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Abstract 
Fairness is an important aspect for individuals and teams. This also applies to human-robot interaction 
(HRI). Especially if intelligent robots provide services to multiple humans, humans may feel treated 
unfairly by robots. Most work in this area deals with the aspects of fair algorithms, task allocation, and 
decision support. This work focuses on a different, yet little-explored perspective, which looks at fairness 
in HRI from a human-centered perspective in human-robot teams. We present an experiment in which 
a service robot was responsible for distributing resources among competing team members – in one 
condition with an efficient (but rather unfair) distribution algorithm and in another condition with an 
algorithm that was less efficient but could be considered fair. We investigated how the different 
strategies of distribution influence the perceived fairness and how this perceived fairness influenced the 
perception of the robot as such. Our study shows that humans might perceive technically efficient 
algorithms executed by a robot as unfair, especially if humans personally experience negative 
consequences. Interestingly, this perceived unfairness had a negative impact on human perception of 
the robot as such, which should be considered in the design of future robots. 
 

Keywords: Human-Robot Interaction, Fairness, Human-Robot Groups, Service Robot, Empirical Study. 

1 Introduction 
Fairness is an important aspect in human interaction. In cooperation and collaboration between humans, 
fairness is a decisive element that influences how well people can work together (Colquitt, Zapata-
Phelan and Roberson, 2005). Fairness “is essential to a mutually satisfactory exchange between two 
parties” (Berry and Seiders, 2008) in business settings, it is critical to the work of people in companies 
as well as for the success of the company (Alexander and Ruderman, 1987), and it is a central element 
to our society (Colquitt, Zapata-Phelan and Roberson, 2005). The importance of fairness has been shown 
in research on human-robot teams, in which it was found that humans may have a different perception 
of fairness towards robots when compared to humans (Torta et al., 2013; Nagataki et al., 2019) and that 
the perception of unfairness in robotic team members may have influences on team performance (Claure 
et al., 2020; Chang and Thomaz, 2021) as well as on the relationship between team members (Jung et 
al., 2020). It has also been found that people want to be treated fairly by robots (Chang and Thomaz, 
2021). 

There are different reasons why people may perceive robots and other AI-based agents to act unfairly. 
Only in very few situations, the reason is that the robot was intentionally built to be unfair, e.g. to spy 
on companies or people (Hartzog, 2014). In most cases, there are other reasons: Fair decision-making 
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of algorithms may be undermined by bad data (Lee, Madotto and Fung, 2019) or algorithms may simply 
be unfair without bad intentions (Wang, Harper and Zhu, 2020). Even if this is not the case, an agent’s 
behavior may seem unfair if it interprets subtle differences in requests or situations and therefore reacts 
differently on these (Følstad and Taylor, 2020), or if it provides different service levels to people based 
on the status or license level of the respective person (Radhakrishnan and Gupta, 2020). Sometimes, 
unfairness is also mostly a perception of people (Lee and Baykal, 2017). It is common sense that 
unfairness in robots and other AI-based agents must not occur (Abdul et al., 2018; Keyes, 2018; Holstein 
et al., 2019), but there is also a lot of work left to achieve this goal. 

Besides other areas, the perception of fairness in Human Robot Interaction (HRI) is especially important 
for service and delivery robots, as the perception of unfair service creates negative reactions in those 
being served (Seiders and Berry, 1998), and as these negative reactions often linger and impede the 
potential recovery of satisfaction with the service (Ok, Back and Shanklin, 2006; Siu, Zhang and Yau, 
2013). Fairness in service and delivery robots has many practical applications. Consider, for example, a 
robot serving customers in a restaurant, which is a popular and very recent application area of service 
robots (Lee, Lin and Shih, 2018; Berezina, Ciftci and Cobanoglu, 2019; Byrd et al., 2021). Customers 
might expect to be served in the same sequence in which they had placed an order. Service robots, 
however, may use ideal path planning to deliver them as soon as possible. This may result in the 
perception of unfair treatment. There are similar scenarios such as the delivery of goods (Lee et al., 
2012), robots allocating resources (Claure et al., 2020; Jung et al., 2020), rescue robots (Brandao et al., 
2020), robots playing with humans (Short et al., 2010), and others. In all of these scenarios, fairness of 
robots is an issue. 

Fairness in robotics and AI in general may be tackled from different perspectives. As Auernhammer 
(2020) lays out using a famous differentiation by Winograd (1996), there are two main perspectives in 
research on human interaction with AI, robotics, and other autonomous machinery: the rationalistic 
perspective, which takes a mainly technical approach and tackles challenges in AI from an algorithmic 
and data-centered view, and the design perspective, which takes a humanistic stance and looks at human 
interaction with technology, seeking solutions that “improve human conditions” (Auernhammer, 2020). 
A lot of research is done on the former, the rationalistic perspective. In the context of fairness, this 
includes work on fairness in algorithms (Celis et al., 2019; Wang, Harper and Zhu, 2020), and on using 
data that enables fair decisions of AI-based agents (Pastaltzidis et al., 2022; Ruf and Detyniecki, 2022). 
The design perspective, while not regarded as much as the rationalistic perspective, is as important as 
focusing on technical aspects, and has gained attention under terms such as “human-centered AI” 
recently (Riedl, 2019a; Shneiderman, 2022). Besides the focus on human interaction with technology, 
this perspective also demands a “sociocultural understanding” (Riedl, 2019a) of the context robots and 
other AI are embedded in. In this paper, we look into fairness in HRI from this human-centered 
perspective; we present a study in which we look into human perception of fairness in the behavior of 
service robots. 

