1,730 research outputs found

    A recombination algorithm for the decomposition of multivariate rational functions

    Get PDF
    International audienceIn this paper we show how we can compute in a deterministic way the decomposition of a multivariate rational function with a recombination strategy. The key point of our recombination strategy is the used of Darboux polynomials. We study the complexity of this strategy and we show that this method improves the previous ones. In appendix, we explain how the strategy proposed recently by J. Berthomieu and G. Lecerf for the sparse factorization can be used in the decomposition setting. Then we deduce a decomposition algorithm in the sparse bivariate case and we give its complexit

    A lifting and recombination algorithm for rational factorization of sparse polynomials

    Get PDF
    We propose a new lifting and recombination scheme for rational bivariate polynomial factorization that takes advantage of the Newton polytope geometry. We obtain a deterministic algorithm that can be seen as a sparse version of an algorithm of Lecerf, with now a polynomial complexity in the volume of the Newton polytope. We adopt a geometrical point of view, the main tool being derived from some algebraic osculation criterions in toric varieties.Comment: 22 page

    Nearly Optimal Algorithms for the Decomposition of Multivariate Rational Functions and the Extended L\"uroth's Theorem

    Get PDF
    The extended L\"uroth's Theorem says that if the transcendence degree of \KK(\mathsf{f}_1,\dots,\mathsf{f}_m)/\KK is 1 then there exists f \in \KK(\underline{X}) such that \KK(\mathsf{f}_1,\dots,\mathsf{f}_m) is equal to \KK(f). In this paper we show how to compute ff with a probabilistic algorithm. We also describe a probabilistic and a deterministic algorithm for the decomposition of multivariate rational functions. The probabilistic algorithms proposed in this paper are softly optimal when nn is fixed and dd tends to infinity. We also give an indecomposability test based on gcd computations and Newton's polytope. In the last section, we show that we get a polynomial time algorithm, with a minor modification in the exponential time decomposition algorithm proposed by Gutierez-Rubio-Sevilla in 2001

    Optimization as a design strategy. Considerations based on building simulation-assisted experiments about problem decomposition

    Full text link
    In this article the most fundamental decomposition-based optimization method - block coordinate search, based on the sequential decomposition of problems in subproblems - and building performance simulation programs are used to reason about a building design process at micro-urban scale and strategies are defined to make the search more efficient. Cyclic overlapping block coordinate search is here considered in its double nature of optimization method and surrogate model (and metaphore) of a sequential design process. Heuristic indicators apt to support the design of search structures suited to that method are developed from building-simulation-assisted computational experiments, aimed to choose the form and position of a small building in a plot. Those indicators link the sharing of structure between subspaces ("commonality") to recursive recombination, measured as freshness of the search wake and novelty of the search moves. The aim of these indicators is to measure the relative effectiveness of decomposition-based design moves and create efficient block searches. Implications of a possible use of these indicators in genetic algorithms are also highlighted.Comment: 48 pages. 12 figures, 3 table

    Factoring bivariate polynomials using adjoints

    Full text link
    One relates factorization of bivariate polynomials to singularities of projective plane curves. One proves that adjoint polynomials permit to solve the recombinations of the modular factors induced by the absolute and rational factorizations, and so without using Hensel's lifting. One establishes in such a way the relations between the algorithm of Duval-Ragot (locally constant functions) and of Ch\`eze-Lecerf (lifting and recombinations), and one shows that a fast computation of adjoint polynomials leads to a fast factorization. The proof is based on cohomological sequences and residue theory.Comment: 22 pages, 2 figures. Extended version of arXiv.1201.578

    Modular Las Vegas Algorithms for Polynomial Absolute Factorization

    Get PDF
    Let f(X,Y) \in \ZZ[X,Y] be an irreducible polynomial over \QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400
    • …
    corecore