

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Lightweight cryptography for IoT devices

Pedro Miguel Coelho Rosa

Mestrado em Engenharia Informática

Dissertação orientada por:

Prof. Doutor José Manuel da Silva Cecílio

Prof. Doutor André Nuno Carvalho Souto

Acknowledgments

I would like to thank my advisers Prof. José Cecı́lio and Prof. André Souto for all the
guidance, patience and help provided. Without them, it would have not been possible for
this work to reach its end. I also want to thank to the PhD student Zygimantas Jasiunas for
the assistance provided for the experimental part of the energy consumption calculation.

I want to thank the most important people, not only during this year, but throughout
the 22 years of my life, my family. Without them my academic life would never have
gone the same way and I would not have been able to finish my master’s degree. Finally,
I would like to thank my friends who have supported and helped me during this year.

i

Aos meus pais

Abstract

Lightweight cryptography is a field that has been growing fast recently due to the
demand for secure Internet of Things (IoT) applications. These algorithms provide se-
curity for computational power, memory, and energy-constrained devices. In this work,
we propose a new protocol based on lightweight cryptography algorithms that enables the
generation and distribution of keys for symmetric systems to be used in private communi-
cations on a wireless sensor network (WSN). The proposed protocol is designed to work
in multi-hop communication networks, where nodes out of range of the Base Station can
be part of the network, offering the same security mechanisms that a node in the commu-
nication range of the Base Station has. Experimental results and a detailed comparison
with other architectures show how fast and energy-efficient the protocol is, while ensuring
a high level of authenticity, confidentiality and integrity.

Keywords: Lightweight, Cryptography, IoT, WSN, Diffie-Hellman

v

Resumo

A inovação tecnológica possibilitou que novos dispositivos se liguem entre si, criando
um ecossistema que traz inúmeras funcionalidades e vantagens no dia a dia, criando a
Internet das Coisas (IoT). Atualmente, cerca de 46 mil milhões de dispositivos IoT são
usados, devendo esse número chegar a 125 mil milhões até 2030. Este número crescente
de dispositivos aumenta a quantidade de dados que são transportados em redes abertas
como a Internet. A sua proteção é um desafio atual, presente na investigação cientı́fica da
área e representa um desafio crı́tico para IoT: aumentar a segurança e privacidade dos da-
dos. A falha na utilização de criptografia adequada e outros métodos de segurança pode
levar a graves consequências, como acessos não autorizados e manipulação de dados.
Os dispositivos IoT têm normalmente poucos recursos, com limitações a nı́vel de pro-
cessamento, memória e com desafios a nı́vel de consumos energéticos, em parte porque
são geralmente colocados em ambientes isolados. O uso de algoritmos de criptografia
especı́ficos é por isso essencial, uma vez que os esquemas tradicionais de criptografia
exigem recursos que não estão normalmente disponı́veis em equipamentos IoT.

O objetivo principal deste trabalho de mestrado é desenvolver uma Arquitetura de
Distribuição de Chaves para gerar chaves criptográficas simétricas entre nós da rede,
numa comunicação multi-hop. Para atingir esse objetivo, os nós previamente autenti-
cados podem autenticar outros nós que se queiram juntar á rede. Depois da autenticação,
a gateway gera uma chave de sessão com o esse nó usando o protocolo Diffie-Hellman
e um algoritmo de criptografia “leve” (adequado ao limite de recursos dos dispositivos).
Levando em consideração o cenário de aplicação do projeto AQUAMON e os seus re-
quisitos, vários esquemas de distribuição de chaves e algoritmos de criptografia leve, da
competição NIST, foram estudados para encontrar um método adequado para distribuir
os parâmetros necessários entre os nós e a gateway. Com base nos dez algoritmos fi-
nalistas da NIST, projetamos um novo protocolo de autenticação para gerar chaves de
criptografia simétricas entre nós numa comunicação multi-hop. Ao mesmo tempo, o pro-
tocolo fornece integridade usando um algoritmo de assinatura digital. A nossa proposta
de distribuição de chaves envolve duas fases principais: autenticação de nós e geração
da chave de sessão. Para maior comodidade e aumento da vida útil do esquema, apre-
sentamos também outros mecanismos necessários como a renovação de chaves de sessão.
Para o correto funcionamento da arquitetura, cada nó deve ter uma chave de rede padrão,

vii

um algoritmo de criptografia, um conjunto de chaves armazenadas num arquivo, um va-
lor primo p e g para o protocolo de troca de chaves Diffie-Hellman e, finalmente, um
algoritmo de assinatura digital para assinar e verificar as mensagens. Todas as mensa-
gens na arquitetura, incluindo os processos de acordo das chave de sessão, serão cifradas
com o algoritmo de criptografia leve. Qualquer algoritmo de criptografia pode ser usado
na arquitetura desde que as chaves sejam do mesmo tamanho que as definidas na nossa
arquitetura e suportados pelos dispositivos envolvidos.

A fase um da arquitetura consiste na autenticação do nó. A gateway ou um nó já
autenticado irá autenticar o nó que está a tentar juntar-se á rede. A troca de mensagens
nesta fase consiste no nó tentar provar que é legı́timo, mostrando que possui o conjunto
correto de parâmetros, como a chave de rede, uma chave correta do conjunto de chaves
(que será usada para cifrar menssagens antes de uma chave de sessão ser estabelecida)
e responder corretamente ao desafio dado. A segunda fase da arquitetura é a geração da
chave de sessão. Depois de um nó ser autenticado, apenas a gateway pode gerar a chave
de sessão com o nó (com ou sem a ajuda de um nó intermédio). Para isto, é usado o pro-
tocolo de acordo de chaves Diffie-Hellman. Os parâmetros são cifrados com a chave do
conjunto de chaves decidido na autenticação sendo, portanto, resiliente a ataques man-in-
the-middle. Desde que o nó tenha as variáveis corretas para esta fase, ele poderá calcular
a chave comum de 256 bits com o gateway, permitindo que comuniquem com segurança.
As chaves de sessão devem ser renovadas periodicamente para aumentar o tempo de vida
da rede e a segurança geral. Dependendo de cada cenário e ambiente, a periodicidade de
renovação das chaves é diferente e deve ser repensada. Para renovar a chave, repetimos
o processo na fase 2, mas desta vez, todos os parâmetros são cifrados com a chave de
sessão antiga. Este processo deve ser iniciado pelo nó. No entanto, se não for esse o caso,
a própria gateway pode solicitá-lo, removendo o nó da rede se não houver resposta. A
arquitetura apresentada fornece um esquema de autenticação e confidencialidade, porém,
nenhum mecanismo de integridade real é utilizado. Assinaturas digitais podem resolver
esse problema, garantindo que nenhuma mensagem na rede seja modificada. Para im-
plementar um mecanismo de assinatura digital, os nós devem calcular o par de chaves
privada/pública e enviar a chave pública cifrada para o gateway, como qualquer outra
mensagem na arquitetura. Os nós usam a chave privada para assinar as mensagens en-
quanto que a gateway usa a chave pública para verificar as mensagens assinadas enviadas
por ele. O par de chaves privada/pública também é renovado com a chave de sessão, se
necessário.

A proposta foi implementada em linguagem de programação C. A implementação
consiste em dois programas: Gateway para a estação base da arquitetura e os Nós para
todos os dispositivos leves que vão comunicar com o gateway de forma direta ou indireta.
Para simular um cenário da vida real onde vários nós se interligam á gateway, usamos
threads da biblioteca pthread. Uma vez que um nó solicita conexão com o gateway, ela

viii

cria uma thread onde executa todas as operações e processos da arquitetura para o nó
especı́fico.

Também é apresentada uma análise de segurança dos métodos utilizados na arquite-
tura, nomeadamente a diferença entre o protocolo Diffie-Hellman usual e a nossa versão
cifrada que previne alguns ataques conhecidos como man-in-the-middle. Por fim, mos-
tramos a eficácia das chaves de criptografia geradas considerando o seu tamanho e o seu
tempo de resistência contra ataques.

Apresentam-se ainda informações estatı́sticas dos algoritmos executados num Rasp-
berry Pi 3 B+ e num Desktop com um processador i5-12400F. Também é possı́vel ver
resultados da solução como tempos de execução de todas as operações: solicitação de
autenticação, geração do desafio, resposta do desafio, verificação do desafio, cálculo de
valores públicos de Diffie-Hellman e chaves de sessão. A abordagem proposta foi simu-
lada em dois cenários diferentes: comunicação entre os nós e a gateway diretamente, e
comunicação entre os nós e o gateway com a ajuda de um nó intermédio. O consumo de
energia também foi medido executando a arquitetura no Raspbery Pi 3 B+. A arquitetura
gasta pouca energia, apenas cerca de 0,03W por segundo, ou 30 milijoule no cenário des-
crito. Consideramos a possibilidade de existir picos de energia durante a renovação das
chaves dos nós, porém, tal não foi verificado, comprovando que os cálculos necessários
para a geração das chaves são muito leves. Isto permite-nos diminuir o intervalo da
renovação da chave, se necessário, sem comprometer significativamente o consumo de
energia.

Por fim, foi feita uma comparação detalhada da arquitetura com esquemas semelhan-
tes num conjunto diversificado de parâmetros como: consumo de recursos, confidencia-
lidade, integridade, escalabilidade, renovação de chaves, resistência de captura e forward
and backward secrecy. Ao pontuar cada parâmetro com um valor alto, médio ou baixo e
justificar a nossa pontuação, a arquitetura mostrou ser uma boa solução para redes com
vários nós operacionais numa vasta área.

Palavras-chave: Criptografia, Internet das coisas, Redes, Diffie-Hellman

ix

Contents

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Thesis Outline . 3

2 Background 5
2.1 Constrained Devices . 5
2.2 Cryptography . 6
2.3 Lightweight Cryptography . 7
2.4 Key distribution in WSN . 7

2.4.1 Key distribution in Distributed WSN 8
2.4.2 Key distribution in Hierarchical WSN 9

2.5 Digital signatures . 9

3 Related Work 11
3.1 Lightweight cryptography . 11
3.2 Key Distribution in WSN . 13
3.3 Digital Signatures . 17

4 Proposed Work 19
4.1 Phase 1 - Node Authentication . 21
4.2 Phase 2 - Session Key Generation . 22
4.3 Session Keys Renewal . 23
4.4 Message treatment . 23
4.5 Neighbours communication . 24

xi

4.6 Digital Signature . 25

4.7 Protocol implementation . 25

4.7.1 Node Authentication . 25

4.7.2 Session Key Generation . 26

5 Implementation 29
5.1 Important variables . 29

5.2 Main functions . 31

5.3 Message structure . 32

5.4 Session keys storage . 33

5.5 Blacklist . 33

5.6 Session key renewal . 34

5.7 SchnoorQ . 34

6 Security Analysis 37
6.1 Modified Diffie-Hellman . 37

6.2 Attacks analysis . 38

6.2.1 Man-in-the-middle attack (MIM) 38

6.2.2 Brute force attack . 38

6.2.3 Denial of service (DOS) attack 39

6.2.4 Nodes being curious . 40

6.3 Security level of the generated keys . 41

7 Results 43
7.1 Encryption algorithms . 43

7.2 Proposed Solution . 47

7.2.1 Environmental setup . 47

7.2.2 Network . 48

7.2.3 Execution time . 48

7.2.4 Session key renewal . 51

7.2.5 Energy consumption . 51

7.2.6 SchnoorQ . 52

7.2.7 Schemes comparison . 52

8 Conclusion 55
8.1 Future work . 55

Bibliography 64

xii

A Solution code 65
A.1 Code structure . 65
A.2 Compile and Run . 65
A.3 Possible experiments . 67

xiii

List of Figures

2.1 IoT Architecture . 5
2.2 Types of Wireless Sensor Networks . 8
2.3 Digital Signature Diagram . 10

4.1 Proposed solution . 20
4.2 Node Authentication . 21
4.3 Session Key Generation . 22
4.4 Neighbouring node communication . 24

5.1 Nodes joining the network thread diagram 30

6.1 Man-in-the-middle attack . 38
6.2 Denial-of-service attack . 39

7.1 TinyJAMBU average execution time dependence of Plain text and Asso-
ciated Data size in Raspberry . 44

7.2 ELEPHANT average execution time dependence of Plain text and Asso-
ciated Data size in Raspberry . 44

7.3 TinyJAMBU average execution time dependence of Plain text and Asso-
ciated Data size in Desktop . 45

7.4 ELEPHANT average execution time dependence of Plain text and Asso-
ciated Data size in Desktop . 45

7.5 Node processes execution times in single-hop communication 49
7.6 Gateway processes execution times in single-hop communication 49
7.7 Node B processes execution times in multi-hop communication 50
7.8 Node A processes execution times in multi-hop communication 50
7.9 Gateway processes execution times in multi-hop communication 51

A.1 Light-SAE tree size . 66

xv

List of Tables

3.1 NIST finalist algorithms specifications 11

4.1 Variable definition . 19

6.1 Modified DH differences . 37

7.1 NIST LWC algortihms execution times(µs) in Desktop 47
7.2 NIST LWC algortihms execution times(µs) in Raspberry 3 47
7.3 Power measurement in Raspberry PI 3 B+ (W) 51
7.4 Schnoor processes execution time (µs) 52
7.5 Schemes comparison table . 53

xvii

List of Acronyms

AD Associated data

AES Advanced Encryption Standard

ARX Addition Rotation XOR

CPU Central Processing Unit

DH Diffie-Hellman

DOS Denial of service

DSA Digital signature algorithm

ECC Elliptic curve

ECDSA Elliptic curve DSA

FN Feistel Network

GFN Generalized Feistel Network

IETF Internet Engineering Task Force

IoT Internet of things

IP Internet Protocol

Light-SAE Lightweight Secure Access Enhancement for Multihop IoT Networks

LWC Lightweight cryptography

MAC Message authentication code

MIM Man-in-the-Middle

NIST National Institute of Standards and Technology

NLFSR Nonlinear-feedback Shift Register

xix

RAM Random Access Memory

ROM Read-only Memory

RSA Rivest–Shamir–Adleman

SKEW Self Key Establishment Protocol for Wireless Sensor Networks

SPN Substitution-permutation Network

TCP/IP Transmission Control Protocol/Internet Protocol

WSN Wireless Sensor Network

xx

xxii

Chapter 1

Introduction

In a world full of digital technology, the Internet of things (IoT) has allowed countless de-
vices to connect over the network, creating an ecosystem that brings numerous advantages
to our daily lives [5]. IoT uses smart devices and the internet to develop new solutions.
Even if it goes unnoticed, these devices can be found everywhere. There are numerous
other areas where IoT is used, such as smart cities, transportation, sales, farming and
tourism [62]. The main goal of these networks is sensing and transferring data to a base
station or to the cloud to be processed and stored [51].

Currently, approximately 46 billion IoT devices are being used, and this number is
expected to reach 125 billion by 2030 [31]. With such an increase, networks are bound to
become more complex with the amount of data that will circulate. A substantial part of
this data needs to be protected, mainly confidential information, bringing to light a critical
challenge in IoT: security and privacy.