Our work is driven by the question of which impact the perceived unfairness of a service robot has on 
humans in social situations. For this, we conducted an experiment with 34 participants, in which a 
service robot distributed resources to three competitors. Our results show that humans perceive robots 
to be unfair in certain constellations, and this led to changes in other perceptions towards the robot. 

2 Related Work 
Fairness has been defined as “a global perception of appropriateness” (Colquitt and Rodell, 2015) of 
how an individual is treated by other individuals or organizations. As such, fairness is subjective, and 
the individual perception of whether a situation is perceived as fair or unfair has individual (Colquitt et 
al., 2018) and cultural influences (Blake et al., 2015). Fairness or more specifically responses to fairness 
or unfairness seem to be deeply rooted in human behavior. Theories relating to fairness often explain 
the purpose of fairness with the recognition of the value of others in cooperative interactions (Brosnan, 
2013). In human-to-human cooperation, it probably is more beneficial to stop cooperation, if the 
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outcomes are regularly distributed unfairly among humans (Fehr and Schmidt, 1999; Brosnan, 2013). 
Consequently, the perception of unfairness causes strong negative emotions in humans and non-human 
primates (Brosnan and de Waal, 2014). 

According to current theories of fairness, fairness can be divided into four main dimensions. In a larger 
social context, these are interactional and informational fairness (Alexander and Ruderman, 1987; 
Greenberg, 1993), and in the context of organizations, these are procedural and distributive fairness. 
Interactional fairness involves how rules of (fair) decision-making are applied in a specific case (Tyler 
and Bies, 1990). Importantly, the perception of interactional fairness includes all aspects of the 
interpersonal relationship between the decision maker and the addressee of the decision (Greenberg, 
1993). Informational fairness describes whether decision-makers explain the decision adequately or not 
(Greenberg, 1993; Marcinkowski and Starke, 2019). Procedural fairness is about the rules of how the 
distribution of goods or information is managed (Alexander and Ruderman, 1987), which includes 
criteria such as consistency, neutrality, accuracy, revisability, ethics, and representativeness (Leventhal, 
1980). Distributive fairness is about the equal distribution of resources and thus the outcome of decision-
making processes (Alexander and Ruderman, 1987; Yean and Yusof, 2016). 

A lot of design and empirical work in fairness perceptions towards algorithms and AI is based on 
interpersonal fairness concepts (Starke et al., 2021). This is closely related to paradigms such as 
“Computers-Are-Social-Actors” (CASA) by Nass et al. (1994), which describes that humans may 
perceive interactions with algorithms and AI as social interactions. However, there is also empirical 
work available showing that people use different criteria to assess the fairness of an algorithm and a 
human decision-maker (Dietvorst, Simmons and Massey, 2015). This can be seen in work that uses 
ultimatum games, which are popular to investigate human justice and fairness perceptions: Nagataki et 
al. (2019) and Torta et al. (2013) found that in such games, people more often declined unfair offers 
from computers and robots than from humans. Perceptions of (un)fairness in robots and AI can be 
problematic, as they can lead to a loss of trust in the corresponding system (Zhou et al., 2021), which 
may in turn lead to reduced user experience, adoption, and acceptance of the system (Gulati, Sousa and 
Lamas, 2019). In the context of AI, humans show a tendency to be critical about algorithmic decisions. 
For example, Lee and Baykal (2017) found that mathematically proven fair algorithmic decisions are 
often perceived as less fair than decisions based on a human group discussion. It is notable that the 
decision made by the human group does not have to be mathematically fair, but that people honored the 
transparency of decision-making based on their knowledge of the group discussion as well as the 
possibility to intervene in the discussion. In follow-up work, Lee et al. (2018) found that humans may 
perceive algorithmic decisions as fairer if “mechanical” skills are needed (e.g., computing optimal 
resource allocation or scheduling), while human decisions were found to be fairer if “human” skills were 
needed (e.g., hiring people). Langer et al. (2022) studied fairness perceptions when people are (only) 
told that decisions were taken by a human, an algorithm, and AI or other computational mechanisms, 
and their results matched the findings of Lee et al. (2018).  

This and other work emphasize the need to study fairness perceptions towards algorithms and AI, as it 
shows differences in such perception compared to interpersonal fairness. This is supported by Starke 
et al. (2021), who conducted a literature survey about fairness and algorithmic decision-making. They 
conclude that there is surprisingly little research on the consequences of perceived fairness and how to 
design for fair interaction. 

