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Abstract

Fairness is a critical system-level objective in recommender systems that has been
the subject of extensive recent research. It is especially important in multi-sided
recommendation platforms where it may be crucial to optimize utilities not just for
the end user, but also for other actors such as item sellers or producers who desire
a fair representation of their items. Existing solutions do not properly address var-
ious aspects of multi-sided fairness in recommendations as they may either solely
have one-sided view (i.e. improving the fairness only for one side), or do not appro-
priately measure the fairness for each actor involved in the system. In this thesis,
I aim at first investigating the impact of unfair recommendations on the system
and how these unfair recommendations can negatively affect major actors in the
system. Then, I seek to propose solutions to tackle the unfairness of recommenda-
tions. I propose a rating transformation technique that works as a pre-processing
step before building the recommendation model to alleviate the inherent popular-
ity bias in the input data and consequently to mitigate the exposure unfairness
for items and suppliers in the recommendation lists. Also, as another solution, I
propose a general graph-based solution that works as a post-processing approach
after recommendation generation for mitigating the multi-sided exposure bias in
the recommendation results. For evaluation, I introduce several metrics for mea-
suring the exposure fairness for items and suppliers, and show that these metrics
better capture the fairness properties in the recommendation results. I perform
extensive experiments to evaluate the effectiveness of the proposed solutions. The
experiments on different publicly-available datasets and comparison with various
baselines confirm the superiority of the proposed solutions in improving the expo-
sure fairness for items and suppliers.
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Chapter 1
Introduction

1.1 Motivation

Recommender systems are tools that act as decision guides, helping users to find
their desired items by predicting their preferences and suggesting the preferred
items to them. These systems use historical data on interactions between users
and items to generate personalized recommendations for the users. Recom-
mender systems are used in a variety of different applications including movies,
music, e-commerce, online dating, and many other areas where the number of
options from which the user needs to choose can be overwhelming. Examples
of real-world recommendation systems are movie recommendation in Netflix,
music recommendation in Spotify, and product recommendation in Amazon.
There are various recommendation models and approaches for generating rec-
ommendations for the users. These approaches will be discussed in detail in
Chapter 2.

For a long time, the main concern in research on recommender systems
was improving the accuracy of the recommendations. In those works, the re-
searchers tried to design new recommendation algorithms or enhance the ex-
isting recommendation algorithms to generate recommendations to the users
that are better matched with their preferences. However, new challenges have
recently emerged in recommender systems research domain such as novelty, di-
versity, serendipity, and fairness of recommendations. The main focus of this
dissertation is improving the fairness of recommender systems (or addressing
algorithmic bias or unfairness in recommender systems).



2 Introduction

The topic of fairness in recommender systems is concerned with the fair
treatment of all entities in the system when generating recommendations. This
means that the recommendation algorithm should serve all users (minority and
majority) or items/suppliers (popular and non-popular) equally by satisfying
their expectations and utilities. For example, when the system gives more expo-
sure or visibility to certain items or suppliers, it raises the issue of discrimination
or unfairness. The goal of this dissertation is understanding these issues and
proposing solutions for addressing them.

It has been shown that recommendations generated by recommender sys-
tems generally suffer from bias against certain groups of users or items [54,126,
141,184,186]. The problem with biased recommendation is that it raises the is-
sue of unfairness in recommendation results as certain groups of users or items
may receive more benefit from the recommender systems than others. There-
fore, tackling this bias for equalizing the benefits from recommender systems
between different groups of users and items is the objective of fairness-aware
recommendation systems.

Bias in recommendation output can originate from different sources: 1) it
may stem from the underlying biases in the input data used for training [32,
173]: some groups of users may represent the majority in terms of number of
individual users or number of ratings provided by these users, or some items
may receive large proportion of ratings while other items may not receive much
attention from the users, or 2) it may be due to the algorithmic bias where
recommendation algorithms propagate the existing bias in data [8, 79, 87, 184,
190] and, in some cases, intensify it by recommending these popular items even
to the users who are not interested in popular items [7,119].

