
Task-level Control for Networked Telerobotics

by

Kevin M. O'Brien

S.B., Mechanical Engineering, University of California at Berkeley (1994)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 23, 1996

© Massachusetts Institute of Technology, 1996. All Rights Reserved.

A uthol
Mechanical Engineering

May 23, 1996

C ertified by
David Brock, Research Scientist

MIT Artificial Intelligence Laboratory
Thesis Supervisor

~--f- / -,

A ccepted by , ---....
Ain A. Sonin

Mechanical Engineering
Chairperson, Departmental Committee on Graduate Students

OF r'EC iHNOL.OG:Y

JUN 2 71996 Engo

Task-level Control for Networked Telerobotics

by

Kevin M. O'Brien

Submitted to the Department of Mechanical Engineering on May
23, 1996, in partial fulfillment of the requirements for the degree of

Master of Science

Abstract

Telerobotic and networked robotic systems often encounter significant time delays in rela-
tion to their dominant dynamics, which causes well known stability problems. Good con-
trol performance can be achieved through task-level control and by allowing the human
operator's intelligence to guide complex and unpredictable tasks. Supervisory control
techniques were combined with task-level control theory to arrive at task-level supervi-
sory control, a systematic approach to controlling robots under time delays in excess of 40
times their dominant time constants. Guidelines for designing a set of primitive tasks for
various time delays and ranges of actions were presented. Sufficiency and completeness of
the primitive sets along with the logic used to build complex tasks from the sets was dis-
cussed. An application of these guidelines to a real system was made and the results show
effective robot control especially under network latencies, where the bulk of the time
delay occurs in the forward path. Finally, some applications of such a system were pre-
sented.

http://www.ai.mit.edu/projects/webot/robot

Thesis Supervisor: David Brock
Title: Research Scientist, MIT Artificial Intelligence Laboratory

Acknowledgments

Throughout my time as a graduate student, Dave, my adviser, allowed me the freedom to
pursue any ideas that came along, especially the ones such as this thesis, which had an
uncertain direction. I didn't say it often enough then, so I'll say it now. Thanks, Dave. I'd
also like to thank Juliet, who put up with my whining, goofiness, and "free food radar" as if
they were the best personality traits a person could have. Your support kept me going in those
rough times. Thanks, Tom Burbine, for saying things like, "SCREW the thesis," and for telling
me how often you got published and how little you worked. Seriously, I always looked
forward to coming back to Ashdown after a long day's work to hang out and hear all the new
gossip. Benjie, Andy, and Eugene, thanks for allowing me into the "in crowd," even though I
was just a "first-year." Thanks, also, to Tom "Big T" Stahovich, who tried, in vain I regret, to
get me to be a pure researcher and stay out of industry. It was too late for me, my friend.
Thanks to Ron Wicken, who never expected anything in return for his time helping me with
all my hardware problems. Thanks to Darren "Double D" Dang, for asking me to help him
with Matlab, which I actually consider fun. I thank my brother, Pat, who taught me early in
my graduate career to have goals. I didn't have as meany as he has, but I did achieve most of
them, some a little later than others (e.g. this thesis). Finally, I'd like to thank my parents.
They called on Friday nights, hoping that I would, for once, be home when they called, and
then playfully chided me when I was home because I wasn't "out partying." But they
understood my need to work and only gave me advice when I asked for it, allowing me to
learn on my own, which is why, after all, I came to graduate school.

This research was supported under the Loral Systems Company contracts JS-380830-S, for
"Control of Multiple Autonomous Vehicles" and JS-380888-Y, for "All Weather
Semi-automated Forces." I thank Loral profusely and acknowledge thier support for me and
many other graduate students at the MIT AI Lab.

Table Of Contents

1 Introduction .. 15
1.1 Introduction 15
1.2 O verview 16
1.3 O utline... ... 18

2 Control Under Time Delays.. 21
2.1 Introduction .. 2 1
2.2 Robust Stability..22
2.3 Feedback Control with Time delays 22
2.4 Supervisory Control 30
2.5 Time Delay Ranges and Types ... 31

3 Task-level Supervisory Control .. 35
3.1 Introduction 35
3.2 Overview of Task-Level Supervisory Control.............................. 35
3.3 The Goals and The Problems .. 36
3.4 Solution of Task-level Supervisory Control 37
3.5 How To Use the Task Primitive Set 42

4 Implementation of a Task-level Supervisory Controller 45
4.1 Introduction 45
4.2 System Description .. 45
4.3 The Complex Tasks .. 49

5 Analysis and Lessons Learned.. 59
5.1 Introduction 59
5.2 Experiments ... 59
5.3 Performance of the Interaction Set 60
5.4 Other Factors Affecting the Experiments 64

6 Conclusion ... 67
6.1 Introduction 67
6.2 R eview 67
6.3 Contributions ... 70
6.4 Future Work ... 71
6.5 Conclusion ... 74

Appendix Robot system hardware and control.................................. 77
A. 1 Hardware ... 77
A.2 Network..79
A.3 Controller ... 79
A.4 Supervisory Stability 81

R eferences 83

List Of Figures

Figure 2.1: Typical analog feedback loop without explicit time delays. 22
Figure 2.2: Analog feedback loop with explicit pure time delays. 23
Figure 2.3: Shower with time delay. .. 24
Figure 2.4: Block diagram of shower/bather system. 24
Figure 2.5: Simulated results of various model bather behaviors............................ 26
Figure 2.6: Root locus diagrams for the shower bather system. 27
Figure 2.7: Nyquist plots of a typical 2nd order open loop stable system 29
Figure 2.8: Same 2nd order system as above but with a series pure time delay. 30
Figure 2.9: Hypothetical plot of effectiveness of control types............................... 33
Figure 2.10: Schematic diagram of network latencies 34
Figure 3.1: Conceptual diagram of task-level control. 35
Figure 3.2: Task-level supervisory control system block diagram. 36
Figure 3.3: Schematic of the Internet. ... 36
Figure 3.4: Schematic of a task primitive. 37
Figure 3.5: Taxonomy of tasks for executing the interactive actions 38
Figure 3.6: Primitives within the interaction taxonomy. 39
Figure 3.7: Taxonomy of low-level control tasks. 40
Figure 3.8: Primitives within the low-level control taxonomy 41
Figure 3.9: General complex task diagram 43
Figure 4.1: Illustration of system setup...45
Figure 4.2: Picture of robot's environment..46
Figure 4.3: Robotic system hardware and connections .. 46
Figure 4.4: Step responses of the robot from various initial conditions 47
Figure 4.5: Measurements of forward network latency .. 48
Figure 4.6: Measurements of feedback latency. .. 49
Figure 4.7: "Follow-surface" task-level diagram.................................. 50
Figure 4.8: "Find-stiffest-spot" task-level diagram. 50
Figure 4.9: "Map-surface" task-level diagram. ... 51
Figure 4.10: Sensor "query" task-level diagram. .. 51
Figure 4.11: "Moveto" task-level diagram. 52
Figure 4.12: Comparison of three velocity profiles53
Figure 4.13: "Touch" task-level diagram. ... 54
Figure 4.14: 26 Cartesian direction specifiable in "touch" and "stiffness." 55
Figure 4.15: "Stiffness" task-level diagram . .. 56
Figure 4.16: "Follow" task-level diagram. 57
Figure 5.1: How the robot behaved for very soft (left) or irregular surfaces................62
Figure 6.1: The user interface for the task-level supervisory robot controller. 72
Figure 6.3: Predictive simulation and control system. 73
Figure A. 1: Graphical diagram of the robot ... 78
Figure A.2: Low-level controller block diagram. 80
Figure A.3: Default behavior to achieve supervisory stability. 82

this page intentionally left blank

11

List of Tables

Table 5.1: "Find Hardest Spot" task completion times................................... 60
Table 5.2: Primitive execution times and latency ratios 61
Table 5.3: Results of primitive set versatility test................................ 63

Chapter 1

Introduction

1.1 Introduction

Robotic systems used in the presence of long time delays relative to their dominant dynamics can
successfully be controlled using task-level supervisory control techniques. However, significant
issues exist when designing these control schemes. Time delays can vary over a wide range for
one robot, robots may posses varying levels of autonomy and "intelligence", operating environ-
ments may change drastically, and performance requirements can change. User interface design
and robot hardware architecture also are important when designing for supervisory controlled
robots.

One of the keys to solving some of these problems is determining a general set of actions or
tasks for a robot to execute under a supervisory system. This set of actions will vary depending on
exactly how long the time delay is, relative to the speed of the robot itself. The set must be rich
enough so that it can be used to develop more complex and useful tasks, with the addition of some
logic. On the other hand, it can not be so complex that it requires extremely skilled operators to
learn and perform with the robot.

Aside from doing repetitive, accurate work, one of the chief uses of robots is for remote
action, or teleoperation. This use is becoming more and more prevalent because of more harsh
environments to do scientific study in (Yoerger 1991), and because of the increasing cost of plac-
ing and supporting a human in these environments. Also, the use of robots to compliment a
human's actions over distance is being more widely studied (Rosenberg 1993, Funda 1993).
Allowing robots on a computer network to interact with each other, with the environment, and
with their human operators offers a tantalizing research area and a significant increase in the use
of robots in everyday life. The physical displacement of the robot from the operator in these situ-
ations, as well as latency periods in networks, often introduces significant time delays.

Important in most supervisory systems is "to achieve accuracy and reliability of the machine
without sacrificing the cognitive capability and adaptability of the human." (Sheridan 1992). We
would like to retain the human's intelligence and project it to a robot. If that is not allowed, then
intelligent computer algorithms must be relied upon. Even the most sophisticated programs, how-
ever, are still incapable of dealing with the variety of situations a human can (Steels 1989). The
set of tasks given to a robot will be well designed if it allows the human enough freedom to suffi-
ciently vary the actions of the robot.

The purpose of this thesis is to develop some ideas on control of dynamic systems with long
time delays, to provide some results on task-level control for a specific range of time delays, to
present the experimental work used to confirm these results, and to discuss some future applica-
tions of the ideas presented. The thesis will not dwell on other important aspects of supervisory
control systems, such as user interfaces, human physiological and psychological factors, and
robot design. Although all of these are important, there is considerable literature available on
them (Sheridan 1992, see references therein).

1.2 Overview

1.2.1 Supervisory control

The subject of supervisory control was well outlined by Sheridan in 1992 (Sheridan 1992). He
clarified and unified the ideas that had been presented up until then, and he detailed the most use-
ful results. It is an excellent starting point for research into this topic. The main issues discussed in
the book are briefly reviewed here.

The form of a supervisory system is influenced by four main aspects: the robot hardware
architecture, control system, level of automation, and the scope of the work. All are heavily
dependent on the application the robot is to be used for. Deep sea robots certainly have different
forms from warehouse retrieval robots because of the different tasks they perform and the differ-
ent environments in which they operate.

Time delay is another major issue discussed by Sheridan. Time delay's deleterious effects
stem from its destabilization of feedback control loops. These effects have been studied and dealt
with at the analog level to some extent (Oguztireli 1966, Marshall 1979). Early supervisory
designs required users to execute a "move-and-wait" strategy, where they would send a command
to the robot, wait until they received some feedback to check if the robot had performed satisfac-
torily, and send another move-and-wait command based on that determination. The result was
prohibitively slow, but usually successful, task completion.

Most solutions to this problem involve designing higher level tasks which can execute reliably
and would take many of the intermediate steps away from the operator. This is the basis for super-
visory control, and it was inspired by the need for better ways to deal with time delays. Sheridan
states that the delays in control are acceptable as long as the task accomplishes a large enough
portion of the overall goal, the disturbance bandwidth is low, and the supervised (subordinate)
system is trustworthy.

Another effective solution is predictive displays (Noyes 1984, Park 1991, Hirzinger 1993),
which attempt to simulate the response of the system and relay those results to the user. This
would allow decision making based on these simulated experiments, and commands could be
made with higher confidence in their success. This requires the robot's environment to be some-
what controlled, since the simulation knows only what it was programmed with and exogenous
inputs may come from the environment. These systems have become more sophisticated with the
introduction of faster and cheaper computer graphics, and have been shown in (Park 1991) to
decrease reaction times, especially for gross robot motions.

The third main issue discussed by Sheridan is user interface design, of which predictive dis-
plays are a part. Many of the results discussed are empirical, and in general, show that displays
should present only the required information, commands should be in a "natural language" form,
and the operation should not require the operator's full and complete concentration (Sheridan
1983) if it stems from complexity of control.

One element of supervisory systems not extensively discussed by Sheridan is the design of the
tasks a robot is to perform, especially in relation to time delays. Many systems which use tasks
have very generalizable primitive actions (Hirzinger 1993, Watanabe 1993) whose completion
times are well characterized but are not tailored for the specific time delay of the system. It is
these built-in tasks that a robot can perform which are important, and the operators are able to use
their intelligence to decide upon task execution strategies. This is part of the attractiveness of
supervisory control.

The dominant dynamics of the systems relative to the time delay are also important. If the
robot has a time constant on the order of a half a minute, a 2 second delay is insignificant; how-
ever, if the system's time constant is half a second, then a 2 second time delay is overwhelming. In
this thesis, time delays will be considered in this relative fashion. A "long" time delay is long rel-
ative to the systems dynamics.

Sheridan arrived at a number of relevant and strong conclusions. First, despite the existence of
many of the excellent solutions to specific supervisory control problems, the integration of these
solutions into a general theory will require more time. The variety of the supervisory systems
which have been designed and a lack of mathematical basis for designing them are the chief rea-
sons for this.

