145 research outputs found

    Context-Aware Personalized Point-of-Interest Recommendation System

    Get PDF
    The increasing volume of information has created overwhelming challenges to extract the relevant items manually. Fortunately, the online systems, such as e-commerce (e.g., Amazon), location-based social networks (LBSNs) (e.g., Facebook) among many others have the ability to track end users\u27 browsing and consumption experiences. Such explicit experiences (e.g., ratings) and many implicit contexts (e.g., social, spatial, temporal, and categorical) are useful in preference elicitation and recommendation. As an emerging branch of information filtering, the recommendation systems are already popular in many domains, such as movies (e.g., YouTube), music (e.g., Pandora), and Point-of-Interest (POI) (e.g., Yelp). The POI domain has many contextual challenges (e.g., spatial (preferences to a near place), social (e.g., friend\u27s influence), temporal (e.g., popularity at certain time), categorical (similar preferences to places with same category), locality of POI, etc.) that can be crucial for an efficient recommendation. The user reviews shared across different social networks provide granularity in users\u27 consumption experience. From the data mining and machine learning perspective, following three research directions are identified and considered relevant to an efficient context-aware POI recommendation, (1) incorporation of major contexts into a single model and a detailed analysis of the impact of those contexts, (2) exploitation of user activity and location influence to model hierarchical preferences, and (3) exploitation of user reviews to formulate the aspect opinion relation and to generate explanation for recommendation. This dissertation presents different machine learning and data mining-based solutions to address the above-mentioned research problems, including, (1) recommendation models inspired from contextualized ranking and matrix factorization that incorporate the major contexts and help in analysis of their importance, (2) hierarchical and matrix-factorization models that formulate users\u27 activity and POI influences on different localities that model hierarchical preferences and generate individual and sequence recommendations, and (3) graphical models inspired from natural language processing and neural networks to generate recommendations augmented with aspect-based explanations

    Improved collaborative filtering using clustering and association rule mining on implicit data

    Get PDF
    The recommender systems are recently becoming more significant due to their ability in making decisions on appropriate choices. Collaborative Filtering (CF) is the most successful and most applied technique in the design of a recommender system where items to an active user will be recommended based on the past rating records from like-minded users. Unfortunately, CF may lead to poor recommendation when user ratings on items are very sparse (insufficient number of ratings) in comparison with the huge number of users and items in user-item matrix. In the case of a lack of user rating on items, implicit feedback is used to profile a user’s item preferences. Implicit feedback can indicate users’ preferences by providing more evidences and information through observations made on users’ behaviors. Data mining technique, which is the focus of this research, can predict a user’s future behavior without item evaluation and can too, analyze his preferences. In order to investigate the states of research in CF and implicit feedback, a systematic literature review has been conducted on the published studies related to topic areas in CF and implicit feedback. To investigate users’ activities that influence the recommender system developed based on the CF technique, a critical observation on the public recommendation datasets has been carried out. To overcome data sparsity problem, this research applies users’ implicit interaction records with items to efficiently process massive data by employing association rules mining (Apriori algorithm). It uses item repetition within a transaction as an input for association rules mining, in which can achieve high recommendation accuracy. To do this, a modified preprocessing has been employed to discover similar interest patterns among users. In addition, the clustering technique (Hierarchical clustering) has been used to reduce the size of data and dimensionality of the item space as the performance of association rules mining. Then, similarities between items based on their features have been computed to make recommendations. Experiments have been conducted and the results have been compared with basic CF and other extended version of CF techniques including K-Means Clustering, Hybrid Representation, and Probabilistic Learning by using public dataset, namely, Million Song dataset. The experimental results demonstrate that the proposed technique exhibits improvements of an average of 20% in terms of Precision, Recall and Fmeasure metrics when compared to the basic CF technique. Our technique achieves even better performance (an average of 15% improvement in terms of Precision and Recall metrics) when compared to the other extended version of CF techniques, even when the data is very sparse