Addressing these biased and unfair recommendations is a challenging task
and requires careful design of algorithms as improving the fairness of recom-
mendations leads to loss in recommendation accuracy [132]. Thus, an algo-
rithmic solution for tackling unfairness in recommender systems should also
take into account the trade-off with accuracy of recommendations as the most
important goal of recommender systems. In addition, addressing fairness of rec-
ommender systems can be even more challenging when multiple stakeholders,
entities, sides, or sides are involved in the system. In this situation, the fairness
of each side should be properly addressed when generating recommendation
lists.

Recommender systems often operate in a multi-sided environment where
different sides or actors are involved in the system: users, items, suppliers
[4,30,33]. Examples of multi-sided recommendation platforms are song recom-
mendations on Spotify in which the sides in this platform are users who listen
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the songs, items are the songs, and artists are the suppliers. Or another example
of multi-sided recommendation platform is GooglePlay in which the sides are
the users who download and install apps on their smart phones, apps are the
items, and apps developers are the suppliers. Finally, on Netflix, users are the
movie watchers, items are the movies, and suppliers are the movie producers.

Figure 1.1 shows the major sides in recommender systems. Consumers (or
users) are the side who interact with the items in the system and provide their
feedback about those items. The system also processes the feedback from con-
sumers and generates recommendation lists for them. On the other hand, the
suppliers are the sides who feed the system with contents and items. Finally,
item is another side in the system that works as a bridge between consumers
and suppliers: items supplied by suppliers are consumed by consumers. All these
sides are closely connected and influence each other when interact with the sys-
tem or are interacted by the system. For instance, when consumers frequently
interact with certain items in the system, it adds bias to the rating data col-
lected by the system. It can also cause recommendation algorithms focus on
those certain items when generating recommendations that would cause unfair
representation of items and suppliers in the recommendation lists. Therefore,
an algorithmic solution to address the fairness of all sides is needed.

In multi-sided recommendation platforms, addressing the needs and utilities
of each side is critical. For users, utility can be achieved by delivering accurate
recommendations that are matched with their preferences. For items and sup-
pliers, utility can be defined as providing equal chance for each item or supplier
to be shown in the recommendation lists. This means that each item or sup-
plier must have fair exposure or visibility in the recommendation lists. In this
dissertation, I aim at addressing exposure bias for items and suppliers in the
recommendation results.

Generally, item-side or supplier-side exposure refers to the fact that how
much an item or a supplier is represented in the recommendation lists to the
users [8]. For example, when an item is recommended to two users out of 100
users in the system, we say that this item received exposure of 2%. In this
definition, the position of the item in the recommendation lists is not taken into
account and the exposure of the items or suppliers at any position in the list is
computed similarly. Singh and Joachims in [161] defined exposure of items and
suppliers according to their position in the recommendation list. This definition
not only considers the number of times an item is recommended, but also it
takes into account the position that the item is exposed in the recommendation
list. In this definition, when an item is recommended at the first position in
the recommendation list, it signifies that the item has higher exposure than the



4 Introduction

Figure 1.1: Multi-sided nature of recommender systems. The first row shows the sides
in a typical recommendation platform. Major sides are shown in red color.
The second and third rows illustrate the major sides in two real-world rec-
ommender applications.

items in the lower position.
In this dissertation, I use the first definition where the position of the item

in the recommendation list is not taken into account. Given this definition for
exposure of items or suppliers, exposure bias in recommender systems refers to
the fact that some items and suppliers are over-represented in recommendation
results, while other items and suppliers are not adequately represented [8, 39,
161]. Due to the interactive nature of recommendation systems, this bias can
be even amplified over time as users interact with the recommended items at
each time and their interactions would be used as input for recommendation
algorithm at the next time [119]. Therefore, addressing this bias is critical for
achieving fair treatment of items and suppliers in the system.

1.2 Research objectives and approaches

• This dissertation aims at studying the problem of unfairness in recom-
mender systems for different sides in the system. In particular, it inves-
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tigates the exposure unfairness for items and suppliers by analyzing the
recommendation outputs in terms of how fairly items and suppliers are ap-
peared or represented in the recommendation lists delivered to the users.