Second, supervisory control is a good solution for systems with long time delays. Poor initial
results using supervisory control with time delays made this conclusion not as obvious as it
sounds. Considerable experimental work molded the idea into its successful current state.

Finally, Sheridan concluded that supervisory control is a good method of control for all types
of automation systems, even those without significant time delay. Relieving the user of some bur-
densome, tedious, or repetitive work and transferring this to the quicker, more accurate robot is a
goal sought since the inception of automatic systems.

1.2.2 Artificial Intelligence

Automation is at the heart of supervisory control. Plenty of definitions of "automatic" exist.
The basic idea is that a machine which can operate independently of human interaction and make
decisions to achieve tasks is automatic. There is a continuum of levels of automation, from a
garage door opener to the automatic landing system for commercial aircraft.

Machine decision-making is a subset of artificial intelligence (AI). Part of the research deals
with the completion of a task by a machine. Brock (Brock 1993) introduced task-level control. He
showed that a task can be broken down into simpler tasks, which can all be further de-aggregated,
until, at some level, the decisions to be made are intuitive and programmed simply. A program-
ming language-like structure emerged, with the significant difference that logic was built into all
the tasks, and little external logic was required to build the more complex behaviors. Failures
could be traced to a single lower level task, which could be corrected. The tasks all had a standard
architecture, which allowed proofs of convergence and stability, something which supervisory
control has difficulty with. This idea yields stable, fully automatic systems for task completion,
and is general enough to be applied to a wide range of systems.

Important here is the structure of the tasks, and the knowledge built into them. Even the low-
est level tasks required some knowledge about their local environment. Available sensor data
(context), available actuators (actions), and setpoints (goals) were built into the tasks. The gain
here was the generalizability of the control system design using contexts, actions, and goals as
design elements.

The definition of a semi-structured environment was introduced here, as well. It is a useful
concept for telerobotics because guarantees some properties relating a robot's actions to their
results on the environment and the effects of exogenous inputs, especially disturbances, on the
environment. Tasks can be designed which make use of these properties. Stability proofs are pos-
sible because of this concept, so its power should not be overlooked. This thesis will assume
semi-structured environments when presenting task-level control designs.

The work continued with Narasimhan (Narasimhan 1994), who built high performance tasks
by accurately modeling the physics of the robot's environment. The models, and some thought
about planning, led to tasks which were robust to uncertainties. The problem of pushing a block
with static and kinetic friction to precise locations was solved using his techniques. This idea of
having a good physical model available to the controller is known as model based control. It is a
general extension to the Kalman filter so successful for linear feedback control systems.

Looking more deeply into planning, Maes (Maes 1989) arrived at some general results for
fully autonomous systems, especially mobile robots. She found that action selection should be
reactive, fast, goal oriented, and robust. Reactive and fast action selection is tantamount to having
reflexes. Being goal oriented on top of this is a significant problem, solved primarily through heu-
ristic means. Robustification, or insensitivity to uncertainties, can often be solved by more accu-
rate models and by extensive debugging. Supervisory control, and this thesis in particular, seeks
to eliminate some of this complexity in planning by allowing a human operator to perform goal-
oriented planning, and by allowing reactive behavior by both the robot and the operator. This does
not preclude the inclusion of this complexity if it is desired.

Another topic in AI is the autonomous sensing of the robot's environment for use by complex
planning and control algorithms. Eberman (Eberman 1990, 95) used clever signal processing
methods on sensor inputs to deduce environmental properties. It was found that with this more
detailed information, old control algorithms became more reliable and new control algorithms
which relied on this data could be built for better performance. Some of the tasks which a telero-
bot will need are good sensing tasks.

1.3 Outline
This thesis describes one method of controlling systems with a pure time delay. This chapter pre-
sented an introduction to the topic and discussed some points relevant and essential to the thesis,
as well a review of some literature and current research. Chapter two reviews feedback control
with time delays and the problems with this. Some of the common methods of solution to these
problems are presented. This leads to the introduction of the idea of task-level supervisory con-
trol, bringing it into the main thrust of the rest of the thesis. Chapter two closes with a presentation
of various ranges of time delays and the choosing of a specific range which the thesis will be con-
cerned with.

Chapter three goes into the details of task-level supervisory control, discussing what a task is,
and how to build up a set of them which satisfies the requirements laid down in Chapter two.
Issues of intelligence, knowledge bases, and automation are discussed. We concentrate mainly on
the specific time delay range given in Chapter two, but will briefly go over other ranges. Finally,
we present some general examples of how to use the task set for the intended purpose, and some
extensions that can be made to a task set such as default behaviors and default task execution.

Chapter four is a detailed presentation of the application of the principles of Chapter three to a
specific system. It will give a description of the system and why task-level supervisory control is
a good method to control it. Then, the task set will be described, explaining how it was chosen,
and giving specifications for each set. Descriptions of experiments will be given.

Chapter five presents the results of the experiments and a critique of the performance of the
system under the control of the given task set. The performance of both the task set and the sys-
tem as a whole will be reviewed. The results of the experiments are implicit in these discussions.
Finally, an overview of other factors affecting the experiments will be given.

Chapter six concludes with a review of the thesis. Contributions of this thesis are presented
and future work in the area are described, as well as related fields of study and applications.
Finally, concluding remarks close the thesis.

Chapter 2

Control Under Time Delays

2.1 Introduction

The purpose of this chapter is to arrive at a good method to control dynamic systems with long
time delays. A brief review of digital control theory and z-plane analysis will be presented, show-
ing the deleterious effects of time delays in feedback loops, and suggesting that linear feedback
type methods may not be appropriate for long time delays. That leads to the idea of supervisory
control, where we introduce a novel approach, called task-level supervisory control, which relies
on a set of primitive tasks, tailored for a specific time delay range, to be used in a supervisory
manner. The delay ranges are quantified and classified, and the stability of the control system is
discussed.

Time delays in control systems became important when processes under PID control in the
1940's (Ziegler, Nichols 1943) became more complex and latency in manufacturing processes
became more dominant. Ziegler and Nichols' (Ziegler, Nichols 1942) famous PID tuning rules
were often disregarded or significantly altered to compensate for delays. The reduction of gains
seemed the only proper method to control these systems, at the expense of lower performance.
See (Shearer 1990) for a description of PID control and gain modification to compensate for time
delays.

Despite the achievement of an analytical understanding of the problems with time delays, gain
reduction still seemed the only sure solution. With the advent of high-speed microprocessors, it
was realized that the reason for the time delay might be eliminated if local control of a system
could be built. Then, only setpoints would need to be sent over a time delay. This was when
supervisory control became feasible.

Supervisory control systems became important primarily because of the space race which
began in the early 1960's. The Apollo moon missions presented challenges to engineers because
the time of a round trip transmission between the Earth and the Moon was about 3 seconds (Sheri-
dan 1992). If moon-based vehicles and other systems were to be controlled properly from Earth, a
hierarchy of control had to be installed, where an Earth-bound user could send commands and
trust the system to obey satisfactorily.

The need for control under time delays will become more important with the increased inter-
est in flights to Mars and beyond. Also, the meteoric rise in the use of the Internet indicates that
systems which require control with time delay will become widespread. However, old challenges
still exist. Time delays are getting longer, and systems are becoming more complex and more
demanding in performance. A basic understanding of the issues involved will provide some nec-
essary insights.

2.2 Robust Stability

2.2.1 Definitions of stability

Any discussion of control system design requires consideration of stability. We therefore
present here some definitions of stability relevant to this thesis and discuss how they influence
control system design. There will be two types of stability in this work.

Low-level stability will be asymptotic stability: all outputs exponentially progress in time to a
constant value from any initial condition (see Figure 4.4 for an example). Oscillations within the
decay are allowed. It will be applied to local feedback controllers within a supervisory system.

Supervisory stability will denote bounded outputs in time and no limit cycling. Limit cycling
is a phenomenon in nonlinear systems in which a system is stable but not convergent. Low-level
limit cycles such as gear backlash and discretization effects are removed from this definition. This
type of stability is applied to the overall supervisory system.

To achieve supervisory stability a system must first posses low-level stability, which can be
achieved via traditional linear control systems. Supervisory stability is achieved through the logic
built into the tasks and actions to be performed by the robot. This logic, like the low-level control
system, is not unique.

Robust stability, as applied to both types, means that the system is stable even under uncertain
conditions, such as varying mass or blockages to robot paths. It is known that low-level robust
stability can be achieved through analysis of the probable uncertainties (Doyle 1992), and we use
this approach for supervisory stability.

2.3 Feedback Control with Time delays

2.3.1 Block diagram paradigm

A typical analog feedback system consists of a plant, or system to be controlled, and a control-
ler as shown in Figure 2.1. The plant can be separated from its sensors and actuators or all can be
lumped together, depending on which parts are deemed most important by the engineers.

Figure 2.1: Typical analog feedback loop without explicit time delays. This is a
common way of diagramming systems for the study of linear control systems.

Time delays are often present in dynamic systems but are lumped together with the system's
dynamics because they are short compared to those dynamics. For this discussion the time delay

will be explicitly shown. Figure 2.2 shows common places for time delays to enter a system, such
as between the controller and the actuator (actuator delays) and between the sensor and the con-
troller (sensor delays).

Figure 2.2: Analog feedback loop with explicit pure time delays. Common
places for the time delays to enter the system are shown. Systems with time
delays may or may not have multiple sources of delays.

2.3.2 Intuitive example of time delay's effects

Suppose a bather, B, is showering where the pipes are much longer than normal (Figure 2.3),
yielding a time delay of d seconds between control action and sensing of T, the water temperature
at B (Figure 2.4). B's desired water temperature, Tr, can be achieved by the proper setting of the
water control handle between "hot" (130 degF) and "cold" (40 degF). The bather can be modelled
as a simple proportional controller by effecting a temperature change, AT, after an expected delay
of e seconds, where we assume e < d. So AT is given by

AT(n) = K [Tr - T (n)]

* a

* a,

(2.1)

Figure 2.3: Shower with time delay. When the longer pipes are inserted in place
of the short one, a bather who is used to the short pipe will have a difficult time
keeping the shower's temperature stable.

and n is shorthand for time t = (e)(n) seconds, so each n is an e second interval. The dynamics
can be written as a difference equation

T(n+)= T(n-1+)+K[Td-T(n)]
ee + K[W -T(n]

(2.2)

water

Figure 2.4: Block diagram of shower/bather system. The time delay appears here
between the actuator and the plant, which is common in fluid flow systems.

To check this equation for stability it is necessary to only solve the homogenous part of (2.2),
since we are assuming the external input, Td, is constant, and stable linear systems posses
bounded-input bounded-output (BIBO) stability.' This gives

1. A BIBO system yields bounded outputs when bounded inputs are applied. All asymptotically stable lin-
ear systems exhibit this behavior.

1

3
J

J

J

I1

r

JIIrC - - -i/
HMC

T(n+ -T (n-1+d)+KT(n) = 0 (2.3)e e

which is solved is solved with

T(n) = Az n (2.4)

Applying this to eq (2.3) and performing some algebra yields

d -- - 1

zd/e - ze + K = 0 (2.5)

For stability, the roots of (2.5) must lie within the unit circle on the complex plane. Simula-
tions of eq (2.2) are shown in Figure 2.5 for various values of K and e, with a constant pipe delay,
d, of 10 seconds. Td will be 100TF, and the initial temperature will be 50TF.

100

80

LLCD
100

€-,

.Q 80

0.

E 60

Af%

Gain K=0.1

Gain K=0.5

100

Gain K=1

time (sec)

Figure 2.5: Simulated results of various model bather behaviors. Instability
results very easily. Although a bather would probably dampen his or her actions,
automatic systems are frequently not as intelligent.

Root locus diagrams for this system are plotted in Figure 2.6 as the gain, K, varies, for the val-
ues of e in Figure 2.5, along with the actual roots of eq (2.5) for these parameters. All points
inside the unit circle yield a stable system. It would help the reader understand this example by
applying it to oneself, and guess one's reaction if the shower pipes were suddenly lengthened by a
factor of ten or more.

- t I .
I I

I: I -· I I : ·

LI,

.... I - ir -3i..... Ii - , • i- -i
•~ : I I . , I il "' I

I :T7 i -TI i , I:.: I . i i I ," i I : : I "

II~ I

.. I. .i , I -. I ' I :',

II I I : II ii ' •i I - I 'I I .I I -I i Ii i I,: .-I .I I .I

r I I i II I I

I I I ii .
I. .,:. _.......: •·· C · •·· · .· _

- -

Ar :I

I i IL

I.-1
I " • I

I. :. r !. ..

"L . i I. r "L

I :

I ·

r

I ·
1

i.li 1

Gain K=0.5

i -- l

e=5

.. _9 .. .
0.5

C

-0.5

-1
-1 -0.5 0

e=2

1

0.5

0

-0.5

-1
0.5 1 -1 -0.5 0 0.5 1

e=1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Real Axis Real Axis

Figure 2.6: Root locus diagrams for the shower bather system. The circles
denote the roots of eq (2.5) for the gains used in Figure 2.5. As the gains increase,
the roots move away from the x's along the root locus paths. When the paths
cross the unit circle the system is unstable. Note how early the circles leave the
unit circle for e= 1.

2.3.3 Principles of time delays in discrete sampled control systems

For discrete systems like the bather example, events such as actuation and sensing happen at
periodic intervals, and no new control events occur in between these intervals. This is a common
situation in supervisory control systems, where new information or actuation change only after
some latency period, often due to transmission delays. Thus, supervisory systems with time
delays can frequently be thought of as discrete sampled systems.