The interaction of humans with robots is different from the interaction of humans with algorithms and 
AI in general. Due to their embodiment and physical appearance, dealing with robots may include richer 
experiences and interactions than with computers, other machines, or algorithms (Salem et al., 2015). 
This is mirrored in findings showing that the perception of unfairness in robots may have influences on 
the performance of teams robots are involved in (Ötting et al., 2017; Claure et al., 2020; Chang and 
Thomaz, 2021), which includes influences on the relationship between team members (Jung et al., 2020) 
and on the trust towards the robot (Ötting et al., 2017). 
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Short et al. (2010) found that people trusted a robot less than if it was obviously cheating on them in a 
game, and that their intention to play with the robot diminished because of this. While this could have 
been expected, Jung et al. (2020) show that the unfair behavior of robots affects teams and individuals. 
The researchers used a tower construction task in which two people have to build a tower with wooden 
blocks, and in which a robot managed the allocation of the blocks. They found that the way in which 
resources are allocated (equally or unequally) had an influence on the interpersonal relationship between 
team members. This suggests that a lack of distributive fairness may impact interpersonal relationships. 
In a similar study, Claure et al. (2020) explored the equitable distribution of blocks for a collaborative 
Tetris game by a robot. Their results showed that considering fairness in the allocation of resources leads 
to better trust. Chang et al. (2021) found that people perceived robot support of two co-workers to be 
fairer if the robot devoted equal time to support both co-workers, and if the co-workers completed equal 
shares of the work. These studies show that the perception of robot fairness matters and that it depends 
on the behavior of the robot. However, for all studies mentioned, it needs to be emphasized that the team 
members were supposed to solve a task together. 

Regarding the fairness of service robots, Lee et al. (2012) conducted a two-month field study using a 
service robot to distribute snacks in an office. Their study involved repeated interaction with the service 
robot (nine times on average for each participant), and it included personalized conversations with the 
robot about snack choices or apologies for mistakes. Besides other aspects, the authors observed 
indications of fairness around the distribution of snacks. For example, they found participants to feel 
envy and to be treated unfairly in comparison to others because they assumed that the robot's delivery 
order favored certain participants, while this was not the case. Seo and Lee (2021) investigated the use 
of service robots at restaurants. They found "that consumers perceived risk is high when they have more 
uncertainty about the malfunction, errors, or technical inaccuracies from unfamiliar serving or chef 
robots." They also emphasize that if the customer has more trust in the service robot, the perceived 
usefulness and the chance that the guest will visit the restaurant again is higher (Seo and Lee, 2021). 

Brandao et al. (2020) investigated fairness of robot navigation in the context of rescue robots. They 
discuss the impact of context on the fairness of robot navigation, and they illustrate this by demonstrating 
the context of where to apply robots for rescue purposes in a city. They show that there are dilemmas 
such as picking rich districts with young and healthy over neighborhoods with elderly people. They end 
up with the conclusion that a compromise between efficiency and fairness has to be made for fairness-
conscious navigation planning of rescue robots, and they recommend considering the situation and 
context when planning fair robot navigation. Hurtado et al. (2021) found that fair navigation planning 
by robots plays an important role for social acceptability in social environments. They define five factors 
for fair robot navigation: reaching “value alignment” between humans and the robot, considering “bias 
evaluation” to avoid discrimination, considering “deterrence” to cultural differences and to be respective 
with cultural habits, “non-maleficence”, meaning that there is no opportunity to violate people by the 
robot navigation, and “shared benefit” to serve humans equal independent of the scenario. 

While there is work available on the perceived fairness of robots interacting with humans, we found 
that, among the available studies, most describe different scenarios than ours, e.g., collaboration instead 
of competition. To the knowledge of the authors, there is only the work by Lee et al. (2012) providing 
insights into the fairness perception of service robots among people who are only indirectly related (via 
the distribution). While this study of service robots is not exclusively focused on fairness, Lee et al. 
observed that humans developed “feelings around fairness and the distribution of resources” (Lee et al., 
2012). Given the prevalence and utility of service robots in many situations, the absence of studies on 
fairness of these robots is a research gap to be addressed to inform the design of fair human-robot 
interactions in service robotics. Our work on this gap is driven by two central research questions: 

RQ1: To which extent does efficient delivery of resources performed by a service robot lead to 
perceived unfairness?  

RQ2: What impact does the perceived unfairness of service robots have on the design of human-robot 
interaction? 
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3 Method 
To provide initial answers to the research questions mentioned above, we ran an experiment in which 
participants completed competitive puzzle tasks and were supported by a service robot delivering the 
required material. In the experiment, two participants and one agent from our team competed against 
each other. The perception of unfairness was supposed to be influenced by the sequence in which the 
robot distributed the material for the competition. 

3.1 Experiment Task: the Puzzle Competition 

We designed a competition in which participants had to complete multiple building-block puzzle tasks. 

For every single building-block task, the participants received a 16 × 16 base plate, a set of black and 
white building blocks in a bag, and an instruction sheet consisting of a schematic image (see Figure 1, 
left). The goal of the task was to arrange the blocks on the base plate as shown in the instruction as 
quickly as possible. All puzzle tasks followed this principle, but the specific pattern changed. The pattern 
always had the size of 12 × 12 and had to be placed in the center of the base plate (see Figure 1, right). 

