230 research outputs found

    Deflection Routing Strategies for Optical Burst Switching Networks: Contemporary Affirmation of the Recent Literature

    Get PDF
    A promising option to raising busty interchange in system communication could be Optical Burst Switched (OBS) networks among scalable and support routing effective. The routing schemes with disputation resolution got much interest, because the OBS network is buffer less in character. Because the deflection steering can use limited optical buffering or actually no buffering thus the choice or deflection routing techniques can be critical. Within this paper we investigate the affirmation of the current literature on alternate (deflection) routing strategies accessible for OBS networks

    Survivability and Traffic Grooming in WDM Optical Networks

    Get PDF
    The advent of fiber optic transmission systems and wavelength division multiplexing (WDM) have led to a dramatic increase in the usable bandwidth of single fiber systems. This book provides detailed coverage of survivability (dealing with the risk of losing large volumes of traffic data due to a failure of a node or a single fiber span) and traffic grooming (managing the increased complexity of smaller user requests over high capacity data pipes), both of which are key issues in modern optical networks. A framework is developed to deal with these problems in wide-area networks, where the topology used to service various high-bandwidth (but still small in relation to the capacity of the fiber) systems evolves toward making use of a general mesh. Effective solutions, exploiting complex optimization techniques, and heuristic methods are presented to keep network problems tractable. Newer networking technologies and efficient design methodologies are also described.https://lib.dr.iastate.edu/ece_books/1004/thumbnail.jp

    On Providing Metro Ethernet Services over Transparent WDM Optical Rings

    Get PDF
    The long list of benefits (especially cost and capacity) of Ethernet LANs has made the IEEE, the ITU-T, and the Metro Ethernet Forum define the requirements for taking Ethernet beyond the local area, toward the metropolitan region. In addition, the ever-increasing traffic demands of new applications and users can only be met by the huge bandwidth capacity provided by optical fibers. This work studies how to provide metro Ethernet services over transparent tunable-transmitter fixed-receiver WDM optical ring networks. A new adaptation layer of ME to WDM is proposed, and its benefits and drawbacks are studied. It is shown that such a transparent WDM ring network can be seen as a logical full-mesh topology by the upper ME layer, thus reducing to one the number of optical-electronic-optical conversions per unicast frame. Additionally, two different approaches are proposed in the case of broadcast/multicast traffic, since this may bring scalability difficulties in ring topologies.The work described in this article was carried out with the support of the Building the Future Optical Network in Europe (BONE) project, a Network of Excellence funded by the European Commission through the 7th ICT-Framework Programme. Additionally, the authors are thankful for the support of the T2C2 (grant TIN2008-06739C04-01) and MEDIANET (grant S2009/TIC-1468) projects for the development of this work.European Community's Seventh Framework ProgramPublicad

    Traffic allocation strategies in WSS-based dynamic optical networks

    Get PDF
    Elastic optical networking (EON) is a viable solution to meet future dynamic capacity requirements of Internet service provider and inter-datacenter networks. At the core of EON, wavelength selective switches (WSSs) are applied to individually route optical circuits, while assigning an arbitrary bandwidth to each circuit. Critically, the WSS control scheme and configuration time may delay the creation time of each circuit in the network. In this paper, we first detail the WSS-based optical data-plane implementation of a metropolitan network test-bed. Then, we review a software-defined networking (SDN) application designed to enable dynamic and fast circuit setup. Subsequently, we introduce a WSS logical model that captures the WSS time-sequence and is used to estimate the circuit-setup response time. Then, we present two batch service policies that aim to reduce the circuit-setup response time by bundling multiple WSS reconfiguration steps into a single SDN command. Resulting performance gains are estimated through simulation.Peer ReviewedPostprint (author's final draft

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks

    Optically Powered Highly Energy-efficient Sensor Networks

    Get PDF
    In optically powered networks, both, communication signals and power for remotely located sensor nodes, are transmitted over an optical fiber. Key features of optically powered networks are node operation without local power supplies or batteries as well as operation with negligible susceptibility to electro-magnetic interference and to lightning. In this book, different kinds of optically powered devices and networks are investigated, and selected applications are demonstrated

    Optically Powered Highly Energy-efficient Sensor Networks

    Get PDF
    In optically powered networks, both, communication signals and power for remotely located sensor nodes, are transmitted over an optical fiber. Key features of optically powered networks are node operation without local power supplies or batteries as well as operation with negligible susceptibility to electro-magnetic interference and to lightning. In this book, different kinds of optically powered devices and networks are investigated, and selected applications are demonstrated

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed
    • …
    corecore