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Steered  Response  Power  based  algorithms  are  widely used  for  finding  sound  source 
location using microphone array systems. SRCP-PHAT is one such algorithm that has a 
robust  performance  under  noisy and  reverberant  conditions.  The  algorithm  creates  a 
likelihood function over the field of view. This thesis employs image processing methods 
on SRCP-PHAT images, to exploit the difference in power levels and pixel patterns to 
discriminate  between  sound  source  and  background  pixels.  Hough  Transform  based 
ellipse detection is used to identify the sound source locations by finding the centers of 
elliptical  edge pixel regions typical of source patterns. Monte Carlo simulations of an 
eight  microphone perimeter  array with single and multiple  sound sources are used to 
simulate the test environment and area under receiver operating characteristic (ROCA) 
curve is  used to  analyze the algorithm performance.  Performance was compared to  a 
simpler  algorithm  involving  Canny  edge  detection  and  image  averaging  and  an 
algorithms based simply on the magnitude of local maxima in the SRCP image. Analysis 
shows  that  Canny edge detection  based  method  performed  better  in  the  presence  of 
coherent noise sources. 

KEYWORDS: Steered Response Power, Sound Source Localization, Hough Transform 
based  Ellipse  Detection,  Canny  Edge  Detection,  Area  under  Receiver  Operating 
Characteristic Curve.
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Chapter 1. Introduction

Automatic  sound source localization has a wide array of applications including talker 

tracking, human computer interaction (HCI) and robotics[1]. Sound source localization 

using  microphone  arrays  have  been  popular  since  long.  Different  methods  based  on 

steered beamformers, high resolution spectral estimation and time difference of arrival 

(TDOA) are used for sound source localization[2]. Localization strategies based on one 

of these methods have limited applications as they are either computationally expensive 

or are less robust to reverberant and noisy conditions. 

Steered  response  power  (SRP)  algorithm is  a  localization  algorithm based  on 

steered  beamformers  and  TDOA  methods.  The  algorithm  uses  filter  and  sum 

beamforming operation. The microphone signals received are time aligned by applying 

suitable time shifts and their correlation terms are summed together to obtain the steered 

response power. Auto correlation terms are independent of the sound source position and 

are subtracted from the SRP values to obtain coherent power values termed as steered 

response coherent power(SRCP). The SRP beamformer creates a likelihood function over 

the field of view (FOV), that can be represented as an intensity image of the acoustic 

environment.  Sound source positions in the intensity image are associated with higher 

SRP values and the presence of coherent noise and reverberations induce false peaks in 

the intensity image.

Performance of SRP algorithm under coherent noise conditions can be improved 

by using phase transform (PHAT)[2]. Applying phase transform effectively whitens the 

signal  spectrum and PHAT processing  results  in  better  acoustic  images  with  sharper 

targets and attenuated noise fields[3]. However PHAT tends to over amplify the noise 

spectral regions especially in case of narrow band signals or when there is significant 

independent noise present over the whole frequency band[4][5].  A variation of phase 

transform  called  modified  phase  transform  or  PHAT-  is  introduced  to  control  the 

magnitude of spectral whitening. The value of parameter  to be employed depends on 

the nature of the sound sources present in the system[6].   
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[7] Presents  an  image  processing  method  based  on  Canny edge  detection  for 

detecting mines in Acoustic and Radar images. The edges found by Canny edge detector 

are usually strong and form a boundary of mine when exists.  Acoustic images created 

using SRP-PHAT   are similar to the images considered in [7] and have a few distinct 

regions of high response power pixels corresponding to sound sources. Detecting these 

pixels is equivalent to finding sound source locations inside the FOV. Edge detection 

techniques can be employed to separate regions of high contrast, typical of sound source 

locations.  This  thesis  presents  an  image  processing  method  based  on  Canny  edge 

detection  and Hough transform based ellipse  detection,  to  automatically detect  sound 

sources present inside microphone array FOV. Sound source detection performance is 

analyzed using area under receiver operating characteristic curve[8].

Chapter 2. provides an introduction to sound source localization strategies and 

steered  response  power  computation.  The  chapter  also  explains  phase  transform and 

modified phase transform used to improve the localization performance. 

Chapter  3. introduces  the  concept  and  mathematical  background  of  Hough 

transform based ellipse detection. 

Chapter  4. focuses  on  the  implementation  of  Hough  transform  based  ellipse 

detection. A detailed explanation of the simulation used in this thesis work is provided 

and  the  parameters  considered  for  practical  implementation  are  explained.  Results 

obtained using Hough transform based ellipse detection are presented and discussed.

Chapter 5. describes a simplified method based on Canny edge detection. Results 

are compared with the results obtained using Hough transform based ellipse detection and 

direct peak detection method.   
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Chapter 2. Concept of Steered Response Coherent Power with PHAT-β

 2.1.  Introduction

Distributed  microphone  arrays  are  used  for  a  variety  of  applications  including 

beamforming[9][10],  human-computer  interaction  and  talker  tracking[11][12].  Sound 

source localization is an important part of many of these applications.  Steered response 

power algorithm with phase transform (SRP-PHAT) is one  robust algorithm used for 

sound source localization in reverberant and multiple speaker environments[2]. 

This Chapter explains the concept and mathematical background behind the SRP-

PHAT algorithm. Section 2.2. introduces the basic classification of existing microphone 

array based sound source localization procedures. Section 2.3. explains the concept of the 

robust localization algorithm based on SRP-PHAT model and the modified SRP-PHAT 

model used in this thesis work known as SRP-PHAT-  .    

 2.2.  Sound Source Localization Strategies

Sound source localization  Strategies  using microphone arrays  can be classified  under 

three categories[2]. 

1. Steered beamformer based locators.

2. High resolution spectral estimation based locators

3. TDOA based locators.

 2.2.1. Steered beamformer based locators

These  locators  use  a  focused  beamformer,  to  steer  the  microphone  array to  various 

locations in the FOV and searches for a peak in the resultant output power in order to 

estimate the maximum likelihood sound source location[2]. Delay and sum beamformers, 

the simplest of these locators time align each of the microphone channel responses and 

adds them up to get the resultant power. These locators are computationally expensive 
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and the steered response of a conventional beamformer depends heavily on the spectral 

content of the sound source signal.

 2.2.2. High resolution spectral estimation based locators

These are based on beamforming techniques adapted from the field of high-resolution 

spectral analysis methods such as autoregressive modeling, minimum variance spectral 

estimation and Eigen analysis-based techniques[2]. They are used in a variety of array 

processing applications but they have the following limitations. These algorithms are less 

robust to source and sensor modeling errors and assume ideal source radiators, uniform 

sensor channel characteristics, exact knowledge of the sensor positions[2]. 

 2.2.3. TDOA based locators

The third category is TDOA based locators. These locators use the time delay data for 

each pair of microphones along with known microphone locations, to generate hyperbolic 

curves which are intersected in an optimal fashion to find the sound source location. The 

time delay estimation in these locators is  complicated by the presence of background 

noise and room reverberations. In the noise only case with known noise statistics, the 

maximum likelihood time-delay estimate is obtained from a SNR-weighted version of the 

generalized cross correlation (GCC) function[2]. A more robust version of GCC locators 

known as GCC-PHAT uses phase transform (PHAT) to obtain a peak in the GCC-PHAT 

function corresponding to the dominant delay in the reverberated signal. 

The TDOA based methods  are  computationally less  expensive,  but  they have 

limitations as they assume a single source model. multiple simultaneous sound sources, 

which is often a case in sound source localization applications, excessive ambient noise 

or moderate to high reverberation levels in the acoustic field typically results unreliable 

sound source locations.    

  The limitations listed above restrict the usage of these locators in realistic acoustic 

environments. Brandstein et al. have introduced a localization algorithm known as SRP-

PHAT based on the concept  of Steered beamformer based locators and TDOA based 
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methods[2].  The localization scheme is  shown to perform better in moderate  ambient 

noise and reverberation levels compared to the previous locators. 