The competition between the participants was designed as follows: all competitors received an identical 
set of four numbered manuals before the competition. Their goal was to complete each of the four tasks 
as quickly as possible. The competitor to finish the last task first was rewarded with a bonus (2 Euros), 
which was communicated to the competitors beforehand. The competition was turn-based, so there were 
four separate rounds in which the competitors were taking part. Each round consisted of a building phase 
and an ordering phase (material for the next round). In the first round the competitors already had the 
required material on the table. In this first round, all competitors started at the same time on command 
and tried to solve the puzzle as fast as possible (building phase). Once the task was completed, the 
competitors rang the call bell to trigger the service robot to come to their position, which allowed the 
competitors to place an order for the next round (ordering phase). It is noteworthy that this means that 
who finished the task first was also the person to order first for the next round. To place an order, the 
competitors had to scan a quick-response (QR) code. After all participants had ordered, the next round 
started. From the second round on, the material was provided by a service robot (see the description of 
the delivery process below). The competitors were asked to take the material as soon as the robot arrived 
and to start immediately with the task without waiting for the others. Thus, receiving material early gave 
competitors an advantage. 

  
Figure 1. Material for one of the building-block tasks (left) and result of the task (right). 

3.2 Design 

As can be seen from the description of the experiment task, the sequence of delivery by the robot plays 
a crucial role for the individual chances of the competitors. We used this dependency to model 

12 × 12 

16 × 16 
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(un)fairness in the independent variable tour planning, which had two levels: user-centric and shortest 
path (see example in Figure 2). In the condition user-centric the robot delivered the required material 
based on a queue following the FIFO principle: the participant who ordered first also received the parts 
first for the next task. We assumed that this way of tour planning was fair to users, as it took into account 
their individual success in the previous round, and therefore call it user-centric. In the second condition, 
which we named shortest path, the robot delivered parts to the participants in a fixed order according to 
their distance to the material warehouse, which is often applied in service robotics to save time and 
energy in delivery. Participants who sat close to this warehouse were served earlier than participants 
who sat further away from the warehouse, even if this conflicted with the order sequence. While this 
second condition reduced the robot's overall driving distance and delivery time, we considered it unfair. 

Regarding the shortest path condition, we consider seat position as another independent and potentially 
conflating variable with the two levels position 2 and position 3 (position 1 was taken from the agent, 
see below). In the shortest path condition, position 2 can be considered as a neutral position with a 
disadvantage over position 1 but with an advantage over position 3. Position 3 had a larger disadvantage 
since parts were always delivered to it last. The variable seat position is a between-subject factor. 

To compare the strategies, we ran two rounds of the study, in which the robot would apply one of the 
two strategies each. This was done following a within-subject design, in which each participant was 
exposed to both strategies. To prevent carry-over effects, we counterbalanced the order of strategies. 

 
Figure 2. Example of the two delivery strategies. The completion order of the preliminary round 

(here: 2➔ 1 ➔ 3) influenced the delivery sequence only in condition user-centric. 

As dependent variables, we measured variables relating to the perception of fairness of the situation 
and to the overall perception of the service robot. 

In terms of the perception of fairness of the situation, we were questioning, whether the implications of 
the shortest path condition would be attributed to the robot or to their seat position. This contradiction 
is crucial, since participants who perceive a robot as a rational technical device might recognize a 
disadvantage due to the shortest path strategy but might attribute it to their (randomly assigned) position 
rather than to the robot. Therefore, we measured the two variables perceived fairness of the robot and 
perceived fairness of the seat position. To measure the intensity of perceived fairness, we included the 
two variables perceived advantage, and perceived disadvantage. The aforementioned variables were 
measured using a questionnaire with seven statements that had to be rated on a 7-point Likert scale. 

The other set of variables relates to the perception of the service robot since we wanted to find out if a 
perceived (un)fairness has implications on the characteristics attributed to the robot. For this purpose, 
we measured the four variables likeability towards the robot, perceived intelligence of the robot, 
perceived relationship towards the robot, and trust. Likeability and intelligence were measured using 
the Godspeed questionnaire (Bartneck et al., 2009) part III (likeability) and IV (intelligence). 



Excuse me, something is unfair! 

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                             7 

Relationship was measured using an adaption of the relationship part of the Subjective Value Inventory 
(SVI) questionnaire (Curhan, Elfenbein and Xu, 2006). For trust, we asked the question “Overall, how 
much do you trust the robot?” that had to be rated on a seven-point scale ranging from “not at all” to 
“perfectly”. 