As seen in the example, slower systems require slower control to achieve adequate responses.
With discrete systems this idea becomes more important, as the latency time is embedded within
the dynamics. Z-plane analysis (Franklin, et al 1990), shows how a difference equation can be
analyzed by examining its characteristic equation, like the one of eq (2.6), an how to achieve sta-
ble systems by moving the roots inside the complex unit circle. The root locus technique used in
Figure 2.6 is a useful tool for this purpose. Note any parameter, not just gain, can be varied to get
a root locus. Figure 2.6 shows how increasing gain always results in instability.

F *.. . *

: E

-.

_ · · · 1
e=10

In discrete systems, better stability is achieved when the expected time delay is nearer to the
actual time delay. This is analogous to the "move and wait" strategy often employed by supervi-
sory systems. Although it is slower, it is much more stable than the more aggressive, "move five
times and wait" strategy (i.e. e = 2, d = 10 in the shower example, see Figure 2.5). It will be
shown that, although the move and wait strategy will still exist in the supervisory control system,
it will be moved to a higher level and can be automated so that certain types of time delays can be
minimized, especially network latencies.

2.3.4 Principles of time delays in continuous systems

Control engineers have long known the destabilizing effects of pure time delays on continu-
ous-time feedback control systems (Franklin, et at 1994). Although not as relevant as the discrete
systems to this thesis, continuous systems still provide some insights into the behavior of systems
with time delays.

Characteristic equations of continuous systems also determine stability, and another way of
analyzing characteristic equations is with a Nyquist plot, which provides, on the same plot, both
gain and phase (time lag) information. A general result from Nyquist (Doyle, 1992) was that the
stability of a closed loop system under negative feedback could be determined from the dynamics
of the open loop system (including zeros). Simply put, if the Nyquist plot of the open loop system
encircled a critical point a number of times depending on the number and placement of poles
(roots of the characteristic equation) and zeros, the system would be unstable under unity feed-
back. Figure 2.7 shows a typical Nyquist plot for an open-loop stable second order system of the
form

1
T (s) = (2.6)

s2 + 2rns + COn

Second order systems are of great importance because many supervisory systems control a
device whose dynamics have been modified, via local control, to behave as a second order sys-
tem.

Typical Nyquist of 2nd order system with varying gains

2ýCYu
C
E

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
Real

Figure 2.7: Nyquist plots of a typical 2nd order open loop stable system. (O= on
= 1. Increasing the gain, K, does not affect the stability, since the critical point
(marked by the x) will never be encircled.

Time delays can be represented in the Laplace domain in terms of gain and phase as

d (s) = eTds (2.7)

Figure 2.8 shows the behavior of the same system as Figure 2.7 but with a pure series (multi-
plicative) time delay according to eq (2.7). The spiraling effect is disastrous for stability since
increasing the open-loop gain always increases the radius of the spiral which, when high enough,
will cause encirclements of the critical point. Again, we see the problems with high gain in time
delayed systems.

0.5

-0.5

-1

-1.5

-2

Nyquist plot of 2nd order system with pure series time delay

/ ,----- ", K=3

/ * K=2
I /

K=1

critical phi

I \ I

/
\ /I

\

-2 -1
Real

Figure 2.8: Same 2nd order system as above but with a series pure time delay.
The spiraling effect is introduced, which, when the gain is increased enough, will
cause the curve to encircle the critical point as shown by the (dotted) plot for
K=3. This implies closed loop unity feedback instability.

Various methods have been used to compensate for time delays in an analog or linear systems
fashion. (OguztiSreli 1966, Marshall 1979) are some good starting points for those interested. The
solutions are valid under some strict assumptions.

The relevant value of most continuous systems is its time constant, t. A general rule of thumb
is that for second order systems, stability can be maintained by a typical feedback system if the
time delay is approximately five times shorter than the dominant time constant of the system.

5T d < Ir (2.8)

In second order systems the dominant (slowest) time constant is most important. This deter-
mines the speed of response of the system. If analysis of a system shows this rule will frequently
be violated, then a supervisory or automated control system should be used. High performance,
which typically comes from high gains, is difficult to achieve from linear systems with long pure
time delays, as shown in the last two sections. Supervisory control is needed.

2.4 Supervisory Control
Supervisory control is a heuristic subject, so much of the discussion in this thesis will be to

convince the reader of the effectiveness of the algorithms presented. There are two criteria to con-
sider when designing a supervisory control system. First, the system must be robustly stable. Sec-
ond, it must meet performance requirements.

r

For supervisory systems, stability is not a well-defined concept. Here we give a condition for
supervisory stability.

Sufficient condition for supervisory stability: Once a supervised
system has returned a value, and no other requests are given, nor
are there any disturbances, a query of that value at any instant will
produce the same value as was returned initially.

This can be justified by noting that if the condition is true, then the system remains at the state
which was present after the value was returned; the state is bounded and not limit- cycling. This
means that after each task a supervised system performs, the system should come to rest or to an
unchanging steady state, and should be able to return a statement of its completeness to the
requesting agent. This statement often will be a description of the final state of the system after
completing the task. A return value from a task is necessary but not sufficient for stability.

(Yoerger, 1991) describes an unmanned underwater vehicle which maintains a desired course
in the face of changing currents. A return value might be the course error, which would go to a
steady state and then, under disturbance-free action, would remain there until a new course was
specified. This is system has supervisory stability.

To meet performance requirements, the supervisory control system is designed so that it can
make use of the system's hardware to complete the required tasks, assuming this hardware is
capable of meeting the performance requirements. It is the operator's responsibility to use the
control system properly to meet the requirements, which could include success rates, task comple-
tion speed, and disturbance rejection. During the design procedure, comparisons of measured and
required performance determine if either the requirements are too strict or the control system can
be improved. Robust performance implies that the requirements are met even under uncertain
conditions such as variable time delays or changing environmental conditions or robot parame-
ters. In many cases, increased operator experience implies increased performance robustness.

2.5 Time Delay Ranges and Types
The range of time delays acceptable for a given system is determined from its dynamics; slower
systems can tolerate longer time delays. The ranges can be roughly broken down into three main
categories: short, midrange and long time delays.

2.5.1 Short time delays

Short time delays satisfy the requirement of eq (2.8). This delay can be added to the time con-
stant of the system, and the resulting dynamics analyzed accordingly. Low level robust stability
and performance can be achieved under these conditions through typical feedback control, and
setpoints can be sent to this controller from any source at any desired rate. The shorter the time
delay the faster the system's response will be.

2.5.2 Midrange time delays

Midrange time delays satisfy

< Td < 10T (2.9)

When the delay is approximately 10 times the time constant, digital control theory starts to tell
us that traditional feedback controllers will often be unstable and can not meet even the weakest
performance requirements. It is a risky endeavor to attempt stabilization of these systems, since
even a small variation in time delay or gain can cause instability, as seen in Figure 2.8.

These types of systems are often studied on a case by case basis. More often than not, a super-
visory scheme is employed, mostly to guarantee stability, since disturbances and parametric
uncertainties are too large to design a robust feedback control system.

2.5.3 Long time delays

Long time delays are those given by

Td > 10t (2.10)

These delays require some sort of supervisory or task-level control to achieve satisfactory per-
formance from the system. As the time delay increases, the control system needs more automation
because the robot must perform actions longer without user input; it must make more of its own
decisions while waiting for this input. If the robot finishes a task with a significant portion of the
time delay remaining, unacceptable task completion rates result. Figure 2.9 presents a conceptual,
hypothetical plot of what types of control may be best suited for a particular range of time delays.
This plot is not the result of data, but merely a conceptual tool for illustrating the idea of this sec-
tion. The term "effectiveness" is an equal measure of successful task completion, waiting period
between each task, versatility of the control system, and the controller's level of complexity.

a)

Qa)

o
0 me(a)
0

0
U

normalized time delay (Td/T)

Figure 2.9: Hypothetical plot of effectiveness of control types over varying time
delays. Note that pure feedback control is the only type of control that is com-
pletely ineffective over some range.

2.5.4 Types of time delays

Communication, computational, or mass transport delays are the most common types. Com-
munications delays are the most prevalent in telerobotics and networks. Latency delays, fre-
quently found on the Internet, can also appear in telerobotic systems, where a serving computer
can not respond quickly. It is a waiting period before the request for robot action is processed.
Most of the time delay in network latencies occurs in the forward path. Feedback of results is
faster and decisions on the next required task can be made more quickly. With a pure transmission
delay, feedback usually requires the same amount of time as forward requests. See Figure 2.10 for
a diagram. This becomes important when using primitive task sets because required tasks differ
depending on when they are executed in relation to the previous task. The experimental work in
this thesis deals heavily with latencies.

transmission
delay

operatorl " robot
transmission

uelay

Figure 2.10: Schematic diagram of network latencies versus normal communica-
tions delays. The bulk of the time delay for network latencies (left) occurs in the
forward, or requesting, path, whereas delays for typical communications (right)
is spread evenly between forward and feedback paths.

Network delays can also vary significantly, especially those on the Internet, where network loads
depend on user traffic and available computational resources.

Chapter 3

Task-level Supervisory Control

3.1 Introduction
The purpose of this chapter is to explain task-level supervisory control and to apply it to a real
system. Section 3.2 gives a brief overview of task-level supervisory control as applied to our sys-
tem. Section 3.3 states the control problems in the system and outlines the our desired goals. Sec-
tion 3.4 presents the solution we used, task-level supervisory control, introducing the idea of task
primitives, and designing a set of these for application to the system. Here we also discuss the suf-
ficiency of the solution and how primitives are used. Finally, section 3.5 presents a brief general
example of how the complex tasks are built and structured.

The work described here is an attempt to combine the long standing application history of
supervisory control with the advanced theory of task-level control to achieve a well-designed con-
trol system.

3.2 Overview of Task-Level Supervisory Control
Task-level control theory decomposes complex objectives into simpler tasks until the they are
easily implemented. Specific and limited knowledge of the environment is given to each task,
which acts upon sensor input with actuator output based on this knowledge and the rules given to
the task. They can be made fault tolerant and disturbance rejecting. This has been shown to be an
effective control method for complex task automation (Brock 1993). See Figure 3.1 for a concep-
tual diagram of task-level control.

lowest level

nigni

LTas

Tsk

S~k

Figure 3.1: Conceptual diagram of task-level control. A task is decomposed into
simpler tasks, which are further decomposed until each task is easily imple-
mented.

This type of control system works well in structured and so-called semi-structured environ-
ments, where parts of the environment have guaranteed properties (Narasimhan 1994). However,
in completely unstructured environments, this knowledge is ambiguous, so the reliability of the
tasks built around it is suspect.

Task-level control was first used to make a fully automatic system, and although successful,
the environment was highly structured. Supervision and intervention by a human would provide
the advantages of on-line fault correction and debugging, and would relax the amount of structure
needed in the environment, since a human supervisor could anticipate and account for many
unexpected situations. For the case we are considering in this thesis, these advantages outweigh
the disadvantages of possibly slow supervisors, complex controller-supervisor interaction and the
actual physical need of a supervisor.

Figure 3.2 shows a diagram of a typical task-level supervisory control system where a robot is
being controlled. This is nearly identical to the feedback control block diagram of Figure 2.1, with
the inclusion of the controlling agent, which could be a human or a computer program, or some
combination of both. This agent makes the system supervisory. The controller of Figure 2.1 is
replaced by a task-level controller, which makes this system a task-level control system.

desired

Figure 3.2: Task-level supervisory control system block diagram. The difference
between this and a typical feedback control block diagram is the inclusion of a
controlling agent and the replacement of the controller with a task-level control-
ler. Note that the feedback is given to the agent in both processed and raw form.

3.3 The Goals and The Problems
The main goal of this research was to control an articulated robot over the standard Internet com-
puter network. See Figure 3.3 for a schematic drawing of the Internet. The clients request an
action from a server, which executes the action and returns a resulting response of data. Our robot
would be on one of the servers, as shown, and the operator on a client.

Figure 3.3: Schematic of the Internet. Server computers execute actions
requested from client computers and return resulting data. Our robot would be on
a server, and an operator on a client.

Most of the tools available for accomplishing tasks over the Internet deal with data, and little
with physical systems. The primary problem is the long time delays due to server latencies and
transmission times. As shown in Chapter 2, time delays are disastrous for the kind of real-time
control needed for a robot. We must find a solution which can control a robot under long time
delays and allow a rich set of tasks to be performed.

We want the robot to interact with the environment. Therefore, the controller should allow (1)
arbitrary motions within the robot's workspace and, and it should allow (2) execution and record-
ing of contact events.

3.4 Solution of Task-level Supervisory Control
To achieve the set of actions described above over the a network with long time delays, we used a
task-level supervisory control system. We built a set of task primitives (or simply primitives)
which, when combined with the appropriate logic, allow the motion and contact actions over
these long time delays.

3.4.1 Basics of a primitive

A task primitive, shown schematically in Figure 3.4, takes an input, executes an action based
on the input, and returns an output indicative of the action's results.

Figure 3.4: Schematic of a task primitive. There is a strict sequential architecture
to the primitive. Also, outputs can easily be stored for later use. The robot action
is an entity unto itself which may request other primitives.