• To understand the negative impacts of exposure unfairness on each side
in the system and the possible sources/reasons for this issue, this thesis
seeks to perform a simulation study on interaction between users and
recommender systems over time. Using a recommendation algorithm, in
this simulation, a set of items will be recommended to the user at each
time point and user feedback/click on the recommended items will be
recorded. Users’ feedback on recommended items will be added to their
profile and will be used as input for recommendation algorithm in the
next time point. Various bias analysis will be conducted on input data and
recommendation lists at each time point.

• As part of these analysis, the objective is also to study the existing evalu-
ation metrics for measuring exposure bias in recommender systems, and
how well they are able to reveal the exposure bias of a recommendation
algorithm. This analysis helps us to better understand the limitations and
strengths of the existing metrics. Then, this thesis seeks to introduce new
metrics or modify the existing metrics to properly evaluate the exposure
bias of recommendation algorithms.

• After understanding the issues and their consequences on each side in
the system, this dissertation aims at proposing solutions to mitigate the
unfair exposure of items and suppliers in recommendation results. The
objective is to address the issue by processing either the input data or the
recommendation results.

• In the first solution, a pre-processing approach is considered to mitigate
the inherent bias (e.g. popularity bias) in the input data. This is done
by proposing a rating transformation technique that compensates for the
influence of the popular items (suppliers) in the learning process and pro-
vides chance for other items (i.e. non-popular items) to appear in the
recommendation lists.

• In the second solution, a post-processing approach is considered that pro-
cesses a longer recommendation list and generates the final/shorter rec-
ommendation list for each user. In this approach, the goal is to increase
the exposure or visibility of under-represented items or suppliers in the
final recommendation lists.



6 Introduction

• To show the effectiveness of the proposed solutions, a comprehensive set
of experiments are performed on several datasets and the outputs are
compared with state-of-the-art mitigation techniques (baselines).

1.3 Thesis outline

• I study the unfairness problem in recommender systems on the perspec-
tive of different sides in the system. For this purpose, I investigate the
performance of existing recommendation algorithms on generating fair
results for each side in the system. This investigation includes fairness
of recommendations for users who receive recommendations and expo-
sure fairness of items and suppliers in the recommendation lists (Chap-
ter 2) [119,121,122,126].

• I simulate the recommendation process over time by iteratively generat-
ing recommendations at each time point and getting users’ feedback on
delivered recommendations. In this simulation, I investigate the negative
impacts of unfair recommendations on the system in a long-run (Chap-
ter 2, Section 2.2.4) [119].

• I simulate a multi-sided matching and recommendation problem where
different sides are involved in the system. I use an educational system as
an example of a multi-sided environment and simulate the problem over
that platform. The goal of this study is simply showing the importance
of having multi-sided view when building a recommendation model. In
this simulation, I optimize the system in different situations including op-
timization based on the utility of each side and optimization based on
the utility of all sides (multi-sided view). The analysis of this simulation
emphasizes the importance of multi-sided view for optimizing the system
(Chapter 3).

• I particularly study the multi-sided exposure bias in recommender systems
and its impact on different sides in the system. I perform sets of exper-
iments using existing recommendation algorithms on different datasets
and investigate the fairness and equality of exposure for items and suppli-
ers (Chapter 4) [116,120].

• To mitigate the multi-sided exposure bias in recommender system, I pro-
pose a pre-processing approach that transforms the rating data into per-
centile values. Through extensive experiments, I show that the proposed
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percentile transformation is able to improve the exposure fairness for both
items and suppliers by compensating the high rating values of popular
items in the input data. The experimental results show that using the per-
centile values as input for recommendation algorithms can significantly
improve the accuracy of the recommendations compared to other input
values and transformation techniques (Chapter 6) [124].

• As another solution for addressing the multi-sided exposure bias in recom-
mender systems, I propose a graph-based approach, FairMatch algorithm,
to mitigate the exposure bias in recommendation lists. The proposed tech-
nique works as a post-processing recommendation and is able to mitigate
exposure bias for items and suppliers with negligible loss in recommenda-
tion accuracy. A comprehensive set of experiments on different datasets
and comparison with various state-of-the-art baselines show the effective-
ness of FairMatch algorithm on improving exposure fairness for items and
suppliers in recommender systems (Chapter 7) [118,120].