3.3 The Role of the Task and the Agent for the Control of the Experiment 

One challenge in the experiment was to control the course of the experiment. As there was no way to 
control the speed of task completion by the individual participants, different sequences could have 
occurred, which would have made the comparison between the experiments difficult. To be able to 
control the experiment, we applied two measures. First, we used tasks that took an untrained person 
between one and two minutes. Provided that the robot needed 2030 seconds to go from one position to 
the next, this made it very likely that the participants would finish the task in the sequence they were 
served. Second, among the three participants, we always included an agent with special instructions. 
This role was taken by a researcher, who was trained in executing the puzzle tasks quickly. In each 
round of the competition, the agent made sure that he was at least in one task the slowest and in one task 
the fastest to alter the sequence of ordering and consecutive serving. In particular, the agent aimed for 
the second position in task 1, for the first position in task 2, for the third position in task 3, and for the 
second position in task 4. Since the agent was trained in all puzzle tasks, this strategy worked well and 
the participants always experienced changes in the ranking within the rounds. Consequently, the 
participants could observe and perceive the implications of the delivery order. 

3.4 Participants 

We recruited 34 participants, all of whom were students from our university but had no prior knowledge 
about our research or the experiment. Out of the 34 participants, 21 identified as male, and 13 identified 
as female. The age of the participants ranged from 18 to 35 years (M = 25.06, SD = 4.16). 

The participants received financial compensation for taking part in the experiment, which took about 
60 minutes. They received a base compensation of 10 Euros (20 Euros for recurrent study participants). 
Additionally, participants could gain an additional bonus of up to 4 Euros (2 Euros per round and 
strategy applied) based on their performance in the experiment (see section 3.1). 

3.5 Apparatus 

For the study, we used two rooms connected by a door at our institute. One of the rooms was the material 
warehouse where the robot could pick up new material. The other room was the area in which the 
competition among the participants took place (see Figure 3). 
 
 

 
Figure 3. Left: the spatial arrangement of the seat positions. Top right: three tables of the 

competitors. Bottom right: position of the observer and door to the warehouse. 
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As can be seen in Figure 3, we placed three tables and chairs in the middle of the room. Position 1 was 
the table at which the agent was sitting during the experiment. Positions 2 and 3 were the seating 
positions of each of the two participants that took part in a run of the experiment. Each table was 
equipped with a call bell. Diagonally opposite to the participants, we placed an observer for the 
experiment (Figure 3 bottom right), who also controlled the robot. Controlling the robot was done in an 
unobtrusive manner (single touch on the touchpad) so that the participants did not notice. 

For our experiment, we used the service robot James from Belgian manufacturer ZoraBots (see Figure 
4). It is 80 cm high and weighs 17kg. Its built-in LIDAR sensor and simultaneous localization and 
mapping (SLAM) algorithms allow the robot to navigate through a defined area based on a prerecorded 
map that contains Points of interest (POI) and obstacles. For interacting with users, James is equipped 
with additional sensors like a microphone, speakers, a 10" capacitive touch display, and a button on his 
head. To enable James to deliver material to the competitors we attached a small self-made plastic 
backpack to its back (see Figure 4 middle). 

For the graphical user interface, most of the time animated eyes were shown on James’s touchscreen 
(see Figure 4 left). The eyes were blinking from time to time. The goal of this animation was to give the 
service robot a more human-like appearance. Only for scanning QR codes as part of ordering material 
this user interface was changed as shown in Figure 4 right. In this mode, the camera was activated, and 
the camera image was shown to the user to give visual feedback for scanning the code. In the ordering 
phase, the main interactions with users were done using the speech-output engine of the robot. After a 
competitor rang the bell, the robot drove to the competitor and asked “Hello, would you like to order?” 
After scanning the QR code the robot replied “Thanks, I will bring you task [number of round].” 

   
Figure 4. Service robot James with eye animation (left) and the attached backpack (centre). By 

scanning QR codes, participants could order new material (right). 

For the navigation of the service robot, we pre-programmed points of interest (POIs) in the lab and used 
a Wizard-of-Oz (WOz) approach to let the robot appear to be autonomous. We defined five POIs as 
shown in Figure 3. Using these POIs, the observer could send the service robot to the required POI by 
using its control software. Since this manual selection was unobtrusive and the routing itself was done 
automatically by the software, the service robot appeared to be completely autonomous. 

3.6 Procedure 

The participants registered for the experiment using an online form, which also collected demographic 
data. We created a meeting area in front of our lab for all participants. The agent also went to this meeting 
point and acted as a participant until the end of the experiment. When all three competitors were 
complete, we guided them to the lab. When entering the room, the moderator assigned seats to the 
participants and the agent. While the agent was always placed at position 1, the participants were 
randomly placed at position 2 and position 3. Before starting, participants filled in a written consent 
form adhering to the local data protection regulations. Then the robot James was introduced, and the 
task and competition were explained in detail to the participants. In the introduction, we told the 
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participants that the service robot was able to deliver the material autonomously. We did not give any 
information about the delivery order. After this introduction, we started one practice round to make the 
participants familiar with the task. The participants received the instruction sheet and material for the 
practice task. We emphasized that this practice task was not part of the competition. The participants 
started on command and had to solve the task and ring the bell. Once they rang the bell, James drove to 
them in the order in which the participants completed the task to become familiar with the ordering 
phase. The participants were then asked to scan the QR code. Finally, the participants had the chance to 
ask questions. After the introduction, we ran two competitions: one competition under the condition 
user-centric and one under the condition shortest path, with both competitions consisting of four 
separate puzzle tasks. As mentioned above, we counter-balanced the order, so nine out of 17 sessions 
started with the user-centric condition and eight sessions started with shortest path. After each 
competition (four puzzle tasks), we first announced the winner of the round and then handed out the 
questionnaire to collect the participants’ perceptions of fairness and the robot in the experiment. After 
both competitions were finished and all questionnaires were completed, we informed the participants 
about the actual background of the experiment, the manual control of the robot, and the role of the agent. 
We collected informal feedback on their perception of the robot and its “autonomy”. The participants 
were asked not to share details of the experiment with others and they received their compensation. 