We chose as input a list of floating point numbers. They were interpreted symbolically (i.e.
symbolic values were represented as numbers), or literally. The size of the input list varied
according to the bandwidth available to pass data to the primitive and the number of inputs
needed. The output is also a list symbolic or literal of floating point numbers, which represented
the results of the action completed. The size of the list was just large enough to return the neces-
sary data, regardless of bandwidth. The action respected the time delay present in the system,
which was assumed known to within ten percent. Completion times much longer than a time
delay period, Td, indicate the action was probably too complex and could have been decomposed
into simpler, faster actions. Completion times much less than Td indicated the action could have
been combined with other primitives.

3.4.2 Success criterion for a primitive

During our design of primitives we determined their success using the criterion of determinis-
tic completion times. Sever executions of a primitive given the same input and starting from the
same initial conditions should return the same output in the same amount of time. The environ-
ment is also part of the initial conditions. There may exits environmental disturbances which

change the completion time and output of the primitive. We called a primitive successful if there
was a deterministic between a given disturbance and the primitive's output and completion time.
A primitive was not successful if it's completion times or output changed under the same condi-
tions. This can be called repeatability.

There are other criteria, such as positioning repeatability and accuracy (Wolovich 1987),
which deal with the performance of the primitives. However, poorly repeatable motions do not
imply the primitive which executes the motions is unsuccessful.

3.4.3 Common errors in primitive execution

Regardless of the work debugging a primitive, it is generally accepted that no real-time con-
trol program can be perfect, since it always faces unpredictable situations during application
(Auslander 1990). Some common errors are given below.

1. Nonsensical inputs. Each primitive should check the inputs and return an error if the inputs
are not within the allowable set. For example, inputs may require the robot to move beyond its
working volume.

2. Limit cycling. Oscillations about the goal state are often caused by tolerances which are
too strict for the robot to meet with the available sensors and actuators. The phenomenon of
"hunting" due to discretization effects is an example.

3. Network loss. A failed network may be indicated by a much longer time delay compared to
recent ones. A primitive should not depend on the network for this reason. It should complete the
primitive regardless of network loss.

3.4.4 Generalized interaction task taxonomy

The set of primitives needed to achieve the two general actions given in section 3.3 can be
generalized into three categories: perception of the robot and its environment, maintenance of
spatial relationships between the robot and the environment, and maintenance of force relation-
ships between the robot and objects in its environment. Figure 3.5 shows this taxonomy.

Figure 3.5: Taxonomy of tasks for executing the interactive actions of arbitrary
motion and execution of contact events. These can be built into the general set of
environmentally interactive actions, under time delays much greater than the
time constant (C) of the mechanism.

Perception allows the acquisition of environmental information and places the robot in a con-
text. This context is basically a set of variables that defines the robot's state within the environ-
ment, and helps the robot decide its next action. The maintenance of spatial relationships allows
the robot to place itself in a specific context, and to prepare itself for subsequent actions. Mainte-
nance of force relationships allows direct interaction (contact) with the environment, and may
also affect the robot's context. Thus, this taxonomy is complete for contact based interaction
tasks with time delays much greater than the time constant of the robot, because it allows the
robot to sense, react to, and affect its context via contact interactions, without requiring any rates
of action.

3.4.5 Specific primitive set for the interaction taxonomy

We arrived at five specific primitives which can be used to build up the interaction taxonomy
described in the previous section. Figure 3.6 shows how the primitives fit within the taxonomy.

spatial force
perception relationships relationships

query
stiffness

Figure 3.6: Primitives within the interaction taxonomy.

Perception contains the sensor query and stiffness primitives. For query, inputs are symbolic,
indicating which internal sensor is to be checked and how the data is to be processed. The action
queries the sensors and processes the data, and the output is the result.

The stiffness primitive takes desired Cartesian direction as input. The action moves the robot
endpoint in that direction, and measures the stiffness of the first contacted surface. The output is
this stiffness and the contact point.

Spatial relationships contain the moveto primitive. Inputs are a desired position and a symbol
representing the type of move to be made. The action is the robot moving at some rate (which
could also be in the input) to the specified point. The output is the final position of the robot in
terms of the input. The type of motion could be along a straight spatial line, or along a straight line
in joint space, or in an arc,. etc. The desired position can be specified in angles or Cartesian posi-
tion, and the output will return either angles or Cartesian position, respectively.

Force relationships consist of the primitive touch. The input is a desired direction in Cartesian
space, the action is the movement of the robot endpoint in that direction until a surface is touched.
The output is the position of the contact point.

The primitive follow could be classified as either a spatial relationship or a force relationship,
depending on how it is applied. Its inputs are a desired direction and a desired force, perpendicu-
lar to that direction. The action moves the robot in that direction while attempting to apply a con-
stant force in the desired direction of motion. The output is currently undefined, but could be
extreme positions along the direction. For simplicity we restricted motions to the x-y plane in the
robot's coordinate frame and the force in the negative z (down) direction, and the output was

made to be the greatest and least z values during the motion. The motion stopped after a time-out
period or when the robot reached its kinematic limits.

3.4.6 Generalized low-level control task taxonomy

The system also requires low-level control and sensor actions for robot position servoing. The
control computer's interface to the robot hardware is specialized electronic hardware which
accepts requests and returns data. The delay for a request is comparable to the time required for
the hardware to complete the requests. Thus, we also use a task-level control system for this pur-
pose. The set of actions we wish to achieve provides all low-level PID feedback control functions.
The tasks can again be grouped into categories, which are analogs of signals found on a feedback
control block diagram (Figure 2.1). They are sensing, reference, and control. See Figure 3.7 for a
taxonomy diagram.

Figure 3.7: Taxonomy of low-level control tasks. These tasks make up the set of
needed for low-level control of a 3 DOF robot with IDE bus time delays.

Sensing allows measurements of the robot's state, which is required for determination of the
control action. In our case, position measurements are the goal. Reference allows programmable
inputs (setpoint) for direct control of the robot. The setpoint is compared to the measured state,
and the error between them dictates the aggressiveness of the control action. Control allows the
robot's state to be influenced so that it can force this error toward zero. This taxonomy is complete
for low-level PID control action because it allows input, measurement and control signals to be
generated, which is all that is required of a PID controller.

3.4.7 Specific primitive set for the low-level control taxonomy

We built seven low-level control primitives useful in a variety of situations for a robot under
PID control with only encoders for position sensing and IDE bus time delays. Figure 3.8 shows
which categories of the taxonomy each primitive fits into.

sensing reference control

encoders-to-angles set-encoder-refs update-PID-signal

angles-to-position angles-to-encoders turn-off-motors
position-to-angles

Figure 3.8: Primitives within the low-level control taxonomy

Sensing is made up of the following primitives:
1. Encoder-to-angles (encoder query) - Input was irrelevant, action measured the robot

encoders and converted the value to robot joint angles, and output was these joint angles (any
units).

2. Angles-to-position (forward kinematics) - Input was a full set of angles, the action calcu-
lated the robot's endpoint when the robot's angles were configured this way, and the output was
this position in Cartesian coordinates in the robot's global reference frame (in any units desired).

Reference includes the following primitives:
1. Set-encoder-refs - input was a list of encoder values, the action set these values to the cur-

rent controller setpoint, and the output was irrelevant
2. Angles-to-encoders - Input was a full set of joint angles, the action converted these angles

into corresponding encoder values, and the output was a list of these encoder values.
3. Position-to-angles (inverse kinematics) - Input was a Cartesian (x, y, z) position, the action

computed a set of robot angles which will yield this position1 , and the output was this set of
angles.

Control consists of the following primitives
1. Update-PID-signal - Input was irrelevant, the action computed, based on current position

and setpoint, the control signal using a PID algorithm (see appendix) and sent this signal to the
appropriate hardware, and the output was also irrelevant. The action also updated certain control
states, such as the integrator sum.

2. Thrn-off-motors - Input and output were irrelevant, and the action forced all motor cur-
rents to zero, thereby effectively turning off all the robot's motors.

3.4.8 Logic with which to build complex tasks

The existence of a set of primitives, like those defined above, is not sufficient to build auto-
mated complex tasks. Some form of logic or "glue" to build these task is required. Finite state
machine logic is used. This has memory and state (or variable) assignment functions to store data
calculate with it, and it allows if-then-else logic and looping constructs. Memory is necessary
because primitive execution depends on previous results. If-then-else logic is necessary to test
remembered states (or variables) to determine the next primitive. Looping constructs are neces-
sary when continuous operation is required. Loops allow the task to return to a previous state.

1. This set is often not unique in robotics. Care must be taken to ensure the desired set is calculated.

3.4.9 Sufficiency of the "language"

How do we know that the primitive set and the logic described are sufficient to achieve the
desired goals? Meeting performance requirements is a good indicator of sufficiency, but requires
possibly costly testing. We can also check if each category in a taxonomy contains the primitives
required to fulfill the category's purpose. Once this is established, the logic should allow the exe-
cution of any primitive, in any order, for any length of time. Note this is not a strict rule but a gen-
eral guideline for determining if the language available to a task designer is sufficient to design a
rich set of tasks.

The interaction primitive set is sufficient for, point-to-point, contact based tasks over a net-
work with large time delays. It allows perception of stiffness at discrete contact points, spatial
motion to discrete points, and both discrete and continuous force interaction events. The logic is
sufficient because it allows a continuous arbitrary execution order of these primitives. Together,
these give a sufficient language with which to build a set of complex tasks to perform the environ-
mental interaction we desired.

The low-level control primitive set is sufficient because it allows the generation of all the sig-
nals seen for PID feedback control: reference, control, and measurement. Many control block dia-
grams also include noise, which our set does not account for, and hence the primitive set is not
sufficient to handle noise in low-level control. A "filter" category would include control and noise
attenuation primitives.

3.5 How To Use the Task Primitive Set

3.5.1 User level versus automatic interaction

The primitive task set can be thought of as a high-level robot programming language specific
to the robot being used. Users can execute the primitives one at a time or use their own intelli-
gence rather than the available logic to decide upon an execution strategy and inputs. This is full
supervisory control, and is robust to disturbances and unexpected situations. However, humans
have their own time constants and can not execute primitives which require millisecond or less
reaction times, (such as low-level feedback control), or actions which take several hours of con-
centration, so automation must be employed, which makes use of the finite state logic. Significant
speedups result because the computer can often calculate faster and the entire logical sequence or
program can be given to the computer over the time-delayed path, thus eliminating the delay after
one time across the network.

3.5.2 Construction of automated complex tasks

An abstract schematic of a complex task built from primitives is shown in Figure 3.7. The
boxes are the execution of primitives, the ovals are assignment statements, branches in a path are
logical decisions (labelled with its logical condition), and paths which return to a previously exe-
cuted function (primitive or assignment) are loops, shown as dash-dot lines. The => symbol
(pointing into or out of the object as appropriate) indicates an input to our output from a primitive
or assignment, and can come from or go to anywhere since memory is allowed.

begin

exit

Figure 3.9: General complex task diagram. Each primitive is constructed from a
lower-level set of primitives. Inputs to the primitives (designated by =>) can
come from any source since the logic allows memory and assignment, and out-
puts(=> pointing out) can go to any variable.

Several complex tasks can be built and executed as primitives from a higher level control system.
This is the basis and attractiveness of task-level control. At many levels the tasks may be suitable
for human operators to execute, providing supervisory control, yielding a task-level supervisory
control system which can be built for an individual system. In our case, this range is the set of 3
degree-of-freedom articulated robots with only encoders for sensors and controlled over Internet
length time delays. This is the design we set out to achieve. The low-level control primitive set,
however, covers the range of all encoder based PID feedback controlled robots with IDE bus level
time delays.

r' "'

Chapter 4

Implementation of a Task-level Supervisory Controller

4.1 Introduction
The purpose of this chapter is to present the implementation of a task-level supervisory con-

troller based on the design principles discussed in Chapter 3. We start by briefly describing the
physical system to be controlled and characterizing it in terms of its dynamics and time delays.
We then describe the details of the primitive sets outlined in Chapter 3, showing the task-level
construction of each. This allows the generality of task-level control to be shown. We also
describe some of the practical issues involved with building the tasks, such as how to make tasks
which allow a human user to efficiently execute complex robot actions.

4.2 System Description
The system we are controlling is shown in Figures 4.1, 4.2, and 4.3 as an illustration, photograph,
and diagram, respectively. The robot is connected to a computer which performs control and is in
turn connected to another computer which accepts requests over the network. See the appendix
for a detailed description of the robot's hardware and control system, the computers used, and
how the network was hooked into the system. (Note that two computers are not necessary, but
because one of the computers was running under a non-multitasking operating system, the use of
two computers allowed greater programming freedom and removed some concern about network
interfacing.)

-_*r I-,

I~p I%~
'I I

Task-level Low-level robot and
controller controller environment

Figure 4.1: Illustration of system setup. The robot is controlled directly by a con-
trol computer, and the control computer is controlled directly by a task-level con-
trol computer which also accepts network requests.

I I~S~B~IB~B~~

Figure 4.2: Picture of robot's environment with the robot positioned in a typical
configuration. The surface is compliant and has local stiffness anomalies, which
is meant to simulated a human chest.

Task-level
Controller " Robot" ---

-------------- control
standard : network interface :task: low-level control signal encoder
network computer & task r computer & processor in'YP' robot dutput
connectqns interpreter of primitives. hardwIutpot

Robot Hardware

Figure 4.3: Robotic system hardware and connections including the network
connection points. The network is a standard Ethernet Local Area Network with
the common protocols and Unix based file sharing.