1.1 Motivation

Most devices in IoT do not use secure encryption or authentication algorithms in their
communications [30]. Failure to use proper encryption and other security methods can
lead to severe consequences such as unauthorized access and manipulation of data.

IoT devices tend to be small and are usually placed in constrained environments [28],
and therefore are very resource-limited in terms of processing power, memory and energy.
Hence, using encryption algorithms specific to such devices is necessary since traditional
system encryption schemes usually require unavailable IoT resources.

It is of extreme importance that IoT applications provide confidentiality, in order to
prevent private data leaks and unauthorized access. Authenticity and Integrity are also
extremely important, specially on sensor networks where, eventually, these sensors are
placed on public places. Device authentication and the data flow should be managed
carefully with correct mechanisms that fit these low resource devices.

Consequently, the scientific community started to consider Lightweight Cryptography

1

Chapter 1. Introduction 2

(LWC) [28], aiming to develop cryptographic primitives and algorithms that can execute
faster, requiring less memory footprint and a very little amount of energy. The main
goal is to achieve the best trade-off between security, cost (in terms of resources), and
performance [28].

National Institute of Standards and Technology (NIST) has initiated the process to
evaluate and standardize lightweight cryptography algorithms suitable for the constrained
environments of IoT [50]. The process started with 57 submissions, and by the time
of writing is in the final stage with ten candidates (ASCON [26], ELEPHANT [13],
GIFT-COFB [7], Grain128-AEAD [34], ISAP [25], Photon-Beetle [8], Romulus [33],
Sparkle [10], TinyJambu [63], and Xoodyak [23]).

However, using the correct encryption algorithms is not the only problem in some
IoT applications. Before each device can encrypt and communicate the data, they must
establish encryption keys among themselves using key distribution schemes.

1.2 Objectives

The main goal of this thesis is to develop a Key Distribution scheme called Lightweight
Secure Access Enhancement for Multihop IoT Networks (Light-SAE) able to generate
encryption keys among nodes in a multi-hop communication. To achieve this goal, al-
ready authenticated nodes will be used to authenticate other nodes trying to join the net-
work. By doing this, we are not only allowing for nodes out of range of a gateway to get
authenticated and join the network the same way close ranged nodes do, we are alleviat-
ing computational processing needed by the gateway. The gateway will then generate a
session key with the node using the Diffie-Hellman (DH) Key exchange protocol and a
lightweight encryption algorithm.

Multi-hop communication is a type of communication that allows devices to commu-
nicate over large areas by using other nodes in the middle as bridges to retransmit the
messages. Previous research shows that this type of communication could also reduce
energy consumption of the devices, prolonging the network lifetime in a Wireless Sensor
Network (WSN) [66]. Allowing devices to communicate and establish all cryptography
primitives necessary using this technology is a must for WSN where nodes are scattered
over a large area and are not able to communicate directly with others.

This work was done in the context of AQUAMON project [18]. Taking into ac-
count the application scenario of the project and its requirements, several key distribu-
tion schemes were studied to find an adequate method to distribute the parameters needed
between the nodes and the gateway so they can communicate privately. However, those
schemes showed limitations concerning the resources available and the network topology
that can be used to build the monitoring system. Based on the NIST ten finalist algo-
rithms, we designed a new authentication protocol to generate symmetric encryption keys

Chapter 1. Introduction 3

among nodes in a multi-hop communication. At the same time, the protocol provides
integrity by using a digital signature algorithm (DSA).

During and after establishing the encryption keys, devices need a lightweight en-
cryption algorithm to encrypt all the data and parameters. For that, different methods
of lightweight encryption were studied and listed some characteristics and specifications
of NIST ten finalist algorithms. We had chosen two of them to adapt and implement on
the project where our solution was tested.

In summary, the main objectives of this work are:

• Design a key distribution scheme that supports a multi-hop communication between
nodes and a gateway, providing authenticity, confidentiality and integrity.

• Study lightweight encryption algorithms to find the most suitable ones for our solu-
tion and use them for the encryption of whole data and all parameters needed during
session key establishment.

• Design and implement an architecture scheme to test the performance of a real
scenario network provided by the AQUAMON project.

1.3 Contributions

In this work we offer a detailed study of NIST finalist lightweight cryptography algo-
rithms by providing some of their specifications along with execution time results to help
choose the most appropriate for applications.

We propose and develop a multi-hop Key Distribution scheme called Light-SAE that
allows for the authentication and generation of session keys between a main station and
each sensor node. By using a lightweight cryptography algorithm, a digital signature
algorithm and a set of exchanged messages to prove the authenticity of the devices, we
ensure the confidentiality, authenticity and integrity in our solution.

We also compare our solution to other existing schemes in the literature by presenting
results and evaluate them in several parameters such as resource cost, confidentiality,
integrity, scalability, key freshness, capture resistance and finally, forward and backward
secrecy.

1.4 Thesis Outline

This document is organized in the following way:

• Chapter 2 – Introduction of important and necessary background information for
the understanding of the research work such as: constrained devices, cryptography,
lightweight cryptography, key distribution in WSN and digital signatures.

Chapter 1. Introduction 4

• Chapter 3 – This chapter contains some related work on Lightweight cryptography,
focusing on NIST finalist algorithms and key distribution approaches in WSN with
positives and negatives of each architecture.

• Chapter 4 – Describes the proposed multi-hop key distribution solution. It is divided
into several steps/stages and mechanisms needed to handle different authentication
steps providing robustness against attacks.

• Chapter 5 - Some details of the implementation of our proposed work are discussed
in this chapter namely how devices perform certain steps of the scheme, important
functions and variables used, structure of the messages and other important mecha-
nisms such as key renewal.

• Chapter 6 - A security analysis is presented where we describe how our scheme
defends against known attacks. We also show through some calculations how safe
our generated keys are.

• Chapter 7 - Presents the obtained results of the chosen cryptography algorithms and
digital signature algorithm to be used in the protocol. Then, results of our proposed
solution processes are presented in single-hop and multi-hop communication sce-
narios. They were tested on two different machines with different capabilities and
resources.

• Chapter 8 - Concludes the thesis by summarizing what was achieved in this work
as well as future work possibilities.

Chapter 2

Background

In this section, we present the background needed for this research work, such as con-
strained devices in IoT, concepts of traditional and lightweight cryptography with a tour
on characteristics of NIST finalists and finally, key distribution schemes.

2.1 Constrained Devices

IoT applications encompass many small devices and objects that can connect themselves,
directly or indirectly, to the internet. An IoT application usually consists of two kinds of
devices: sensor nodes and a gateway [49]. Sensor nodes are used to sense environmen-
tal conditions such as temperature, humidity, sound and vibrations. Constrained devices
usually work under severe resource-constrained environments such as low computational
power and memory, limited battery and insufficient wireless bandwidth [15]. These de-
vices are mostly used to collect specific data from natural ecosystems or inside buildings.
Their final goal is to send this information to a base station.

Base station or Gateway are relatively powerful devices with good processors and no
constraints on power and memory. These devices are the ones that later route the infor-
mation gathered by the nodes and sensors to the servers [49] as presented in Figure 2.1.

Figure 2.1: IoT Architecture

5

Chapter 2. Background 6

Internet Engineering Task Force (IETF) classified constrained devices into three cate-
gories to simplify the great variety of devices that can connect to the internet [49]:

• Class 0: Devices in this category are the most constrained in processing capabilities
and memory, with less than 10 KiB of Ram and 100 KiB of Flash. Because of their
weak nature, secure communication is sporadic and difficult to implement among
such devices.

• Class 1: These devices have more processing power and memory than the previous.
They can support lightweight security protocols for secure communication between
themselves and the gateway.

• Class 2: This last class belongs to the less constrained devices. They can perform
as good as mobile phones and support most protocol stacks. However, devices in
this class should still be energy efficient for high interoperability.

2.2 Cryptography

Cryptography is a technique to achieve confidentiality of data and protect information.
It is used daily by billions of people around the world [47]. The emergence of online
commerce and social networks increased the data produced by organizations [60]. Some
data must be protected, otherwise it could cost a company millions. Busafi and Kumar [2]
refer to data security as the highest priority when it comes to using encryption algorithms
as this data has to reach the intended users safely and unchanged by any malicious eaves-
droppers.

Cryptographic algorithms can be classified as Symmetric or Asymmetric cipher. Sym-
metric cipher uses the same key for encryption and decryption of data by both parties
(sender and receiver). In contrast, asymmetric cipher implies the usage of two different
keys for the two operations. Most of the times, the public key is used for the encryption,
while the private key is used for the decryption [42]. However the inverse use can hap-
pen, to prove the authenticity of who is sending the data for example. Since Asymmetric
ciphers use public keys, which are known to the public, and private keys are only known
to the user, there is no need to distribute the private one before transmission, reducing the
risk of getting them exposed. However, asymmetric ciphers are computationally intense
since they are based on complex computational calculations and therefore require a lot
of resources to be implemented. Kumar et al. [42] estimate that Asymmetric encryption
schemes are almost 1000 times slower when compared to Symmetric encryption schemes.

Chapter 2. Background 7

2.3 Lightweight Cryptography

The standard cryptography algorithms cannot be used on IoT architectures due to the con-
strained properties of the latter ones. The main challenges when implementing traditional
cryptography algorithms on IoT architectures are [48]:

• Limited memory to store and run applications (RAM, ROM);

• Low computing power to process data;

• Usage of batteries for power;

• Small physical area to deploy.

To achieve secure applications, it was necessary to create encryption algorithms ded-
icated to such constrained devices [28]. Lightweight cryptography aims to develop cryp-
tography primitives and algorithms that can execute faster, have little memory footprints
and consume very little energy. Therefore, the three main characteristics of LWC al-
gorithms are physical cost (physical space occupied, memory demand and energy con-
sumption), performance (latency and speed), and security (block and key length and other
parameters) [61]. LWC algorithms achieve the first two characteristics by using simple
round functions on tiny blocks (≤64bit) and relatively small keys (≤80bit). The last char-
acteristic but not the least significant one, security is achieved by adopting several modes
of operation such as Block Cipher (which offers six internal structures like SPN, FN,
GFN, ARX, NLFSR and Hybrid), Stream Cipher and Hash functions. Block cipher refers
to ciphers where fixed-size blocks are processed simultaneously, as opposed to a stream
cipher, which encrypts data one bit at a time.

Several research papers have already established a comparison [30] [61] [57] com-
paring software and hardware implementations of LWC algorithms. However, the most
recent research on the field has been submitted about the NIST competition algorithms.
In particular [30] and [46] compare and evaluate all of these algorithms from the competi-
tion (round 2) in terms of throughput and speed (clock-cycles/byte), execution time (ms),
CPU usage, RAM usage and energy consumption. All of these works and analyses will be
useful for researchers in choosing suitable algorithms for real scenarios and architectures
with their specific limitations.

2.4 Key distribution in WSN

Cryptographic algorithms need encryption keys to encrypt and later decrypt information.
For that, nodes and the base station in a WSN, must agree on these keys in such a way that
no adversary can get them, compromising the whole network [41]. Key management is the
core of secure communication in a WSN [55]. Keys should be generated or distributed and

Chapter 2. Background 8

Figure 2.2: Types of Wireless Sensor Networks

then stored in a way that no outsider can access it since their discovery would compromise
the communication and data integrity. The entire scheme should include a refresh and
update process of the keys from time to time and should satisfy the three groups of metrics
mentioned by Marcos A. Simplı́cio et al. [56]: efficiency, security, and flexibility. There
are different ways of implementing such schemes. For instance, a single key could be used
for all nodes, making the process easier. However, if one node gets compromised, so is the
entire network. On the other hand, having a different key for every node makes the whole
key management process harder if the WSN consists of a large number of nodes [41].
There is no one-size-fits-all solution for key distribution problems in WSN [17].

In [32], it is possible to see a table with advantages and disadvantages between the
usage of Single network-wise key and Pair-wise key.

2.4.1 Key distribution in Distributed WSN

In distributed WSN architectures, shown in Figure 2.2, there is no fixed infrastructure, and
the network topology is not known before deployment. In these networks, nodes scan their
surroundings to find their neighbouring nodes [17]. Distributed WSN sensor nodes can
use either pre-distributed, dynamically generated pair-wise or group-wise key schemes.
Key predistribution is the distribution method of keys onto nodes before deployment in
WSN. As the name suggests, this method stores keys into the nodes before deploying the
network. Key predistribution requires little overhead in the communication and almost

Chapter 2. Background 9

no processing overhead since the keys are already pre-loaded in the nodes [52]. Pair-wise
key distribution is an approach where every node in the sensor network shares a unique
symmetric key with every other node [17]. Other similar approaches are Random key pre-
distribution discussed in [27] and location-based key management [20]. The first consists
in deploying a random subset of keys from a key pool to each node before deployment
of the network. The second uses grid information of the network area to determine the
location of the nodes and improve the key connectivity. The idea is to have each sensor
share a pair-wise key with its closest neighbors [17].

2.4.2 Key distribution in Hierarchical WSN

A Hierarchical WSN is shown in Figure 2.2. In this type of network, there is a hierarchy
among the nodes based on their capabilities. Devices usually consist of base stations,
cluster heads and sensor nodes [17]. Cluster heads are trusted nodes that can act as the
key server as well as keep some data temporarily until it needs to be sent to the base sta-
tion. This is usually done in order to alleviate overhead in the base station in networks
with a high number of sensors. Nodes and the base station work the same way as dis-
tributed WSN. Specific devices can then send the data to the data sink which refers as the
destination for the data flow.

2.5 Digital signatures

Digital Signature is a mathematical scheme which ensures the integrity of a conversation
by giving authenticity to the digital message along with its sender [39]. This type of
encryption technique is perfect for schemes that require data integrity during the exchange
of messages between several parties. A digital signature consists on attaching a unique
code that acts as a stamp on the message. This code can be generated by hashing the
message with the signer user private key.

Currently, industries use this technology to improve document integrity in several
areas [45]:

• ID cards – Many workers in several corporations use smart cards to identify them-
selves. These are physical cards that are endowed with their digital signature and
can be used to either mark presence in an area at a certain time, or enter a restricted
area of a building.

• Financial services – As expected, financial sectors use digital signatures for various
important documents like contracts, loan processing and insurance documentation.

• Cryptocurrencies – This technology is a very important part of cryptocurrencies
like bitcoins to authenticate the blockchain. It is also used to show ownership or
participation in transactions of these currencies.

Chapter 2. Background 10

Figure 2.3: Digital Signature Diagram

There are usually three distinct phases in digital signature schemes:

• Private/public key pair generation – In these schemes, usually the signer generates
this key pair. The private key is only known to the user/device that will be signing
and sending the message, while the public key will be used to verify the message
and must be previously sent to the user/device meant to receive the messages.

• Signature generation – Here, the signer will generate a hash of the message and
encrypt it with the private key, after that, it sends the digitally signed data to the
correct recipient.

