full AES with modified S-Box was created. The modified S-Box achieved a gate count reduction of 23% with no functional compromise compared to Boyar’s. Using the Spartan-3L XC3S1500L-4-FG320 FPGA, the implementation of the TISC occupies 71 slices and 1 block RAM. The TISC achieved a throughput of 46.38 kbps at a stable 24MHz clock. The CISA which occupies 157 slices and 1 block RAM, achieved a throughput of 119.3 kbps at a stable 24MHz clock. The CISA processor is demonstrated in two main applications, the first in a multilevel, multi cipher architecture (MMA) with two modes of operation, (1) by selecting cipher programs (primitives) and sharing crypto-blocks, (2) by using simple authentication, key renewal schemes, and showing perceptual improvements over direct AES on images. The second application demonstrates the use of the CISA processor as part of a selective encryption architecture (SEA) in combination with the millions instructions per second set partitioning in hierarchical trees (MIPS SPIHT) visual processor. The SEA is implemented on a Celoxica RC203 Vertex XC2V3000 FPGA occupying 6251 slices and a visual sensor is used to capture real world images. Four images frames were captured from a camera sensor, compressed, selectively encrypted, and sent over to a PC environment for decryption. The final design emulates a working visual sensor, from on node processing and encryption to back-end data processing on a server computer

    Low-complexity, low-area computer architectures for cryptographic application in resource constrained environments

    Get PDF
    RCE (Resource Constrained Environment) is known for its stringent hardware design requirements. With the rise of Internet of Things (IoT), low-complexity and low-area designs are becoming prominent in the face of complex security threats. Two low-complexity, low-area cryptographic processors based on the ultimate reduced instruction set computer (URISC) are created to provide security features for wireless visual sensor networks (WVSN) by using field-programmable gate array (FPGA) based visual processors typically used in RCEs. The first processor is the Two Instruction Set Computer (TISC) running the Skipjack cipher. To improve security, a Compact Instruction Set Architecture (CISA) processor running the full AES with modified S-Box was created. The modified S-Box achieved a gate count reduction of 23% with no functional compromise compared to Boyar’s. Using the Spartan-3L XC3S1500L-4-FG320 FPGA, the implementation of the TISC occupies 71 slices and 1 block RAM. The TISC achieved a throughput of 46.38 kbps at a stable 24MHz clock. The CISA which occupies 157 slices and 1 block RAM, achieved a throughput of 119.3 kbps at a stable 24MHz clock. The CISA processor is demonstrated in two main applications, the first in a multilevel, multi cipher architecture (MMA) with two modes of operation, (1) by selecting cipher programs (primitives) and sharing crypto-blocks, (2) by using simple authentication, key renewal schemes, and showing perceptual improvements over direct AES on images. The second application demonstrates the use of the CISA processor as part of a selective encryption architecture (SEA) in combination with the millions instructions per second set partitioning in hierarchical trees (MIPS SPIHT) visual processor. The SEA is implemented on a Celoxica RC203 Vertex XC2V3000 FPGA occupying 6251 slices and a visual sensor is used to capture real world images. Four images frames were captured from a camera sensor, compressed, selectively encrypted, and sent over to a PC environment for decryption. The final design emulates a working visual sensor, from on node processing and encryption to back-end data processing on a server computer
    corecore