4 Results 
Here, we present the results in terms of the perception of fairness and in terms of perception of the robot. 

4.1 Perception of Fairness 

Looking at perceived fairness we look into the variables fairness of the robot, fairness of the seat 
position, advantage, and disadvantage. All of the variables were measured on a scale from 1 (low) to 7 
(high). The results are presented in Figure 5 and Table I. The latter also contains the pairwise 
comparisons using the Wilcoxon signed-rank test. 

 
 

Figure 5. Participants' perception of fairness in the experiment. The scale of each variable 
reached from 1 (lowest value) to 7 (highest value). The error bars depict the standard 
error and significant differences are marked with asterisks. 

For fairness of the robot we observed significant differences between the user-centric and shortest path 
conditions for both positions together as well as for the individual positions. Comparing the mean values 
of position 2 and 3 shows that the differences between the rating of the user-centric condition and the 

*** 

*** 

*** 
*** 

  ** 

  ** 
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shortest path condition are higher for position 3, which was the position that had the stronger 
disadvantage under the shortest path condition. However, comparing the data of position 2 and position 
3 using the Mann-Whitney U test does neither show significant results between the seat positions in the 
user-centric condition (U = 98.00, p = 0.170) nor in the shortest path condition (U = 89.00, p = 0.140). 

Again, for fairness of the seating we could observe significant differences between the user-centric and 
shortest path condition for both positions together and for the individual positions. Analyzing the data 
using the Mann-Whitney U test does not show a significant difference between position 2 and position 
3 in the user-centric condition (U = 124.00, p = 0.656) or in the shortest path condition (U = 123.00, 
p = 0.533). 

 
Table I Results for the four variables fairness of the robot, fairness of the seating, perceived 

advantage, and perceived disadvantage for both positions and for each of the single 
positions. We ran pairwise comparisons using the Wilcoxon signed-rank test that 
resulted in the shown Z and p values. 

In the variable perceived advantage, we measured the perceived advantage over the competitors. Here 
we could observe significant differences for each of the positions, but not for the complete data set (see 
Table I). The Mann-Whitney U test revealed that there is a significant difference for the ratings between 
position 2 and position 3 in the shortest path condition (U = 57.50, p = 0.002) but not in the user-centric 
condition (U = 137.00, p = 0.792). 

In a similar way, with the variable disadvantage we measured whether the participants perceived a 
disadvantage over the other competitors. This variable resulted in a significant difference when looking 
into the data of position 3 as well as when considering both positions, but we could not show a significant 
difference when looking into the data of position 2. However, the Mann-Whitney U test did not show 
significant differences for the ratings between positions 2 and 3 (U = 106.50, p = 0.279 for user-centric 
and U = 77.50, p = 0.084 for shortest path). 

4.2 Perception of the Robot 

Figure 6 and Table II show the results of the four robot-related variables likeability, intelligence, 
relationship, and trust, which we used to measure the perception of the robot under different conditions. 
Beyond the given results and analysis in Table II, we analyzed the differences between positions 2 and 3 
using the Mann-Whitney U test, which resulted in significant differences for the variable likeability in 
the shortest path condition (U = 63.50, p = 0.026) but not for the user-centric position and not for the 
other three variables. 

M SD Z p M SD Z p
User-centric 5.12 1.30 User-centric 4.61 2.34
Shortest Path 3.01 1.59 Shortest Path 1.67 1.59
User-centric 4.97 0.93 User-centric 4.82 2.16
Shortest Path 3.30 1.40 Shortest Path 1.76 1.68
User-centric 5.26 1.59 User-centric 4.37 2.58
Shortest Path 2.72 1.76 Shortest Path 1.56 1.55

M SD Z p M SD Z p
User-centric 2.94 2.82 User-centric 3.24 1.90
Shortest Path 1.61 1.99 Shortest Path 5.29 1.85
User-centric 2.88 1.69 User-centric 3.69 2.27
Shortest Path 3.82 2.04 Shortest Path 4.88 1.78
User-centric 3.00 1.58 User-centric 2.82 1.43
Shortest Path 1.82 1.38 Shortest Path 5.73 1.87

Perceived Fairness of the Robot

-4.46 <.001Both Positions

Position 2 -3.19 <.001

Perceived Fairness of the Seating

Both Positions -4.33 <.001

Position 2 -3.20 <.001

Position 3 -2.92 0.002

Perceived Advantage

Both Positions -0.41 0.702

Perceived Disadvantage

Both Positions -3.37 <.001

Position 3 -3.13 <.001

Position 2 -1.79 0.086

Position 3 -2.62 0.008

Position 2 -1.66 0.100

Position 3 -3.07 <.001
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Figure 6. Participants' perception of the service robot. The scale reached from 1 (lowest value) 

to 5 (highest value), respectively from 1 (lowest value) to 7 (highest value). The error 
bars depict the standard error and significant differences are marked with asterisks. 

