240 research outputs found

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    Bringing Human Robot Interaction towards _Trust and Social Engineering

    Get PDF
    Robots started their journey in books and movies; nowadays, they are becoming an important part of our daily lives: from industrial robots, passing through entertainment robots, and reaching social robotics in fields like healthcare or education. An important aspect of social robotics is the human counterpart, therefore, there is an interaction between the humans and robots. Interactions among humans are often taken for granted as, since children, we learn how to interact with each other. In robotics, this interaction is still very immature, however, critical for a successful incorporation of robots in society. Human robot interaction (HRI) is the domain that works on improving these interactions. HRI encloses many aspects, and a significant one is trust. Trust is the assumption that somebody or something is good and reliable; and it is critical for a developed society. Therefore, in a society where robots can part, the trust they could generate will be essential for cohabitation. A downside of trust is overtrusting an entity; in other words, an insufficient alignment of the projected trust and the expectations of a morally correct behaviour. This effect could negatively influence and damage the interactions between agents. In the case of humans, it is usually exploited by scammers, conmen or social engineers - who take advantage of the people's overtrust in order to manipulate them into performing actions that may not be beneficial for the victims. This thesis tries to shed light on the development of trust towards robots, how this trust could become overtrust and be exploited by social engineering techniques. More precisely, the following experiments have been carried out: (i) Treasure Hunt, in which the robot followed a social engineering framework where it gathered personal information from the participants, improved the trust and rapport with them, and at the end, it exploited that trust manipulating participants into performing a risky action. (ii) Wicked Professor, in which a very human-like robot tried to enforce its authority to make participants obey socially inappropriate requests. Most of the participants realized that the requests were morally wrong, but eventually, they succumbed to the robot'sauthority while holding the robot as morally responsible. (iii) Detective iCub, in which it was evaluated whether the robot could be endowed with the ability to detect when the human partner was lying. Deception detection is an essential skill for social engineers and professionals in the domain of education, healthcare and security. The robot achieved 75% of accuracy in the lie detection. There were also found slight differences in the behaviour exhibited by the participants when interacting with a human or a robot interrogator. Lastly, this thesis approaches the topic of privacy - a fundamental human value. With the integration of robotics and technology in our society, privacy will be affected in ways we are not used. Robots have sensors able to record and gather all kind of data, and it is possible that this information is transmitted via internet without the knowledge of the user. This is an important aspect to consider since a violation in privacy can heavily impact the trust. Summarizing, this thesis shows that robots are able to establish and improve trust during an interaction, to take advantage of overtrust and to misuse it by applying different types of social engineering techniques, such as manipulation and authority. Moreover, robots can be enabled to pick up different human cues to detect deception, which can help both, social engineers and professionals in the human sector. Nevertheless, it is of the utmost importance to make roboticists, programmers, entrepreneurs, lawyers, psychologists, and other sectors involved, aware that social robots can be highly beneficial for humans, but they could also be exploited for malicious purposes

    Haptic Interaction with a Guide Robot in Zero Visibility

    Get PDF
    Search and rescue operations are often undertaken in dark and noisy environment in which rescue team must rely on haptic feedback for exploration and safe exit. However, little attention has been paid specifically to haptic sensitivity in such contexts or the possibility of enhancing communicational proficiency in the haptic mode as a life-preserving measure. The potential of root swarms for search and rescue has been shown by the Guardians project (EU, 2006-2010); however the project also showed the problem of human robot interaction in smoky (non-visibility) and noisy conditions. The REINS project (UK, 2011-2015) focused on human robot interaction in such conditions. This research is a body of work (done as a part of he REINS project) which investigates the haptic interaction of a person wit a guide robot in zero visibility. The thesis firstly reflects upon real world scenarios where people make use of the haptic sense to interact in zero visibility (such as interaction among firefighters and symbiotic relationship between visually impaired people and guide dogs). In addition, it reflects on the sensitivity and trainability of the haptic sense, to be used for the interaction. The thesis presents an analysis and evaluation of the design of a physical interface (Designed by the consortium of the REINS project) connecting the human and the robotic guide in poor visibility conditions. Finally, it lays a foundation for the design of test cases to evaluate human robot haptic interaction, taking into consideration the two aspects of the interaction, namely locomotion guidance and environmental exploration

    Agent planning, models, virtual haptic computing, and visual ontology

    Get PDF
    The paper is a basis for multiagent visual computing with the Morph Gentzen logic. A basis to VR computing, computational illusion, and virtual ontology is presented. The IM_BID model is introduced for planning, spatial computing, and visual ontology. Visual intelligent objects are applied with virtual intelligent trees to carry on visual planning. New KR techniques are presented with generic diagrams and appllied to define computable models. The IM Morph Gentzen Logic for computing for multimedia are new projects with important computing applications. The basic principles are a mathematical logic where a Gentzen or natural deduction systems is defined by taking arbitrary structures and multimedia objects coded by diagram functions.The techniques can be applied to arbitrary structures definable by infinitary languages. Multimedia objects are viewed as syntactic objects defined by functions, to which the deductive system is applied.Applications in Artificial Intelligence - AgentsRed de Universidades con Carreras en Informática (RedUNCI