• I review the existing metrics for measuring the exposure bias and discuss
the limitations of those metrics. I show that existing metrics cannot prop-
erly measure the exposure bias and hide important aspects of measuring
exposure bias. I propose several metrics that can better measure the ef-
fectiveness of an algorithm in mitigating the exposure bias for items and
suppliers (Chapter 5) [120].





Part I

Understanding Multi-Sided
Exposure Bias in

Recommender Systems





Chapter 2

Fairness in Recommender
Systems

In this chapter, I review the literature in recommender systems and introduce
the related contributions. In Section 2.1, I review well-known recommenda-
tion approaches, evaluation methods, and various challenges introduced in the
literature. One of these challenges is bias and unfairness in recommendation
results which is the main focus of this dissertation. In Section 2.2, I review the
literature on fairness in recommender systems and in particular, I review the
existing definitions for fairness, metrics for evaluating fairness of recommen-
dation results, and techniques for improving fairness of recommendations. As
part of the contributions in this dissertation, in Section 2.2.1, I introduce a met-
ric for measuring the unfairness of recommender systems which is published
in [126]. Also, in Section 2.2.3, I study different factors leading to unfairness in
recommendation and show the relationship between each factor and unfairness
in recommender systems. These contributions are published in [10, 121, 122].
Moreover, in Section 2.2.4, I study the impact of unfair recommendations on
each actor. In this investigation, I simulate the recommendation process over
time and show the negative impacts of algorithmic bias in the system. These
contributions are published in [119].
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2.1 Recommender systems

Development of e-commerce has led to behavioral changes in traditional busi-
nesses where users increasingly tend to buy products via the internet. However,
the proliferation of information by the internet companies has caused informa-
tion overload that leads to a decline in customer satisfaction. One way to deal
with this problem is to create Recommender Systems [81, 114, 133, 148] (RS)
that extract information about products which are desired by each customer.

Recommender systems use historical data on interactions between users
and items to generate personalized recommendations for the users. These sys-
tems are used in a variety of different applications including movies, music,
e-commerce, online dating, and many other areas where the number of options
from which the user needs to choose can be overwhelming. Examples of these
applications are the recommendation of books in Amazon [26,107,163], photo
groups in Flickr [194], videos in YouTube [23, 46, 198] and results in the Web
search [83,108,169].

2.1.1 Types of recommender systems

There are various types of recommendation approaches including content-based,
collaborative filtering, demographic, utility-based, knowledge-based, and hy-
brid recommender systems [28, 29]. Three main classes of these systems are
content-based [142], collaborative filtering, and hybrid models.

Content-based recommendation

Content-based recommender systems [22, 142] use item content or item fea-
tures (e.g. name, genre, location, description, etc) to extract users’ preferences.
Extracting users’ preferences builds an interest profile for each user that shows
the overall taste of the user toward different items. Based on the user’s interac-
tions with the items, the recommendation algorithm builds user’s profile toward
types of contents that user likes. For example, in a movie recommendation sys-
tem, when a user shows interest toward Action movies, then the system builds
the profile for that user accordingly as she is more interested in Action movies.
In recommendation generation process, each user’s profile is compared with the
items’ content and the items that match a user’s interest would be recommended
to that user.

There are several advantages and disadvantages with the content-based rec-
ommender systems [113]. Regarding the advantages, first, content-based filter-
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ing works only based on the interaction made by the target user with different
items/content and does not use the interactions of other users. Thus, it can
work well when the data in the system is sparse. Second, this approach can
work well when a new item is added to the system and even recommends those
new items to the users. This is because of the assumption that items contents are
always available and based on the profiles of users, if new item matches a user’s
profile, then it would be recommended. Third, the recommendations generated
by content-based recommender systems are explainable and transparent. By
explicitly listing the content features or descriptions of the recommended items,
the user understands the reasons why those items are recommended which in-
creases trust to the recommendation system.