 
Table II Results for the four variables likability, intelligence, relationship, and trust for both 

positions and for each of the single positions. We ran pairwise comparisons using the 
Wilcoxon signed-rank test that resulted in the shown Z and p values. 

5 Discussion 

Based on the results regarding the perception of fairness, we argue that the different conditions had a 
strong influence on the perception of fairness, which we expected beforehand since the participants 
actually had an objective disadvantage over the agent in the shortest path condition. The awareness of 
the participants that there actually was something unfair in this condition was also shown in the 
observations. Participants showed irritation about the delivery order and some participants even 
complained – interestingly in favor of their competitors: when they were delivered second even though 
they were last in the previous round, one participant drew attention to a supposed error: “Excuse me, 
something is unfair! The robot should go to him first”. The data and the observations during the 
experiment show that seemingly optimal path planning can be perceived as unfair, even though it might 
not be intended. Apart from perceiving the robot as unfair in the shortest path condition, the position of 

M SD Z p M SD Z p
User-centric 4.47 0.51 User-centric 4.03 0.72
Shortest Path 4.22 0.68 Shortest Path 3.55 0.80
User-centric 4.57 0.45 User-centric 4.06 0.70
Shortest Path 4.54 0.43 Shortest Path 3.82 0.74
User-centric 4.36 0.55 User-centric 4.00 0.77
Shortest Path 3.95 0.74 Shortest Path 3.28 0.79

M SD Z p M SD Z p
User-centric 5.87 0.96 User-centric 5.38 1.30
Shortest Path 5.32 1.27 Shortest Path 4.53 1.48
User-centric 6.00 0.75 User-centric 5.41 1.46
Shortest Path 5.30 1.15 Shortest Path 4.94 1.44
User-centric 5.75 1.13 User-centric 5.35 1.17
Shortest Path 4.66 1.10 Shortest Path 4.12 1.45

Position 3 -2.94 0.002 Position 3 -2.70 0.006

Position 2 -2.39 0.015 Position 2 -1.49 0.166

Relationship Trust

Both Positions -3.78 <.001 Both Positions -3.01 0.002

Position 3 -2.53 0.012 Position 3 -3.07 <.001

Position 2 -0.14 0.992 Position 2 -1.54 0.141

Likeability Intelligence

Both Positions -2.10 0.037 Both Positions -3.50 <.001

   *    * 

***   **   ** 
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the seat was considered unfair to the same extent. The low ratings of the seating position were 
independent of the particular position. The comparison between the variables advantage and 
disadvantage is very interesting. While the participants rejected the statement to have an advantage in 
the user-centric condition (which was objectively not the case), they had a neutral position towards this 
statement in the shortest path condition on position 2. Since this position actually had an advantage over 
position 3, but a disadvantage over position 1, this rating seems to be rational. However, when asked 
whether their competitors had an advantage, the participants in position 2 mostly agreed in the shortest 
path condition, which is surprising, since one of the competitors had a clear advantage but the other a 
clear disadvantage, which would make a neutral rating more rational. We explain this observation with 
a self-serving bias, a cognitive bias that leads to the effect that humans tend to attribute positive 
outcomes to their own behavior but negative outcomes to external factors (Campbell and Sedikides, 
1999). In a similar way, in our experiment, the advantage was rated neutral, but the advantage of the 
others was perceived clearly since this led to an attribution of poor performance to the other competitors. 
This observation holds for position 2 only. In position 3, no one felt a personal advantaged but a huge 
advantage for the others was perceived, which fits the objective situation. 

Given the data about the perception of the robot, we can conclude that the perceived (un)fairness had an 
impact on the perception of the service robot, especially if people personally perceived strong negative 
consequences. When looking at either the complete data or exclusively the data of position 3, the four 
related variables are rated significantly lower in the shortest path condition, which we attribute to the 
perceived unfairness. In this case, the participants liked the robot less, they perceived the quality of the 
relationship towards the robot as lower and they did not trust the robot as much. Additionally, they 
perceived it as less intelligent, which is interesting because they could also have considered the more 
efficient routing as unfair but “intelligent”, which participants apparently did not perceive in this way. 
These effects seem to be dominated by the ratings of the participants in position 3 since the differences 
in position 2 are not significantly different except for the assessment of the relationship. 

From the observations and short interviews after the sessions, it can be said that the participants 
perceived the robot to be autonomous. Some participants mentioned theories on how they thought the 
robot worked: most of them created a connection between the used call bells and the robot and assumed 
that the robot reacts to the sound of the ringing bells. If people perceived the robot as an autonomous 
agent, it is not surprising that they attribute unfairness to the robot. Given that aversion against unfairness 
is deeply rooted in human evolution (Brosnan and de Waal, 2014) and that people want to be served 
fairly by a service robot (Chang and Thomaz, 2021), it is not surprising that this perceived unfairness 
leads to disliking the robot and to the perception of lower relationship quality. 