    Agent planning, models, virtual haptic computing, and visual ontology

    Get PDF
    The paper is a basis for multiagent visual computing with the Morph Gentzen logic. A basis to VR computing, computational illusion, and virtual ontology is presented. The IM_BID model is introduced for planning, spatial computing, and visual ontology. Visual intelligent objects are applied with virtual intelligent trees to carry on visual planning. New KR techniques are presented with generic diagrams and appllied to define computable models. The IM Morph Gentzen Logic for computing for multimedia are new projects with important computing applications. The basic principles are a mathematical logic where a Gentzen or natural deduction systems is defined by taking arbitrary structures and multimedia objects coded by diagram functions.The techniques can be applied to arbitrary structures definable by infinitary languages. Multimedia objects are viewed as syntactic objects defined by functions, to which the deductive system is applied.Applications in Artificial Intelligence - AgentsRed de Universidades con Carreras en Informática (RedUNCI

    Task-level control for networked telerobotics

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996.Includes bibliographical references (p. 83-85).by Kevin M. O'Brien.M.S

    Talking to Boxes, Hugging Robots

    Get PDF
    Relationships between humans and technology are at the core of my artistic research. Human-machine communication is defined by the technological level of the machines, but even more so by the way they are perceived by humans. Concepts of artificial life and artificial intelligence gradually have become part of the everyday life of growing numbers of people, and while there is an ongoing effort to design an increasingly anthropocentric technology, our minds also adapt to the new technological reality. Through immersive installations and sculptural objects my practice explores this reality. My artwork is designed to communicate with and stimulate the viewers, allowing them to examine their own perception of phenomena such as behavioral algorithms, artificial life and artificial intelligence. Not only does it provide an opportunity of self-analysis, it also facilitates a change in the way people conceptualize communication with machines

    Excuse Me, Something Is Unfair! - Implications of Perceived Fairness of Service Robots

    Get PDF
    Fairness is an important aspect for individuals and teams. This also applies for human-robot interaction (HRI). Especially if intelligent robots provide services to multiple humans, humans may feel treated unfairly by robots. Most work in this area deals with the aspects of fair algorithms, task allocation and decision support. This work focuses on a different, yet little explored perspective, which looks at fairness in HRI from a human-centered perspective in human-robot teams. We present an experiment in which a service robot was responsible for distributing resources among competing team members. We investigated how different strategies of distribution influence the perceived fairness and the perception of the robot. Our study shows that humans might perceive technically efficient algorithms as unfair, especially if humans personally experience negative consequences. This also had negative impact on human perception of the robot, which should be considered in the design of future robots

    Understanding the embodied teacher : nonverbal cues for sociable robot learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (p. 103-107).As robots enter the social environments of our workplaces and homes, it will be important for them to be able to learn from natural human teaching behavior. My research seeks to identify simple, non-verbal cues that human teachers naturally provide that are useful for directing the attention of robot learners. I conducted two novel studies that examined the use of embodied cues in human task learning and teaching behavior. These studies motivated the creation of a novel data-gathering system for capturing teaching and learning interactions at very high spatial and temporal resolutions. Through the studies, I observed a number of salient attention-direction cues, the most promising of which were visual perspective, action timing, and spatial scaffolding. In particular, this thesis argues that spatial scaffolding, in which teachers use their bodies to spatially structure the learning environment to direct the attention of the learner, is a highly valuable cue for robotic learning systems. I constructed a number of learning algorithms to evaluate the utility of the identified cues. I situated these learning algorithms within a large architecture for robot cognition, augmented with novel mechanisms for social attention and visual perspective taking. Finally, I evaluated the performance of these learning algorithms in comparison to human learning data, providing quantitative evidence for the utility of the identified cues. As a secondary contribution, this evaluation process supported the construction of a number of demonstrations of the humanoid robot Leonardo learning in novel ways from natural human teaching behavior.by Matthew Roberts Berlin.Ph.D

    Designing Sound for Social Robots: Advancing Professional Practice through Design Principles

    Full text link
    Sound is one of the core modalities social robots can use to communicate with the humans around them in rich, engaging, and effective ways. While a robot's auditory communication happens predominantly through speech, a growing body of work demonstrates the various ways non-verbal robot sound can affect humans, and researchers have begun to formulate design recommendations that encourage using the medium to its full potential. However, formal strategies for successful robot sound design have so far not emerged, current frameworks and principles are largely untested and no effort has been made to survey creative robot sound design practice. In this dissertation, I combine creative practice, expert interviews, and human-robot interaction studies to advance our understanding of how designers can best ideate, create, and implement robot sound. In a first step, I map out a design space that combines established sound design frameworks with insights from interviews with robot sound design experts. I then systematically traverse this space across three robot sound design explorations, investigating (i) the effect of artificial movement sound on how robots are perceived, (ii) the benefits of applying compositional theory to robot sound design, and (iii) the role and potential of spatially distributed robot sound. Finally, I implement the designs from prior chapters into humanoid robot Diamandini, and deploy it as a case study. Based on a synthesis of the data collection and design practice conducted across the thesis, I argue that the creation of robot sound is best guided by four design perspectives: fiction (sound as a means to convey a narrative), composition (sound as its own separate listening experience), plasticity (sound as something that can vary and adapt over time), and space (spatial distribution of sound as a separate communication channel). The conclusion of the thesis presents these four perspectives and proposes eleven design principles across them which are supported by detailed examples. This work contributes an extensive body of design principles, process models, and techniques providing researchers and designers with new tools to enrich the way robots communicate with humans
    • …
    corecore