• Signature verification – In this last step, the recipient must use the public key to
verify the message, along with generating the hash of the message using the hash
algorithm. If these two hashes are the same, it means the message is correct and
was not modified in any way.

In Figure 2.3 it is possible to see how the whole process described above works. The
main reason why these methods use hashes is because their value is unique to the hashed
data, meaning that any changes, even in a single character, will result in a totally different
value [45]. During the signature verification, if the verification of the hash does not match
the second computed hash of the same data, it proves that the data was changed after the
signature.

Chapter 3

Related Work

3.1 Lightweight cryptography

Since most current cryptography algorithms were designed for desktop/server environ-
ments, many of these algorithms do not fit into constrained devices. Since 2017, the
National Institute of Standards and Technology (NIST) has initiated a call, evaluation
and standardization process of lightweight cryptography algorithms suitable for IoT con-
strained environments [50]. The process started with 57 submissions, and it is currently
in the final stage with ten finalists: ASCON [26], ELEPHANT [13], GIFT-COFB [7],
Grain128-AEAD [34], ISAP [25], Photon-Beetle [8], Romulus [33], Sparkle [10], Tiny-
JAMBU [63], and Xoodyak [23]. Table 3.1 summarizes some characteristics of these ten
algorithms, such as the mode of operation which was briefly introduced in the previous
chapter, if the algorithms provide authenticated encryption and hash, the recommended
or mandatory key size and nonce, the block size and number of rounds, and finally if the
algorithm is targeted for software or hardware.

Name Language Mode of
operation

Authenticated
encryption Hash Key Nonce Block

size Rounds Target

ASCON [26] C Permutation Yes Yes ≤160 128 64,128 18,20 Software
ELEPHANT [13] C Permutation Yes Yes 128 128 64,128 80 Soft/Hard
GIFT-COFB [7] C Block cipher Yes No 128 128 128 40 Hardware
Grain-128 [34] C/C++ Stream cipher Yes No 128 96 Software

ISAP [25] C Permutation Yes Yes 128 128
31,33
48,56 Hardware

PHOTON-B [8] C Permutation Yes Yes 128 128 Arbitrary 12 Hardware
Romulus [33] C Block cipher Yes Yes 128 128 128 40 Hardware

SPARKLE [10] C Block cipher Yes Yes
128,196

256 256 16,24,32 4 Hardware

TinyJAMBU [63] C Block cipher Yes No
128,196

256 96 20 n Hardware

Xoodyak [23] C/C++ Permutation Yes Yes ≤180 128 12 Hardware

Table 3.1: NIST finalist algorithms specifications

Fotovvat et al. [30] made a comparative analysis of the 32 algorithms (from Round
2) that were presented for IoT sensors where different cases were tested. TinyJAMBU
was the lowest energy-consuming algorithm on a Raspberry Pi 3B. This algorithm has

11

Chapter 3. Related Work 12

high expectations with small and very organized code and minimal execution time. ELE-
PHANT showed worse results on a Raspberry Pi 3B in terms of execution time but was
very similar in RAM and CPU usage compared to TinyJAMBU. Based on this conclusion,
we chose the TinyJAMBU algorithm to be used in this proposal, where all messages will
be encrypted using it.

TinyJAMBU [63] was developed by Hongjun Wu and Tao Huang. It is a variant of the
JAMBU [13], a block cipher authenticated encryption scheme based on key permutation.
The algorithm uses a 128, 196 or 256-bit key permutation, a state size of 128 bytes, and a
message block size of 32 bytes. It also uses a nonlinear feedback shift register to update
the state.

TinyJAMBU encryption method has four stages:

• Initialization - consists of the randomization of the state using the key and the
nonce;

• Process associated data - As the name suggests, processes the full blocks of associ-
ated data (AD) and the partial blocks is XOR to the state;

• Encryption - This is where the plain text gets processed to get the ciphertext;

• Finalization - After the encryption, the algorithm generates a 64 bit authentication
tag to perform the verification process on the decryption later.

The decryption process is very similar, but this time there is a verification step after the
finalization to compare the previous tag with a newly generated one after the decryption
process. The authors of TinyJAMBU state that associated data plays the same role as
the nonce. When the same nonce but different associated data are used for a key, it is
equivalent to the use of a new and unique nonce. If the same nonce and associated data
are reused for a key, TinyJAMBU provides strong protection of the secret key and provides
strong authentication security, but provides weak protection of the plaintext.

ELEPHANT [13] is an authenticated encryption scheme created by Tim Beyne et al.
It is based on a nonce-based encrypt-then-MAC construction, and the mode of operation is
permutation-based. The ELEPHANT scheme consists of three instances: Dumbo, where
the permutations are smaller with 160 bits and is better suited for hardware. Jumbo with
a 170-bit permutation, provides higher security under the same conditions. Finally, the
Delirium instance achieves the best level of protection with 200-bit permutation and is
stated to be better for software use but still performs well in hardware.

ASCON [26] is a lightweight encryption algorithm designed by Christoph Dobraunig
et al. and can be used for lightweight hashing and encryption. ASCON has a low-degree
substitution box that allows implementations with small overhead in both hardware and
software. It uses a single lightweight permutation with a sponge based mode of operation

Chapter 3. Related Work 13

and an SPN-based (substitution–permutation network) round transformation that consists
of 3 steps. The authors claim that all ASCON families provide 128-bit security. How-
ever, for this claim to be valid, the implementation must ensure that the nonce is never
repeated for encryption with the same key. Decrypted plaintext should only be released
after verifying the tag is completed. ASCON leaks the plaintext length like some encryp-
tion algorithms since it is the same as the ciphertext length (excluding the Tag length).
So, if the confidentiality of the plaintext length is a requirement, users must compensate
with padding.

Upon selecting the lightweight cryptography algorithm that are compatible with IoT
devices, we will review the work concerning device/node authentication and message
integrity. We will discuss the key distribution mechanisms for wireless sensor networks
and the digital signature mechanisms that can be used in constrained devices.

3.2 Key Distribution in WSN

SKEW is a Self Key Establishment Protocol for Wireless Sensor Networks that man-
ages encryption keys with less storage, communication, key transmission frequency and
computational overheads in comparison with similar protocols [54]. The protocol can be
applied in distributed and hierarchical WSN. If the first option is used, all nodes encrypt
messages with a group key that can be refreshed periodically. So, each node that gener-
ates a group key broadcasts it to all nodes that can receive key refreshing messages. The
approach used for Distributed WSN is clustering, consisting of transforming a distributed
WSN into a hierarchical one. The base station selects the best nodes for coverage as clus-
ter heads, encrypts the messages with a group key, and broadcasts them to all the nodes
in its range.

SKEW decreases the overhead by combining key refreshing with usual network mes-
sages. Since information required for new key generation is piggybacked on transmitted
messages, it is said that communication overhead for key distribution is reduced by 50%
compared to other architectures. Only one message is required to establish a pair-wise key
and one message to establish a group key. Keys are not directly transmitted within mes-
sages, only information about how they may be generated. Therefore it is less probable
for keys to be disclosed. All the messages sent in our solution are encrypted, achiev-
ing a good level of confidentiality. As for integrity, no mechanism is mentioned. Even
if packets always go encrypted, this means that an attacker could change the contents
of messages in the network without being noticed. The architecture experiments proved
scalability, the number of nodes was incremented to 32, 48, 64 and 100 nodes. In each
step, all nodes were able to use broadcasted instruction for key refreshment. All nodes
can generate a new version group key and broadcast it to other nodes. It is stated that
the number of generated keys in SKEW is comparatively low because only nodes that

Chapter 3. Related Work 14

receive new encrypted messages must do refreshing. SKEW approach detects when an
attacker tries to acess information in RAM, resetting if needed. However, if a node gets
compromised, information in executive code and non volatile memory can be stolen.

A.B. Feroz Khan and G. Anandharaj present AHKM [29]. This scheme consists of
a hash key based key management scheme with a multi-hop approach. It uses a one-
way hash function for the establishment of a secure key between one-hop and multi-hop
nodes. The network model is a hierarchical WSN, so it consists of a base station, cluster
heads and sensor nodes. Each node starts with an initial key Ki that is used to generate a
master key. This master key will be used to calculate a pair-wise key with a neighbouring
node so they can communicate with each other. The key generation is based on a hash
chain implemented with a one-way hash function so each cluster can hold at least one key
among n keys generated by the hash function. Newly joined nodes get authenticated by
the base station (one-hop neighbour) and periodically send “hello” messages to confirm
their presence. They get removed from the network if no confirmation is obtained.

Based on pair-wise and group key management schemes, the work in [55] proposes
an alternative method where a membership authentication mechanism is added to the key
pre-distribution process. A control center is used to schedule the entire WSN commu-
nication. The scheme consists of several phases: Handshake process between 2 nodes
that want to establish communication; Authentication and distribution phase where the
control center authenticates both nodes; finally, the Communication phase, where both
nodes calculate the session key to proceed with secure communication. It is also stated
that the scheme resists capturing attacks more efficiently and performs better than similar
schemes. However, when it comes to real-life scenarios, it is hard to ensure the credibility
of the control center.

The control center authenticates the sensors by comparing the parameters known only
by itself and the object. A timestamp prevents replay attacks from achieving a secure
authentication process. The scheme achieves a good level of confidentiality and integrity
by using a hash function to authenticate messages. Sensors can randomly join and leave
the network. As long as the sensor passes the authentication of the control center when
joining, it can obtain the session key, proving good scalability. As for key refreshing,
the method contains a heartbeat feature, and if a node is captured, the sensor heartbeat
feedback will exceed the time interval set so that the control center will revoke the key.
This mechanism also makes it so if a node is captured, the session key gets revoked. If
the adversary tries to rejoin the network, it won’t be able to authenticate itself or use the
previous session key.

Vipin Kumar et al. [41] propose a decentralized scheme for homogeneous cluster-
based architecture. The scheme uses a hash chain to generate a key. Nodes use the
strategy proposed in [9] to find common keys. The base station sends a hash chain and
random keys to the nodes, and each node hashes the keys X amount of times, X being

Chapter 3. Related Work 15

their identifier. For example, nodes A and B (IDA > IDB) send their keys to one another,
and the one with a lower identifier has to hash them (IDA − IDB) more times to get the
same key. However, the proposed architecture does not guarantee that every node will
find a common key using the hash chain. If so, the nodes use a recursive function and a
preloaded seed before deployment to generate a common key. This way, the nodes will
communicate with each other using this pair-wise key.

As for storage overhead the architecture is said to store only 10 to 20 keys and for
expenditure of energy, it is stated that for most cases only one message per node is re-
quired (if recursive formula is used, more energy is required). The architecture does not
present execution times making it difficult to further compare resource costs with other
proposals. The architecture achieves a high level of confidentiality as all parameters are
sent encrypted with a timestamp. To further maintain the integrity of the messages, the
hash value of the message is also sent. As for scalability, if a new node is added to the
network, a set of keys from a key pool is loaded to the node so it can find common keys
with its neighbours. Keys can also be refreshed (for a specific node or all nodes). To do
this, the base station sends a new parameter that will be used to generate the key. If a
chain is compromised, so is the node. There is also a trade-off between computation and
resilience by increasing the length of the chains. The architecture avoids node replication
attacks since the adversary would need to have all the keys and assign himself the set of
keys to the other nodes. Finally, the scheme allows for node replacement while keep-
ing the same key as the older node which could be a problem if an outsider could take
possession of the node.

Shahwar Ali et al. introduced a new cryptographic approach for data security in
WSN [4]. The approach uses the low-energy adaptive clustering hierarchy protocol (a.k.a.
LEACH) for data routing and Diffie-Hellman for key generation. Diffie-Hellman uses
asymmetric encryption, meaning it gives a high-security level. However, since it is not
resilient to man-in-the-middle attacks, the authors created an improved version called
SMDH. The approach uses a hash function, and only the legitimate receiver of the pa-
rameters can calculate that hash. Every value transmitted over the network is hashed and
can only be calculated if the receiver has the correct method and values. The authors also
offer experimental results based on multiple parameters such as encryption, decryption,
response time, and computational cost.

Benamar Kadri et al. proposed an efficient key management scheme for hierarchical
wireless sensor networks in [6]. The method proposed is a simplified public-key infras-
tructure based on the authenticity of the base station as a secure entity. The base station
and cluster heads are crucial to securing data transmission and establishing a session key
with the nodes in its cluster. After all the proceedings, each sensor shares a symmetric
key with its cluster head and the base station.

The scheme is based on symmetric key encryption, making it more efficient regarding

Chapter 3. Related Work 16

resource consumption. The entire handshake process is stated to have an energy cost of
about 30 milijoule. Unfortunately however, no more details on performance are given,
making it difficult to understand the amount of resources the architecture actually uses.
Using handshakes, the base station shares with each sensor over the network a symmetric
cryptographic key used for encrypting ordinary traffic over the network for data confiden-
tiality. The architecture has an authentication system for all devices, and the integrity of
messages is secured by a message authentication code (MAC) encrypted with the session
key. To maintain integrity of messages, the protocol proposes to use a message authenti-
cation code MAC encrypted with the session key. As for scalability, in order for a sensor
to join, the administrator must load the public key of the base station on the node. A node
can then proceed with the handshake on a cluster head. As usual in these architectures,
a key refreshing mechanism should be used to increase the life expectancy of these net-
works. The key update is launched by the cluster head using the same hand shake (to
establish a new session key with the base station) The cluster head then encrypts the new
key with the old one to send it to the other nodes within its cluster. No acknowledge is sent
by the nodes. This scheme also seems to have forward secrecy since keys gets refreshed
from time to time, this means that if a node leaves the network, after the refresh he won’t
have the valid key anymore. However, nothing about backward secrecy is mentioned and
nodes might be able to rejoin using the same key (if its still valid). Authors mention that
capture attack is out of scope of their architecture.

An improved energy-efficient key distribution and management scheme is proposed
in [19]. The architecture has less overhead than other schemes because there is no re-
quirement of encryption and decryption of the parameters. As for energy, the authors
carried out an experiment with 1000 nodes (5, 10 cluster heads) and a runtime of 80 sec-
onds. Each cluster head had an initial 10 J of energy. The residual energy (energy left
after experiments) was around 6.5 J in cluster heads. In this architecture, cluster heads
do almost all the work, alleviating the workload of the base station. After establishing
keys, all information goes encrypted throughout the network. For the parameter exchange
to establish such keys however, no encryption is used. As the authors state, it is not re-
quired because of the polynomial component, which makes it hard to compute the keys.
No integrity mechanism is mentioned by the authors. As the parameters to establish keys
goes without any encryption, messages could possibly be modified as the attacker wants
without any detection. The authors carried out simulations on the scheme with 250, 500,
750 and 1000 nodes, proving that the architecture is scalable. However, as the quantity
of nodes increases the system fails to scale as more memory will be required to store the
keys. Nodes can refresh the keys using a random number sent by the gateway and bitwise
XOR operation. In the end, all nodes will use the new keys for encrypted communication
and discard the random number. The architecture is resilient to node capture attacks as
long as the number of captured nodes does not exceed a certain number threshold.