Donohue et  al.  have  introduced a  modification  of  SRP-PHAT called  as  SRP-

PHAT-  to further improve the sound source localization performance in reverberant and 

noisy  environments[4].  The  parameter  is  used  to  control  the  extent  of  spectral 

whitening of the magnitude spectrum.  This  thesis  work uses SRP-PHAT-  for sound 

source localization and a detailed explanation of the technique is given in section 2.3. 

 2.3.  SRP-PHAT-β

This  section  explains  the  concept  behind  the  SRP  localization  algorithm  and  the 

application of modified phase transform (PHAT-  ) for enhanced robustness in low and 

moderate reverberant conditions. 

The sound wave field in a room is considered to be linearly related to the sound 

source signal. This concept is based on the assumption that sound waves propagate as 

predicted  by  the  linear  wave  equation  as  mentioned  in[13].  Consider  a  setup  of 

microphones and sound sources distributed  inside a 3-D field of view (FOV) as shown in 

Figure2.1. Let u it ; r i be the pressure wave resulting from the ith sound source at location

r i , where r i is a position vector denoting the x, y and z axis coordinates. The waveform 

received at the p th microphone v p , it ; r p , r i is given by[4]:

v p , it ; r p , r i=
∫
−∞

∞

h p ,i ; r p , r iui t− ; r id 

∑
k=1

K

∫
−∞

∞

h p ,k  ; r p ,r ink t− ; r k d n pt 
(2.1)

where h p ,i. represents the overall impulse response of the propagation path from r i to 

r p . h p ,i. is a combination of the microphone channel response and the room impulse 

response. The microphone channel response takes in to account of the different electrical, 

mechanical  and  acoustical  properties  of  the  microphone  system.  The  room  impulse 
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response depends up on room temperature,  humidity and the  position  and motion  of 

different physical objects inside the room. nk t  , n pt  are the correlated and uncorrelated 

noise sources present inside the room.

The correlated noise term nk t  is a result of other sound sources present inside 

the FOV and ambient noise sources outside FOV. The uncorrelated noise term n pt  is a 

result of channel noise in microphone system. Correlated noise is hard to suppress and in 

general is the significant noise present in the system[2][4].  

The  propagation  path  impulse  response h p ,i. is  a  combination  of  direct  path 

component  and reflected  path  component.  Consequently the impulse  response can be 

expressed as[4]: 

6

Figure 2.1: Schematic of sound sources and interfering sources in a perimeter 
microphone array system.



h p ,it ; r p ,r i=h p ,it =a p ,i ,0t− p ,i , 0∑
n=1

∞

a p ,i ,n t−p ,i ,n (2.2)

Where a p ,i ,0 t represents the impulse response of direct path component and a p ,i , nt  

represents the impulse response of n th reflected path component between source at r i and 

microphone at r p ,  p , i , n is the corresponding path delay. The SRP pixel estimate is based 

on the sound events limited to those received over a finite time frame denoted by l . The 

value of l depends  upon the  steering delay for  focusing the  array at  the  appropriate 

source spatial location and compensation for the direct path propagation delay associated 

with  the  desired  signal  at  each  microphone[2].  The  waveform  received  by p th  

microphone, resulting from signal segments during the interval l can be represented in 

frequency domain as[4]: 

V p , l=
∑
i=1

N T

U i ,l  ∑
m/  p , i , m l

Ap , i , mexp j p , i , m

∑
k=1

K
N k  ∑

m / p ,i ,ml

Ap , k , m exp j p , k , m N p
(2.3)

Where U i , l is the Fourier transform of the ith sound source field u i t over the interval 

l . N T is the number of target sound sources inside the FOV and K is the number of 

noise sources.  The summation index in the above equation indicates  the summing of 

signal components whose path delay is falling with in the interval l . 

During propagation, the attenuation of a sound signal depends upon its frequency 

and in general higher frequencies are more attenuated compared to the lower frequencies. 

This  condition  makes  the  estimate  values  obtained  in  Eq.2.3 dependent  up  on  the 

magnitude spectrum of the sound source. Phase transform (PHAT) is introduced to make 

SRP values independent of the magnitude spectrum. The application of PHAT whitens 

the whole spectrum to equally emphasize on all frequencies[2][14][15]. 

The PHAT is a robust weighting scheme and does not require signal and noise 

characteristic information[5]. However PHAT tends to over amplify the noise spectral 
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regions especially in case of narrow band signals or when there is significant independent 

noise present over the whole frequency band[4][5].

To overcome these defects a variation of Phase transform known as PHAT-   [5] 

is introduced to control the extent of whitening the spectrum and to limit the amount of 

degradation  due  to  independent  noise.  PHAT-  is  shown  to  improve  sound  source 

location performance for both narrow band and wide band signals[3][4][5][6][16]. 

PHAT-  is defined as[4]:  

p ,l  ,=
∣ V p , l∣

∣ V p , l∣
 V p ,l  (2.4)

The parameter  takes values between 0 and 1. When  is 1 the magnitude of the 

Fourier  transform  is  one  for  all  the  frequencies.  It  is  worth  mentioning  that  for 

conventional PHAT  value is always equal to 1. When  is 0 PHAT-  has no effect on 

the signal.

Based  on  experimental  results  from[6],  PHAT-  improves  sound  source 

localization for  values ranging from 0.65 to 0.9 for broadband signals and 0.4 to 0.75 

for narrowband signals under low reverberation conditions. When the reverberation levels 

are  high  suggested  values  are  0.6  to  1  for  broadband  signals  and  0.2  to  0.7  for 

narrowband signals.

The Steered response coherent power (SRCP) value is obtained by subtracting self 

power terms of microphone channel responses from the sum of cross power terms. This 

can be expressed in the discrete frequency domain as[4]: 

S i ,l = /T ∑
k =K1

K2

∣∑
p=1

P
Bp ,i

 p ,i ,l k ,∣2−∑
p=1

P

∣ B p ,i
p , i , lk ,∣2 (2.5)

Where T is the length of the interval l , K1 and K2 are upper and lower frequency limits 

of  the signal  bandwidth.  is  the frequency domain  sampling interval  and B p , i is  the 
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complex weight representing the delay and filtering associated with the image location 

and array geometry. The simulation used in this thesis work considered B p , i values equal 

to  the  reciprocal  distance  between  the p th microphone  and ith SRP  pixel  location.  The 

values are normalized by the sum of reciprocal distances over all array elements[4]. Thus 

pixels  which are closer to the microphone are weighted more compared to the pixels 

which are farther from the microphone.

The coherent power values S i ,l  calculated at every r i inside FOV using Eq.2.5 

will become the pixel values of the SRCP Image. 
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Chapter 3. Concept of Hough Transform based Ellipse Detection

 3.1.  Introduction

Sound source locations  in  an SRCP image are usually associated  with high response 

power and in general can be thought of as discontinuities from their background power 

levels. Image processing techniques can be employed to detect these discontinuities in 

SRCP images and Hough transform based ellipse detection is one such robust method, 

that can be used for sound source detection.

       This  chapter explains  the concept  of Hough transform based ellipse  detection 

(HTED). The chapter is divided in to 3 sections.  Section 3.2.  explains the concept of 

Canny edge detection  used  for  pre-processing of  the  input  image data.  Section 3.3.  

introduces the concept and mathematical background behind ellipse fitting. Section 3.4 

explains the process of detecting centers of elliptical shapes in the processed image data 

using Hough transform.

 3.2.  Canny Edge Detection

In image processing an edge is basically a local discontinuity in pixel values that exceeds 

a particular threshold[17]. SRCP image explained in previous section is a representation 

of the sound field inside a FOV and in general contains a lot of data. However a few high 

power pixels in the SRCP image contain the most important information about sound 

source locations. Edge detection techniques can be used to extract necessary data about 

these pixels. An effective edge detection technique should extract necessary information 

about sound sources, at the same time should reject unwanted data such as data related to 

the background. This will reduce the amount of data fed to the subsequent steps, and 

Canny edge detection (CED) is used to achieve this purpose. 

