Designing Sound for Social Robots: Advancing Professional Practice through Design Principles

Abstract

Sound is one of the core modalities social robots can use to communicate with the humans around them in rich, engaging, and effective ways. While a robot's auditory communication happens predominantly through speech, a growing body of work demonstrates the various ways non-verbal robot sound can affect humans, and researchers have begun to formulate design recommendations that encourage using the medium to its full potential. However, formal strategies for successful robot sound design have so far not emerged, current frameworks and principles are largely untested and no effort has been made to survey creative robot sound design practice. In this dissertation, I combine creative practice, expert interviews, and human-robot interaction studies to advance our understanding of how designers can best ideate, create, and implement robot sound. In a first step, I map out a design space that combines established sound design frameworks with insights from interviews with robot sound design experts. I then systematically traverse this space across three robot sound design explorations, investigating (i) the effect of artificial movement sound on how robots are perceived, (ii) the benefits of applying compositional theory to robot sound design, and (iii) the role and potential of spatially distributed robot sound. Finally, I implement the designs from prior chapters into humanoid robot Diamandini, and deploy it as a case study. Based on a synthesis of the data collection and design practice conducted across the thesis, I argue that the creation of robot sound is best guided by four design perspectives: fiction (sound as a means to convey a narrative), composition (sound as its own separate listening experience), plasticity (sound as something that can vary and adapt over time), and space (spatial distribution of sound as a separate communication channel). The conclusion of the thesis presents these four perspectives and proposes eleven design principles across them which are supported by detailed examples. This work contributes an extensive body of design principles, process models, and techniques providing researchers and designers with new tools to enrich the way robots communicate with humans

    Similar works

    Full text

    thumbnail-image

    Available Versions