Chapter 3. Related Work 17

3.3 Digital Signatures

In [35], Jansma and Nicholas present a performance comparison on some known pub-
lic key cryptosystems used in digital signatures, such as Rivest–Shamir–Adleman (RSA)
and elliptic curve (ECC). The paper provides a thoroughly explanation on how each of
the schemes generate the key pair, the signature and how the verification process works.
Source code for an easy implementation of these mechanisms is also provided. After
implementing each algorithm and comparing the experimental running times, it was sug-
gested by the authors that RSA key generation is significantly slower than ECC for key
sizes above 1024 bits. However, for devices that do not need to generate the keys for
each use (each message), RSA is still a very good option. As for the signature generation,
both schemes seem to be very close to each other, with ECC winning for very large key
sizes above 15360 bits. Finally, RSA took the win in the signature verification procedure,
having much smaller times compared to ECC. It was easily concluded that for applica-
tions requiring message verification more often than signature generation, RSA could be
a better choice.

William Stallings describes three digital signature algorithms approved and standard-
ized by NIST in [58] witch are the DSA, elliptic curve DSA (ECDSA) and several ver-
sions of RSA-based digital signature schemes. Before DSA, the author presents simpler
versions of that algorithm, like the Elgamal DSA which is an asymmetric key encryption
algorithm based on the Diffie–Hellman key exchange. Schnorr DSA is also based in dis-
crete logarithms and minimizes the message-dependent amount of computations required
to generate the signature as it does not depend on the message and could be done in the
idle period of the processor. All the DSA algortihms have been widely implemented and
with the sufficient key size, can provide any security level desired. Finally, a comparison
of the algorithms is given comparing different key sizes to the security each can provide.

Attila A. et al. [64] propose a lightweight multi-time digital signature scheme called
SEMECS. The proposed scheme is highly efficient due to minimal and fast processes to
generate a 32-byte signature, which translates to energy efficiency in constrained proces-
sors that are used in IoT applications. The scheme also uses a compact 32-byte private
key and requires little storage. The authors provide a security analysis where they exploit
the fact that SEMECS uses multiple-time signatures, meaning it has higher security for a
limited number of times. Comparison aspects of the scheme with others are also provided,
such as Signature generation time, Verification time, private/public key sizes and energy
usage.

Craig Costello and Patrick Longa present a lightweight digital signature scheme called
SchnorrQ [22], which combines the well-known Schnorr scheme and elliptic curves from
FourQ [21]. FourQ is a high security and performance elliptic curve achieving a 128-bit
security level. Results show that FourQ is around five times faster than methods offered by
NIST, like the NIST P-256 curve and Ed25519 [11]. SchnorrQ offers extremely fast and

Chapter 3. Related Work 18

high secure 64 bytes digital signatures using a 32 bytes public/private key pair. Authors
in [44] and [64] provide results of implementations of SchnorrQ in microcontrollers and
compares it with other known schemes such as µKummer, proving to be twice as fast as
that scheme and about four times faster than the fastest Ed25519 implementations in the
literature. SchnorrQ efficiency translates not only to reduced latencies but also significant
savings in energy, making this signature scheme an excellent way to achieve integrity in
lightweight implementations and low-power applications such as IoT.

Chapter 4

Proposed Work

In this section we present our Key Distribution scheme, Light-SAE, and all of its features
and mechanisms.

Light-SAE involves two main phases: node authentication and session key generation.
For comfort, we also present other necessary mechanisms like session key renewal.

Table 4.1 summarizes the variable definitions needed to understand the proposed so-
lution.

Abbreviation Meaning

DK Default Network Key
PK Pool of keys
Ki i-th key of Pool of keys
R1 Random value 1
R2 Random value 2
X Second parameter of challenge
SK Session key
f Encryption function
fKi Encryption function with Ki as key

Table 4.1: Variable definition

For the sake of simplicity, we consider nodes A, B and a gateway. Our solution is
shown in Figure 4.1. It aims to allow the distribution of keys in a multi-hop way, so that
node B out of range of the base station (gateway) can communicate using an intermediate
and already authenticated node A. We assure that each node should have a Default Net-
work Key DK , an encryption algorithm f , a pool of keys PK , a prime value p and g for
the DH key exchange protocol and finally, a digital signature algorithm to sign or verify
the messages. Every message exchange in this scheme, including establishing the key,
will be encrypted with a lightweight encryption algorithm. ELEPHANT Dumbo version
or TinyJAMBU 256-bit version from the NIST lightweight cryptography competition will
be used in the scheme. However, any encryption algorithm may be used as long as the
keys are the same size. Both algorithms present a well-organised code, showed promising

19

Chapter 4. Proposed Work 20

Figure 4.1: Proposed solution

results in previous studies mentioned in previous sections and better suit our implemen-
tation scenario.

In the proposed work, nodes will be performing several processes in different phases
and hence acknowledgements steps are necessary at certain points of the protocol. For
this purpose, different kinds of messages with different IDs are needed. When nodes or
even the gateway receive them, they know what needs to be done. The types of messages
are as follows:

• Authentication message - These are messages sent by nodes trying to join the net-
work to already authenticated nodes or the gateway. Contents of the message are
the node ID and a Key Ki ;

• Authentication response message - These are the response to the authentication mes-
sages and are sent by authenticated nodes or the gateway. Contents are a challenge
meant to be answered by the node seeking authentication;

• Challenge response message - As the name suggests, it consists of the challenge
response and is meant to the node/gateway that sent the challenge in the first place;

• Request to gateway message - This message is sent by authenticated nodes to the
gateway. It is a request for the gateway to initiate the session key generation process

Chapter 4. Proposed Work 21

Figure 4.2: Node Authentication

with the recently joined node through himself. The contents of the message are the
node ID that wants to join and the Ki used during its authentication.

• Public value message - Every device eventually sends this message. The contents of
this message is the parameter needed (public value) by the other device to generate
the common session key. Nodes can send other parameters with the public value
in this message such as its own ID for verification purposes explained later and a
public key from the digital signature algorithm;

• Session key renewal message - This message is sent by the nodes once per interval
of time. It consists of the same contents as the public value message and it is meant
for the gateway to calculate a new session key with the new public value sent.

• Data message - Message containing collected data by the nodes.

• Key refresh time message - This is a message sent by the gateway. It tells the node
it is time to refresh the session key in case the node did not begin the process itself.

• Acknowledge message - Message sent by the gateway to the node in order to ac-
knowledge receiving of the new public value from the session key renewal message.

We call readers attention for the fact that only authenticated nodes can send encrypted
data to the gateway if it joins the network and is authenticated.

4.1 Phase 1 - Node Authentication

After a node out of range of the gateway joins the network, it sends an authentication
message to neighbour nodes that will have to authenticate it. This message contains a
random key Ki from the pool of keys KP and its own ID, encrypted with the encryption

Chapter 4. Proposed Work 22

Figure 4.3: Session Key Generation

algorithm using as key the DK . The pool of keys are in a file poolOfKeys.txt that is
created and managed by an administrator. Then, node A receives this message, decrypts
it with DK and checks whether Ki is in its own KP . If it does not find it, it puts the
node ID on their own blacklist. If Node A finds Ki , it will send a challenge to node B
using this key to verify the identity of the newly joined node B. The challenge consists
of: fKi

(DK ⊕ R1, fKi
(X)) where R1 is a random value generated by node A. X can be

different values, from a variable that characterizes the node that sent the challenge with
its Mac (fKi

(MacA)), a variable that uses a timestamp (fKi
(Timestamp ⊕ IDA)) or a

simple random variable (R2). After node B receives the challenge, it has to calculate R1

and X so it can send the challenge response: fKi
(R1, X). In Figure 4.2 it is possible

to see the entire node authentication process. After the process above, node A sends a
request for the gateway to generate a session key with node B.

4.2 Phase 2 - Session Key Generation

After node A (and possibly another node) confirms the identity of node B, it sends a
request to gateway message to the base station. This request is sent encrypted with a
session key between the gateway and node A: fSKGWA

(IDB ,Ki). The ID of node B is
also sent so the gateway can later confirm it is really exchanging information with node
B. To create the session keys between nodes and the gateway, the Diffie-Hellman protocol
is used as shown in detail in Figure 4.3. The parameters are encrypted with the Ki node
A sent in the request, so it is resilient to man-in-the-middle attacks (MIM). Every node
in the network should have a g and a prime p value required by the DH protocol. This
way, nodes only have to compute a private key in order to generate the session key. After

Chapter 4. Proposed Work 23

the device calculated its own public value it will send it to the other device so both can
calculate the 256-bit session key used by the lightweight encryption algorithms. In this
stage, the node also generates a public/private key pair to be used in digital signatures, the
public key is sent to the gateway since it will be needed to verify the signatures from that
point forward.

With this solution, the gateway will have session keys with every node in the network
and all the communication is encrypted using these session keys and encryption algorithm.

4.3 Session Keys Renewal

Session keys should be renewed periodically to increase the network lifetime and general
security. Depending on each scenario and environment, the period necessary to renovate
the keys is different and should be thought out. To renew the key, we repeat the process
in Phase 2. But this time, all the parameters go encrypted with the old session key in-
stead of Ki . This time the gateway does not need to send the parameter α from the DH
protocol since it is a constant value throughout the entire scheme (because its private key
does not change without administrator interference). Node B starts by generating another
parameter β with a distinct and newly generated private key (using a timestamp value for
example). After computing the parameter β, it sends to the gateway, so both of them can
generate a new session key. After the gateway receives the message and can generate the
session key, it sends an acknowledge message to node B, making sure the new session
key can be generated and updates on both sides. Only then they discard the old session
key and start using the new one to exchange messages. If for any reason however, the
node does not send the public value, the gateway must initiate the key renewal process
itself by sending a key refresh time message. After some time, if the node does not send
the new public value, it is removed from the network by the gateway. In this process, the
private/public key pair used in the signatures is also renewed by the node and the new
public key is sent to the gateway along with the new public value β.

4.4 Message treatment

As different types of messages are sent in the network from the start of the authentication
until the end of the session key generation and future data, devices must know how to
proceed when receiving them. For this, a switch is used as it executes a block of code
depending on a message type variable. For example, if the message is an authentication
message, which was explained before, the program will execute the function “authentica-
tionResponse”, explained later in section 5.

During the process of authentication and session key generation, the gateway will
receive several messages from few nodes and will need to use the correct key to decrypt

Chapter 4. Proposed Work 24

Figure 4.4: Neighbouring node communication

them. For example, when the gateway receives a request from a node A to generate the
session key with a node B (request to gateway message), it will need to decrypt the request
with node A session key, and decrypt/encrypt the public values with the established Ki

so node B can correctly decrypt the message in order to generate the session key. To
do this we use a message type parameter on each message. This way the devices can
check the type of the message they receive and use the correct key for it. Using the
previous example, the gateway would see that the message coming from A is a request to
generate a session key with another node (request to gateway message), so the key needed
is the session key with authenticated node A. For the next message, as it is a public value
message, the gateway must decrypt with the Ki used by node A and node B during the
authentication.

4.5 Neighbours communication

Using the previous scenario where node B uses node A to communicate with the gateway,
assume that node A goes offline for some reason, as shown in Figure 4.4. If this happens,
node B will not communicate with the gateway anymore. To solve this problem, nodes
need to communicate with their neighbouring nodes to find another path until finally
reaching the gateway. Instead of using node A, node B would use node C or any other
node in its range as an intermediate to talk to the gateway. In this case, node B would find
node C and re-established communication with the gateway through it, as we can see in
Figure 4.4 represented with the blue arrows, the new route. We call the reader’s attention
to the fact that there is no need for node C to authenticate node B again.

Chapter 4. Proposed Work 25

4.6 Digital Signature

The solution proposed in this Thesis provides a scheme with good authentication and
confidentiality. However, no real integrity mechanism is used. Digital signatures can
solve this missing feature, making sure no message in the network is tampered. In our
proposal, each device private key is calculated randomly and used for the DH parameters
and session key generation. To implement the digital signature mechanism, nodes must
calculate the private/public key pair used to generate and verify the signatures and send
the public key to the gateway along with the public value, using the public value message.
The nodes would use the private key to sign the messages while the gateway would use
the public key received from the node, in order to correctly verify the signed messages
sent by them. The private/public key pair would also be refreshed along with the session
key if required. In this scenario however, the gateway cannot sign messages for the nodes
to verify them. This means that if we wanted to send messages from the gateway to the
sensor nodes, integrity would be missing in those messages.

4.7 Protocol implementation

We have resorted to the use of pseudo-code in order to describe the interactions between
devices in Light-SAE in a scenario where a node B is out of range of the gateway. We
present the pseudo-code for node Authentication and Session key generation for each
agent involved in these processes.

4.7.1 Node Authentication

Algorithm 1 describes the code of a node (B) that initiates the process of joining the
network. It starts by picking a random key Ki from the Key pool PK (Key collection
should be in a file, so it is more flexible and easier to change it later). After having the
key, it sends an authentication message to authenticated nodes (or gateway if it is in range)
containing the Ki and the own ID: M{fDK (Ki, IDB)}. The node will now wait to receive
a response from the authenticated node. Such message consists of a challenge. The node
will decrypt it and calculate the values R1 and X so that it can answer to the challenge
with the message: M{fKi (R1, X)}.

Algorithm 1 Node trying to join the network

Ki = Kp[rand()%size]
decrypts M using Ki

R1 = (DK ⊕R1)⊕ DK
sends challenge response (R1, X)

Chapter 4. Proposed Work 26

Besides the normal functions of our nodes, like reading and sending data, nodes al-
ready authenticated are also permanently waiting to receive messages from other nodes
trying to join the network. After receiving the message, it checks if the Ki sent by the
node is in the Poll of Keys PK as we can see in Algorithm 2.

Algorithm 2 Authenticator node
flag = 1
decrypt(M) with DK
for i < size do

if PK [i] = KiB then
flag = 0
KiA = KiB
break

end if
end for
if flag = 1 then

insert IDB to blacklist
end if
R1 = rand()
X = rand()
challenge = fKi

(DK ⊕R1, X)
decrypt(M) with Ki

if R1A = R1B and XA = XB then
send request to Gateway

else
insert IDB to blacklist

end if

If the key is valid, the node keeps the Ki to encrypt further messages until the session
key gets generated. If not, the node ID is added to a blacklist for future reference. The
node will now create and send a message consisting of a challenge to further authenticate
the node trying to join the network: M{fKi

(DK ⊕ R1, X)}. Then, the node has to wait
for the challenge response. After receiving, it decrypts the message and checks if R1 and
X are correct, placing it on the blacklist if that is not the case. If everything is correct,
the node will send a request to gateway message (encrypted with the session key between
both of them) containing Ki used in the process above and the ID of the node so that
the gateway can compare it later: M{fSKGWA

(IDB ,Ki)}. This request for the gateway is
meant to initiate the session key generation process with the joining node.