Like  most  edge  detection  schemes  CED  consists  of  3  stages:  Filtering, 

Differentiation and Detection[17]. An input image is convolved with a filter during the 

filtering stage.  CED employs  a  Gaussian  filter  for  smoothing the  input  SRCP image 
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during the filtering stage. The Gaussian filter uses weighted averaging of the SRCP pixel 

values and the pixel weight is inversely proportional to the distance from the center pixel 

of the filtering window. The level of smoothing depends up on the  value used.

The differentiation stage gives the preliminary edge data information. Edges in an 

image  can  be  detected  by  performing  a  first  order  derivative,  as  the  derivative  is 

associated with a high value at the edge. Consider  x and  y be the gradients of the input 

SRCP image  in  x and  y directions.  The  gradient  magnitude G and direction  can  be 

expressed as 

                                 =tan −1 
y

x
  and G= x

2 y
2

The edge orientation (slope) data  can be obtained from the gradient data by adding 90 

degrees to the edge gradient direction.

The detection stage of CED has two parts. The first part involves performing a 

non-maxima  suppression  on  the  gradient  magnitude  using  the  gradient  direction 

information. In general if a pixel gradient magnitude is not varying significantly in the 

direction of gradient then that pixel is probably not an edge point. Consider G x , y as 

the  gradient  magnitude  and G  x1, y1 , G  x2, y2 as  the  gradient  magnitude  values  on 

either  side  of  the  edge  pixel  in  the  direction  of  edge  gradient.  Mathematically  non 

maxima suppression can be expressed as: 

                     G  x , y={G x , y 
0

if G x , y G x1 , y1 , Gx2 , y2
otherwise

This step eliminates all the points which are not potential edge points.

Hysteresis  thresholding  is  applied  to  the  non-maxima  suppressed  magnitude 

during the second part of the detection stage. CED uses two thresholds a lower threshold 

( t low ) and a higher threshold ( t high ) to deal with the problem of streaking. If the gradient 

magnitude at a pixel is greater than t high , it is considered as an edge pixel. Pixels which 

are 8 connected to  the edge pixels  determined above and whose gradient  magnitudes 

exceed the t low are also considered as edge pixels. 
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The success of Ellipse detection method depends on the effectiveness of CED. 

CED is very efficient at finding the edge pixels around sound sources in an SRCP image. 

Figure3.1 shows an SRCP image produced using the simulation with two sound sources 

at the center of circles marked in red. It can be observed that the sound source pixels have 

higher power compared to the background levels, which is evident from the color of the 

pixels. The result of applying Canny edge detection on Figure3.1 is shown in Figure3.2. 

The canny edge detector used  is a MATLAB version of an implementation of the 

Robot  Vision  Group in the Department  of  Artificial  Intelligence at  the  University of 

Edinburgh[18]. 

The program output is an array of edge magnitudes and edge orientations. Except 

edge  pixels,  most  of  the  pixels  in  the  edge  magnitude  array  are  set  to  zero.  This 

significantly reduces the number of computations required to implement ellipse detection. 
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Figure 3.1: SRCP image with sound sources positioned at the center of circles. 
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 3.3.  Ellipse Fitting

Sound source locations yield clear boundaries when CED is applied on SRCP images as 

evident from Figure 3.2. The shape of these edge pixel boundaries can be approximated 

to an ellipse. The basic idea is to detect the center of these elliptical boundaries which in 

most cases represents a sound source location in an SRCP image.

A detailed description of translating image data in to inferences about possible 

ellipses is presented in[18]. This Section explains the mathematical characterization of 

the  family  of  ellipses  passing  through  a  pair  of  points.  The  ellipse  directions  are 

determined by the associated normal directions at the pair of points obtained during CED.

 3.3.1. Parameterization of the ellipse

Consider  two  points P 1 , P 2 such  that P 1=x 1, y 1 and P 2= x 2, y 2 .  Let  the  normal 

directions  associated  with  each  point  be N 1= p 1, q 1 and N 2= p 2, q 2 .  The  normal 

directions are supposed to be pointing into the angular sector between the tangent  lines 

containing the other point as shown in Figure 3.3. That is,
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Figure 3.2: Result of applying Canny edge detection on Figure3.1. 
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    p 1x 2−x 1q 1 y 2− y 10  and

p 2 x 1−x 2q 2 y 1− y 20  (3.1)

The equation of line P1P2 is given by

L x , y = y 1− y 2xx 2−x 1 yx 1 y 2− x 2 y 1=0  (3.2)

The tangent lines at P 1 and at P 2 are given by

               l 1x , y = p 1 x−x 1q 1 y− y 1=0  and 

   l 2 x , y= p 2x− x 2q 2 y− y 2=0

The  functions L , l 1 and l 2 are  each  linear  in x and y .  The  values p 1, q 1, p 2, q 2 are 

obtained from the orientation data generated during the Canny edge detection. For a given 

constant  ,

C x , y =L 2x , y − l 1x , y l 2x , y =0  (3.3)

is quadratic in x and y and represents a conic section C . For =0 the conic C represents 

the  line L=0 and for =∞ the  conic  represents  the  pair  of  lines l 1=0 and l 2=0 .  For 

intermediate values of  , C passes through the intersection of L , l 1 and l 2 touching l 1 at 

point P 1 and l 2 at point P 2 [18], as shown in Figure 3.4. The conic C can be rewritten as: 

C x , y =ax 22hxyby 22gx2fyc  (3.4)

where a , b , c , f , g , h are  linear  functions  of  and  also  depend  on x 1 , y 1 , p 1 , q 1 , 

x 2 , y 2 , p 2 , q 2 .
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Figure 3.4: Graphics of Eq. 3.3  for various values of  λ ranging from 1 to 39 
(Figure adapted from [18]) 

Figure 3.3: Graphical representation of L, l1 and l2 ( Figure adapted from [18])



Eq. 3.4 can be written in matrix form as 

X T AX 2F T X c=0  (3.5)

Where X = x , y T and F=g , f  T and A is a matrix

A=a h
h b  (3.6)

The center of the conic X 0=x 0, y 0
T is written as[18]:

X 0=−A −1 F  (3.7)

 3.3.2. Range of λ for which the conic is an ellipse

The properties of the conic section C as in Eq.3.3 varies significantly depending upon the 

value of  . Substituting L , l 1 and l 2 in Eq.3.3 and comparing with Eq.3.4, a , b , c , f , g

, h can be expressed as[18]:

a = y 1− y 2
2− p 1 p 2  

b =x 1− x 2
2−q 1q 2  

c = x 1 y 2−x 2 y 1
2− p 1 x 1q 1 y 1 p 2 x 2q 2 y 2  

f =x 1 y 2−x 2 y 1x 2− x 11/2[q 2 p 1 x 1q 1 y 1q 1 p 2 x 2q 2 y 2]  

g =x 1 y 2− x 2 y 1 y 1− y 21/2[ p 2 p 1 x 1q 1 y 1p 1 p 2 x 2q 2 y 2]  

h = y 2− y 1 x 2−x 11/ 2 p 1q 2p 2 q 1  (3.8)
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When 0 the conic C represents  a  hyperbola outside  the sector  formed by l 1 and l 2 . 

When =0 the  conic  represents  the  line  segment P 1 P 2 ,  which  can  be  verified  by 

substituting the value of  in Eq.3.3. When  is small and positive, the conic C is close to 

the line segment P 1 P 2 . This variation of behavior of conic C can also be expressed in 

terms  of  matrix A defined  in  Eq.3.6.  When =0 ,  The  matrix A is  singular.  When 

increases, A at  first  becomes  positive  definite  and  then  becomes  singular  (indefinite) 

again for a positive value value of = 0 . For  greater than  0 , the matrix A becomes 

indefinite.  This  behavior  corresponds to  the  center  of  the  conic X 0=x 0, y 0
T at  first 

receding to infinity, so that the conic tends to a parabola for = 0 , and then, for  0 , 

the conic becomes a hyperbola, but this time within the sectors for which l 1 l 2 is positive. 