4.2.1 The environment

The robot's environment is meant to simulate a telemedical application. The surface (see Fig-
ure 4.2) is compliant and has local stiffness anomalies as might a portion of a human chest. The
robot interacts with this environment through contact with the surface at arbitrary locations. The
controller will allow this interaction under long time delays. Disturbances come in the form of
blockages to a path or from possibly moving surfaces, but the disturbance bandwidth is very low,
much lower than the time delay bandwidth. This environment can be considered semi-structured
because the surface remains grossly fixed relative to the robot and arbitrary motions of objects
occur infrequently and can be anticipated in advance.

4.2.2 System characterization

The closed loop low-level controller was tuned until a good response was achieved. Figure 4.4
shows some step responses on each of the three controlled joint axes. From these, the longest
closed loop time constant was measured to be approximately 0.13 seconds.

r := 0.13s (4.1)

Step response on all three robot joints

2 4 6 8

Step response on all three robot joints

10

10 degrees
5

0
0.5 1

"40

.9 20
o)E•
(-

2 4 6 8

60

40
50 degrees

20

0
0.5

0 2 4 6 8 0 1 2 3
time (sec) time (sec)

Figure 4.4: Step responses of the robot from various initial conditions on all joint
angles. The time constants were measured from these and the longest one taken

"10
a,

5

C-

.
._ i !

..

to be the system time constant. Notice the zero steady-state errors and lack of
overshoot desirable in a robotic system.

Several measurements of the network latency were performed. Figures 4.5 and 4.6 show the
results of these measurements. Forward latency, Lf, is the total time from when a request is made
until the robot receives the request, and feedback latency, L, is the time from when a primitive is
completed until feedback is displayed to the user. Total network latency, Ln, is given by

Ln = Lf+ Lr (4.2)

which is the total round trip time for a primitive minus the task completion time. The figures show
that forward latency is longer and less deterministic than feedback latency. Connection delays, a
large part of forward latency, depend on network and server loads which can be viewed as sto-
chastic processes. Refer to Figure 2.10 as a review of connection delays.

Gaussian PDF of total forward latency data
0.25

0.2

0.15

.0

0.1

0.05

n
1 2 3 4 5 6 7 8 9 10 11

latency (sec)

Figure 4.5: Measurements of forward network latency over a period of several
days at various times in the day. The solid curve is the Gaussian distribution con-
sistent with the data; the x's represent actual measurements of total forward
latency. Periods of network breakdown were removed from the data. The large
standard deviation comes from the variable network traffic and server loads
occurring on the system.

The average values of the latency measurements are

Lf = 3.85 ± 1.88s (4.3)

Lr = 2.60 ± 0.66s (4.4)

which yields a total network latency of

x's represent actual data points (letency measurements)

mean = 3.8o sec

standard deviation = 1.88 sec

L = 6.45 ± 2.54sn

Together with eq. (4.1) this implies

Ln = Td = 50(.

Gaussian PDF of feedback latency

latency (sec)

Figure 4.6: Measurements of feedback latency. Notice the smaller standard devi-
ation than the forward latency. Feedback latency was primarily a computational
delay, with only a small dependency on network traffic. Much of the variation is
due to measurement errors.

This is well into the long range discussed in section 2.5.3 so a task-level control system is
needed for this robot over this network.

Although we could not explicitly measure the time constant or delays present in the low-level
computer-robot interface present in the IDE bus and control hardware, we concluded that task-
level control was useful for this phase because the specialized hardware lent itself well to specific
tasks, and the delays and time constants were both derived from the same source, transistor logic
gate switching times, so their values were assumed to be approximately equal.

4.3 The Complex Tasks

4.3.1 The interaction tasks

We built three complex interaction tasks for use by Internet clients: "follow-surface", "find-
stiffest-spot", and "map-surface." "Follow-surface" has the robot touch the surface directly below
the endpoint and follow that surface along a line projected onto the X-Y plane, applying a nearly
constant force in the negative Z direction. The direction of the line (the input) is any of the seven

(4.5)

(4.6)

direction specified by x=-1, 0, or 1 and y = -1, 0, or 1. That is, it can move directly along an axis
or along a 450 line in any quadrant. x = 0, y = 0 is no motion and is invalid input. Motion stops
when the robot's position is out of its allowable range. The output is the lowest and highest spots
recorded during the move. The diagram is given in Figure 4.7.

begin follow • exit
II
V

output

Figure 4.7: "Follow-surface" task-level diagram.

"Find-stiffest-spot" systematically probes the surface at prespecified increments and moves
the robot over the stiffest spot found. The range of the search is the same as that used for "follow-
surface." The input is the search start position, and the output is the X-Y location of the spot and
its measured stiffness. The task-level diagram is shown in Figure 4.8

input
II
V

st, pos

next
II
V

next

pos

exit

Figure 4.8: "Find-stiffest-spot" task-level diagram.

"Map-surface" is identical to "find-stiffest-spot" except it replaces the stiffness measurement
with a "touch" and records the position of each touch. The output here is large, a collection of
three dimensional data points, and is most efficiently stored in a data file which can be passed
back to the calling agent as requested. Figure 4.9 shows the task-level diagram

input
I I
v

begin <= next

exit

Figure 4.9: "Map-surface" task-level diagram. Note the similarity between this
task and the "find-stiffest-spot" task.

4.3.2 Low-level control tasks (task-level implementation of the interaction primitive set)

The low-level control (complex) tasks, which make up the interaction primitive set, were
specified in Chapter 3. Here we give the details of their task-level implementation and some prac-
tical issues. Note in the following diagrams that all the primitives are taken from the set given in
section 3.4.5., but the "language" is identical in all other respects. All error output arguments are
symbolic.

The sensor "query" task (or primitive), shown in Figure 4.10, is a short sequence of primi-
tives.

output
input : A

=>output

Figure 4.10: Sensor "query" task-level diagram. It is just a simple sequence of
primitives.

The "moveto" primitive, shown in Figure 4.11, can have several variations. The most com-
mon is robot trajectory. This enters into the computation of reference values in the figure. Shown
is the simple "moveto," which moves each angle at some speed, thus incrementing the reference
angle by a given amount on each loop. To move the robot endpoint along a straight line, one
would first compute the speeds needed for each Cartesian direction based on their respective dis-
tances to the goal point, then increment a reference position by these amounts, and use the inverse
kinematics to get the reference angles. Straight line motion implies that the robot may pass
through a kinematic singularity, so caution must be exercised when performing this task. Also,

various velocity profiles can be used to achieve better completion times at the expense of
increased task complexity and robot fatigue. Some example velocity profiles are shown in Figure
4.12. Generally, we might simply like to specify the speed of the move.

begin

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Figure 4.11: "Moveto" task-level diagram. There are variations on this task, such
as forcing straight line motion, or changing the velocity profile.

70

60

50

E 30
0

20

10

f%

Three velocity profiles

- step

ramp
.... two-stage step

--I
LI

-1 0 1 2 3 4 5
time (sec)

Figure 4.12: Comparison of three velocity profiles. The solid line shows the cur-
rent profile used, which is a step. Large velocities can't be used because intolera-
ble overshoot would result. The dashed line uses ramps which allow greater
speed at the expense of increased programming complexity, and still do not
totally prevent overshoot. The dotted line uses velocity stages, or multiple steps
to achieve maximum velocity, with even more complexity and less reliability
when the desired motion is small. Robot hardware fatigue also results. The inte-
gral under all curves is equal implying the same final endpoint position.

The "touch" primitive is shown in Figure 4.13. A practical issue is specifying the direction of
motion while "feeling" for a touch. We chose to use symbolic input arguments which specify one
of 26 directions in three dimensions: x, y, and z can be -1, 0, or 1, with 0, 0, 0 being no motion and
an error. Figure 4.14 shows these directions. The speeds of these motions is a prespecified, built-
in, value, which could also be an input argument.

ref_ang

refa

inpi

Il

refp

aI

refan

i.,.-.

exit

Figure 4.13: "Touch" task-level diagram. The input arguments are a symbolic
representation of a direction shown in Figure 4.14.

The "stiffness" task/primitive is really just two "touch" tasks combined in a sequence, and the
input is the same one as used for "touch." The computation of stiffness is taken indirectly by mea-
suring robot motor torques. This is merely a rough measure but sufficient to determine large dif-
ferences in stiffness. Forward dynamics of the robot can be used, but were not, to measure the
stiffness more accurately. The task diagram is shown in Figure 4.15.

Figure 4.14: 26 Cartesian direction specifiable in "touch" and "stiffness." 0, 0, 0
is no movement and returns an error value when called with these.

Finally, the "follow" primitive, shown in Figure 4.16, can trace the contours of a surface, tak-
ing symbolic inputs, to specify an X-Y direction: x and y can be -1, 0, or 1, to yield seven direc-
tions (again 0, 0 is no motion). By setting the Z reference position to a small number less than the
current Z position, the robot effectively applies a small downward force during the motion.

Comparing the task-level diagrams from this section with those of the previous section shows
that their construction is identical. The only distinguishing factor between them, aside from the
obvious superficial differences, is the primitives which are used. The primitives from one level
can be thought of as complex tasks at a lower level. This is the basis of task-level control, and we
can compare this with Figure 3.4, which shows how tasks are built from other tasks. This power-

ful idea of "zooming" in "closer" to a task to see how it is composed allows complex behaviors to
be built which rely on reliable sub-tasks, or primitives.

begin

i
i
i
i

i

i.,

Figure 4.15: "Stiffness" task-level diagram. This is a combination of two
"touch" primitives, but with enough low-level differences to make it into a sepa-
rate primitive, rather than a complex task built of the other primitives.

begin

=>ang

ang => I=>pos

Figure 4.16: "Follow" task-level diagram.

4.3.3 Default execution

We execute a position "query" after each primitive in the low-level control set is executed.
The values are used to give the final position to the user whenever it is desired rather than requir-
ing the user to explicitly ask for the position when it is needed. Although not done so, the values
can also be used to check the outputs of some primitives which return position. This is a self diag-
nostic action, which is not used. However, self diagnostic primitives are another good example of
default behaviors that can be executed in the form of primitives after each explicitly requested
primitive is executed.

4.3.4 Human user friendly tasks.

We have created explicit instances of the "moveto" task by prespecifying its inputs. This is
known as homing. Rather than having a user spend the time to input a desired robot position or
configuration, he or she can simply execute one of these to move the robot to a known and useful
position.

The "sleep" primitive is run by default after a given time-out period. Sleep moves the robot to
a known stable position and executes "turn-off-motors" to shut the robot off. "Sleep" thus lets the
robot move under its own weight, and if one were to query the sensors directly after "sleep" with
the robot in some arbitrary configuration, the next sensor query might reveal a different position
for the robot. This seems to be in violation of supervisory stability. However, once the motors are
turned off it is assumed that the robot is no longer being supervised, or it is being handled locally
for repair or maintenance, so stability does not apply. Also, "sleep" sends the robot to a standard
location before turning off the motors. Under most circumstances this will leave the robot resting
on some surface or in a stable configuration (such as pointing straight up). This is a recommended
procedure to include in any type of primitive which turns off power to the robot.

Chapter 5

Analysis and Lessons Learned

5.1 Introduction
The purpose of this chapter is to present the results of experiments performed with the system.
Section 5.2 describes these experiments and section 5.3 presents the numerical results. We present
results of measurements directly on the primitive set, such as primitive completion times and
latency ratios, and we describe the versatility of the set, by reviewing how well the user was able
to perform a task. Suggested improvements, deletions, and additions to the set are suggested. Sec-
tion 5.4 briefly outlines some unexpected or uncontrollable factors which affected the experi-
ments and how to eliminate them in the subsequent experiments.

5.2 Experiments
One of the advantages of task-level control is the ability to automate tasks through proper

planning. The primitive algorithms discussed in the previous chapter are all amenable to com-
puter implementation, which will both speed up the process and require little or no human super-
vision. Some experiments were performed to determine the effectiveness of automation versus
human or manual task completion.

The task to find the stiffness of the hardest point on the surface was implemented on a com-
puter, and the completion time was compared against that of a human operator performing the
same task manually. Success rates were also recorded, where success was defined by the correct
location of the hardest spot being returned.

To determine the versatility of the interaction primitive set, we performed an experiment to
determine dimensions of a stationary block. The user was given an unlimited amount of time to
complete this task. With the availability of visual feedback, the user was able to quickly determine
the general location of the object, but the exact location (center) and edges were more difficult and
required some ingenuity and trial and error on the user's part

As an initial measure of the primitives' effectiveness, we compared completion time, Tt, from
the request to the average total network latency of the system, given by eq (4.2) and whose value
for this system was given in eq (4.5), both repeated here.

Ln = Lf + Lr

L = 6.45 + 2.54sn

The primitive can be characterized by a quantity we call the latency ratio, A, given by

T
A = - (5.1)

Ln

A value of A greater than A = 1 is acceptable, though normally not desirable, but anything larger
than A = 3 is ineffective. Very low values of A are acceptable for a few primitives; however, if all

primitives in a set have low latency ratios, it may be beneficial to increase the complexity of some
of the primitives, since it implies that the primitives are not accomplishing as much as they could
during each latency period. "Query" is naturally short because it executes electronic instructions
as fast as possible. The latency ratios of all the primitives in the set were measured for a wide
range of inputs using the average total network latency given in eq (4.5).

5.3 Performance of the Interaction Set

5.3.1 Complex interaction tasks

The experiment to find the hardest spot on the surface was completed by both the user in a man-
ual, step-by-step (or move-and-wait) process by three subjects, and by the computerized, auto-
matic version. The completion times are given in table 5.1. As can be seen, the user times are
significantly longer. All experiments resulted in the correct identification of the hardest spot.