4.7.2 Session Key Generation

Algorithm 3 presents the code of a node, already authenticated, in the process of gen-
erating the session key. After receiving the public value from the gateway, it starts by
generating a private key b to compute the value β with that private key and the hard coded

Chapter 4. Proposed Work 27

values g and p. It also generates a private/public key pair that will be used to sign and
verify message signatures. The node sends the message M: β, publicKey to the gateway.
Finally, it calculates the session key with the public value α that was received.

Algorithm 3 Authenticated node that needs a Session Key
decrypts M with Ki

charb = rand()
charβ = gbmodp
generates private/public key pair
encrypt(β, publicKey) with Ki

send β, publicKey to Gateway
charSK = αbmodp

The gateway, after receiving the request to gateway message (containing the Ki and
the node ID) from the node that authenticated the new node, proceeds to execute Algo-
rithm 4. It starts by decrypting the message and saving Ki and ID from the node. After
that, it calculates the value α with the hard coded values “g”, “p” and own private key
“a”. The gateway sends the message Mα to the node. The gateway now waits for the
node to send a public value message. Once it does, it decrypts it and saves the publicKey

to verify the signatures later on. It also checks if the IDB , sent from the node B along
with the public value, matches the one sent by node A, who previously has authenticated
it (this process is skipped if node B was authenticated directly by the gateway and not by
an intermediate node A). If the ID matches, the gateway proceeds to generate the session
key, allowing them to communicate privately.

Algorithm 4 Gateway
decrypt M with SKGWA

charα = gamodp
encrypt(α) with Ki

send α to node
decrypts M with Ki

if IDB(sentbyA) = IDB(sentbyB) then
SKGWB = βamodp

else
insert IDB to blacklist

end if

Chapter 4. Proposed Work 28

Chapter 5

Implementation

In this section, the implementation of the proposed work is discussed, presenting the
methods and approaches used. The entire solution was developed in the programming
language C. The implementation consists of two programs: Gateway for the base station
of the architecture, and nodes for all the lightweight devices that will communicate with
the gateway directly or indirectly. The entire code of our solution is available in GitHub.

In order to implement a real life application where several nodes connect to the gate-
way, we have used threads from the pthread C library to create a multi-thread server. Once
a node requests connection to the gateway, it will create a thread where it will execute all
the operations and processes from the architecture of that specific node as it is possible to
see in Figure 5.1.

5.1 Important variables

As previously mentioned, there are seven main “variables” for the architecture to work
properly. First, the default network key is hard coded on every node meant to join the
network as well as in the gateway. As for the pool of keys, a linked list is used with the
following structure, where data is the Ki and the key is its index:

struct pool {

char* data;

int key;

struct pool *next;

};

Firstly, the gateway and the node have to read every 256-bit key Ki from the file
poolOfKeys.txt and store them into the list with an insert function. The nodes in the
network trying to get authenticated have to do the same. After that they can generate
a random number and use it as index to get a random Ki from the list. As for devices
authenticating others, they simply receive the Ki from a node (in the first message of the

29

https://github.com/jmcecilio/IoT_Authentication

Chapter 5. Implementation 30

Figure 5.1: Nodes joining the network thread diagram

scheme, Authentication message) and searches for it in its list, saving it to encrypt further
architecture messages until a session key is generated or placing the node ID in a blacklist
if the key is not found in the list. Bellow, it is represented how the keys should be in the
file poolOfKeys.txt, with a key per line.

8297166255472A9104928374FC63F2941C382C72319D4719023AF7923F59823A
912374F65129948179F3047578332143AF987921873123B90123DF128E109283
2ADB74D178263B217309850C875F62741231FB41219AC9081289DC98762A23EB
40239482947296912734C14033235323BA987AFF9871221ADE987D9F977D7862
03D0578BAFF3D9D912D8E3DDF59489F021AAD791D23791AB79CDD7398274CA05

After reading all the keys, they are placed in the list by index, like the following:

[(4,03D0578BAFF3D9D912D8E3DDF59489F021AAD791D23791AB79CDD7398274CA05)
(3,40239482947296912734C14033235323BA987AFF9871221ADE987D9F977D7862)
(2,2ADB74D178263B217309850C875F62741231FB41219AC9081289DC98762A23EB)
(1,912374F65129948179F3047578332143AF987921873123B90123DF128E109283)
(0,8297166255472A9104928374FC63F2941C382C72319D4719023AF7923F59823A)]

The encryption algorithm is a very important aspect in Light-SAE. TinyJAMBU 256
bit version from the NIST lightweight cryptography competition was used in our solu-
tion. Every message in it, with the exception of the first one (sent by the node seeking
authentication) is encrypted with the algorithm. For this, devices use the function en-
crypt, inputing the plain text and receiving the cipher text. Devices can then send this
cipher text to the other one as well as the cipherSize variable. This variable can reveal the
size of the plaintext since its always 8 more bytes than the plaintext size. However, since
the other device will need this variable to correctly use the decrypt function and it has
no way to calculate it with the cipher alone, we have to send it over. The Diffie-Hellman
prime values G and P are all hard coded on all devices meant to join the network just like

Chapter 5. Implementation 31

the default network key. For the session key generation process, these values must be the
same in both devices, otherwise the calculation of the session key will fail. Finally, each
device must have the digital signature algorithm to be used in order to sign and verify the
messages in the scheme.

5.2 Main functions

In this subsection it is presented the main functions used in the solution. The gateway
program has less functions and a relatively smaller code size compared to nodes, since
these could act as nodes requesting authentication, or nodes authenticating other devices.
However, as expected in such architectures, the gateway still does the more demanding
computations and processes while saving information from all nodes. The gateway also
has to deal with all the data collected by the nodes by processing and storing them.

authenticationResponse - This function is used by already authenticated devices. It
receives the first message, the authentication message (containing the Ki and node ID)
from nodes requesting authentication. It starts by finding the Ki in its key pool or placing
the node in the blacklist if the key is not valid. If the key Ki is valid, then it proceeds to
calculate the challenge. Firstly it generates a random 256 bits hexadecimal string R1, that
is then XORed with the default key. Finally, it generates a random 256 bits hexadecimal
string R2 (value X) and concatenates it with the previous XOR, obtaining the challenge.
After this, the node encrypts it and sends to the node requesting authentication.

respondingChallenge - This function is used by nodes and consists in the necessary
proceedings to answer the challenge correctly. It receives the challenge and splits into
parts. The second part simply has to be decrypted in order to obtain R2. As for the first
part, the node has to XOR it with the default network key in order to obtain R1, which
was generated by the node authenticating it. After both of these processes are done, the
node concatenates R1 and R2 and encrypts it to send it back.

checkingChallenge - As the name suggests, this function verifies if the challenge was
correctly answered. It’s a function used for devices authenticating nodes. It receives the
challenge response by the node and consists in simply comparing the R1 and R2 sent by
the node, with the R1 and R2 previously generated by itself. If it’s incorrect the node
is inserted in the blacklist. This function is slightly different from the gateway and the
nodes. If the challenge was correctly answered and the gateway is the one authenticating
it, this function calls for the calculate public value function described next. However, if a
node is the one authenticating the other node, it generates a request to gateway message
consisting of the Ki used and the ID of the node requesting authentication so it can send
it to the gateway.

calculatingPubValue - This function receives as input a request to gateway message
in a multi-hop scenario, or public value message in single-hop scenario. This function

Chapter 5. Implementation 32

uses g and p parameters as well as the private key to generate the public value meant
for the other device. As the calculations require the operation of power with relatively
big numbers, we use modular exponentiation to do the calculations. The output of this
function is the public value, so the other device can use it to calculate the session key.

generateSessionKey - Like the previous function, this one executes the same calcu-
lations, but instead of using g and p to calculate the public value, it uses the public value
from the other device to calculate the correct session key. Like before, modular exponen-
tiation is used for the operation, obtaining a 256-bit key.

5.3 Message structure

The message structure consists on 7 variables: messageType, senderID, ID, cipherSize
and cipher, signature and signaturePublicKey, as shown bellow.

struct message_struct {

unsigned int messageType;

unsigned char senderID[6];

unsigned char ID[6];

unsigned char signaturePublicKey[33];

unsigned char signature[64];

unsigned int cipherSize;

unsigned char cipher[CRYPTO_BYTES];

} message;

The last two variables consist of actual data meant to be sent to the other node and
its size, which is needed to correctly decrypt the message. The variable senderID is
used so the gateway knows who sent the message. For example, if an authenticated node
A with the ID 12345 wants to send a message to the gateway, the ID 12345 will go on
that parameter. Once the gateway sees who is sending the message, it acts accordingly
(authenticates the node, stores data, or generates public value for a node authenticated by
an intermediate node). The variable ID is used for nodes out of range of the gateway to
send their own ID, so the gateway can compare that ID with the one that the intermediate
node sent (node that authenticated the out of range node). Next, the messageType is
used as mentioned previously on the message treatment section, so the gateway can see
what type of message it is receiving so it can use the correct key to decrypt it. Finally, the
signature is the signed message used so the other device can verify the sender and the
signaturePublicKey is the public key generated along with the private key by the node
meant to be used by the gateway when verifying the signatures.

Chapter 5. Implementation 33

5.4 Session keys storage

The gateway will generate session keys with all the nodes on the network. For future
communication, it also has to keep them organized so it knows which one to use later to
decrypt messages from every node. To do this, a linked list is used. After generating the
session key with the node, it also gets stored in a linked list as well as the node ID and a
timestamp, with the following structure:

struct node {

long int timestamp;

char* data;

int key;

struct node *next;

};

The timestamp is used to keep track on how long the session key was generated.
After pre-established time, if a node does not initiate the session key renewal process, the
gateway can initiate it or remove the node from the network if it keeps not responding.
When the gateway receives a message from a node, it checks the node ID and searches
for the respective session key in the list. After the session key is renewed, the gateway
simply replaces the old session key with the new one in the list.

5.5 Blacklist

Just like the liked list with the session keys, the blacklist works the same way but with
only one parameter, the node ID. When a node sends an authentication message to join
the network, the first thing the device that is authenticating the new node does is check if
the node ID is in this blacklist. If it is not in the last, it proceeds with the next checks. A
node can be placed in the blacklist for 3 reasons:

• If the Ki the node sent does not match any Ki in the file poolOfKeys.txt;

• If the challenge response is not correct;

• In the scenario where a node A authenticated a node B, when the ID (of the node
authenticated B) sent by the node A to the gateway does not match the ID that the
node B sent to the gateway itself.

Once a node is in a device blacklist and tries to join the network again, the device
notices and stops communication with it immediately.

This way, each node and the gateway will have its own blacklist, meaning that if a
malicious node tries to join the network via a node A and fails to do so, it can try to join

Chapter 5. Implementation 34

via another node since they did not share the blacklist. In summary, a malicious node can
try to join via every node in his proximity a single time. This is not a problem since the
computing processing needed to place the node in the blacklist is similar to checking if he
is in the blacklist. However, it could make sense to have a shared blacklist in some WSN
with lots of nodes close to each other as long as the complexity of the update and fault
tolerant mechanisms on the blacklist are not too high.

5.6 Session key renewal

Both devices should know when to renovate the keys. For this, once the session key is
generated, so is a timestamp (timestamp 1) that will get stored together with the key. In
order to renewal the key, a separate thread will be running with a function called “time-
ToRenew” where it will spend most of its time sleeping. However, from time to time, it
will create/update a new timestamp (timestamp2) in order to check if it is time to renew
the key. For example, if the time set for the sleep is 5 seconds, and the key must be renew
every 20 seconds, the thread will wake up after 5 seconds and do the following calcula-
tion: timestamp2 - timestamp1. When this result is superior or equal to 20 seconds, the
session key renewal operation is called as it is possible to see below.

void* timeToRenew(void *sockt){
gettimeofday(×tamp,NULL);

while(1){
sleep(5);
gettimeofday(×tamp2,NULL);

int dif = timestamp2.tv_sec - timestamp
.tv_sec;

if(dif >= keyRenewalTime){
Key renewal calculation
...

}
}

}

As mentioned before, if the node does not initiate this process for any reason, the
gateway will send a key refresh time message to the node in order for it to initiate the
process. Just like the thread explained above, the node also has one that waits for this
message from the gateway that triggers the key renovation.

5.7 SchnoorQ

In our solution, we choose the SchnorrQ digital signature algorithm from the FourQ ellip-
tic curve for our implementation. As mentioned in a previous section, the node is the one

Chapter 5. Implementation 35

generating the private/public key pair that will be used for the process, to do so, it uses
the FullKeyGeneration function. It starts by generating a random 32-byte private key
SecretKey, after that, it calculates the corresponding 32-byte public key PublicKey and
sends it to the gateway in the public value message.

SchnorrQ_FullKeyGeneration(SecretKey, PublicKey);

After the correct device meant to receive the node messages has the PublicKey, the node
can start signing messages with the Sign function. In order to generate the Signature, the
function should receive as inputs both keys, the specific message and its size.

SchnorrQ_Sign(SecretKey, PublicKey,

Message, MessageSize, Signature);

Finally, once the signature reaches the correct device (gateway), it can use the V erify

function that receives the PublicKey (sent form the node), the Message (that was already
decrypted by the gateway) and its size, the signature and a variable “Valid” that will be
used to easily check if the verification was successful.

SchnorrQ_Verify(PublicKey, Message,

MessageSize, Signature, &valid);

SchnorrQ uses a hash function to compute a digest of the message and calculate its
signature, however, as we are using an encryption algorithm, it does not make sense to
calculate the hash of the encryption, specially if the messages are small. So, in order to
reduce overhead, using the encryption instead of the hash to calculate the signature is a
good approach.

Chapter 5. Implementation 36

Chapter 6

Security Analysis

In this chapter, a security analysis of the methods used in our solution is discussed, such
as the difference between normal Diffie-Hellman and our modified version of it as well as
how it prevents some known attacks. Finally, we show the effectiveness of the generated
encryption keys considering their size and how they are calculated using the brute force
attack.

6.1 Modified Diffie-Hellman

Diffie-Hellman is a key exchange algorithm that does not provide confidentiality. As such,
it is usually used within other protocols. The values calculated within this protocol are
shared over unreliable networks where an attacker could be listening and therefore, mod-
ify them. In order to achieve one of the most important security aspect, confidentiality,
all parameters calculated in DH protocol are sent encrypted in our scheme as mentioned
previously. The encryption helps prevent MIM attacks, which will be explained in more
detail later. In Table 6.1 it is possible to see the main differences in the original DH, our
version of it and the method proposed in [4] called SMDH aforementioned in the Related
Work section.

Parameter Diffie-Hellman Light-SAE SMDH

Asymmetric Yes Yes Yes
Energy efficient Yes Yes Yes
Confidentiality No Yes Yes

MIM attack Yes No No

Table 6.1: Modified DH differences

37

Chapter 6. Security Analysis 38

Figure 6.1: Man-in-the-middle attack

6.2 Attacks analysis

A more detailed discussion about various types of attacks and how our solution prevents
them is presented in this section.

