1,052 research outputs found

    State of the Art Review on Mobile Robots and Manipulators for Humanitarian Demining

    Get PDF
    Robotics solutions properly sized with suitable modularized structure and well adapted to local conditions of dangerous unstructured areas can greatly improve the safety of personnel as well as the work efficiency, productivity and flexibility. In this sense, mobile systems equipped with manipulators for detecting and locating antipersonnel landmines are considered of most importance towards autonomous/semi-autonomous mine location in a proficient, reliable, safer and effective way. This paper reviews the most relevant literature and previous research activity regarding mobile robots and manipulators for humanitarian demining.Robotics solutions properly sized with suitable modularized structure and well adapted to local conditions of dangerous unstructured areas can greatly improve the safety of personnel as well as the work efficiency, productivity and flexibility. In this sense, mobile systems equipped with manipulators for detecting and locating antipersonnel landmines are considered of most importance towards autonomous/semi-autonomous mine location in a proficient, reliable, safer and effective way. This paper reviews the most relevant literature and previous research activity regarding mobile robots and manipulators for humanitarian demining

    Analyzing energy-efficient configurations in hexapod robots for demining applications

    Full text link
    Purpose – Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power supply. The purpose of this paper is to address the problem of improving energy efficiency in statically stable walking machines by comparing two leg, insect and mammal, configurations on the hexapod robotic platform SILO6. Design/methodology/approach – Dynamic simulation of this hexapod is used to develop a set of rules that optimize energy expenditure in both configurations. Later, through a theoretical analysis of energy consumption and experimental measurements in the real platform SILO6, a configuration is chosen. Findings – It is widely accepted that the mammal configuration in statically stable walking machines is better for supporting high loads, while the insect configuration is considered to be better for improving mobility. However, taking into account the leg dynamics and not only the body weight, different results are obtained. In a mammal configuration, supporting body weight accounts for 5 per cent of power consumption while leg dynamics accounts for 31 per cent. Originality/value – As this paper demonstrates, the energy expended when the robot walks along a straight and horizontal line is the same for both insect and mammal configurations, while power consumption during crab walking in an insect configuration exceeds power consumption in the mammal configuration

    Multi-function intelligent robotic in metals detection applications

    Get PDF
    Recent technologies for robotics have been offered an effective and efficient solution to safeguard workers from risks in their work environments. These risks involve radioactive, toxic, explosive and mines. In this paper, design and implement computer robot based on metal detection as well as avoiding obstacles automatically. The proposed wireless controlled robotic vehicle can be used in metal detection applications such as landmine detection, obstacles avoidance, selecting best routing without imposing human's harms and workforce aspects. The robotic wheel can sense the obstacles that positioning at ahead of its path, and also avoids the obstacles forward, left and right of its routes. The robot is controlled by using Bluetooth wireless communication to interface between the controller and the implemented robot. Furthermore, sensor IR (FC-03) for the metal detector and used ultrasonic sensor (HC-SR04) for objects or obstacles sensing. The presented controlled robotic designed for desert and dry soil that can replace the human role in avoiding obstacles and metal detection capabilities. The produced robot was useful due to it can detect metals and avoiding obstacles consecutively besides it was effective to select the best route based on the intelligent technique that adopted, the predefined metals by using an intelligent decision maker for route finder in a flat surface environment

    Systematic mapping literature review of mobile robotics competitions

    Get PDF
    This paper presents a systematic mapping literature review about the mobile robotics competitions that took place over the last few decades in order to obtain an overview of the main objectives, target public, challenges, technologies used and final application area to show how these competitions have been contributing to education. In the review we found 673 papers from 5 different databases and at the end of the process, 75 papers were classified to extract all the relevant information using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. More than 50 mobile robotics competitions were found and it was possible to analyze most of the competitions in detail in order to answer the research questions, finding the main goals, target public, challenges, technologies and application area, mainly in education.info:eu-repo/semantics/publishedVersio

    Systematic Mapping Literature Review of Mobile Robotics Competitions

    Get PDF
    [EN] This paper presents a systematic mapping literature review about the mobile robotics competitions that took place over the last few decades in order to obtain an overview of the main objectives, target public, challenges, technologies used and final application area to show how these competitions have been contributing to education. In the review we found 673 papers from 5 different databases and at the end of the process, 75 papers were classified to extract all the relevant information using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. More than 50 mobile robotics competitions were found and it was possible to analyze most of the competitions in detail in order to answer the research questions, finding the main goals, target public, challenges, technologies and application area, mainly in education.S

    Experimenting with New Technologies for Technical Survey in Humanitarian Demining

    Get PDF
    The Humanitarian Demining Laboratory of Università La Sapienza di Roma, Italy, currently performs research and experimental work for multisensor explosive-remnants-of-war detecting platforms. In this article, the authors report preliminary testing results on a new, active thermal technique discovered through their research

    Design of a training tool for improving the use of hand-held detectors in humanitarian demining

    Full text link
    Purpose – The purpose of this paper is to introduce the design of a training tool intended to improve deminers' technique during close-in detection tasks. Design/methodology/approach – Following an introduction that highlights the impact of mines and improvised explosive devices (IEDs), and the importance of training for enhancing the safety and the efficiency of the deminers, this paper considers the utilization of a sensory tracking system to study the skill of the hand-held detector expert operators. With the compiled information, some critical performance variables can be extracted, assessed, and quantified, so that they can be used afterwards as reference values for the training task. In a second stage, the sensory tracking system is used for analysing the trainee skills. The experimentation phase aims to test the effectiveness of the elements that compose the sensory system to track the hand-held detector during the training sessions. Findings – The proposed training tool will be able to evaluate the deminers' efficiency during the scanning tasks and will provide important information for improving their competences. Originality/value – This paper highlights the need of introducing emerging technologies for enhancing the current training techniques for deminers and proposes a sensory tracking system that can be successfully utilised for evaluating trainees' performance with hand-held detectors

    Design of a training tool for improving the use of hand-held detectors in humanitarian demining

    Get PDF
    Purpose - The purpose of this paper is to introduce the design of a training tool intended to improve deminers' technique during close-in detection tasks. Design/methodology/approach - Following an introduction that highlights the impact of mines and improvised explosive devices (IEDs), and the importance of training for enhancing the safety and the efficiency of the deminers, this paper considers the utilization of a sensory tracking system to study the skill of the hand-held detector expert operators. With the compiled information, some critical performance variables can be extracted, assessed, and quantified, so that they can be used afterwards as reference values for the training task. In a second stage, the sensory tracking system is used for analysing the trainee skills. The experimentation phase aims to test the effectiveness of the elements that compose the sensory system to track the hand-held detector during the training sessions. Findings - The proposed training tool will be able to evaluate the deminers' efficiency during the scanning tasks and will provide important information for improving their competences. Originality/value - This paper highlights the need of introducing emerging technologies for enhancing the current training techniques for deminers and proposes a sensory tracking system that can be successfully utilised for evaluating trainees' performance with hand-held detectors. © Emerald Group Publishing Limited.The authors acknowledge funding from the European Community's Seventh Framework Programme (FP7/2007‐2013 TIRAMISU) under Grant Agreement No. 284747 and partial funding under Robocity2030 S‐0505/DPI‐0176 and FORTUNA A1/039883/11 (Agencia Española de Cooperación Internacional para el Desarrollo – AECID). Dr Roemi Fernández acknowledges support from CSIC under grant JAE‐DOC. Dr Héctor Montes acknowledges support from Universidad Tecnológica de Panamá and from CSIC under grant JAE‐DOC.Peer Reviewe
    corecore