User Type Completion Time

automatic 90 + 1 seconds

automatic 93 ± 1 seconds

experienced human 590 seconds ± 10 seconds

experienced human 780 seconds ± 10 seconds

inexperienced human 3000 seconds ± 20 seconds

Table 5.1: "Find Hardest Spot" task completion times

Even practiced and experienced user could not approach the completion times of the auto-
matic task. This is mostly due to network latency and the fact that the user was required to record
certain results for later use, which took some time. This is a user interface problem, and if the user
was able to more quickly record the data, an increase in speed would result.

Also, the time taken to input arguments caused the greatest delay. The user interface could be
improved by allowing direct control of the robot's endpoint through graphical means. The user
could point to a particular spot on the graphics window with a mouse and click the mouse to indi-
cated that was the desired position. The display of information was also somewhat tedious. Text
was fed back to the user with the necessary data, but visual feedback, though not required, was
often requested by the user for confirmation of some result. The visual feedback replaced the text
feedback, so both could not be viewed simultaneously. This could be changed in future imple-
mentations. The user interface is clearly and important aspect in task-level supervisory control.

The robustness of the mechanical system was an important aspect to determine. Robustness
aspects include repeatability, accuracy, and disturbance rejection. The system was operating con-
tinuously (not including power outages) for four consecutive weeks without failure or false feed-
back or reports. The repeatability and accuracy of the positioning was about 1 mm. There were
several disturbances the robot was able to handle well. When the robot was mechanically blocked,
it returned most likely cause of the error. When the robot was requested to complete a move that

was not physically possible, it also returned an error, and when requested to perform uninteresting
or useless actions, this was also reported. Actions such as the "touch"ing or finding the "stiffness"
of itself were examples. In these cases it simply did not perform the action and suggested that the
requesting agent try another action or correct the arguments of the previous one. The robot also
reliably turned itself off when it was not in use. This significantly cut down on power consump-
tion and hardware fatigue, and eliminated the noisy chatter of backlashing gear teeth.

The robot was unable to handle power shutdowns and other hardware failures well. One prob-
lem is the lack of a auto-executing start-up program for the robot. This problem could be solved
by installing an auto-executing robot server, which first measured its workspace, set its zero posi-
tion to a preprogrammed configuration, then started the server program.

5.3.2 Speed of the primitives in the interaction set

All of the primitives' latency ratios were measured for a wide range of inputs. Table 5.2 shows the
results of the measurements. The consistently slowest primitive was "stiffness" because it
required a slow robot speed to be sensitive enough to measure two touches on a single pass. Much
of the execution times depended on the inputs and on the robot's starting point. As a normalizing
factor, we started all appropriate primitives from a standard position. The "moveto" and "line"
primitives have rates instead of average times given because their execution is so dependent on
starting and ending position. "Line" is an implementation of moveto which moves the robot end-
point along a straight line. The speeds given are constants. For "moveto" the speed is that of the
slowest link.

Primitive Average A Maximum A Minimum A

"moveto" 27.5 0 /sec N/A N/A

"line" 0.13 m/sec N/A N/A

"touch" 2.03 2.07 2.00

"stiffness" 2.12 2.15 2.08

"follow" .68 .75 .57

"query" .15 .17 .13

Table 5.2: Primitive execution times and latency ratios

The primitive "query" is purely computational and so has a deterministic completion time, which
is much shorter than any of the primitives which execute robot movements.

From this data we see that there is a significant spread of the ratios. Some are much less than
one ("query") as expected, some are near one, and some are greater than 2. "Touch" and "stiff-
ness" can often be made to have A < 2 by a thoughtful choice of starting positions. However,
sometimes A > 2 can not be avoided especially when there is uncertainty in the environment.

Some improvements to the primitives were suggested by the data. Increasing the speed of
"touch" and "stiffness" by increasing the rate at which they move the robot would reduce latency
ratios but would decrease the already limited resolution of the primitives. The robot would need a
larger force to sense a touch and the repeatability of the stiffness measurement at a particular loca-

tion would be worse. We deemed it was more valuable to have better resolution and sensitivity
over speed, especially with automatic task execution in mind.

"Moveto" could be sped up by using some of the velocity profiles shown in Figure 4.12. Care
must be taken so as not to induce significant overshoot.

The "follow" primitive was difficult to improve. It could have been sped up by increasing the
speed at which it moves the robot across the surface. Again, this would have led to less resolution
and possibly inaccurate readings of the surface heights.

The robustness of the primitives was important, as well. "Moveto" had a time-out installed on
it, so that if a move took too long, the primitive would cease execution and return and error code
for this error. The system would then tell the user that this was due to mechanical blockage. It also
returned an appropriate error if the desired position was kinematically not achievable.

"Touch" and "stiffness" were not allowed to be executed when the action would cause the
robot to enter into a singularity. It was further restricted to performing movement only the in neg-
ative Z direction, since for our semi-structured environment, there were no interesting environ-
mental aspects in any other direction. If a primitive was executed in violation of these constraints
appropriate error codes and messages were returned.

"Follow" checked to make sure that its position was close to the desired reference position
during a move. If it was too far away, it assumed blockage and returned an error. The robot was
unable to handle irregular or very soft surfaces during a "follow" primitive. It would not be able
to lift itself over high blocking points or be able to come out of soft areas that it had pushed down
too far. See Figure 5.1 for graphical clarification. A possible correction would be to reduce the
amount of downward pressure applied during "follow" or to install a part to the algorithm that
would lift the robot when it encountered what seemed like a blockage.

downward force

downward force

Figure 5.1: How the robot behaved for very soft (left) or irregular surfaces. Since
a nearly constant downward force was applied, the robot rarely would be able to
"lift" itself out of holes it created by this pressure, and blocking objects created
the same problem.

In all cases tested so far, the only time when a false error was reported was when, during
"moveto" the robot was trying to position at the end of the move. The integrator was sometimes
too slow to reduce the steady state error enough to get the desired acceptable accuracy, and
"moveto" timed out because it would not be within this accuracy for more than the time-out

period. Three fixes suggested themselves. Decrease the desired accuracy, increase the time-out
length, or increase the integral gain. Decreasing accuracy and increasing time-out (currently set at
7 sec) would decrease performance, upping integral gain would lower the controller bandwidth,
requiring slower speeds for the robot. It was found that the speeds at which the robot normally
operates, however, were much less than the bandwidth, anyway, so the integral gain was increased
to solve the problem. However, if high speed positioning becomes necessary, the integral gain
would need to be reduced to avoid overshoot.

5.3.3 Versatility of the primitive set

The versatility is important in designing a primitive set. The test for our primitive set was to
have the user find the dimensions of a fixed block on the surface using as much time and any
method he or she chose. Typical results are in table 5.3, which show the accuracy of the measure-
ments is low. As with the stiffness measurements, this could only be used for gross estimation.
The user relied heavily on visual feedback, which was of low resolution, fixed angle and one
dimensional, which did not give a full view of the robot's position relative to the block. This was
seen as a problem in (Mar 1985). Another problem was that the endpoint of the robot was very
blunt and the angles at which it touched surface changed depending on the configuration. This did
not give consistent readings of the height of the robot at a touched point. A sharper or pointed
endpoint would have been useful.

The surface mapping algorithm given in the previous chapter with a reasonably high resolu-
tion turned out to be the best method for finding the dimensions. Although this was slow it gave
the best accuracy.

Measured Dimension Actual Dimension

0.10 meters (length) 0.06 meters

0.14 meters (width) 0.10 meters

0.03 meters (height) 0.025 meters

x = -.17 y = -.08 z = .27 x = -.17 y = -.09 z = .26

Table 5.3: Results of primitive set versatility test

Another unexpected use of the "stiffness" was to allow the robot to push reasonably hard on a
surface. Repeated executions of "stiffness" at the same point forced the robot to push harder each
time. Although the stiffness readings increased with each subsequent execution, if the purpose
was only to push hard on a surface, this would work well. This could be incorporated as a new
interaction primitive, called "press," which takes a desired pressing force as input.

With regard to set versatility, much of the capability of this robot has been achieved in this
primitive set. The robot is primarily capable of accurate and high bandwidth movement and of
low resolution force sensing (from current measurements). The primitives in this set utilize all of
these capabilities to varying degrees depending on the application. The limiting factors on perfor-
mance are the user interface and network latency.

5.4 Other Factors Affecting the Experiments
Besides arbitrary inputs and starting positions, there were a number of factors which affected the
performance of the system. The most noticeable was the highly variable and unpredictable net-
work latencies. Our system relied heavily on a public computer which was the Internet server for
the laboratory in which the system was located. The popularity of the lab's research dictates a
large volume of accesses from other clients to this server. Often the server was overloaded, and
would not give a connection for the robot program. This would severely limit task completion
times for tasks being performed by hand.

The experience of the user and his or her familiarity with the system dictated how much think-
ing each user needed to do before deciding on the next primitive to execute. When the user was
first introduced to the system, the first reaction was to make sure exactly what was happening
after each move. Once familiarity and confidence in the primitives, and knowledge of the primi-
tives limits, were gained, the user began executing primitives one step ahead of time, in an open-
loop fashion. The system only allowed one request to be cued while the current primitive was
being executed. The primitive executed after the current one finished was the most recently
requested one. In almost all cases, no more than one move in advance was needed.

Finally, there were a number of parameters set within the control program that altered perfor-
mance of the system. Initially these were used for debugging purposes, but many remained
because they often needed to be changed after some other part of the system was altered. These
include, but aren't limited to, joint speed for "moveto", speed for "line", positioning accuracy,
controller gains, time-out lengths, sensitivity for "touch", force required to measure "stiffness",
speed of "touch" and "stiffness" robot movements, motor current output limits, configuration of
home positions, speed of "follow" movements, and positions where the robot would return error if
certain primitives were requested. Changing any of these could significantly affect the perfor-
mance of the system, but are set according to specific preferences. That is, there is no optimal
combination of these parameters.

Chapter 6

Conclusion

6.1 Introduction
This chapter concludes the thesis, starting in section 6.2 with a brief review of the work done.
Section 6.3 describes some of the contributions to the area of task-level and supervisory control
research and engineering that this work has made. Section 6.4 then presents some possibilities for
future work and further research in and related to these areas. Finally, section 6.5 concludes with
final remarks and a summary of the important points of the work.

6.2 Review
The significant latencies often encountered in networked and teleoperated robotic systems

were characterized and described in terms of their deleterious effects on the control of such sys-
tems. A review of these effects for analog and discrete-time control systems was presented to give
the reader an idea of the difficulties of these effects, and to suggest the method by which these
time delays can be overcome. This method is task-level supervisory control.

Previous research in task-level control and supervisory control was presented separately and
then the major concepts were combined to yield a systematic approach to designing control sys-
tems with latencies as pure time delays. These latencies were characterized in relation to the
speed of the robot being controlled, allowing a normalized quantity to dictate certain aspects of
the control system design. The ranges of these normalized latencies were broken down into three
overlapping ranges. Particular properties of these ranges were discussed in terms of methods of
control. Very short delays could be analyzed and designed around in the traditional manner, since
the delay could be thought of as merely part of the robot's dynamics. Midrange and longer time
delays began giving the traditional methods trouble with stability and performance, so the new
method was described. Task-level control does not require long time delays to be successful. It is
a general method of automation.

A particular range of time delays, the long range, was selected for close study. This is mostly
because of the real system we used, to which the application of the principles were applied. The
real system was then characterized and identified for this design, and a control system was built
for it. Tests and experiments were performed to measure the performance and the results wrought
some practical conclusions.

Although the system described in Chapter 4 was designed to compensate for time delays, and
network latency in particular, it was also the primary limiting factor in the performance of the sys-
tem. The user interface was also a limiting factor, but as far as system performance is concerned,
this was not an issue because the automated tasks did not use the interface. A picture of our user
interface is shown in Figure 6.1

Figure 6.1: The user interface for the task-level supervisory robot controller.
This was a World Wide Web site, and the interface was designed around
Netscape Navigator.

Primitives are stand-alone behaviors that were written into a logic sequence to allow automa-
tion of their execution. Two sets of primitives were described and implemented, each set complet-
ing a taxonomy of actions, one for higher level interactions and one for low-level control actions.

68

Finite state machine logic was used as the glue to build automated tasks. Automated task execu-
tion was used to compensate for network latency.

When used with automated tasks, the system performed well. The task completion times were
significantly faster than those of a human user. The human was able to complete the same tasks,
but at often very slow rates. The user interface and network latency were the primary causes of
these slow times.

The task-level supervisory controller was general and useful enough to place the user inter-
face on the Internet's World Wide Web (http://www.ai.mit.edu/projects/webot/robot ; see Figure
6.1). It was robust and reliable under heavy load conditions.

The primitive sets allowed many interaction tasks to be completed over distances and with
large time delays. It also allowed both interaction and measurement of the environment with min-
imal sensory equipment using recently worked out principles of data interpretation. The planning
and testing of tasks to be automated later was also an easier task. The user interface allowed
visual views of the robot's environment as well as text feedback with actual position and stiffness
data measured by the robot.

The position measurements, however, were not accurate in relation to the positioning accu-
racy of the robot (about 1mm). Causes include robot design, trade-offs in primitives, lack of con-
troller sophistication, and user interface design. The design goal for the robot, built before this
study began, was high bandwidth and low inertia, with no end effector design. We used it prima-
rily for low bandwidth purposes with environmental interaction better suited for robots with end
effectors. Some of the trade-offs in the primitives were, in fact, their speed of execution. Others
were their sensing resolution and accuracy, as well as their complexity. The user interface, though
robust and useful, was not optimized for any one group of users since it was to be presented to a
very large and general audience, most of which would not be familiar with robot control.