Thus, the range of  for which the conic C of Eq.3.3 is an ellipse is the interval 0 0

. Hence, to find the range of  values for which the conic is an ellipse, we must solve

det  A=∣a h
h b∣=0  (3.9)

For  , one root is zero; the other is the required value  0 given by [18]:   

 0=4 [ p 1x 2−x 1q 1 y 2− y 1][ p 2x 1− x 2q 2 y 1− y 2] / p 1 q 2− p 2 q 1
2  (3.10)

 

Thus, the conic C represents an ellipse for 0 0 . For  in this range, the coordinates 

of the center of the ellipse, x 0 , y 0  can be calculated using Eq.3.7. 

 3.4.  Ellipse Center Detection

The purpose of finding the centers of elliptic edge boundaries can be achieved by using 

Hough transform. Given the edge magnitude and orientation data, the parameterization 

explained in the above section can be used to fit ellipses for each pair of edge points for 

 varying in the range 0 0 . Vote for the center position of these ellipses passing 

through the edge points and satisfying predefined conditions in an array. The array cells 
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receiving maximum number of votes are the probable centers of the elliptical edge pixel 

groups[18][19][20].

The Hough Transform uses an accumulator array for collecting the votes.  The 

accumulator array has the same size as that of an input SRCP image and can be thought 

of as a discretized  position  space for the center of an ellipse.  The array contents  are 

initially set to zero.  

Consider a pair of edge pixels P 1 and P 2 such that the distance between the two 

points d p1p2 is less than distance threshold d thresh . The distance threshold is necessary so 

as to consider pixels which correspond to the same edge boundary. Given the edge data 

the range of  values for which the conic passing through the edge points P 1 and P 2 will 

be an ellipse can be calculated using the position and orientation information. The upper 

bound of  value,  0 is calculated using Eq.3.10. For 0 0 ellipses passing through 

the edge points  are fitted,  whose centers  are given by Eq.3.7.  Every time an eligible 

ellipse is  fitted for the pair  of pixels,  the accumulator array cell  corresponding to the 

center of the ellipse is incremented. 

The process is repeated for all the pairs of edge pixels. If there exists an ellipse in 

the edge data so that many pairs of edge points correspond to it, the center of that ellipse 

accumulates many votes[18]. The accumulator array cell receiving maximum number of 

votes in a region is the probable center of the edge pixel regions and consequently is the 

probable sound source location.
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Chapter 4. Implementation of Hough Transform based Ellipse Detection

 4.1.  Introduction

Chapter  3  outlined  the  procedure  and  necessary background  to  detect  the  centers  of 

elliptical  groups of  edge pixels  using  Hough Transform based ellipse  detection.  This 

chapter explains  the procedure and implementation of the HTED algorithm,  to  detect 

sound sources inside a microphone array environment. Section 4.2. explains the simulated 

environment  used  for  creating  the  SRCP  image.  The  parameters  considered  during 

practical  implementation  are  explained  in  section 4.3.  Results  obtained  using  this 

algorithm are discussed in section 4.5. 

 4.2.  Simulation Design

This  thesis  work employed a simulation  for  the  purpose of  generating SRCP images 

under various operating conditions. The simulation is similar to the one used in [4] except 

for a change in few parameters and dimensions.  The simulation is a part of the Array 

Toolbox developed by Audio Systems Laboratory at the University of Kentucky.

The simulation is inspired from an actual audio cage array in Audio Sensing and 

Rendering Lab at University of Kentucky. The dimensions of the rectangular room used 

in simulation are outlined in Table 4.1.
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Parameters Value

Length and Width(room)

Height

Length and Width (FOV)

Source Height

Speed of Sound 

Number of Microphones

Microphone Spacing 

SRCP Computation Grid

7m * 8m

3.5m

5m * 5m

1.5m

348 m/s

8(Perimeter Array)

2.8995

4 cm

Table 4.1: Array Simulation Parameters

The simulation produces impulse like sound signals inside the FOV by placing 

sound sources  at  random locations  inside  the  FOV. The sound signal  is  the  impulse 

response of a Butterworth filter with 3 dB cutoff frequencies of 300 Hz and 3000 Hz. 

Two  coherent  noise  sources  representing  room  noise  under  practical  conditions  are 

simulated outside the field of view on the actual room wall. The strongest signal on the 

microphone array is used for adjusting the  noise power. In addition a -30 dB white noise 

signal representing microphone channel noise is added to every microphone with respect 

to the strongest signal. The room reflection coefficient values are set at 0.8 for walls and 

0.7 for floor and ceiling.

An  8  microphone  perimeter  array is  used  to  record  the  sound produced. The 

microphones are omnidirectional and are offset by 0.25m toward the center of the room 

from the  room walls.  The  microphone  array is  steered  to  each point  in  the  FOV to 

generate  an  acoustic  image  according  to  the  SRCP  values.  The  microphone  signals 

received over  each channel  from a  point  in  FOV are time  aligned and are  weighted 

according to  the distance of  the microphone from the point  under consideration.  The 

weight  of  a  microphone  signal  is  inversely proportional  to  the  distance  between  the 

microphone  and  the  point  under  consideration,  thus  closest  microphones  have  more 

weight compared to others. 
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Coherent  power  is  computed  from  these  time  aligned,  weighted  microphone 

signals. Coherent power can be negative and is obtained by subtracting the self power 

terms  from  the  signal  correlation  products.  Since  coherent  power  only  has  cross 

correlation terms its value is large and positive if the microphone signals are correlated 

and  is  negative  if  there  is  a  strong  out  of  phase  coincidence  between  the  signals. 

Calculating coherent power at each pixels results in an SRCP image with its magnitude 

representing the likelihood of sound source at a particular position.   

Sound source detection  performance is  improved by using a  partial  whitening 

transform known as PHAT-  as explained in[6]. The parameter  varies the magnitude 

of  spectral  whitening,  with  =0 representing  no  whitening  (original  signal)  and  =1 

representing total whitening (Phase Transform). For most audio systems operating under 

different frequency conditions,  an intermediate  value of   was shown to improve the 

performance of the system. A more detailed explanation about PHAT-  can be found in 

[4][15][16]. According to the results presented in [6],  values between 0.5-0.8 will lead 

to significant performance improvements in sound source detection and a  value of 0.75 

is considered for this experiment.

 4.3.  Practical Implementation of SSD using Hough Transform based Ellipse 

Detection

This  section  explains  procedure  and  various  parameters  considered  for  the  practical 

implementation of SSD using HTED method.

Given a  SRCP image with  known number  of  sound sources,  CED is  used to 

obtain groups of edge pixel boundaries around probable sound source locations. Gradient 

values are computed for the Gaussian filtered SRCP image. Pixels whose gradient values 

exceed t high after non maxima suppression are considered as edge pixels. Pixels which are 

greater than t low and are 8-connected to above pixels are also considered as edge pixels. 

The program outputs  arrays  of  edge pixel  magnitudes  and normal  directions  at  these 

pixels, computed using the equations mentioned in Section 3.2.        
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Figure 4.1 shows an SRCP image with known sound source position marked by 

the red circle. The application of canny edge detection results in edge pixels around sound 

source location and the result is as shown in Figure  4.2. 160 and 110 are used as the 

gradient  magnitude  thresholds t high and t low during  CED. Detecting the  centers  of  these 

elliptical  edge  pixel  groups  should  give  the  sound source  locations.  It  is  also  worth 

mentioning that except the edge pixels most other pixels in Figure  4.2 are set to zeros 

which significantly reduces the amount of data to be considered during the HTED stage.
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Figure 4.1: SRCP image with known sound source location



Given the edge magnitude  and orientation  data,  Hough transform is  used,  for 

detecting elliptical shapes in the edge image. Consider a pair of data points from the edge 

data information e i , e j , and their corresponding orientations. The values of p i , q i are set 

such that q i=1 and p i=tan i as suggested in [18]. For each pair check if the edge points 

satisfy the quadrant conditions  specified in  Eq.  3.1. The sign of the normal  vector is 

reversed if one of the conditions is not met i.e normal vector −N i is considered instead of

N i . 

