1,584 research outputs found

    A review of cryptographic properties of S-boxes with Generation and Analysis of crypto secure S-boxes.

    Get PDF
    In modern as well as ancient ciphers of public key cryptography, substitution boxes find a permanent seat. Generation and cryptanalysis of 4-bit as well as 8-bit crypto S-boxes is of utmost importance in modern cryptography. In this paper, a detailed review of cryptographic properties of S-boxes has been illustrated. The generation of crypto S-boxes with 4-bit as well as 8-bit Boolean functions (BFs) and Polynomials over Galois field GF(p^q) has also been of keen interest of this paper. The detailed analysis and comparison of generated 4-bit and 8-bit S-boxes with 4-bit as well as 8-bit S-boxes of Data Encryption Standard (DES) and Advance Encryption Standard (AES) respectively, has incorporated with example. Detailed analysis of generated S-boxes claims a better result than DES and AES in view of security of crypto S-boxes

    Key recycling in authentication

    Full text link
    In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still Ï”\epsilon-secure, if Ï”\epsilon-almost strongly universal2_2 hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this Ï”\epsilon. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.Comment: 17+3 pages. 11 figures. v3: Rewritten with AC instead of UC. Extended the main result to both synchronous and asynchronous networks. Matches published version up to layout and updated references. v2: updated introduction and reference

    Artificial intelligence and quantum cryptography

    Get PDF
    The technological advancements made in recent times, particularly in artificial intelligence (AI) and quantum computing, have brought about significant changes in technology. These advancements have profoundly impacted quantum cryptography, a field where AI methodologies hold tremendous potential to enhance the efficiency and robustness of cryptographic systems. However, the emergence of quantum computers has created a new challenge for existing security algorithms, commonly called the ‘quantum threat’. Despite these challenges, there are promising avenues for integrating neural network-based AI in cryptography, which has significant implications for future digital security paradigms. This summary highlights the key themes in the intersection of AI and quantum cryptography, including the potential benefits of AI-driven cryptography, the challenges that need to be addressed, and the prospects of this interdisciplinary research area

    Fault Detection in Crypto-Devices

    Get PDF

    Reusable garbled gates for new fully homomorphic encryption service

    Get PDF
    In this paper, we propose a novel way to provide a fully homomorphic encryption service, namely by using garbled circuits. From a high level perspective, garbled circuits and fully homomorphic encryption, both aim at implementing complex computation on ciphertexts. We define a new cryptographic primitive named reusable garbled gate, which comes from the area of garbled circuits, then based on this new primitive we show that it is very easy to construct a fully homomorphic encryption. However, the instantiation of reusable garbled gates is rather difficult, in fact, we can only instantiate this new primitive based on indistinguishable obfuscation. Furthermore, reusable garbled gates can be a core component for constructing the reusable garbled circuits, which can reduce the communication complexity of them from O(n) to O(1). We believe that reusable garbled gates promise a new way to provide fully homomorphic encryption and reusable garbled circuits service fast.Peer ReviewedPostprint (author's final draft

    Agonistic behavior of captive saltwater crocodile, crocodylus porosus in Kota Tinggi, Johor

    Get PDF
    Agonistic behavior in Crocodylus porosus is well known in the wild, but the available data regarding this behavior among the captive individuals especially in a farm setting is rather limited. Studying the aggressive behavior of C. porosus in captivity is important because the data obtained may contribute for conservation and the safety for handlers and visitors. Thus, this study focuses on C. porosus in captivity to describe systematically the agonistic behaviour of C. porosus in relation to feeding time, daytime or night and density per pool. This study was carried out for 35 days in two different ponds. The data was analysed using Pearson’s chi-square analysis to see the relationship between categorical factors. The study shows that C. porosus was more aggressive during daylight, feeding time and non-feeding time in breeding enclosure (Pond C, stock density =0.0369 crocodiles/m2) as compared to non-breeding pond (Pond B, stock density =0.3317 crocodiles/m2) where it is only aggressive during the nighttime. Pond C shows the higher domination in the value of aggression in feeding and non-feeding time where it is related to its function as breeding ground. Chi-square analysis shows that there is no significant difference between ponds (p=0.47, χ2= 2.541, df= 3), thus, there is no relationship between categorical factors. The aggressive behaviour of C. porosus is important for the farm management to evaluate the risk in future for the translocation process and conservation of C. porosus generally

    An enhanced Blowfish Algorithm based on cylindrical coordinate system and dynamic permutation box

    Get PDF
    The Blowfish Algorithm (BA) is a symmetric block cipher that uses Feistel network to iterate simple encryption and decryption functions. BA key varies from 32 to 448 bits to ensure a high level of security. However, the substitution box (S-Box) in BA occupies a high percentage of memory and has problems in security, specifically in randomness of output with text and image files that have large strings of identical bytes. Thus, the objective of this research is to enhance the BA to overcome these problems. The research involved three phases, algorithm design, implementation, and evaluation. In the design phase, a dynamic 3D S-Box, a dynamic permutation box (P-Box), and a Feistal Function (F-Function) were improved. The improvement involved integrating Cylindrical Coordinate System (CCS) and dynamic P-Box. The enhanced BA is known as Ramlan Ashwak Faudziah (RAF) algorithm. The implementation phase involved performing key expansion, data encryption, and data decryption. The evaluation phase involved measuring the algorithm in terms of memory and security. In terms of memory, the results showed that the RAF occupied 256 bytes, which is less than the BA (4096 bytes). In terms of randomness of text and image files that have large strings of identical bytes, the average rate of randomness for 188 statistical tests obtained values of more than 96%. This means that the RAF has high randomness indicating that it is more secured. Thus, the results showed that the RAF algorithm that integrates the CCS and dynamic P-Box serves as an effective approach that can consume less memory and strengthen security

    Efficient and Secure Chaotic S-Box for Wireless Sensor Network

    Get PDF
    International audienceInformation security using chaotic dynamics is a novel topic in the wireless sensor network (WSN) research field. After surveying analog and digital chaotic security systems, we give a state of the art of chaotic S-Box design. The substitution tables are nonlinear maps that strengthen and enhance block crypto-systems. This paper deals with the design of new dynamic chaotic S-Boxes suitable for implementation on wireless sensor nodes. Our proposed schemes are classified into two categories: S-Box based on discrete chaotic map with floating point arithmetic (cascading piecewise linear chaotic map and a three-dimensional map) and S-Box based on discrete chaotic map with fixed-point arithmetic (using discretized Lorenz map and logistic–tent map). The security analysis and implementation process on WSN are discussed. The proposed methods satisfy Good S-Box design criteria and exceed the performance of Advanced Encryption Standard static S-Box in some cases. The energy consumption of different proposals and existing chaotic S-Box designs are investigated via a platform simulator and a real WSN testbed equipped with TI MSP430f1611 micro-controller. The simulations and the experimental results show that our proposed S-Box design with fixed-point arithmetic Lorenz map has the lowest energy-consuming profile compared with the other studied and proposed S-Box design
    • 

    corecore