In our experiment, we intentionally selected two conditions that had the potential to influence the 
perceived fairness in the intended way – one condition, that is in line with human objectives (user-
centered) and one condition that causes a conflict between efficiency and human objectives (shortest 
path). Of course, the results of the experiment might have been different if the mentioned conflict 
between robot and human objectives would not exist. Still, we argue that these two conditions are two 
extreme cases of realistic scenarios. If designers of robots focus on efficiency they might end up in 
scenarios, where they design service robots that are efficient in their task, e.g. in delivery, but cause 
negative emotions in humans as observed by Lee et al. (2012) and could in consequence lack in user 
acceptance. One could assume that humans understand that service robots are trimmed for efficiency 
and therefore exhibit behavior that can lead to advantages or disadvantages to humans in individual 
cases. However, our study provides empirical evidence that humans are sensitive to such unfair 
situations and attribute negative characteristics to the robot and trust it less. It is not the case that people 
see a robot as a rational technical device that just does its job. Given our data, we argue that reactions 
to the robot's behavior shown here are similar to the reaction to unfair treatment by a human. 
As in any study, our findings are subject to certain limitations: First of all, as we have laid out above, 
fairness is context-dependent. Therefore, the design of the task, the chosen service robot, and its 
particular user interface influence the results. Especially the perception of the robot as such might 
influence the ratings of the participants. We chose a small commercial service robot, which resembles 
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many robots typically used in the service sector. As discussed above, the choice of specific tour planning 
strategies obviously has an influence on the results, because the impact of differences in the perceived 
fairness can only be measured if the differences are perceivable by the participants. Finally, our sample 
size might have been too small to reveal minor differences between the conditions. 

6 Conclusion and Future Work 
In this paper, we presented the results of an experiment in which a service robot was responsible for 
distributing resources among competitors. We investigated the influence of different distribution 
strategies on the perceived fairness of the robot as well as on the perception of the robot by humans. 

Our results show that there might be a conflict between the technically ideal or efficient behavior of the 
robot and the fairness expectations of humans. The behavior of service robots may be perceived as unfair 
if a situation arises where individuals have personal advantages or disadvantages due to the used 
algorithm of the service robot. Our work also suggests that people are more sensitive to disadvantages 
in comparison to their own advantages, as our participants perceived the overall situation to be unfair 
although it gave them individual advantages. Furthermore, our results indicate that service robots, which 
treat humans in an unfair way, are perceived as less intelligent; they were re-liked less, or – in case of 
unfair treatment that has strong negative consequences as in position 3 of our experiment – might be 
even disliked. The relationship with the robot was rated as less positive and people trusted the robot less. 
This suggests that humans attribute negative characteristics to a robot if it is perceived to act unfairly. 

As these negative characteristics may have a strong influence on the acceptance and usage of service 
robots, we conclude that fairness needs to be considered in the design of future robots. While algorithms 
are often optimized in terms of efficiency, designers, and developers need to be aware that the 
optimization of efficiency might have severe consequences on the human perception of robots. 
Designing large-scale robotic services should therefore not strive for efficiency only. Instead designers 
and developers need to balance the trade-off between efficiency and humans’ expectations of fairness 
and equal treatment. Finding this right balance will be an important success factor for future robotic 
services. While previous research has dealt with the question of how to implement “fair” algorithms 
regarding discrimination and data quality, our study shows the implications of a situation in which robots 
treat humans unfairly because it does not consider the social and group context they are in. This social 
context needs to be regarded in situations, in which a service robot interacts with a group of people to 
avoid the negative effects we found. This fits Riedl’s requirement of taking the “socio-cultural context” 
into account when designing human-centered AI (Riedl, 2019b), and at the same time, it shows that 
there is work left to accomplish this goal. 

Similar to the claim of Brandao et al. (2020) described above, future work should investigate in more 
detail how a trade-off between efficiency and fairness can be realized best. We assume that these design 
decisions are highly context depended, e. g. trust and likeability might be of higher relevance for service 
robots in the care sector than for service robots delivering food, and there might be different reactions 
of humans in collaborative or competitive situations. Given that some of our participants verbally 
expressed their perception of unfairness during our experiments, designers may also think about how to 
enable interventions of people in these situations, which have been discussed in the context of 
autonomous agents, e.g. in Schmidt and Herrmann (2017). Another question, that we leave out for future 
work, is the question of whether communicating the reason for unequal treatment can influence humans’ 
perception of fairness and the robot. In our experiment, the different delivery strategies were not 
communicated to the participants. If the robot had explained that it chose a strategy that minimizes its 
ways, people might have the robot perceived differently. 

Our work demonstrates and emphasizes the importance of considering the human perception of fairness 
as well as the social context in the future design of human-robot interactions with service robots. 
However, we are also aware that it only provides initial insights into this topic and that further work is 
needed. While our future work will be devoted to this, we also hope that the work presented here inspires 
other researchers to also investigate this important area. 
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