The value of  0 which gives the range of parameterization 0 0 over which 

the conic described in Eq. 3.3 is an ellipse is then computed using Eq. 3.10. once the  0

value  is  calculated,  values  of a , b , c , f , g , h ,  which  characterize  the  ellipse  are 

calculated using Eq. 3.8. The interval 0 0 is divided in to n increments of d  where

d = 0/n . Starting from =d  and for each =d  an ellipse is fitted for the pair 

of edge points, the center of which is obtained using Eq. 3.7. 
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Figure 4.2: Edge pixels detected around the sound source location by Canny edge 
detector



An Accumulator array of size 126*126 (same as the size of the SRCP image) is 

constructed  to  poll  for  the  center  position  of  ellipse  fitted  in  the  above  step.  This 

procedure is repeated for each pair of edges in the canny output image and corresponding 

pixel values of accumulator array are incremented. A distance threshold ( threshold ed ) of

18 is used while selecting pairs of edge pixels. This threshold helps in selecting pixels 

which are sufficiently close together, which are more likely to be the edge pixels around a 

sound source. The distance threshold also minimizes the number of noise pixels in edge 

data considered for ellipse fitting.

Figure 4.3 shows the accumulator array for the region considered in Figure 4.2. It 

can be observed that the ellipse center values are distributed over a region but there are a 

few distinct  maximum values whose corresponding position  can be considered as the 

probable  center  of  the  elliptic  region  shown  in  Figure  4.2.  MATLAB  command 

“imregionalmax” is used to identify the local maxima in the accumulator array and the 

result is shown in Figure 4.3 . The local maxima are represented by a 1 in the result where 

as the remaining pixels are all set to 0.
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Figure 4.3: The Accumulator array after voting for the ellipse centers
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Figure 4.5: Sound source location detected (indicated by a red circle)

Figure 4.4: Local maxima in the accumulator array(represented by 1)



Accumulator array values which are local maxima are then sorted according to the 

number  of  votes   received  for  the  corresponding  positions.  The  position  of  the 

Accumulator  array with maximum number of votes is  considered as the center of an 

elliptic  region and hence  a  sound source location.  The position  corresponding to  the 

second highest number of votes in the sorted array ( decreasing order ) is  considered as a 

center of an elliptic region if and only if it is at a distance greater than target distance 

threshold  ( threshold td )  from the  position  corresponding to  highest  number  of  votes. 

threshold td Value is a user control and a value of  18  is used as the target distance 

threshold in the experiment. The positions of subsequent values in the sorted array are 

considered  as  centers  of  elliptical  regions  if  they  are  at  a  distance  greater  than 

threshold td from each of the previously identified center locations. 

The Centers of the elliptical regions in the edge data image are the probable sound 

source locations. Figure 4.5 shows the result, where sound source location is marked in a 

red circle. This location corresponds to the position (15, 9) in Figures 4.3, 4.4 receiving 

115 votes as the probable center location. The local maxima corresponding to positions 

(14, 11), (16, 11) with 67 and 98 votes respectively are not considered as centers because 

they are at a distance less than threshold td from the known center position at (15, 9).

The MATLAB program used for  identifying the center  of  elliptical  regions  is 

inspired from the 'C' program used for the “center finding experiment” in [18].

 4.4.  Analysis Method

In any sound source detection algorithm false alarms can not be completely eliminated 

and performance  of  the  algorithm is  measured  in  terms  of  its  ability to  discriminate 

between a true detection and a false alarm. Area under Receiver Operating Characteristic 

curve (ROCA) is  used to  analyze the performance of  the algorithm.  The ROCA is  a 

variable between 0 and 1 and represents the priority given to a true detection over a false 

alarm. 
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True  detections  and  false  alarms  in  a  SRCP  image  are  determined  using  the 

known sound source location  information.  The ROCA program is  supplied  with  true 

detection and false alarm intensities. The program sweeps a threshold over the range of 

values  present  in  the  two  sets  to  compute  'pd'  (probability  of  detection)  and  'pfa' 

(probability of false alarm). ROCA value is obtained by computing the area under (1 - 

pfa) vs pd curve. 

This method of ROCA computation may not be applied when there are no true 

detections, i.e when no sound sources are detected and all the detections are false alarms. 

This situation is more pronounced when canny threshold value is too high and under high 

coherent noise conditions, when the algorithm fails to detect any sound sources inside 

FOV. To overcome this constraint ROCA program is fed with true detection and false 

alarm intensities detected over 25 SRCP images created under identical conditions. This 

in a way can be explained as considering true detections and false alarms over a 25m * 

25m FOV. This resulted in sufficient number of true detections under normal conditions. 

The  experiment  is  repeated  4  times  in  each  case  and  the  results  are  averaged  for 

consistency.

 4.5.  Results and Discussion

The parameters used in the simulation are explained in section 4.2. To emulate real world 

conditions  two coherent  noise sources are  placed on the room walls.  Performance of 

HTED method  is  explained  using  the  ROCA  values  achieved  during  the  simulation 

experiments. 

Figure  4.6 shows the  results  obtained  using  this  method.  Two coherent  noise 

sources of -25 dB are placed on room walls for the experiment. The number of sound 

sources is varied between 1-4, so as to test the performance of the algorithm in presence 

of multiple sound sources inside the FOV.  

The Figure shows that ROCA value decreases as the number of sound sources 

inside the FOV increases. This fall in ROCA value can be attributed to the fact that noise 

in  the  system increases  as  the  number  of  sound sources  increases.  While  computing 
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SRCP power of a sound source at a particular location, all other sound sources are treated 

as  noise  sources.  Also,  increase  in  the  number  of  sound sources  results  in  increased 

reflections and hence increased noise in the system. 

The horizontal  axis  in  Figure  4.6 represents  Canny threshold  value,  which  is 

varied  from 220  to  130.  This  value  represents  the  higher  threshold  ( t high )  used  for 

deciding whether a pixel is an edge pixel or not during Canny edge detection step. A 

threshold of t high - 20 is used as lower threshold during the same step.

Figure 4.6 shows that ROCA values for a fixed number of sound sources inside 

FOV varies with a change in Canny threshold value. This scenario can be explained as 

follows.  When Canny threshold is  decreased,  the number of pixels  classified as edge 

pixels increases. This might result in two cases.

(1) Increased  number  of  edge  pixels  around  actual  sound  source  location,  which 

increases the number of edge pixel pairs for the ellipse detector stage. This results 
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Figure 4.6: Performance of HTED method while varying the Canny threshold value 
and number of sound sources present inside the FOV. Two coherent noise sources of 

-25dB are used for the experiment.
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in  a  greater  ellipse  count  for  the  sound source  location  and hence  a  stronger 

detection statistic. 

(2) Increased number of edge pixels  around pixels other than actual  sound source 

locations, resulting in a higher number of noise pixels. This increases the ellipse 

count around noise peaks and hence results in a stronger false alarm statistic. This 

effect decreases ROCA values.

Thus ROCA value reaches a maximum for a particular canny threshold value and 

increases  or  decreases  for  other  threshold  values  as  shown in  Figure  4.6.  In  general 

ROCA value is higher for Canny threshold values around 180 – 200 for 2, 3 and 4 sound 

sources inside FOV.