    Structured Preference Representation and Multiattribute Auctions

    Full text link
    Handling preferences over multiple objectives (or attributes) poses serious challenges to the development of automated solutions to complex decision problems. The number of decision outcomes grows exponentially with the number of attributes, and that makes elicitation, maintenance, and reasoning with preferences particularly complex. This problem can potentially be alleviated by using a factored representation of preferences based on independencies among the attributes. This work has two main components. The first component focuses on development of graphical models for multiattribute preferences and utility functions. Graphical models take advantage of factored utility, and yield a compact representation for preferences. Specifically, I introduce CUI networks, a compact graphical representation of utility functions over multiple attributes. CUI networks model multiattribute utility functions using the well studied utility independence concept. I show how conditional utility independence leads to an effective functional decomposition that can be exhibited graphically, and how local conditional utility functions, depending on each node and its parents, can be used to calculate joint utility. The second main component deals with the integration of preference structures and graphical models in trading mechanisms, and in particular in multiattribute auctions. I first develop multiattribute auctions that accommodate generalized additive independent (GAI) preferences. Previous multiattribute mechanisms generally either remain agnostic about traders’ preference structures, or presume highly restrictive forms, such as full additivity. I present an approximately efficient iterative auction mechanism that maintains prices on potentially overlapping GAI clusters of attributes, thus decreasing elicitation and computation burden while allowing for expressive preference representation. Further, I apply preference structures and preference-based constraints to simplify the particularly complex, but practically useful domain of multi-unit multiattribute auctions and exchanges. I generalize the iterative multiattribute mechanism to a subset of this domain, and investigate the problem of finding an optimal set of trades in multiattribute call markets, given restrictions on preference expression. Finally, I apply preference structures to simplify the modeling of user utility in sponsored-search auctions, in order to facilitate ranking mechanisms that account for the user experience from advertisements. I provide short-term and long-term simulations showing the effect on search-engine revenues.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61670/1/yagil_1.pd

    Congenial Web Search : A Conceptual Framework for Personalized, Collaborative, and Social Peer-to-Peer Retrieval

    Get PDF
    Traditional information retrieval methods fail to address the fact that information consumption and production are social activities. Most Web search engines do not consider the social-cultural environment of users' information needs and the collaboration between users. This dissertation addresses a new search paradigm for Web information retrieval denoted as Congenial Web Search. It emphasizes personalization, collaboration, and socialization methods in order to improve effectiveness. The client-server architecture of Web search engines only allows the consumption of information. A peer-to-peer system architecture has been developed in this research to improve information seeking. Each user is involved in an interactive process to produce meta-information. Based on a personalization strategy on each peer, the user is supported to give explicit feedback for relevant documents. His information need is expressed by a query that is stored in a Peer Search Memory. On one hand, query-document associations are incorporated in a personalized ranking method for repeated information needs. The performance is shown in a known-item retrieval setting. On the other hand, explicit feedback of each user is useful to discover collaborative information needs. A new method for a controlled grouping of query terms, links, and users was developed to maintain Virtual Knowledge Communities. The quality of this grouping represents the effectiveness of grouped terms and links. Both strategies, personalization and collaboration, tackle the problem of a missing socialization among searchers. Finally, a concept for integrated information seeking was developed. This incorporates an integrated representation to improve effectiveness of information retrieval and information filtering. An integrated information retrieval process explores a virtual search network of Peer Search Memories in order to accomplish a reputation-based ranking. In addition, the community structure is considered by an integrated information filtering process. Both concepts have been evaluated and shown to have a better performance than traditional techniques. The methods presented in this dissertation offer the potential towards more transparency, and control of Web search