6.2.1 Man-in-the-middle attack (MIM)

MIM is a known attack where usually, as the name suggests, an adversary acts as the mid-
dle man in a “conversation” between two parties while both are unaware of its existence.
The adversary has the ability to intercept messages and modify them for personal advan-
tage. As seen in Image 6.1, Alice is trying to send a message to Bob, however the attacker
intercepted it and modified the contents of it. After that, it can do the same with Bob
messages. This way, an outsider has entire control of the conversation as well as the data
that goes through it. This type of attack has severe impact on the network as the content
of the messages may contain confidential information [37]. As mentioned previously, DH
is not protected against this attack. As both parties need to send their own public Values
to each other in order to calculate the key, the attacker in the middle could intercept Bob
public value, calculate his own (attacker has to have the G and P value for this) and send
it to Alice, generating a key between Alice and the attacker. However, in our scheme we
encrypt this information with a key Ki . Only if the attacker has access to the network
key, will he be able to eventually figure out what Ki will be used between devices before
generating the session key, making him able to intercept, decrypt and modify the contents
of the message (like the public value sent) before the SK generation process.

6.2.2 Brute force attack

Brute force is one of the most well known attack which relies on computing power rather
then cleverness of the attacker [16]. This attacker uses trial-and-error to find passwords or
encryption keys. In other words, the adversary tries every possible key combination until
the correct one is found. Depending on the size of the key, the time needed to successfully
discover the key may be seconds up to years.

Let us consider that a machine or group of machines could run through 230 (1.07
billion) keys per second (this number varies depending of how powerful the machines are

Chapter 6. Security Analysis 39

Figure 6.2: Denial-of-service attack

and the number of cores being used together in order to find the right key). In order to see
how many seconds it would take to brute force a key depending of its size, we can use the
following equation 6.1:

BruteForceT ime(s) =
2KeySize(bits)

230
(6.1)

If we calculate the time needed for a 256-bit key, which is the key size used by
AES256, it would take 2256−30 seconds or approximately 3.42 ∗ 1060 years to discover
the key. This value however is obtained by calculating every possible key, meaning it
represents the maximum time it would take for a key of such size. The average would
be half of the time since the key could be either on the lower half or higher half of the
key space. This means that in average, it would take 2226−1 seconds or approximately
1.71 ∗ 1060 years since each additional bit in the key size doubles the key space. To put
it into prospective, the lifetime of the universe is around 13.7 billion years. This means
that it would take 1.24 ∗ 1050 times that amount on average to find the correct key through
brute force attack.

6.2.3 Denial of service (DOS) attack

In DOS attacks, the adversary floods the target with traffic and information in order to
cause a crash. In both scenarios, the main goal is to deprive and refuse a service from the
target to legitimate users.

In Figure 6.2 it is possible to see a scenario of this attack in our implementation.
Because of the traffic that the attacker is “spamming” the authenticated node, it can not
respond to the authentication request from a legitimate node trying to join our network.
However, like previously mentioned in our scheme, the blacklist prevents this attack to
a level. As the attacker will not be able to authenticate correctly, it will be placed in the

Chapter 6. Security Analysis 40

blacklist, thus any messages sent by him will be ignored. This message verification takes
very little computational power so it will be hard to affect the normal functionality of a
node or the gateway.

However, there is a known problem with this method. A possible attack that could
be executed is changing the ID from the malicious node multiple times. This way, the
blacklist would be useless. We thought about some solutions involving variables char-
acterizing each device precisely, like the MAC address. However, if the authenticating
device does not have any confirmation of which of these are valid or invalid, the problem
would persist since there is no way of confirming them.

A simple solution we thought of could be the usage of a safelist. The network admin-
istrator would specify which MAC (or other variables) are valid to join the network in
that list. If this approach was chosen, the first verification by the authenticating devices
would be to check if the variable sent by the node is in the safelist, discarding him oth-
erwise. It would be necessary for an administrator to decide which nodes could join the
network before deployment. However, this method brings some disadvantages, such as
lost scalability, unless this list is modifiable and updated on devices while the network is
running.

Christos Gkountis et al. proposes a lightweight scheme [36] which is based on a set
of rules to efficiently characterize packets sent to a network switch and distinguish them
as malicious or legitimate. These rules are used to decide if traffic should be forwarded
or dropped. The authors evaluated their proposal in terms of bandwidth consumption,
number of entries in the flow table and CPU utilization. Besides very brief peaks on the
CPU, the proposal proves to be a good method to mitigate this issue and maintain the
lightweight aspect of such networks.

6.2.4 Nodes being curious

In these types of networks, where some nodes have important roles such as authenticat-
ing nodes and labeling them as “authentic”, there is sometimes the worry of cases where
nodes are “curious”. In our solution, only nodes who were authenticated by the gateway
or an authenticated node are given the title of being authentic. After this process is com-
pleted, the nodes remain operational without any sort of interruption like an update. With
this, we make sure the node was in no way altered by any outsider, and it is in fact, since
it joined the network, one of our authentic nodes.

It is important to notice that even if an authenticated node is able to authenticate others,
they are never supposed to generate the session key with them. That is solely the job of
the gateway. However, since the key generation process messages goes encrypted with the
Ki , the authenticated node could very well decrypt it, and change the parameters at will,
acting itself as the middle man. Like it was stated before, as long as the network makes
sure a node does not leave the network and rejoins as authentic, or stops for an update

Chapter 6. Security Analysis 41

(since it could be modified by an outsider), a node will not modify messages meant for
the gateway from other nodes.

6.3 Security level of the generated keys

As mentioned in [40], in Diffie-Hellman, the difficulty of “cracking” or in other words,
finding out the shared key that was established through the exchange, scales directly with
the size of the primes used. However, one additional bit on the primes is not equal to one
additional bit of “key strength” in AES keys for example. The reason behind it is because
not every number in that interval is a prime. If we take a look at AES-256 for example,
we expect the key to be a string of 256 random bits, meaning that the key could be any
of the 2256 possibilities. Yet, if we use 256-bit primes in DH means, there will be much
fewer than those 2256 possibilities. Therefore, if we aim for the same “key-strength” as
any AES versions, we need to use larger primes, so that we have a number of possible
primes is in the range of that AES version.

As we want to maintain the lightweight aspect of our solution and use NIST encryption
algorithms, we use small primes with 256-bits in order to obtain a 256-bit key. However,
as shown in the calculations bellow, even at this size, the scheme is secure for a good
amount of time. If the key is calculated with an 256-bit prime, that means we are working
with values in the “realm” of 2256 or approximately 1.2× 1077 possible numbers. Among
all these values, we can do an estimate calculation of how many primes there are using
the Prime Number Theorem [65] in equation 6.2.

π(x) =
x

log2 x
. (6.2)

There are approximately 1.5 × 1075 or 2250 possible primes for the calculation of the
public value. If we estimate how long it would take to brute force such a value with a rate
of 230 trials per second, it would take approximately 2220 seconds or 5.3 × 1058 years to
discover the secret, which is an unimaginable amount of time.

Brute force is obviously not the best attack for methods with large numbers and there
are much effective attacks that could possibly reveal the secrets way faster, however it is
a good method to have a basic understanding of how secure the keys are and compare
them to other known schemes. That is why Light-SAE offers a lightweight key refresh
mechanism that can be adjusted to any network so there is no way of using such attacks
in the time interval that the key is being used.

Chapter 6. Security Analysis 42

Chapter 7

Results

The proposed solution and the algorithms were tested in 2 different machines: a Desk-
top with a six-core i5-12400F CPU @2.50GHz, NVIDIA GeForce RTX 3070 8GB and
16GB of RAM DDR4; and on a Raspberry Pi 3 Model B+ with a 1.4GHz 64-bit quad-
core processor. This chapter presents the results obtained from our tests. It is possible to
see results of our solution like execution times of all operations such as: Authentication
request, challenge generation, challenge response, challenge verification, calculation of
DH public values and session keys, along with the processes used in the digital signature
algorithm. Energy consumption of the architecture in single-hop and multi-hop commu-
nication is also presented. Finally a detailed comparison of our solution is presented with
several other similar schemes.

7.1 Encryption algorithms

Bellow, there is a list of variables that both algorithms have as default. Some of these can
be tuned to fit personal usage.

• CRYPTO KEYBYTES: 16 - Allows for keys of 32 bytes in both algorithms. Tiny-
JAMBU does not allow higher values. However, increasing this value on ELE-
PHANT works just fine, changing the ciphertext (size stays the same) and increas-
ing execution time.

• CRYPTO NPUBBYTES: 12 - Allows for nonces up to 24 bytes in both algorithms.
While on TinyJAMBU, the increase of this value does not change the resulting ci-
phertext, on ELEPHANT, this value can be increased to a maximum of 20, allowing
the usage of nonces 40 bytes long. The authors of ELEPHANT recommend leaving
the variable since it could lead to errors.

• CRYPTO ABYTES: 8 - Allows up to 8 bytes of associated data in both algorithms.
The default value of this variable can be increased from 8 to 128 bytes, but the

43

Chapter 7. Results 44

16 32 48 64 80 96 112 128

50

100

150

200

250

300

Plain text size [bytes]

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Encryption execution time
Decryption execution time

16 32 48 64

25

50

75

100

125

150

Associated Data size [bytes]

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Encryption execution time
Decryption execution time

Figure 7.1: TinyJAMBU average execution time dependence of Plain text and Associated
Data size in Raspberry

16 32 48 64 80 96 112 128

5

10

15

20

25

Plain text size [bytes]

E
xe

cu
tio

n
Ti

m
e

[m
s]

Encryption execution time
Decryption execution time

16 32 48 64

2

4

6

8

10

12

Associated Data size [bytes]

E
xe

cu
tio

n
Ti

m
e

[m
s]

Encryption execution time
Decryption execution time

Figure 7.2: ELEPHANT average execution time dependence of Plain text and Associated
Data size in Raspberry

algorithms will increase the execution time. If associated data increases above the
default value, the cipher size increases when the ELEPHANT algorithm is used.

In Figure 7.1 it is possible to see how the plain text and associated data size affects the
execution time on TinyJAMBU in both encryption and decryption processes. The same
tests can be seen in Figure 7.2 for ELEPHANT. The results were achieved by calculating
the average of ten runs in each setting. Both algorithms come with a default maximum
plain text size of 64 bytes. However, it can be changed, and as shown in the graphics,
it was tested from 1 to 128 bytes. Both algorithms end up with the same size of cipher
text, always adding 8 bytes to the original plain text size. TinyJAMBU presents much
better results, taking around 150 microseconds to encrypt a message of 64 bytes while
ELEPHANT takes 12 milliseconds. In this case, TinyJAMBU is about 80 times faster than
ELEPHANT. This could be due to TinyJAMBU being targeted explicitly to hardware,

Chapter 7. Results 45

16 32 48 64 80 96 112 128

2

4

6

8

Plain text size [bytes]

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Encryption execution time
Decryption execution time

16 32 48 64

2

4

6

Associated Data size [bytes]

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Encryption execution time
Decryption execution time

Figure 7.3: TinyJAMBU average execution time dependence of Plain text and Associated
Data size in Desktop

16 32 48 64 80 96 112 128

100
200
300
400
500
600
700
800
900

1,000

Plain text size [bytes]

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Encryption execution time
Decryption execution time

16 32 48 64

100

200

300

400

500

600

Associated Data size [bytes]

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Encryption execution time
Decryption execution time

Figure 7.4: ELEPHANT average execution time dependence of Plain text and Associated
Data size in Desktop

Chapter 7. Results 46

while ELEPHANT is targeted to both software and hardware. The estimated execution
time (ExTime) on a Raspberry 3 of TinyJAMBU can be calculated depending on the plain
text on Equation 7.1 or depending on the associative data size on Equation 7.2. Their
coefficient of determination (R-Squared) is also presented:

ExTime(µs) = 1.6× PlainTextSize+ 50, R2 = 0.9909 (7.1)

ExTime(µs) = 0.9281× AD + 60.725, R2 = 0.9732 (7.2)

Tests with the nonce showed that TinyJAMBU does not allow a nonce higher than
the default 24 bytes, while in ELEPHANT, this variable can be increased up to 40, but a
decrease in performance should be expected. Overall, nonce does not affect the execution
time if used as intended by the authors, from 1 to 24 bytes.

The algorithms allow up to 8 bytes of associated data as default. If this variable is kept
that way, it does not influence execution time on ELEPHANT as it does in TinyJAMBU.
TinyJAMBU allows up to 128 bytes of associated data, but ELEPHANT only allows up to
64 bytes. Interestingly, especially on Raspberry Pi, the execution time increases propor-
tionally to the AD in TinyJAMBU. However, it increases logarithmically on ELEPHANT.
The estimated execution time on a Raspberry 3 of ELEPHANT can be calculated depend-
ing on the plaintext in Equations 7.3 (encryption) and 7.4 (decryption) or depending on
associated data in Equations 7.5 (encryption) and 7.6 (decryption):

ExTimeEnc(ms) = 0.1133× PlainTextSize+ 6.2095, R2 = 0.9794 (7.3)

ExTimeDec(ms) = 0.0902× PlainTextSize+ 4.8346, R2 = 0.9819 (7.4)

ExTimeEnc(ms) = −0.0012× AD2 + 0.1326× AD + 7.1738, R2 = 0.9307 (7.5)

ExTimeDec(ms) = −0.0005× AD2 + 0.0628× AD + 5.7985, R2 = 0.9435 (7.6)

The same tests were conducted on a more robust machine as mentioned above. The re-
sults can be seen in Figures 7.3 and 7.4. The execution times decreased as expected since
it is a more powerful machine with more resources. However, the difference in numbers
between both algorithms did not. Their difference increased compared to the results on
the Raspberry. TinyJAMBU seems to be around 200 times faster than ELEPHANT to
encrypt/decrypt a message 64 bytes long.

Chapter 7. Results 47

Besides the two algorithms used to implement our solution, we also evaluated some of
the other NIST finalists such as: ASCON, GIFT-COFB, Grain-128AEAD, ISAP, Romulus
and SPARKLE. We ran the algorithms 10 times in order to obtain the average of those
runs, using a plaintext of 32 digits and 128 bits key, measuring the execution time of the
encryption and decryption process along with a representation on how bigger the cipher
text is compared to the original plain text. Table 7.1 presents the results in microseconds
on the Desktop while Table 7.2 presents the results in microseconds in the Raspberry 3.