To find the performance of these algorithms under increased noise conditions, two 

coherent noise sources of -10dB are placed on the room walls.  Figure  4.9 shows the 

results obtained using HTED method under these circumstances. The number of sound 

sources present inside FOV is varied between 1-4.

Comparing Figure 4.6 and Figure 4.9; the detection performance of the algorithm 

decreases with an increase in the coherent noise present in the system. There is a steep 

decrease in the ROCA values in the second case, when coherent noise sources of SNR 

-10dB are placed on the room walls. The presence of stronger coherent noise sources 

results in stronger noise peaks in the SRCP image. Under these conditions noise pixel 

magnitudes are comparable to sound source pixel magnitudes and the algorithm can no 

longer distinguish between a sound source peak and a noise peak.
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Figure 4.7: Performance of HTED method while varying the Canny threshold value 
and number of sound sources present inside the FOV. Two coherent noise sources of 

-20dB are used for the experiment.
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Figure 4.8: Performance of HTED method while varying the Canny threshold value 
and number of sound sources present inside the FOV. Two coherent noise sources of 

-15dB are used for the experiment.
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To test the algorithm at different noise levels, the experiments are repeated using 

two coherent noise sources of -20dB and -15dB respectively. The results are shown in 

Figure  4.7 and  4.8. Table  4.2 summarizes the best case ROCA values obtained using 

HTED method. 
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Figure 4.9: Performance of HTED method while varying the Canny threshold value 
and number of sound sources present inside the FOV. Two coherent noise sources of 

-10dB are used for the experiment.
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Table 4.2: Result summary for SSD using HTED

Strength of 
coherent noise 
sources

Number of 
sound sources 
inside FOV

ROCA values for 
SSD using HTED 

method

-25dB

1 0.91

2 0.85

3 0.75

4 0.69

-20dB

1 0.83

2 0.7

3 0.69

4 0.62

-15dB

1 0.74

2 0.73

3 0.64

4 0.62

-10dB

1 0.71

2 0.74

3 0.61

4 0.58

 4.6.  Conclusion

The experimental results prove that ROCA values decrease with an increase in coherent 

noise level in the system. Also, ROCA value decreases with an increase in the number of 

sound sources.  The HTED method  has  done well  in  distinguishing between a sound 

source and a false alarm. The primary drawback of this method is, the algorithm is very 

complex and computationally intensive. 

A  simplified  algorithm  based  on  Canny  edge  detection  is  discussed  in  next 

chapter.  
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Chapter 5. SSD using SRCP- Canny edge detection based method

 5.1.  Introduction

A detailed description of sound source detection algorithm based on Hough Transform 

based  ellipse  detection  is  presented  in  Chapter  4. This  chapter  presents  a  simplified 

algorithm  based  on  Canny edge  detection  (SRCP-CED).  Section 5.2.  introduces  the 

concept  of  SSD  using  SRCP-CED  method.  Results  obtained  using  the  method  are 

presented in Section 5.3. A SSD algorithm based on detecting peaks in a SRCP image is 

described in section 5.4.  

 5.2.  SSD using SRCP-Canny edge detection based technique (SRCP-CED)

Consider  a  single  pixel  of  considerably  higher  power  compared  to  the  immediate 

neighborhood pixels. This region when applied with an edge detection algorithm should 

yield a region of edge pixels around the pixel with high power. Identifying the center of 

this   region will  thus give the location of the actual peak pixel.  This forms the basic 

concept behind SRCP-CED method.  Canny edge detection when applied to an SRCP 

image yields  edge pixels  around strongest  peaks  in  the  SRCP image as  explained in 

section 3.2. Finding the center of these edge pixel groups will result in detection of sound 

source locations.

Figure 5.1.a shows a SRCP image with two sound sources inside FOV at locations 

marked by red circles. Applying Canny edge detection on Figure 5.1.a yields a gradient 

magnitude image, shown in Figure 5.1.b. Average filter with a 3*3 window is applied on 

the gradient magnitude image. This dilates the gradient pixel values and pixels around the 

center of the edge pixel groups will have maximum magnitudes. Finding local maxima in 

these  dilated  groups  of  edge pixels  is  equivalent  to  finding the  center  of  edge pixel 

groups, which are the probable sound source locations. Figure 5.1.c shows the resulting 

average gradient magnitude image after applying averaging filter  with a 3*3 window. 

Finding local maxima in the image resulted in two true detections which are imposed in 

Figure 5.1.c.    
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Figure 5.1.c is a perfect case, where the algorithm is able to detect all the sound 

sources present inside the FOV and there are no false alarms. However results are not 

always  perfect.  Presence  of  coherent  noise  in  the  system  significantly  degrades  the 
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Figure 5.1: Sound source detection using SRCP-CED method. (a) is the input SRCP 
image with two sound sources inside the FOV. (b) is the result after applying Canny 

edge detection on (a). (c) shows detected sound sources using the algorithm.
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performance  of the algorithm. Coherent noise and reflections induce false peaks in the 

SRCP image and will result in false alarms. 

Canny edge detection uses two thresholds, a lower threshold ( t low ) and a higher 

threshold ( t high )  to  deal  with  the  problem of  streaking,  as  explained  in  section 3.2.  

Selecting  very  high  values  for t high and t low will  result  in  loss  of  true  detections  and 

selecting very low values for t high and t low will result in false alarms. Figure  5.2 shows a 

situation where decrease in canny threshold values resulted in false alarms.
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Figure 5.2: True detections and false alarms using SRCP-CED method. False alarms 
are added as canny threshold value is lowered. (a) is input SRCP image. (b) Canny 
threshold of 220 resulted in only true detections. (c),(d) shows added false alarms for 
a canny threshold of 170 and 160. (e),(f) shows increased false alarms as threshold is 
lowered to 150 and 140. 
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 5.3.  Results and Discussion

ROCA analysis explained in section 4.4. is used to analyze the detection performance of 

the algorithm.  Figure  5.3 shows the results  obtained using SRCP-CED method.  Two 

coherent  noise  sources  of  -25dB are  placed  on  room walls  for  the  experiment.  The 

number of sound sources is varied between 1- 4.

The ROCA value is decreased as the number of sound sources inside the FOV 

increase because of a overall increase in system noise as explained in previous chapter. 

However  unlike  HTED  case  under  similar  conditions,  the  ROCA  value  for  a  fixed 

number of sound sources inside FOV increases as the Canny threshold value decreases. 

This can be explained as follows. Under low noise conditions sound source peaks are 

very strong compared to noise peaks. When Canny threshold is decreased, the number of 

pixels  classified  as  edge pixels  increases.  False  alarms  are added as  the  threshold  is 

decreased and average gradient value around these peaks is low compared to gradient 
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Figure 5.3: Performance of SRCP-CED method while varying the Canny threshold 
value and number of sound sources present inside the FOV. Two coherent noise 

sources of -25dB are used for the experiment.
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values around sound source locations. Addition of these false alarms with low average 

gradient values increases the ROCA value. 

Figure 5.4 shows the results obtained when the number of sound sources is varied 

between 1- 4 and two coherent noise sources of -20dB are placed on the room walls. 

Comparing Figure 5.3 and Figure 5.4; with a decrease in Canny threshold value 

ROCA values remain almost constant or decrease unlike the previous case because of an 

increase in coherent noise. The difference in strengths of sound source peaks and noise 

peaks decreases and this effect offsets some of the increase in ROCA value explained in 

the previous paragraph.       

The experiment is repeated for different coherent noise levels, for the purpose of 

generalizing the results obtained using SRCP-CED method. Figure 5.4 and 5.5 shows the 

performance of  the algorithm using two coherent  noise sources of -15dB and -10dB. 