    Understanding and Mitigating Multi-sided Exposure Bias in Recommender Systems

    Get PDF
    Fairness is a critical system-level objective in recommender systems that has been the subject of extensive recent research. It is especially important in multi-sided recommendation platforms where it may be crucial to optimize utilities not just for the end user, but also for other actors such as item sellers or producers who desire a fair representation of their items. Existing solutions do not properly address various aspects of multi-sided fairness in recommendations as they may either solely have one-sided view (i.e. improving the fairness only for one side), or do not appropriately measure the fairness for each actor involved in the system. In this thesis, I aim at first investigating the impact of unfair recommendations on the system and how these unfair recommendations can negatively affect major actors in the system. Then, I seek to propose solutions to tackle the unfairness of recommendations. I propose a rating transformation technique that works as a pre-processing step before building the recommendation model to alleviate the inherent popularity bias in the input data and consequently to mitigate the exposure unfairness for items and suppliers in the recommendation lists. Also, as another solution, I propose a general graph-based solution that works as a post-processing approach after recommendation generation for mitigating the multi-sided exposure bias in the recommendation results. For evaluation, I introduce several metrics for measuring the exposure fairness for items and suppliers, and show that these metrics better capture the fairness properties in the recommendation results. I perform extensive experiments to evaluate the effectiveness of the proposed solutions. The experiments on different publicly-available datasets and comparison with various baselines confirm the superiority of the proposed solutions in improving the exposure fairness for items and suppliers.Comment: Doctoral thesi

    The use of machine learning algorithms in recommender systems: A systematic review

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.eswa.2017.12.020 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Recommender systems use algorithms to provide users with product or service recommendations. Recently, these systems have been using machine learning algorithms from the field of artificial intelligence. However, choosing a suitable machine learning algorithm for a recommender system is difficult because of the number of algorithms described in the literature. Researchers and practitioners developing recommender systems are left with little information about the current approaches in algorithm usage. Moreover, the development of recommender systems using machine learning algorithms often faces problems and raises questions that must be resolved. This paper presents a systematic review of the literature that analyzes the use of machine learning algorithms in recommender systems and identifies new research opportunities. The goals of this study are to (i) identify trends in the use or research of machine learning algorithms in recommender systems; (ii) identify open questions in the use or research of machine learning algorithms; and (iii) assist new researchers to position new research activity in this domain appropriately. The results of this study identify existing classes of recommender systems, characterize adopted machine learning approaches, discuss the use of big data technologies, identify types of machine learning algorithms and their application domains, and analyzes both main and alternative performance metrics.Natural Sciences and Engineering Research Council of Canada (NSERC) Ontario Research Fund of the Ontario Ministry of Research, Innovation, and Scienc

    Chain-based recommendations

    Get PDF
    Recommender systems are discovery tools. Typically, they infer a user's preferences from her behaviour and make personalized suggestions. They are one response to the overwhelming choices that the Web affords its users. Recent studies have shown that a user of a recommender system is more likely to be satisfied by the recommendations if the system provides explanations that allow the user to understand their rationale, and if the system allows the user to provide feedback on the recommendations to improve the next round of recommendations so that they take account of the user's ephemeral needs. The goal of this dissertation is to introduce a new recommendation framework that offers a better user experience, while giving quality recommendations. It works on content-based principles and addresses both the issues identified in the previous paragraph, i.e.\ explanations and recommendation feedback. We instantiate our framework to produce two recommendation engines, each focusing on one of the themes: (i) the role of explanations in producing recommendations, and (ii) helping users to articulate their ephemeral needs. For the first theme, we show how to unify recommendation and explanation to a greater degree than has been achieved hitherto. This results in an approach that enables the system to find relevant recommendations with explanations that have a high degree of both fidelity and interpretability. For the second theme, we show how to allow users to steer the recommendation process using a conversational recommender system. Our approach allows the user to reveal her short-term preferences and have them taken into account by the system and thus assists her in making a good decision efficiently. Early work on conversational recommender systems considers the case where the candidate items have structured descriptions (e.g.\ sets of attribute-value pairs). Our new approach works in the case where items have unstructured descriptions (e.g.\ sets of genres or tags). For each of the two themes, we describe the problem settings, the state-of-the-art, our system design and our experiment design. We evaluate each system using both offline analyses as well as user trials in a movie recommendation domain. We find that the proposed systems provide relevant recommendations that also have a high degree of serendipity, low popularity-bias and high diversity
    • …
    corecore