With respect to disadvantages, content-based filtering does not allow explo-
ration and learning new preferences. This means that users will always receive
recommendations based on their past interests and will not experience new
contents. For example, if a user showed interest towards Drama movies, then
the system only recommends Drama movies to her which raises two concerns:
first, the recommendations delivered to this user is not good in terms of di-
versity (only one type of contents is recommended) and second, the user will
not have a chance to see other contents and possibly shows interest towards
those contents as well. Finally, another drawback of content-based filtering is
the assumption that item content is always available. Although some platforms
automatically collect item content, it may not be always available.

Collaborative filtering

Collaborative Filtering (CF) [93, 147] is a well-known recommendation tech-
nique that most of the researches have been conducted on it. CF works on the
basis of rating behavior of similar users to the target user. There are two type of
CF: 1) memory-based CF, 2) model-based CF.

Memory-based CF utilizes k-nearest neighbor (kNN) algorithm [57] for pre-
dicting the rating that target user will give to target item. There are two
different approaches of memory-based CF: 1) user-based collaborative filtering
(UserKNN) [147], and 2) item-based collaborative filtering (ItemKNN) [153].

In UserKNN, rating prediction for a target user is done using the opinions/rat-
ings given by similar users to the target user on target item. On the other hand,
in ItemKNN, the ratings assigned to the similar items to what target user rated
in the past is used to predict the rating of target item. The similarity between
users (in UserKNN) or items (in ItemKNN) is calculated using Pearson Correlation
Coefficient or Cosine similarity. Then, in UserKNN, the rating that target user u



14 Fairness in Recommender Systems

will give to target item i is calculated as:

r̂ui = r̄u +
∑

v∈Su (rvi − r̄v ).Si m(u, v)∑
v∈Su Si m(u, v)

(2.1)

where r̄u is the average rating given by user u to different items, Si m(u, v) is
the similarity values between u and v , and Su is the set of similar users to u (i.e.
{∀v ∈U ,Si m(u, v) > 0}). The same calculation process can be used for ItemKNN
where similar items to the target item are considered instead of Su . Also, it
is worth noting that the aforementioned process is used for rating prediction
task. Deshpande and Karypis in [47] adapted memory-based CF for ranking task
where only similarity between the target user and other users are considered as
the exact predicted rating value does not matter in ranking task, instead an
ordered list of items based on predicted scores are used.

In model-based CF [93,152], a model is built based on interactions between
users and items by learning the latent factors of users and items. For this pur-
pose, optimization techniques are used to learn the latent factors of users and
items by minimizing an objective function that fits the model to the observed
user-item interactions. Given latent factor for user u as pu and latent factor for
item i as qi , the rating that u will give to i can be calculated by dot product
between vectors pu and qi as:

r̂ui = pT
u .qi (2.2)

The advantage of the CF approach is that it does not require any additional
information about users and items (only uses rating/interaction data) and is
powerful method to accurately predict the ratings. However, a disadvantage
of the CF approach is that it needs some degree of density in interaction data
to work well. The data sparsity problem is a well-known issue in CF meth-
ods [66]. In UserKNN, for instance, the algorithm needs a sufficient number
of similar users (i.e. neighbors in kNN algorithm) to accurately predict the un-
known ratings. In sparse datasets, neighbors for a target user are often rare as
the target user may not have enough commonly rated items with other users.

Hybrid recommendation model

Hybrid recommendation models [28, 29] combine two or more recommenda-
tion algorithms for generating recommendations to users. This is analogous to
ensemble learning techniques [138] in machine learning where several classi-
fiers are combined to fulfill a prediction task. Hybrid recommendation models
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overcome the limitations of existing recommendation models by utilizing the
benefits of both models.

Burke in [29] identified seven strategies for combining recommendation
models and building hybrid recommendation models: weighted, switching,
mixed, feature combination, feature augmentation, cascade, and meta-level.