Number of sound sources is varied between 1-4.
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Figure 5.4: Performance of SRCP-CED method while varying the Canny threshold 
value and number of sound sources present inside the FOV. Two coherent noise 

sources of -20dB are used for the experiment.
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Figure 5.6: Performance of SRCP-CED method while varying the Canny threshold 
value and number of sound sources present inside the FOV. Two coherent noise 

sources of -10dB are used for the experiment.
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Figure 5.5: Performance of SRCP-CED method while varying the Canny threshold value 
and number of sound sources present inside the FOV. Two coherent noise sources of 

-15dB are used for the experiment.

120 140 160 180 200 220 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 source in FOV
2 sources in FOV
3 sources in FOV
4 sources in FOV

Canny threshold value

R
O

C
A 

va
lu

e



Figures 5.3-5.6 establish a pattern that ROCA values decrease with an increase in 

coherent noise in the system. Also under similar experimental conditions, ROCA value 

decreases with an increase in the number of sound sources due to an increase in  the 

overall system noise. 

 5.4.  SSD using Direct Peak Detection 

This section discusses a third method for sound source detection. The simplest method to 

find probable sound source locations in an SRCP image is to find the peaks in the SRCP 

image. Sound source locations are usually associated with large SRCP values, because of 

the coherent addition of the microphone powers. Detecting peaks in the SRCP image, 

should thus give an array of probable sound sources. Selecting highest magnitude peaks 

from the array should give the sound source locations.

Figure 5.7 shows a SRCP image with two sound sources inside the FOV at known 

locations  marked by red circles.  Two coherent  noise sources are  placed on the room 

walls,  indicated  by cross  marks.  Figure  5.8 shows a  surface  plot  of  the  FOV. Peaks 

corresponding to sound source locations and probable false alarms are pointed out. Figure 

5.9 shows the results of direct peak detection superimposed over the input SRCP image 

of Figure 5.7. In Figure 5.9 true detections are indicated by red circles and false alarms by 

cross marks.
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Figure 5.8. Surface plot of SRCP image in Figure 5.7

Figure 5.7: SRCP image with sound and coherent noise source locations marked.
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To analyze the performance of the algorithm known sound source location information is 

used to  separate  true detections  and false  alarms  from the array of  peak values.  The 

primary drawback of this technique is that there will be a lot of peaks in a SRCP image, 

and hence a lot of detections in each SRCP image. Considering all these peaks will result 

in a higher ROC area. To obtain a more practical result a 1-8 ratio is maintained between 

the target peaks and noise peaks. Thus only the strongest false alarm peaks are considered 

in the experimental computation of the ROC area values. 

The  sequence  of  steps  involved  in  direct  peak  detection  method  can  be 

summarized as 

1. Find the local maxima in the SRCP image.

2. Identify the true detections and false alarms using known sound source location 

information. 
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Figure 5.9: Result of applying direct peak detection method. Detected sound sources 
are marked in red circles and false alarms are marked with crosses.
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3. If the number of false alarms exceed 1-8 ratio, then sort the false alarms according 

to their SRCP value and select the strongest false alarms magnitudes.

4. Compute the ROCA value using true detections and false alarm information.

Table 5.1: Performance of direct peak detection method

Number of 
sources 

inside FOV

ROCA 
values  when 

coherent 
noise sources 
of -25dB are 

used

ROCA 
values when 

coherent 
noise sources 
of -20dB are 

used

ROCA 
values when 

coherent 
noise sources 
of -15dB are 

used

ROCA 
values when 

coherent 
noise sources 
of -10dB are 

used

ROCA 
values when 

coherent 
noise sources 
of -5dB are 

used

1 source 
inside FOV

0.95 0.9 0.63 0.26 0.11

2 sources 
inside FOV

0.93 0.83 0.51 0.28 0.2

3 sources 
inside FOV

0.86 0.71 0.49 0.36 0.26

4 sources 
inside FOV

0.79 0.69 0.46 0.36 0.31

Table  5.1 summarizes the results  obtained using direct peak detection method. 

The experiment is performed varying the number of sound sources inside the FOV and at 

different noise levels in the system.

The results  prove  that  direct  peak detection  has  a  satisfactory performance in 

determining sound source peaks under very low coherent noise conditions. The ROCA 

values are high, which suggests that a random sound source peak selected has a higher 

magnitude compared to a random noise peak inside the FOV.

When SNR of coherent noise sources is increased, the drop in ROCA values for 

this method is very steep. i.e a random sound source peak selected no longer has a higher 

magnitude compared to a random noise peak. For a coherent noise source strength of 

-15dB the ROCA values are around 0.5, which suggests that magnitude of a sound source 
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peak may or may not be greater than the magnitude of a noise peak. Thus this method can 

no longer distinguish sound source peaks and noise peaks.

Table  5.2 summarizes the results obtained using the three SSD techniques. The 

table entries are best case ROCA values obtained during the experiments. Comparing the 

ROCA  values,  it  can  be  observed  that  among  the  3  methods,  SRCP-CED  method 

performed better for different coherent noise levels and number of sound sources. ROCA 

values obtained using direct peak detection method show a drastic drop when the overall 

noise in  the system increases.  Comparatively HTED method and SRCP-CED method 

have higher ROCA values even at high noise conditions.  Thus these two methods are 

more robust to coherent noise present in the system and can better detect a sound source 

present inside the system compared to direct peak detection method.

When  SRCP-CED  method  and  HTED  methods  are  compared,  SRCP-CED 

method  apart  from  having  better  ROCA  values,  is  simple  and  computationally  less 

expensive. Ellipse fitting outlined in section 3.3. is very complex and intensive. 
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Table 5.2: Performance comparison of the 3 SSD methods

Strength of 
coherent noise 
sources

Number of 
sound sources 
inside FOV

ROCA values 
for SSD using 
HTED method

ROCA values 
for SSD using 
SRCP-CED 

method

ROCA values 
for SSD using 

Direct peak 
detection 
method

-25dB

1 0.91 0.97 0.95

2 0.85 0.92 0.93

3 0.75 0.82 0.86

4 0.69 0.76 0.79

-20dB

1 0.83 0.93 0.9

2 0.7 0.84 0.83

3 0.69 0.7 0.71

4 0.62 0.71 0.69

-15dB

1 0.74 0.87 0.63

2 0.73 0.71 0.51

3 0.64 0.71 0.49

4 0.62 0.66 0.46

-10dB

1 0.71 0.77 0.26

2 0.74 0.57 0.28

3 0.61 0.66 0.36

4 0.58 0.62 0.36
 

 5.5.  Conclusion

This chapter introduced and analyzed two SSD algorithms SRCP-CED method and direct 

peak  detection  methods.  Simulation  outlined  in  section 4.2.  is  used  to  test  the 

performance of the algorithm. It was observed that SRCP-CED method gave the best 

performance of all of them. The algorithm is very simple and gave better ROCA values 

compared to the other two techniques.
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Chapter 6.  Conclusion and Future Work

 6.1.  Conclusion

This thesis has introduced a sound source detection algorithm based on Hough transform 

based ellipse detection for detecting sound sources in microphone arrays. The algorithm 

uses Canny edge detection to pre-screen SRCP-PHAT images. The algorithm based on 

pairwise  fitting  of  ellipses  is  robust  against  breakage  of  edge  pixels.  Monte  Carlo 

simulations are carried out and ROCA values are computed to quantify the priority given 

to a sound source peak over a noise peak. The algorithm is tested, varying the number of 

sound sources and noise conditions and results prove that HTED method has done well in 

detecting sound sources. Best performance is achieved for a single sound source inside 

FOV and best case ROCA values for this  case vary between 0.91-0.71. Experimental 

results  prove  that  performance  of  the  algorithm  deteriorates  with  an  increase  in  the 

number of sound sources and coherent  noise level  in  the system. For multiple  sound 

sources best case ROCA values vary between 0.85-0.6.

HTED method while being effective at detecting sound sources, is a very complex 

method.  A simplified  algorithm,  SRCP-CED is  also introduced in this  thesis.  ROCA 

computations prove that SRCP-CED method has out-performed HTED method. Best case 

ROCA values for single sound source are in the range of 0.97-0.77. These values drop 

with an increase in number of sound sources and coherent noise and ROCA values of 

0.92-0.6 are obtained for multiple sound sources.