Algorithm Encryption Decryption Cipher Size

TinyJAMBU 3.1 2.9 +8
ELEPHANT 479.3 478.6 +8

ASCON 94.8 37.9 +16
Grain-128AEAD 359.8 328.1 +8

ISAP 36 14.8 +16
Romulus 145.4 131.7 +16

SPARKLE 7.6 4 +16

Table 7.1: NIST LWC algortihms
execution times(µs) in Desktop

Algorithm Encryption Decryption Cipher Size

TinyJAMBU 97.3 95.1 +8
ELEPHANT 13284.2 12940.9 +8

ASCON 1458.5 1139.2 +16
Grain-128AEAD 9469.7 8805.7 +8

ISAP 2376.7 1551.2 +16
Romulus 4387.4 4100.1 +16

SPARKLE 85.4 76.8 +16

Table 7.2: NIST LWC algortihms
execution times(µs) in Raspberry 3

7.2 Proposed Solution

In this section, we present all the results of tests made on the network such as execution
times of Light-SAE and the digital signature algorithm and energy consumption. The
simulation setup is also described as well as the network settings used.

7.2.1 Environmental setup

The proposed approach was simulated in 2 different scenarios: Communication between
nodes and the gateway directly, and communication between nodes and the gateway with

Chapter 7. Results 48

the help of an intermediate node. All the results presented were calculated by making 10
nodes join the network until session keys were established in order to calculate the average
execution time of all processes. Encryption, decryption and times until the messages are
successfully received by the devices were ignored for these experiments. In order to get
as close as possible to the scheme execution times, both programs (gateway and nodes)
were run in isolated cores in a virtual machine with 4 cores on the Desktop, and in the
Raspberry Pi 3. Core 2 was dedicated only for the gateway, while core 3 was only for
nodes.

7.2.2 Network

During the implementation of the architecture, all communication was made using Trans-
mission Control Protocol (TCP/IP) sockets. The gateway socket listens on a particular
port at an Internet Protocol (IP) address, while other socket (nodes) reaches out to the
other to form a connection. Function read and write are used to send and receive the
message over the network. To simulate nodes connecting directly to the gateway, we use
the gatewayPort. For nodes out of range of the gateway, we connect them to other nodes
using the port nodePort (that already authenticated node can be listening and waiting for
connections). The reasoning behind it is to test the architecture processes in a multi-hop
communication, by setting the specific ips that each client must connect itself to. For
example, a client 1 will communicate with the gateway and get authenticated by it while
a client 2 will forcibly be connected and authenticated by an authenticated node.

7.2.3 Execution time

To measure the total time of our solution, we measured each process separately: Authen-
tication request, challenge generation, challenge response, challenge verification, calcu-
lating public value and session key generation in both single-hop and multi-hop scenarios.

In Figures 7.5 and 7.6 it is possible to see the execution times of all the processes on
the node and the gateway since the beginning of the authentication until the establishment
of the session key. This demonstrates the results in the node to gateway direct communi-
cation scenario, meaning no intermediate node takes part during the whole process. As
predicted, because of the difference of resources in both machines, the execution times
on the Desktop are much lower than in the raspberry. The most demanding process is by
far the calculation of the public value and signature key pair generation on the recently
joined node. The reason for this is because the signature keys take a long time to generate
as it will be shown in more detail later on. The total execution time are 169 microseconds
on the Desktop and 2600.7 microseconds (2.6 milliseconds) in the raspberry.

In Figure 7.7, 7.8 and 7.9 we present the gateway and nodes execution times of the
scheme in a scenario where an intermediate node authenticates the node trying to join

Chapter 7. Results 49

Auth
. Req

Cha
ll.

Res

Calc
. Pub

+ sig
na

tur
e ke

y pa
ir

ge
n.

SK
ge

n.

0

500

1,000

1,500

6.8

267.5

1,731.9

111.6
1.9 56.2 72.8 2.6

E
xe

cu
tio

n
tim

e[
µ
s]

Raspberry Desktop

Figure 7.5: Node processes execution times in single-hop communication

Cha
ll.

Gen

Cha
ll.

Veri
f + Calc

. Pub

SK
ge

n.

0

100

200

255.2

138.4

89.3

24.3
7.7 3.5

E
xe

cu
tio

n
tim

e[
µ
s]

Raspberry Desktop

Figure 7.6: Gateway processes execution times in single-hop communication

Chapter 7. Results 50

Auth
. Req

Cha
ll.

Res

Calc
. Pub

+ sig
na

tur
e ke

y pa
ir

ge
n.

SK
ge

n.

0

500

1,000

1,500

8.3

326.3

1,796.4

132.5
2.5 67.1 82.8

2.8

E
xe

cu
tio

n
tim

e[
µ
s]

Raspberry Desktop

Figure 7.7: Node B processes execution times in multi-hop communication

Chall. Gen Chall. Verif

0

100

200

300 274.6

6.7
20.8

1.1

E
xe

cu
tio

n
tim

e[
µ
s]

Raspberry Desktop

Figure 7.8: Node A processes execution times in multi-hop communication

Chapter 7. Results 51

Calc. Pub SK gen.

0

50

100

134.9

116

7.4 3.6
E

xe
cu

tio
n

tim
e[
µ
s]

Raspberry Desktop

Figure 7.9: Gateway processes execution times in multi-hop communication

and later helps redirecting messages so node B can communicate and generate a session
key with the gateway. The purpose of using an intermediate node is not only to allow
devices further away from the gateway to communicate with it, but also to alleviate some
computational overhead on the gateway. As shown in the graphics, in this scenario the
gateway only has to worry about two processes (calculating public value and session key
generation), reducing the possible overhead in networks with a high number of nodes. The
total execution time are 188.1 microseconds on the Desktop and 2795.7 microseconds (2.8
milliseconds) in the raspberry.

7.2.4 Session key renewal

As mentioned previously, session key renewal will consist on the node generating a new
Diffie-Hellman public value with a new random private key in order to calculate a new
session key. This means that the node will have to do those two operations, while the
gateway simply has to calculate the session key after receiving the public value from the
node.

7.2.5 Energy consumption

Idle Direct node Indirect node
Average Min Max Average Min Max Average Min Max

2.87 2.70 3.00 2.89 2.70 3.10 2.93 2.70 3.10

Table 7.3: Power measurement in Raspberry PI 3 B+ (W)

To measure the energy consumption of our solution, we ran it on the Raspbery Pi 3
B+. We took data from 2 different scenarios: A node communicating directly with the

Chapter 7. Results 52

gateway, sending periodic messages every 10 seconds and renovating the session key ev-
ery 60 seconds. An intermediate node doing the proceedings described above (for itself)
as well as re-transmitting messages from another node back to the gateway. In Table 7.3
it is possible to see the power measurements in watts (average, minimum and maximum)
of both scenarios, as well as the idle state of the device. Unfortunately, with the hard-
ware available to perform the tests, we could only record decimal variations in the value.
However, by doing the average of the values obtained over a period of time, we could
get a closer guess of what the device spends in each scenario over time. As expected, the
solution presented spends little energy, only around 0.03W per second, or 30 milijoule in
the described scenario. We were also expecting to see peaks of energy during key renova-
tion of the nodes, however, it was not possible to see those, proving that the calculations
necessary for the generation of the key are very lightweight. This allow us to decrease the
interval of key renewal if necessary without energy trade off.

7.2.6 SchnoorQ

Process Desktop Raspberry PI 3

Key pair generation 51.4 840
Signature generation 23.8 794
Signature verification <1 <1

Table 7.4: Schnoor processes execution time (µs)

Just like the encryption algorithms and the processes on Light-SAE, we workbenched
the Digital signature algorithm used in our scheme. We ran each presented process 10
times in order to calculate the average execution time in microseconds. As it is possible
to see in Table 7.4 the heavier process is the generation of the key pair taking more than
twice the time compared to the Signature generation in the Desktop. However, when it
comes to the Raspberry, the difference between both processes is very small. The standard
deviation in the key pair and signature generation on the Desktop is 8.1018 and 5.1146
respectively and 77.37 and 97.30 on the Raspberry. The verification process takes less
than a microsecond to finish on both devices, proving that SchnoorQ is a good algorithm
to use in architectures where a device must verify lots of messages from various sources.

7.2.7 Schemes comparison

In Table 7.5 we compare various similar schemes to our own. Similar to what the au-
thors on [55] did, we have scored with high, medium or low several parameters such as:
Resource cost, confidentiality, integrity, scalability, key freshness, capture resistance and
forward and backward secrecy. The papers [55], [41], [54], [6] and [19] were already

Chapter 7. Results 53

Scheme
Resource

cost Confidentiality Integrity Scalability
Key

freshness
Capture

resistance

Forward and
backward
secrecy

Light-SAE Medium High Yes High Medium Medium High
Hao S. [55] Medium High Yes High Medium High High

Vipin K. [41] Medium High Yes High Medium High Medium
Mohsen S. [54] Low Medium No High High Medium No

Kadri B. [6] Low Medium Yes Medium Medium Low Medium
Chakavarika [19] Low Medium No High Medium Medium No
Morshed A. [1] High Low Yes Medium Low Medium Low

Yinghong L. [43] Medium Low Yes High Low Medium Low
Zhou J. [38] Low Medium Yes Medium Medium Low High

Bowen S. [59] Low Medium Yes High High Low High

Table 7.5: Schemes comparison table

presented in the related work section as well as the reasoning behind their evaluation. As
for the architectures on [1], [43], [38] and [59], they are presented and evaluated in more
detail in [55]. We tried to compare all the architectures the best way possible with the
information available and with a starter basis on said paper.

The reasons we scored our solution like presented are the following: For our solution,
nodes only have to store at most 2 keys, the session key with the base station and a Ki

used for authentication (that can later be deleted). As for energy, tests present a usage
of 30 milijoule on a specific scenario described above, with a low interval of messages
being sent. Execution times are also presented for all of our solution processes. On a
Raspberry Pi, the longest process by far, takes arround 1.8 milliseconds. Light-SAE uses
Diffie-Hellman, consisting in big operations, these take a bit more resources than schemes
that distribute the keys. However, since the keys that are generated are 256 bits in size, it
takes neither much time nor resources compared to other methods, having the benefit of
not passing session keys through the network.

As for confidentiality, the gateway authenticates the sensors by comparing several pa-
rameters known only to valid nodes. Authentication parameters are calculated randomly
by the gateway. Eavesdroppers or man-in-the-middle attacks are prevented by using en-
crypting the Diffie-Hellman parameters that goes through the network. Furthermore, if a
key somehow got captured, it would only affect a single node since each of them has a
unique session key with the gateway.

The solution presented ensures integrity of the messages with the usage of the digital
signature algorithm SchnorrQ. If a message gets captured during transmission, an attacker
can not modify or tamper with the contents of it without the gateway noticing since the
verification will fail.

Sensors can join the network as long as the authentication process runs smoothly.
Authentication may happen directly with the gateway (if near it) or using and intermediate
authenticated node (if out of range of the gateway), ensuring a good degree of scalability.

The session keys get refreshed from time to time. The process should be initialized

Chapter 7. Results 54

by the node, however, since the gateway stores a timestamp when the session key was
established, if a node does not initiate the process, the gateway itself will request for
a session key renewal. If no response is given by the node, it gets removed from the
network.

As for capture resistance, if a node shuts down, restarts, updates or gets replaced, it
has to go through the authentication process. Only nodes with all the correct parameters
can pass this stage. This ensures that no outsider can capture a node and takes possession
of it while remaining in the network.

Finally, our solution ensures forward and backward secrecy. Sensors who disconnect,
loses the session key. Once they rejoin the network, they need to be authenticated and
establish a new one.

Chapter 8

Conclusion

Most devices in IoT applications do not use secure encryption or authentication algo-
rithms in their communication. Failure to use these security methods can lead to severe
consequences such as unauthorized access and manipulation of data.

The presented work focuses on the proposal and development of a Lightweight Key
Distribution solution for WSN called Light-SAE. It supports multi-hop authentication and
communication between resource constrained devices and a base station. Devices are able
to get authenticated and generate a common key with a gateway even if out of its reach.
We use the latest NIST LWC algorithms to encrypt all the data and parameters that go
through the network, however any encryption algorithm can be used with our solution as
long as the key size matches the ones defined, which in our case, was 256-bits. Encrypted
Diffie-Hellman is used to generate the 256-bit session keys unique to every node as well
as a renewal mechanism to update them after a necessary amount of time. A modified
version of the known Schnorr algorithm, SchnorrQ was used to generate the signatures
and the verification of them to ensure no message was modified by any outsider. With
all these mechanisms we have achieved a good key distribution solution that provides
authenticity, confidentiality and integrity.

We provided experimental results that prove how fast Light-SAE processes are as
well as efficient in the used energy. Various tests we also made on the finalists encryption
algorithms from the NIST competition in order to find the most suitable combination
of variables to be used. A detailed comparison of the scheme was made with similar
schemes in a diverse set of parameters proving to be a good solution for networks with
various operating nodes in a vast area.

8.1 Future work

With Light-SAE, the gateway will coordinate all the key generation and the data received
from the nodes. However, this could cause an overhead in the gateway in scenarios where
the network has a large amount of nodes. A solution to this problem and possible future

55

Chapter 8. Conclusion 56

work for this proposal would be allowing the gateway to select some nodes as cluster
heads. This way, cluster heads would generate the session keys for the neighbouring
nodes that are assigned to them and receive their data. The gateway would eventually
receive this data stored in the cluster heads.

Nowadays, the confidentiality of data is crucial even for IoT. Therefore there are sce-
narios where the gateway will need to send confidential information to the nodes. In
this case, as mentioned before, no integrity would be supported since in our current pro-
posal only the nodes sign messages for the gateway to verify them. However, making the
opposite also true could bring advantages to networks that require the gateway to send
confidential information to sensor nodes.

Implementing the safelist, consisting of a list with legitimate nodes’ information (such
as their ID or MAC), would mitigate a possible attack where malicious nodes repeat the
authentication with several IDs. However, we call the reader’s attention to the fact that
each node, after getting authenticated, would need to receive this safelist to authenticate
future nodes correctly. Also, to maintain the solution’s scalability, the safelist should be
modifiable during the network operation and updated in each authenticated device.

Chapter 8. Conclusion 58

Bibliography

[1] Morshed Aski. Akbar, Haj Seyyed Javadi. Hamid, and Shirdel. Gholam Hassan. A
full connectable and high scalable key pre-distribution scheme based on combina-
torial designs for resource-constrained devices in iot network. Wireless Personal
Communications, 114, 10 2020.

[2] Samya Al Busafi and Basant Kumar. Review and analysis of cryptography tech-
niques. In 2020 9th International Conference System Modeling and Advancement
in Research Trends (SMART), pages 323–327, 2020.

[3] Kurdistan Ali and Shavan Askar. Security issues and vulnerability of iot devices.
5:101–115, 02 2021.

[4] Shahwar Ali, A Humaria, M Sher Ramzan, Imran Khan, Syed M Saqlain, Anwar
Ghani, J Zakia, and Bander A Alzahrani. An efficient cryptographic technique us-
ing modified diffie–hellman in wireless sensor networks. International Journal of
Distributed Sensor Networks, 16(6):1550147720925772, 2020.

[5] Parvaneh Asghari, Amir Rahmani, and Hamid Haj Seyyed Javadi. Internet of things
applications: A systematic review. Computer Networks, 148, 12 2018.