Also, the controller did not allow very fast execution of some tasks. Causes include time
delays and slow primitives. Optimization of some tasks could be done by identifying the specific
purpose and actions of the tasks and designing automatic versions of them. Other optimizations
on the primitives could be done by varying the many design parameters programmed into each
primitive.

We designed the system as outlined in (Brock 1993) by having a set of tasks, which were, in
turn, composed of simpler tasks, and so on. In this thesis, we had three levels, the complex inter-
action tasks, the interaction primitives, and the low-level primitives. The supervisory element of
the system was brought about by allowing some of these tasks to be executed under human con-
trol via the Internet.

Some aspects of task-level and supervisory control were not used in the design of this system.
Here we present those that were most important and how their inclusion would change and
improve the system.

Predictive displays, a supervisory method mentioned earlier, could have been used to allow
the user to foresee the robot's action before it occurred. This would allow better planning and
increased visual cues for the user. However, because of the unstructured part of the environment
in which the robot was acting, this simulation would have been necessarily limited. Most likely, it
would have included constructors to allow for the environment to be built as the robot explored it.
Thus, it would have been a self-building simulation. Programming complexity and a desire to
concentrate on the task-level portion of the system prevented us from installing this on the sys-

tem. This type of display is now becoming more easily implementable with standardized graphi-
cal display programs, such as VRML.

Related to this was the use of high-fidelity dynamic simulations assuming a more structured
environment, as discussed by Narasimhan (Narasimhan, 1994). This would have allowed predic-
tive task planners better information to plan behaviors and actions. Again, this would lead to bet-
ter automation. However, it would have significantly slowed the system because of the high
complexity of the program and the computation it would require.

Direct, semi-real-time robot control is now possible with the Internet using Java because once
a connection is established, a small bandwidth data line could be held open. Continuous reference
positions could be sent from some type of user interface to the robot controller which could servo
to those positions. At the same time, joint angle positions could be passed back over the same line
to update a graphical simulation of the robot. This is all low bandwidth communication that
allows semi-real-time control of the robot with visual feedback. The reason this wasn't imple-
mented was the newness of the technology available to do this. It's use is already being studied.

Finally, the use of high performance sensory techniques, as described by Eberman (Eberman,
1995) could have been used to achieve better environmental measurements which would have
allowed faster performance with primitives such as "touch" and "stiffness". These methods
require a good knowledge of the robot's parameters (such as inertia and motor torque constants)
which were not available and difficult to measure accurately, and the program complexity would
again have slowed the system significantly, so there may have been very little net gain. Also,
much of the data taken for these methods would be analyzed off line.

6.3 Contributions
We were able to combine aspects of task-level control and supervisory control in this thesis. By
studying semi-structured environments, common in many robotic applications, and by holding to
the desire for the human user's intelligence to be a part of the system, we made a system that was
neither fully automatic, nor fully manual, but could be customized to achieve either level if that
was what was needed for a particular part of the robot's operation.

We developed a taxonomy of task primitives useful for specific interactions over long time
delays and for general low-level feedback control of a 3 DOF robot, and we developed sufficiency
criteria for supervisory stability and for primitive set sufficiency.

We were also able to successfully control a robot under highly variable time delays by allow-
ing users to requests tasks while others were being performed. This allows the user to use the
latencies to advantage in planning for the next step. Extensive long range planning by the user
before task execution was an option, but in environments which are not fully structured, this plan-
ning is often wasted because new or unexpected situations arise which require unplanned actions.

We built a networked telerobotic system which was reliable and robust. It's interface, though
not fully optimized, was easily configurable to be used by any number of robots, all of which
could communicated to each other through very standard network protocols. The time delays
involved were compensated for using the principles discussed in this thesis.

Finally, with this networked principle, we were able to demonstrate the concept of having a
robot perform numerous "useful" tasks over long distances using the Internet. Internet browsers,
available to the general public, could be used with the user interface we built to send requests and
to get both visual and data feedback. The system performed well and was successful primarily

because of the task-level controller. The set of primitives developed were general enough that a
type of finite state machine logic could be used to develop automated tasks over the Internet.
Using the system we assembled, global users controlled the local robot within its environment
with no training using standard and readily available tools. Users located in Japan, Korea, France,
The United Kingdom, Canada, Australia, and The United States of American were among the
many who participated in the unofficial experiment.

6.4 Future Work
There are several research avenues that can be taken from this thesis. The area of telerobotics is
large and developing rapidly. The design of control systems, robot hardware and architecture,
computer networks and programs, planning, task building and simulations are all areas in this the-
sis.

6.4.1 Control system design

In the design of control systems there is further work to be done to allow faster task execution.
Most of this work would rely on previously known areas, such as adaptive robot control and sys-
tem identification. Further work into the design of primitives should also be done, as well as a
general theory about task-level supervisory control, which formalizes the ideas of stability and
convergence of a particular control scheme.

Also, there is significant work to be done on control over latent networks where a low band-
width channel can be opened to pass control data across. Simulations which require only small
and intermittent updates and robots which require joint positions as control inputs are surely to be
integrated soon over the Internet with the advancement of the computer independent Java pro-
gramming language.

6.4.2 Behavior building

The building of behaviors for simulated entities has been studied recently, and much of this
research can be applied to the building of robot behaviors and tasks. Using finite state machine
logic and a given set of task primitives, a whole host of behaviors can be defined and imple-
mented for a robot. These behaviors can be simulated and tested, as well, before they are actually
programmed into the robot. In fact, they can be tested in real time while the behavior is being
modified. This is a very exciting concept in behavior building and automation. Figure 6.1 shows a
primitive behavior building tool which uses finite state machine logic. This graphical interface
could be tied to a running simulation and edited while it is running. This work is already in
progress.

Figure 6.2: An early behavior building tool. This can be used to edit behaviors
running on simulations in real time.

6.4.3 Networked interaction

The robot used in this thesis work was connected directly to a network and was capable of
receiving data from any network source. There was nothing to prevent another robot from sending
and receiving data to or from the robot. In this way, two or more robots could interact over a net-
work, and networked groups of robots could all be connected and used through automated agents
which request action from the robot, receive results, and based on those, request action from
another robot. Also, two close proximity robots could interact more easily if they were able to
interface over a standard network with common protocols. The building of these robot networks
is a large and possibly fruitful and entertaining area of research.

72

6.4.4 Simulation

Tasks built using a behavior builder discussed in section 6.4.3 can be checked with simula-
tions. This would allow extensive off-line debugging and more rapid task prototyping.

The technique of predictive simulation has grown and become popular in recent years in the
supervisory control field (Mar 1985, Park 1991). There has also been current research (Narasim-
han 1994, Brock 1993) to use this type of technique in conjunction with accurate models (or sim-
ulations) of the environment to develop artificially intelligent robots which use the tasks available
to them to negotiate complex situations by simulating what the tasks do in the simulated environ-
ment. Figure 6.2 shows how a predictive simulation and control system might work. Task-level
control is conducive to using predictive simulation because it restricts the actions which the robot
can perform, and hence the environment (usually a semi-structured one) does not require a com-
plete model, but rather one which models only the aspects the robot's task can affect. Also, each
task can have its own environment model, each model including only what is necessary to allow
the task to be simulated fully. We can also have adaptive simulations, which build on the environ-
ment as data is taken in. The predictive simulation is a specific case of knowledged based systems
(Sheridan 1983, Hewitt 1989).High fidelity simulations have allowed hyper-accurate prediction
and estimation to be combined with supervisory control systems with time delays to allow better
control.

Another feature of graphical simulated display is the use of mappings. A graphical display
need not present the actual system architecture as it appears in reality. In fact, it needs only to
present what data is important. It can map the real data into some other form which is more con-
venient, more usable, more intuitive, or simply different for some other reason. For example, sup-
pose a robot was tracking the motion of a beating heart with the precision that made the motion of
the heart relative to the robot almost nil. Now, on a graphical display, this very small relative
motion would be displayed, not the full heart motion. A surgeon could use this data to manipulate
the robot's relative position to the heart, while seeing only very small motions. This would allow
surgery on a beating heart and from a distance, since only graphical information is needed, and
the surgeon's presence is not. A system to demonstrate this was developed by the authors.

Figure 6.3: Predictive simulation and control system. Note that the environment
simulation can be influenced by data returned from the real robot environment.

The controlling agent is most likely a human user but can be an automated sys-
tem.

6.4.5 Applications

Telerobotic surgery is an exciting new application for this type of work. It has already been
studied (Funda, et al 1993) somewhat with good results. This was for a high bandwidth system
with minimal time delays.

Applications to shared resources over computer networks is another application. An example
is the shared chemistry laboratory. If a person wished to conduct an experiment, he or she need
not have an entire supply of equipment in house, but rather can "go out over the net" using a net-
worked telerobotic system and execute the appropriate tasks to conduct the experiment. The
robots performing the procedure would be controlled in a manner very similar to that discussed in
this thesis.

Control of autonomous mobile agents can also benefit from task-level supervisory control.
Networked groups of mobile robots could interact with each other based the perceived input from
each other and use tasks to cooperate.

6.5 Conclusion
We have seen that a robot can successfully be controlled in the presence of long time delays and
over a large distance. It can be made to perform useful tasks under these conditions, as well.
Because of the destabilizing effects of long time delays on traditional feedback controllers, a task-
level controller should be used with supervisory concepts included to allow the human user to use
his or her intelligence in planning and task execution.

We took a real robot and system with a given time delay derived mostly from network latency,
and built a task-level supervisory controller for it. The robot was given the ability to execute
highly reliable primitive tasks fully independent from each other. The primitives were chosen
based on the required task set the robot was to have. The primitives were part of a set which, when
designed properly, allowed all of these primitives to be executed reliably. The set was also versa-
tile enough to execute tasks for which the robot was not initially intended, and to design other
tasks.

The controller, though successful in its goal, is sometimes prohibitively slow, but can be made
automated to reduce the primitive completion times. Modular primitives can be easily built from
lower level primitives available to a task builder. The primary time delay was from forward net-
work latencies, so once this latency has passed, robot control is fast and simple, because the local
control has very small time delays. This allowed a logic-based sequence of primitives to be sent
over and executed locally, giving the robot automatic task execution capabilities.

The control system had a simple user interface which was made available to the general pub-
lic. It performed reliably and robustly under varying user loads. This demonstrated the concept of
remote, time-delayed, telerobotic primitive execution, and the concept of general remote manipu-
lation was demonstrated.

We have showed that although this concept is viable and usable, there is still extensive study
and more practical work that needs to be done. With the constant introduction of new and faster
technologies, the development of systems which take advantage of these is required. Also, the
heuristic nature some of this work demonstrates a general lack of formal theory available in the

supervisory control area, which allows more freedom in the design of controllers, but also fails to
help analyze these controllers and build them with guaranteed properties.

Appendix A

Robot system hardware and control

A.1 Hardware
The robot is a four degree of freedom research robot shown graphically in Figure A.1. Only

three of the available degrees of freedom are actively controlled, while the fourth is held fixed for
simplicity of kinematic calculations. The robot is a low inertia, high torque design, which incor-
porates both gear and cable transmissions for speed reduction and torque amplification. There is
some backlash in the gear trains which will limit positioning accuracy. The forward and inverse
kinematics of the robot were determined using the Denavit-Hartenberg procedure (Craig 1985).

Power is transmitted to the robot via three pulse width modulating (PWM) servo amplifiers
(made by Copley) which take a computer generated, zero-order-hold (ZOH) voltage signal as
input and generate current at an appropriate duty cycle as output. This PWM current is fed
directly to the brushed DC motors on board the robot. The amplifiers require minimum 2 amp DC
at 25 volts. The DC used here was rectified from a transformer bringing down supply current from
110 volts AC. The servo amplifiers were able to regulate the supply current to pure DC.

The only sensory equipment on the robot are four shaft encoders on each motor (the encoder
corresponding to the inactive motor is not measured). Quadrature counting (Auslander 1990) is
used to measure 2000 counts per revolution (cpr) from a computer-based controller card. These
counts are measured directly, and the measurements are taken on an interrupt basis by to ensure
minimal loss of data.

Figure A.1: Graphical diagram of the robot with joint angles and dimensions
shown.

The "low-level control computer" in figures 4.1 and 4.3 is an IBM compatible PC, with an Intel
Pentium processor running at 90 MHz clock speed. The computer has a controller card (MC
Series) located at a directly accessible memory location. Software, supplied with the controller
card (written in C), allows the appropriate memory addresses to be read and written. For motor
control, the card interprets the values of these memory addresses and sends an appropriate analog
voltage signal to the amplifiers. The card also writes to specific memory addresses with current
encoder readings. The software is able to read these as desired. The computer also has a connec-
tion to an outside computer network with an Internet address. It is capable of using any of the cur-
rent standard Internet communications protocols.

78

A.2 Network
Figures 4.1 and 4.3 also show the network connection to which the robot hardware and control

software is attached. Communication over the network is done concurrently with the robot's con-
troller via Berkeley sockets. This fast network is periodically polled for input from the network at
approximately the servo rate. The input is interpreted and the software executes the appropriate
program code. Any outputs are then immediately sent back over the network. Feedback via text
and still images is provided to the user. There is also a graphically rendered feedback which can
be used to insert virtual objects and motions into the environment using VRML (Bell 1995). This
is one of the advantages of remote robot control: the real situation does not need to be depicted,
only what is necessary and desired.