Performance of  these algorithms  is  compared to  a  straight  forward method  of 

detecting sound sources using SRCP-PHAT called direct peak detection method. This 

method  has  performed  better  than  other  methods  under  very  low  noise  conditions. 

However  as  coherent  noise  in  the  system  increases  noise  peak  magnitudes  become 

comparable to the magnitudes of sound source peaks and the algorithm has performed 

very poorly under high noise conditions. Best case ROCA values fall in the range of 0.6-

0.3 under noisy conditions.  
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 6.2.  Future Work

The primary focus  of  this  thesis  work is  to  investigate  the  performance of  an image 

processing  based  method  to  detect  sound  sources  in  SRCP-PHAT  systems.  The 

simulation specified in [6] is used as the test environment. A perimeter array with eight 

microphones is used for the experiments. A comprehensive performance evaluation can 

be achieved by testing the algorithm on a real-time recording using human speakers and 

practical  noise  sources.  Different  microphone  array  setups,  varying  the  number  of 

microphones and microphone spatial distributions could also be investigated.

PHAT-  is employed to improve sound source detection and a value of 0.75 is 

assigned  to  during  the  simulation  experiments.  Decreasing  the  value  results  in  an 

increase in the mainlobe width, which inturn decreases the resolution of the microphone 

array. A detailed study varying the  value over a range of values can be carried out to 

find out the effect of  on the algorithm performance.   

47



References

[1] Jean-Marc Valin, Francois Michaud, Jean Rouat & Dominic Letourneau, Robust  

sound source Localization using a Microphone Array on a Mobile Robot, in Proceedings 

International Conference on Intelligent Robots and Systems, 2003

[2] Joseph H DiBaise, Harvey F Silverman & Michael S Brandstein, Microphone Arrays 

Signal Processing Techniques and applications : Robust Localization in Reverberant  

Rooms, Springer Publications, pp. 157-180, 2001

[3] Kevin D Donohue, S M Sayed & Jingjing Yu, Constant False Alarm Rate Sound 

Source Detection with Distributed Microphones, University of Kentucky, Lexington, KY, 

USA, 2009

[4] Kevin D Donohue, Jens Hannemann & Henry G Dietz, Performance of Phase 

Transform for Detecting Sound Sources with Microphone Arrays in Reverberant and  

Noisy Environments, Signal Processing, Vol. 87, no.1, pp. 1677-1691, Jan. 2007

[5] Kevin D Donohue, A Agrisoni & J Hanneman, Audio Signal Delay Estimation using  

Partial Whitening, Proc. of the IEEE, Southeastcon, pp. 466-471,  March 2007

[6] Anand Ramamurthy, Harikrishnan Unnikrishnan & Kevin D Donohue, Experimental  

performance Analysis of Sound Source Detection with SRP PHAT, 2009

[7] Arnold Williams, Rodney Meyer, Peter Pachowicz & George Maksymonko, A Robust  

Mine Detection Algorithm for Acoustic and Radar Images, Science Applications 

International Corporation, Arlington, VA, 2000

[8] James A Hanley & Barbara J McNeil, The Meaning and Use of the Area under a  

Receiver Operating Characteristic (ROC) Curve, Radiology, Vol. 143, pp. 29-36, 1982

[9] M Brandstein & D Ward, Microphone Arrays: Robust Adaptive Beamforming - signal  

Processing Techniques and Applications, Springer publications, 2001

48



[10] Michael J Peterson & Chris Kyriakakis, Hybrid algorithm for Robust Real-time 

source Localization in Reverberant Environments, IEEE Transactions on Acoustics, 

Speach and Signal Processing, pp. 1053-1056, 2005

[11] Parham Arabi, The Fusion of Distributed Microphone Arrays for Sound localization, 

EURASIP Journal on Applied Signal Processing, Vol. 4, pp. 338-347, 2003

[12] M Coen, Design Principles for Intelligent Environments, Proceedings of Fifth 

National Conference on Artificial Intelligence, Madison, WI, USA, 1998

[13] L Kinsler, A Frey, A Coppens & J Sanders, Fundamentals of Acoustics, Third 

Edition, John Wiley & sons, 1982

[14] Harikrishnan Unnikrishnan, Auditory Scene Segmentation using Microphone Array 

and Auditory Features, University of Kentucky, Lexington, Ky, USA, 2009

[15] Anand Ramamurthy, Experimental evaluation of Modified Phase Transform for  

Sound Source Detection, University of Kentucky, Lexington, KY,USA, 2007

[16] Kevin D Donohue, Kevin S McReynolds & Anand Ramamurthy, Sound Source 

Detection Threshold Estimation using Negative Coherent Power, IEEE SoutheastCon, 

Huntsville, Alabama, USA, 2008

[17] Mubarak Shah, Fundamentals of Computer Vision : Edge Detection, 1992

[18] Nick Bennett, Robert Burridge & Naoki Saito, A Method to Detect and Characterize  

Ellipses using the Hough Transform, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 21, no. 7, pp. 652-657, July 1999

[19] J Illingworth & J Kittler, A Survey of the Hough Transform, Computer Vision, 

Graphics and Image Processing, Vol. 44, pp. 87-116, October 1988

[20] H K Yuen, J Illingworth & J kittler, Ellipse Detection using The Hough Transform , 

August 1988

49



Vita

Praveen Reddy Nalavolu was born on February 2, 1985 in Shad Nagar, Andhra Pradesh, 

India. The author received his Bachelor of Technology (B. Tech.) degree in Electrical and 

Electronics  Engineering from Jawaharlal  Nehru Technological  University,  Hyderabad, 

India  in  the  year  2006.  The  author  has  enrolled  for  Masters  program  in  Electrical 

Engineering at  University of Kentucky, Lexington in  2007.  He  has been working at 

Center  for  Visualization  and Virtual  Environments  as  a  Graduate student  under   Dr. 

Kevin D. Donohue since February 2009. He is a member of Eta Kappa Nu and UK Solar 

Car Team since 2008. He received National Merit Scholarship from Central Board of 

Secondary  Education,  India  and  Kentucky  Graduate  Scholarship  from  University  of 

Kentucky.

50


	PERFORMANCE ANALYSIS OF SRCP IMAGE BASED SOUND SOURCE DETECTION ALGORITHMS
	Recommended Citation

	Abstract
	Title Page
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Concept of Steered Response Coherent Power with PHAT-β
	 2.1.  Introduction
	 2.2.  Sound Source Localization Strategies
	 2.2.1.  Steered beamformer based locators
	 2.2.2.  High resolution spectral estimation based locators
	 2.2.3.  TDOA based locators

	 2.3.  SRP-PHAT-β

	Chapter 3. Concept of Hough Transform based Ellipse Detection
	 3.1.  Introduction
	 3.2.  Canny Edge Detection
	 3.3.  Ellipse Fitting
	 3.3.1.  Parameterization of the ellipse
	 3.3.2.  Range of λ for which the conic is an ellipse

	 3.4.  Ellipse Center Detection

	Chapter 4. Implementation of Hough Transform based Ellipse Detection
	 4.1.  Introduction
	 4.2.  Simulation Design
	 4.3.  Practical Implementation of SSD using Hough Transform based Ellipse Detection
	 4.4.  Analysis Method
	 4.5.  Results and Discussion
	 4.6.  Conclusion

	Chapter 5. SSD using SRCP- Canny edge detection based method
	 5.1.  Introduction
	 5.2.  SSD using SRCP-Canny edge detection based technique (SRCP-CED)
	 5.3.  Results and Discussion
	 5.4.  SSD using Direct Peak Detection 
	 5.5.  Conclusion

	Chapter 6.  Conclusion and Future Work
	 6.1.  Conclusion
	 6.2.  Future Work

	References
	Vita

