259 research outputs found

    PERFORMANCE ANALYSIS OF SRCP IMAGE BASED SOUND SOURCE DETECTION ALGORITHMS

    Get PDF
    Steered Response Power based algorithms are widely used for finding sound source location using microphone array systems. SRCP-PHAT is one such algorithm that has a robust performance under noisy and reverberant conditions. The algorithm creates a likelihood function over the field of view. This thesis employs image processing methods on SRCP-PHAT images, to exploit the difference in power levels and pixel patterns to discriminate between sound source and background pixels. Hough Transform based ellipse detection is used to identify the sound source locations by finding the centers of elliptical edge pixel regions typical of source patterns. Monte Carlo simulations of an eight microphone perimeter array with single and multiple sound sources are used to simulate the test environment and area under receiver operating characteristic (ROCA) curve is used to analyze the algorithm performance. Performance was compared to a simpler algorithm involving Canny edge detection and image averaging and an algorithms based simply on the magnitude of local maxima in the SRCP image. Analysis shows that Canny edge detection based method performed better in the presence of coherent noise sources

    Accumulator-free Hough Transform for Sequence Collinear Points

    Get PDF
    The perception, localization, and navigation of its environment are essential for autonomous mobile robots and vehicles. For that reason, a 2D Laser rangefinder sensor is used popularly in mobile robot applications to measure the origin of the robot to its surrounding objects. The measurement data generated by the sensor is transmitted to the controller, where the data is processed by one or multiple suitable algorithms in several steps to extract the desired information. Universal Hough Transform (UHT) is one of the appropriate and popular algorithms to extract the primitive geometry such as straight line, which later will be used in the further step of data processing. However, the UHT has high computational complexity and requires the so-called accumulator array, which is less suitable for real-time applications where a high speed and low complexity computation is highly demanded. In this study, an Accumulator-free Hough Transform (AfHT) is proposed to reduce the computational complexity and eliminate the need for the accumulator array. The proposed algorithm is validated using the measurement data from a 2D laser scanner and compared to the standard Hough Transform. As a result, the extracted value of AfHT shows a good agreement with that of UHT but with a significant reduction in the complexity of the computation and the need for computer memory

    Automated processing of oceanic bubble images for measuring bubble size distributions underneath breaking waves

    Get PDF
    Accurate in situ measurements of oceanic bubble size distributions beneath breaking waves are needed for a better understanding of air–sea gas transfer and aerosol production processes. To achieve this goal, a novel high-resolution optical instrument for imaging oceanic bubbles was designed and built in 2013 for the High Wind Gas Exchange Study (HiWinGS) campaign in the North Atlantic Ocean. The instrument is able to operate autonomously and can continuously capture high-resolution images at 15 frames per second over an 8-h deployment. The large number of images means that it is essential to use an automated processing algorithm to process these images. This paper describes an automated algorithm for processing oceanic images based on a robust feature extraction technique. The main advantages of this robust algorithm are it is significantly less sensitive to the noise and insusceptible to the background changes in illumination, can extract circular bubbles as small as one pixel (approximately 20 μm) in radius accurately, has low computing time (approximately 5 seconds per image), and is simple to implement. The algorithm was successfully used to analyze a large number of images (850 000 images) from deployment in the North Atlantic Ocean as part of the HiWinGS campaign in 2013

    Occluded iris classification and segmentation using self-customized artificial intelligence models and iterative randomized Hough transform

    Get PDF
    A fast and accurate iris recognition system is presented for noisy iris images, mainly the noises due to eye occlusion and from specular reflection. The proposed recognition system will adopt a self-customized support vector machine (SVM) and convolution neural network (CNN) classification models, where the models are built according to the iris texture GLCM and automated deep features datasets that are extracted exclusively from each subject individually. The image processing techniques used were optimized, whether the processing of iris region segmentation using iterative randomized Hough transform (IRHT), or the processing of the classification, where few significant features are considered, based on singular value decomposition (SVD) analysis, for testing the moving window matrix class if it is iris or non-iris. The iris segments matching techniques are optimized by extracting, first, the largest parallel-axis rectangle inscribed in the classified occluded-iris binary image, where its corresponding iris region is crosscorrelated with the same subject’s iris reference image for obtaining the most correlated iris segments in the two eye images. Finally, calculating the iriscode Hamming distance of the two most correlated segments to identify the subject’s unique iris pattern with high accuracy, security, and reliability

    Quantization-free parameter space reduction in ellipse detection

    Get PDF
    Ellipse modeling and detection is an important task in many computer vision and pattern recognition applications. In this thesis, four Hough-based transform algorithms have been carefully selected, studied and analyzed. These techniques include the Standard Hough Transform, Probabilistic Hough Transform, Randomized Hough Transform and Directional Information for Parameter Space Decomposition. The four algorithms are analyzed and compared against each other in this study using synthetic ellipses. Objects such as noise have been introduced to distract ellipse detection in some of the synthetic ellipse images. To complete the analysis, real world images were used to test each algorithm resulting in the proposal of a new algorithm. The proposed algorithm uses the strengths from each of the analyzed algorithms. This new algorithm uses the same approach as the Directional Information for Parameter Space Decomposition to determine the ellipse center. However, in the process of collecting votes for the ellipse center, pairs of unique edge points voted for the center are also kept in an array. A minimum of two pairs of edge points are required to determine the ellipse. This significantly reduces the usual five dimensional array requirement needed in the Standard Hough Transform. We present results of the experiments with synthetic images demonstrating that the proposed method is more effective and robust to noise. Real world applications on complex real world images are also performed successfully in the experiment

    Semi-Supervised Pattern Recognition and Machine Learning for Eye-Tracking

    Get PDF
    The first step in monitoring an observer’s eye gaze is identifying and locating the image of their pupils in video recordings of their eyes. Current systems work under a range of conditions, but fail in bright sunlight and rapidly varying illumination. A computer vision system was developed to assist with the recognition of the pupil in every frame of a video, in spite of the presence of strong first-surface reflections off of the cornea. A modified Hough Circle detector was developed that incorporates knowledge that the pupil is darker than the surrounding iris of the eye, and is able to detect imperfect circles, partial circles, and ellipses. As part of processing the image is modified to compensate for the distortion of the pupil caused by the out-of-plane rotation of the eye. A sophisticated noise cleaning technique was developed to mitigate first surface reflections, enhance edge contrast, and reduce image flare. Semi-supervised human input and validation is used to train the algorithm. The final results are comparable to those achieved using a human analyst, but require only a tenth of the human interaction
    • …
    corecore