For this system, for those interested, UDP protocol was used because of its connection speed
and ease of implementation. It is an unreliable protocol however, so care was taken to ensure that
critical network data was retransmitted if it was lost (Stevens 1990)

Because the network was a standard ethernet type with direct access to the Internet, this
experiment was broadened by allowing the robot to be controlled from anywhere on the Internet.
The robot and it's low-level controller (the computer and hardware) were made available by the
server so that any client program with the appropriate protocol, could connect and send com-
mands to the robot. Internet browser programs, such as Netscape Navigator, use these protocols
and can be used to send commands.

The user can execute local common gateway interface (CGI) programs (written in perl, see
Wall 1990) which write commands to files (Savola 1995). These files are polled about once a sec-
ond by the network interface computer, which has a direct socket connection to the control com-
puter (see Figure 4.3). When a new command is detected in this file it is executed from this
computer by sending it to the control computer.

Anyone familiar with this type of setup knows that network latencies are significant. This was
the primary source of time delay in this system. Computational delays were secondary, and trans-
mission times almost negligible. The latency forced us to use a task-level control system. How-
ever, we could not expect a typical user on the Internet to know any robotics or control
engineering principles, so the task-level control system served the dual purpose of efficient net-
work control and user-friendly interfacing, since the primitives were made available to the user as
well.

A.3 Controller
Because of the low link inertia and accurate, low-noise position data available, and anticipation of
minimal loading on the robot, it was decided to use a traditional proportional-integral-derivative
(PID) controller on each link separately. Figure A.2 shows this feedback loop. The time domain
control law is given by

1 (t) = Kpe (t) + Ki e (t) dt + Kde (t) + c (A.1)

time

u(t) is the output signal (voltage), and e(t) is the tracking error

e (t) = r (t) - x (t) (A.2)

where r(t) is the desired joint angle and x(t) is the actual angle. The gains Kp, Ki, and Kd, are
the proportional, integral, and derivative gains, respectively. The constant, c, in eq (A. 1) is to
eliminate any offsets present in the servo amplifiers.

Equation (A. 1) can be translated into the Laplace domain for ease of notation and familiarity

U(s) = K(s)E(s) +C (A.3)

where U(s) and E(s) are the Laplace transforms of the signals u(t) and e(t), C is the Laplace
transform of the Constant c, and K(s) is

K. +K s +Kds 2

K(s) = - P (A.4)

he robustness of PID controllers is well known and documented. See (Franklin, et al 1994) for
a good treatment. Figure A.2 shows this loop in accordance with the block diagram paradigm with
the controller block shown in it's time-domain representation and split into its constituent parts (P,
I,D).

Figure A.2: Low-level controller block diagram. Each part of the PID controller
is shown individually. The entire controller is most often wrapped into a single
block, and it's transfer function is displayed or represented.

Because this controller is to be implemented on a digital computer, eq (A. 1) must be trans-
formed into a discrete-time one. Although a proper treatment would require some z-plane analysis
to ensure stability within a discrete sampled system, our sampling rate is greater than 1000 Hz,
which gives a sampling period of

1
T < = 0.001 second (A.5)

(1000Hz)

With minimal knowledge of the system it is still clear that this is at least twenty times faster
than the robot's open loop time constant, and hence the discrete time controller will be very close
in performance to the continuous one. Only the gains must be tuned to account for the sampling
rate.

Equation (A. 1) can be rewritten to return a value of the control signal at each sampling instant,
k, whose length is T (see Franklin, et al 1990):

u(kT) = Kpe(kT) +Ki Te(kT) +Kd[e(kT) -e((k-)T)] (A.6)
i=0

The approximation to the integral is the Forward Euler technique and the approximation to
differentiation is the simple first order difference technique. With the sampling period implied,
this equation can be written to give a programmer the value of the control signal during the kth
sampling loop of the control system

u(k) = Kpe(kT) + KiTei (k) + T [e(k) - e (k- 1)] (A.7)

where

ei (k) = ei (k- 1) + e (k) (A.8)

So the gains Ki and Kd must be modified by the sampling period, T, according to eq (A.7).
This is a standard result in discrete-time control systems. As T approaches zero, implying faster
and faster sampling, eq (A.6) approaches eq (A.1) and is identical in the limit. The implementa-
tion of this algorithm is straightforward (Auslander 1990).

No other low-level control was implemented. Some types of adaptive PID control could be
used to account for varying loads (Narendra 1989), and others to account for the gear backlash,
but these are considerably more complex and require significant computation and stability analy-
sis. Although this is a good idea in any system, the purpose of this experiment was not low-level
feedback controller design. Also, there was no explicit velocity control installed. The robot is
only capable of position servoing. This is important when developing the algorithms for the prim-
itives.

A.4 Supervisory Stability
To achieve stability, we tried to give the robot the ability to maintain the sufficient condition

given in section 2.4. Therefore, there must be a default behavior which keeps the robot at its cur-
rent position while waiting for the next request. We can't simply turn off the motors because grav-
ity will pull the robot away from its current position. Instead, we had the robot actively servo
about the last position it was at after a task was completed, unless it was in a sleep state, which is
set by the "sleep" primitive. If we know that the servo control loop is asymptotically stable, then
this implies the condition given in section 2.4. From Figure 4.4, we see that the loop is, in fact,
asymptotically stable.

The default behavior of forcing the robot to servo about its current position while waiting for
the next request is achieved by setting the reference angles to the current angles after a primitive
has been completed. Then, while the robot is waiting, a PID servo loop is continually running in
conjunction with the network checking loop. The two run nearly simultaneously. A diagram of
this behavior is shown in Figure A.3.

execute
primitive

check net '6rk servo1b, current
for reqpests position,

execute
primitive

check nntwork servo •tocurrent
for r6juests positiot

execute
primitive

check ntwork servo current
for rdqpests positi9A

Figure A.3: Default behavior to achieve supervisory stability. The curved dotted
lines show how the system goes through default behaviors after each primitive
execution.

References

[Auslander 1990]

[Bajcsy 1984]

[Bajcsy 1987]

[Bicchi 1990]

[Bell 1995]

[Brock 1993]

[Doyle 1992]

[Eberman 1990]

[Eberman 1995]

[Ferrell 1965]

[Franklin, et al 1990]

[Franklin, et al 1994]

[Funda 1993]

[Hewitt 1989]

[Hirzinger 1993]

Auslander, D.M., Tham, C.H., Real-Time Software for Control, Prentice-
Hall, New Jersey, 1990

Bajcsy, R. and Goldberg, K.Y., "Active Touch and Robot Perception,"
Cognition and Brain Theory, v2, Summer 1984

Bajcsy, R., and Constantinos, T., "Perception via Manipulation,"
Proceedings of the International Society of Robotics Research, 1987

Bicchi, A., Salisbury, J.K., Brock, D.L., "Contact Sensing from Force
Measurements," MIT Artificial Intelligence Laboratory, AI Memo no.
1262, Oct. 1990

Bell, G., Parisi, A., Pesce, M., "The Virtual Reality Modeling Language:
Version 1.0," (internet publication), May 1995

Brock, D.L., "A Sensor Based Strategy for Automatic Robot Grasping,"
Ph.D. Thesis, ME, MIT, 1993

Doyle, J.C., Francis, B.A., Tannenbaum, A.R., Feedback Control Theory,
Macmillan Publishing Co., New York, NY, 1992

Eberman, B.S., Salisbury, J.K., "Determination of Manipulator Contact
Inferred from Joint Torque Measurements," in Hayward, V., and Khatib, O.,
(ed) Lecture Notes in Control and Information Sciences, Springer-Verlag,
New York, NY, 1990

Eberman, B.S. "Contact Sensing: A Sequential Decision Approach to
Sensing Manipulation Contact Features", Ph.D. Thesis, ME, MIT, 1995

Ferrell, W.R., "Remote Manipulation with Transmission Delay," IEEE
Transactions on Human Factors in Electronics, 1965

Franklin, G.F., Powell, J.D., Workman, M.L., Digital Control of Dynamic
Systems, 2e, Addison-Wesley, 1990

Franklin, G.F., Powell, J, Emami-Naeini, A., Feedback Control of Dynamic
Systems, 3e, Addison-Wesley, 1994

Funda, J., Taylor, R., Gruben, K., LaRose, D., "Optimal Motion Control for
Teleoperated Surgical Robots," in Telemanipulator Technology and Space
Telerobotics, Won S. Kim, ed., Proc. SPIE 2057, p. 10 (1993)

Hewitt, C., "Open Systems and Computer Science," in Concepts and
Characteristics of Knowledge-Based Systems, Tokoro, M., Anzai, Y.,
Tonezawa, A. (ed.), Elsevier Science Publishers, B.V. (North Holland),
1989

Hirzinger, G., Landzettel, K., Heindl, J., "ROTEX - Space Telerobotic
Flight Experiment," in Telemanipulator Technology and Space
Telerobotics, Won S. Kim, ed., Proc SPIE 2057, p. 10 (1993)

[Kernighan and Ritchie 1988] Kernighan, B.W., Ritchie, D.M., The C Programming Language,
2e, Prentice-Hall, 1988

[Maes 1989]

[Mar 1985]

[Marshall 1979]

[Massimino 1993]

[Narasimhan 1994]

[Narendra 1989]

[Noyes 1984]

[Oguztaireli 1966]

[Park 1991]

[Rosenberg 1993]

[Salisbury 1988]

[Savola 1995]

[Shearer 1990]

[Sheridan 1983]

[Sheridan 1992]

Maes, P., "How to Do The Right Thing," MIT Artificial Intelligence
Laboratory, AI Memo no. 1180, Dec. 1989

Mar, L.E., "Human Control Performance in Operation of a Time-delayed,
Master-Slave Manipulator," B.S. thesis, ME, MIT, 1985

Marshall, J.E., Control of Time-Delay Systems, Institution of Electrical
Engineers, Peter Pererniush Ltd. (pub.), New York, NY, 1979

Massimino, M.J., Campbell, P.D., Kearney, M.E., Meschler, M.F.,
"Manipulator Position Display (MPD) for Human Machine Interaction," in
Telemanipulator Technology and Space Telerobotics, Won S. Kim, ed.,
Proc SPIE 2057, p. 10 (1993)

Narasimhan, S., "Task Level Strategies for Robots," Ph.D. thesis, EE, MIT
1994

Narendra, K.S., Annaswamy, A.M., Stable Adaptive Systems, Prentice-Hall,
1989

Noyes, M.V., Sheridan, T.B., "A Novel Predictor for Telemanipulation
Through Time Delay," in Proc. of the Annual Conference on Manual
Control, Moffett Filed, CA, NASA Ames Research Center, 1984

OguztiSreli, M.N., Time Lag Control Systems, Academic Press Inc., New
York, NY, 1966

Park, J.H., "Supervisory Control of Robot Manipulator for Gross Motions,"
Ph.D. thesis, ME, MIT, 1991

Rosenberg, L.B., "Virtual Fixtures as Tools to Enhance Operator
Performance in Telepresence Environments," in Telemanipulator
Technology and Space Telerobotics, Won S. Kim, ed., Proc SPIE 2057, p.
10 (1993)

Salisbury, J.K., Townsend, W.T., Eberman, B.S., DiPietro, D., "Preliminary
Design of a Whole Arm Manipulation System (WAMS)," Proc. 1988 IEEE
International Conference on Robotics and Automation, Philadelphia, PA,
April 1988

Savola, T., Special Edition: Using HTML, Que Corp. 1995

Shearer, J.L., Kulakowski, B.T., Dynamic Modeling and Control of
Engineering Systems, Macmillan Publishing Co. New York, NY, 1990

Sheridan, T.B., National Research Council, Committee on Human Factors,
"Research Needs for Human Factors," National Academy Press,
Washington D.C., 1983

Sheridan, T.B., Telerobotics, Automation, and Human Supervisory Control,
MIT Press, Cambridge, MA, 1992

[Steels 1989]

[Stevens 1990]

[Wall 1990]

[Watanabe 1993]

[Wolovich 1987]

[Yoerger, D. 1991]

Steels, L., "Artificial Intelligence and Complex Dynamics," in Concepts
and Characteristics of Knowledge-Based Systems, Tokoro, M., Anzai, Y.,
Tonezawa, A. (ed.), Elsevier Science Publishers, B.V. (North Holland),
1989

Stevens, W.R., Unix Network Programming, Prentice-Hall, 1990

Wall, L., Schwartz, R.L., Programming perl, O'Reilly & Associates,
O'Reilly, T. (ed.), 1990

Watanabe, I., Aoki, T., Maruyama, T., Uchiyama, T., "Interactive Task
Planning System for Space Robots," in Telemanipulator Technology and
Space Telerobotics, Won S. Kim, ed., Proc SPIE 2057, p. 10 (1993)

Wolovich, W.A., Robotics: Basic Analysis and Design, CBS College
Publishing, New York, NY, 1987

"The Application of Supervisory Control to Underwater Telerobotics," in
Robotics, Control and Society, Moray, N., Ferrell, W.R., Rouse, W.D., ed.,
Ch. 7.

[Ziegler Nichols 1942]Ziegler, J.G., Nichols, N.B., "Optimum Settings for
Controllers," Transactions ofASME, v. 64, pp 759-768, 1942

Automatic

[Ziegler Nichols 1943] Ziegler, J.G., Nichols, N.B., "Process Lags in Automatic Control Circuits,
Trans., ASME, vol. 65, no. 5, pp.433-444, July 1943