[6] Kadri B., Moussaoui D., Feham M., and A. Mhammed. An efficient key manage-
ment scheme for hierarchical wireless sensor networks. 4(6), 2012.

[7] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul
Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. Gift-cofb
v1.1. NIST, 05 2021.

[8] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi, Thomas
Peyrin, and Kan Yasuda. Photon-beetle authenticated encryption and hash family.
NIST, 05 2021.

[9] Walid Bechkit, Yacine Challal, and Abdelmadjid Bouabdallah. A new class of
hash-chain based key pre-distribution schemes for wsn. Computer Communications,
36(3):243–255, 2013.

59

Bibliography 60

[10] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschadl,
Amir Moradi, Léo Perrin, Aein Rezaei Shahmirzadi, Aleksei Udovenko, Vesselin
Velichkov, and Qingju Wang1. Schwaemm and esch: Lightweight authenticated
encryption and hashing using the sparkle permutation family. NIST, 05 2021.

[11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Cryptology ePrint Archive, Paper 2011/368,
2011.

[12] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Dumbo,
jumbo, and delirium: Parallel authenticated encryption for the lightweight circus.
IACR Transactions on Symmetric Cryptology, 2020(S1):5–30, Jun. 2020.

[13] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Elephant v2.
NIST, 05 2021.

[14] Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem Varıcı,
and Ingrid Verbauwhede. spongent: A lightweight hash function. In Bart Preneel
and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems –
CHES 2011, pages 312–325, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[15] Carsten Bormann and Carles Gomez. Terminology for constrained-node networks
(7228bis), 10 2016.

[16] Leon Bošnjak, J. Sres, and B. Brumen. Brute-force and dictionary attack on hashed
real-world passwords. pages 1161–1166, 05 2018.

[17] Seyit Camtepe and Bulent Yener. Key distribution mechanisms for wireless sensor
networks: a survey, 01 2021.

[18] António Casimiro. Aquamon - dependable monitoring with wireless sensor net-
works in water environments, 2018. Accessed: 2021-10-10.

[19] Chakavarika, Tafadzwa, Gupta, Shashi, and Chaurasia Brijesh. Energy efficient key
distribution and management scheme in wireless sensor networks. Wireless Personal
Communications, 97:1–12, 11 2017.

[20] Jaewoo Choi, Yonghyun Kim, JuYoub Kim, and Taekyoung Kwon. A study of
location-based key management using a grid for wireless sensor networks. Journal
of the Korea Institute of Information Security and Cryptology, 25:759–766, 08 2015.

[21] Craig Costello and Patrick Longa. Fourq: four-dimensional decompositions on a
q-curve over the mersenne prime. 06 2015.

Bibliography 61

[22] Craig Costello and Patrick Longa. Schnorrq: Schnorr signatures on fourq. July
2016.

[23] Joan Daemen, Seth Hoffert, Silvia Mella, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Xoodyak, a lightweight cryptographic scheme. NIST, 05 2021.

[24] Jonathan de Carvalho Silva, Joel J. P. C. Rodrigues, Antonio M. Alberti, Petar Solic,
and Andre L. L. Aquino. Lorawan — a low power wan protocol for internet of
things: A review and opportunities. In 2017 2nd International Multidisciplinary
Conference on Computer and Energy Science (SpliTech), pages 1–6, 2017.

[25] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. submission to nist.
NIST, 2019.

[26] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. As-
con v1.2. NIST, 05 2021.

[27] Wenliang Du, Jing Deng, Y.S. Han, Shigang Chen, and P.K. Varshney. A key man-
agement scheme for wireless sensor networks using deployment knowledge. In
IEEE INFOCOM 2004, volume 1, page 597, 2004.

[28] Carlos Santos Fernandes. Choosing the Future of Lightweight Encryption Algo-
rithms. IST, 2018.

[29] A.B. Feroz Khan and G. Anandharaj. Ahkm: An improved class of hash based key
management mechanism with combined solution for single hop and multi hop nodes
in iot. Egyptian Informatics Journal, 22(2):119–124, 2021.

[30] Amir Fotovvat, Gazi M. E. Rahman, Seyed Shahim Vedaei, and Khan A. Wahid.
Comparative performance analysis of lightweight cryptography algorithms for iot
sensor nodes. IEEE Internet of Things Journal, 8(10):8279–8290, 2021.

[31] Nick G. How many iot devices are there in 2021?, 2021. Accessed: 2021-10-13.

[32] Amit Kumar Gautam and Rakesh Kumar. A comprehensive study on key manage-
ment, authentication and trust management techniques in wireless sensor networks.
SN Applied Sciences, 3(1):1–27, 2021.

[33] Chun Guo, Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas
Peyrin. Romulus v1.3. NIST, 2019.

[34] Martin Hell, Thomas Johansson, Alexander Maximov, Willi Meier, Jonathan Son-
nerup, and Hirotaka Yoshida. Grain-128aeadv2 - a lightweight aead stream cipher
cover sheet. NIST, 2019.

Bibliography 62

[35] Nicholas Jansma. Performance comparison of elliptic curve and rsa digital signa-
tures. 05 2004.

[36] Uzair Javaid, Ang Kiang Siang, Muhammad Naveed Aman, and Biplab Sikdar.
Mitigating lot device based ddos attacks using blockchain. In Proceedings of the
1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, Cry-
Block’18, page 71–76, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[37] Dr Javeed and Umar MohammedBadamasi. Man in the middle attacks: Analysis,
motivation and prevention. International Journal of Computer Networks and Com-
munications Security, 8:52–58, 07 2020.

[38] Zhou Jian, Sun Liyan, Duan Kaiyu, and Wu Yue. Research on self-adaptive group
key management in deep space networks. Wireless Personal Communications, 114,
10 2020.

[39] Ravneet Kaur and Amandeep Kaur. Digital signature. In 2012 International Con-
ference on Computing Sciences, pages 295–301, 2012.

[40] T. Kivinen and M. Kojo. More modular exponential (modp) diffie-hellman groups
for internet key exchange (ike), 2003. Accessed: 2022-04-27.

[41] Vipin Kumar, Navneet Malik, Gaurav Dhiman, and Tarun Kumar Lohani. Scalable
and storage efficient dynamic key management scheme for wireless sensor network.
Journal of Ambient Intelligence and Humanized Computing, 07 2021.

[42] Yogesh Kumar, Rajiv Munjal, and Harsh Sharma. Comparison of symmetric and
asymmetric cryptography with existing vulnerabilities and countermeasures. Inter-
national Journal of Computer Science and Management Studies, 11, 10 2011.

[43] Yinghong Liu and Yuanming Wu. A key pre-distribution scheme based on sub-
regions for multi-hop wireless sensor networks. Wireless Personal Communications,
5:1–20, 11 2019.

[44] Zhe Liu, Patrick Longa, Geovandro C. C. F. Pereira, Oscar Reparaz, and Hwajeong
Seo. Fourq on embedded devices with strong countermeasures against side-channel
attacks. IEEE Transactions on Dependable and Secure Computing, 17(3):536–549,
2020.

[45] Ben Lutkevich, Vicki-Lynn Brunskill, and Peter Loshin. Digital signature, 2021.
Accessed: 2022-05-05.

Bibliography 63

[46] Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud Farahmand,
Abubakr Abdulgadir, Jens-Peter Kaps, and Kris Gaj. Fpga benchmarking of round
2 candidates in the nist lightweight cryptography standardization process: Method-
ology, metrics, tools, and results. Cryptology ePrint Archive, Report 2020/1207,
2020. https://ia.cr/2020/1207.

[47] Abdalbasit Mohammed and Nurhayat Varol. A review paper on cryptography. In
7th International Symposium on Digital Forensics and Security, pages 1–6, 06 2019.

[48] Bassam J. Mohd, Thaier Hayajneh, and Athanasios V. Vasilakos. A survey on
lightweight block ciphers for low-resource devices: Comparative study and open
issues. Journal of Network and Computer Applications, 58:73–93, 2015.

[49] Nagasai. Classification of iot devices, 2017. Accessed: 2021-10-28.

[50] National Institute of Standards and Technology. Lightweight cryptography, 2017.
Accessed: 2021-09-24.

[51] Yasaroglu Pinar, Abduljabbar Zuhair, Alotaibi Hamad, Akcam Resit, Kadavarthi
Shiva, and Abuzaghleh Omar. Wireless sensor networks (wsns). In 2016 IEEE
Long Island Systems, Applications and Technology Conference (LISAT), pages 1–8,
2016.

[52] Vı́ICTOR ARINO PÉREZ. Efficient key generation and distributionon wireless
sensor networks, 2013.

[53] Vincent Ricquebourg, David Menga, David Durand, Bruno Marhic, Laurent Dela-
hoche, and Christophe Loge. The smart home concept : our immediate future. In
2006 1ST IEEE International Conference on E-Learning in Industrial Electronics,
pages 23–28, 2006.

[54] Mohsen Sharifi, Saeid Pourroostaei Ardakani, and Saeed Sedighian Kashi. Skew:
An efficient self key establishment protocol for wireless sensor networks. In 2009
International Symposium on Collaborative Technologies and Systems, pages 250–
257, 2009.

[55] Hao Shi, Mingyu Fan, Yu Zhang, Maoyang Chen, Xingyu Liao, and Wenqiang Hu.
An effective dynamic membership authentication and key management scheme in
wireless sensor networks. In 2021 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6, 2021.

[56] Marcos A. Simplı́cio, Paulo S.L.M. Barreto, Cintia B. Margi, and Tereza C.M.B.
Carvalho. A survey on key management mechanisms for distributed wireless sensor
networks. Computer Networks, 54(15):2591–2612, 2010.

https://ia.cr/2020/1207

Bibliography 64

[57] Saurabh Singh, Pradip Sharma, Seo Moon, and Jong Park. Advanced lightweight
encryption algorithms for iot devices: survey, challenges and solutions. Journal of
Ambient Intelligence and Humanized Computing, pages 1–18, 05 2017.

[58] William Stallings. Digital signature algorithms. Cryptologia, 37(4):311–327, 2013.

[59] Bowen Sun, Qi Li, and Bin Tian. Local dynamic key management scheme based on
layer-cluster topology in wsn. Wireless Personal Communications, 103, 11 2018.

[60] Sandeep Tayal, Nipin Gupta, Pankaj Gupta, Deepak Goyal, and Monika Goyal. A
review paper on network security and cryptography. Advances in Computational
Sciences and Technology, 10(5):763–770, 2017.

[61] Vishal A. Thakor, Mohammad Abdur Razzaque, and Muhammad R. A. Khandaker.
Lightweight cryptography algorithms for resource-constrained iot devices: A re-
view, comparison and research opportunities. IEEE Access, 9:28177–28193, 2021.

[62] Upasana. Real world iot applications in different domains, 2022. Accessed: 2022-
05-14.

[63] Hongjun Wu and Tao Huang. Tinyjambu: A family of lightweight authenticated
encryption algorithms. NIST, 03 2019.

[64] Attila A. Yavuz and Muslum Ozgur Ozmen. Ultra lightweight multiple-time digital
signature for the internet of things devices. 2019.

[65] D. Zagier. Newman’s short proof of the prime number theorem. The American
Mathematical Monthly, 104(8):705–708, 1997.

[66] Jun-Lin Zhang and Ling Nie. Energy efficiency of multi-hop communication in
wireless sensor network. 01 2016.

Appendix A

Solution code

A.1 Code structure

The code can be found on GitHub at https://github.com/jmcecilio/IoT Authentication. It
is possible to see the code organization in more detail in Figure A.1. There are two differ-
ent versions available: x32 for 32-bits devices; x64 for 64-bits devices. On a Raspberry
Pi 3, x32 version was used while on the desktop and Raspberry Pi 4, the x64 version
was used. The structure of the programs is the same for both versions, consisting in the
Gateway (for the base station), Client (for nodes) and Client2 (which purposely talks to
intermediate clients and not the gateway). Each program consists of a set of c and h files
to present an easy to read and organized code.

The main files are gateway.c, client.c and client2.c which is where all the main func-
tions of each program are for the correct operations of the solution. The encrypt.c file,
along with api.c and crypto aead.h are for the LWC algorithm being used, TinyJAMBU.
The folders FourQ, random and sha512 are for the digital signature algorithm being used,
SchnorrQ. The most important file is the schnorrq.c which consists of the algorithm main
function presented before.

Finally, all three programs have a main.c which is where all the functions are called
accordingly for the correct operation of Light-SAE.

A.2 Compile and Run

In order to compile each program the command “make -B” should be used. To run the
gateway, the command “./gateway” should be used. For the nodes, “./client” or “./client2”
must be used respectively for each type of client followed by a 5 digit ID (for example
“./client 11111”).

To test single-hop communication, the gateway should be running. After that, mul-
tiple clients can be run from the implementationClient program as long as different IDs
are used. To test the multi-hop communication, a client from the implementationClient

65

https://github.com/jmcecilio/IoT_Authentication

Appendix A. Solution code 66

Figure A.1: Light-SAE tree size

Appendix A. Solution code 67

program should be running so it can serve as an intermediate node for others. After that,
multiple clients can be run from the implementationClient2 program.

A.3 Possible experiments

While running the solution, some simple experiments can be done in order to test the
implemented mechanisms.

• To make the node stop the key renewal mechanism and test the gateway requesting
it instead, change the variable “GWRenewRequestTester” to 1 (in client or client2).

• Try stoping a working node in order to see the gateway removing him after a bit
more than the KEY RENEWAL TIME since last renewal.

• Try adding an already existing node in the network to see that it wont be accepted.
The existing node may rejoin the network after it is removed by the gateway.

• The digital signature algorithm may be tested by modifying the message before the
verification in the gateway.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Outline

	Background
	Constrained Devices
	Cryptography
	Lightweight Cryptography
	Key distribution in WSN
	Key distribution in Distributed WSN
	Key distribution in Hierarchical WSN

	Digital signatures

	Related Work
	Lightweight cryptography
	Key Distribution in WSN
	Digital Signatures

	Proposed Work
	Phase 1 - Node Authentication
	Phase 2 - Session Key Generation
	Session Keys Renewal
	Message treatment
	Neighbours communication
	Digital Signature
	Protocol implementation
	Node Authentication
	Session Key Generation

	Implementation
	Important variables
	Main functions
	Message structure
	Session keys storage
	Blacklist
	Session key renewal
	SchnoorQ

	Security Analysis
	Modified Diffie-Hellman
	Attacks analysis
	Man-in-the-middle attack (MIM)
	Brute force attack
	Denial of service (DOS) attack
	Nodes being curious

	Security level of the generated keys

	Results
	Encryption algorithms
	Proposed Solution
	Environmental setup
	Network
	Execution time
	Session key renewal
	Energy consumption
	SchnoorQ
	Schemes comparison

	Conclusion
	Future work

	Bibliography
	Solution code
	Code structure
	Compile and Run
	Possible experiments