The first three strategies (i.e. weighted, switching, and mixed) use multi-
ple recommendation models to separately generate the recommendations and
finally, each strategy uses its own criterion to combine the recommendations
generated by the models. The weighted strategy combines the output of each
recommendation model using a linear weighting scheme. In this strategy, the
scores predicted by each recommendation model on candidate items are consid-
ered and a linear combination of those scores determines which candidate items
are high-quality to be recommended. Switching strategy examines the outputs
of each recommendation model and chooses the one that has the highest con-
fidence and reliability in generating recommendations. The idea behind the
switching strategy is that recommendation models may not have consistent per-
formance for all types of users. The mixed strategy simply merges the outputs
of multiple recommendation models and show them to the users.

Feature combination and augmentation strategies simultaneously employ
automatic feature engineering techniques and recommendation generation. Un-
like the first three strategies (weighted, switching, and mixed) where the out-
puts from different recommendation models were combined, in these strategies,
knowledge from different sources/models are involved in recommendation gen-
eration process. In the feature combination strategy, features derived from dif-
ferent recommendation models are combined and are passed to a single recom-
mendation model to generate the final recommendations to the users, while in
feature augmentation strategy, one recommendation model is used to extract
the features and then those features are used as input to another recommenda-
tion model for recommendation generation.

Finally, in last two strategies (i.e. cascade and meta-level), the recommenda-
tion models are sequentially connected and the output from one model is used
as input to the next model. In the cascade strategy, a priority level is assigned
to each recommendation model and the model with the lowest priority is used
as a tie-breaker for the output generated by the model with the highest priority.
In meta-level strategy, the model built by one recommendation model is used as
input for the next recommendation model.
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Sequential recommendation

Sequential recommendation models [40,88,172] process the sequences of users’
interaction data and produce an ordered list of recommendations. In these mod-
els, the order in which a user interacts with items over time plays an important
role and the recommendation algorithm learns this order when modelling the
user’s preferences. The output of the sequential recommendation models are
similar to those in traditional recommendation approaches, but in some scenar-
ios, the order of the recommended items also matters. For example, in a music
recommender system, the recommended songs can be delivered to the users in
an ordered list in which users may click or ignore the recommended items. In
this situation, either user plays a song or clicks on next button, user’s interaction
data would be recorded and used for later recommendation generation [69].

In sequence-aware recommender system, users’ preferences are usually de-
fined as long-term and short-term preferences [182]. The former refers to the
whole user’s historical interaction data, while the latter refers to the user’s re-
cent interaction data or user’s session data. Although users’ short-term prefer-
ences are more relevant to their current interests, the long-terms preferences
also play an important role in modelling users’ general preferences. Therefore,
there are a line of research that attempt to properly trade-off between these
two types of preferences when building recommendation models and generat-
ing recommendations [187].

Sequence-aware recommender systems are used to address different prob-
lems [145]. These systems can be used to adapt the recommendations accord-
ing to the users’ contextual information. Context adaptation refers to the fact
that the relevance of the sets of the recommendable items, while considering
the user’s general preferences, depends on the situation and context that user
resides. Examples of such contextual situations are users’ geographical position
or the time of the day. In each situation, the user may have specific prefer-
ences out of his/her general preferences. Sequence-aware recommender sys-
tems learn such patterns by modelling the sequence of users’ interaction data
and their related contexts [110].

Modelling repeated behavior or consumption is another research topic that
sequence-aware recommender systems help to address. In some recommenda-
tion domains, providing repeated recommendations is beneficial for the users.
Example of such scenario can be food recommendation in groceries. In these
scenarios, items are consumable and the users need to repeatedly purchase
those items. Sequence-aware recommender systems model users’ repeated con-
sumption behaviors and attempt to recommend previously interacted items at
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the right time [178].

2.1.2 Evaluation

Evaluation of recommender systems answers these questions: how to assess
the performance of a recommendation algorithm? If we have multiple recom-
mendation algorithms, how to choose one? Evaluation of recommender sys-
tems consists of choosing appropriate metrics, performing a set of experiments
to generate the recommendation lists, and measuring the specified metrics on
recommendation lists. Three main types of evaluation techniques are online
evaluation, user studies, and offline evaluation [157].

Online evaluation is performed on a real-world platform with a steady stream
of data. In this evaluation, users’ feedback1 on recommendation lists generated
by a recommendation algorithm is collected and then the performance of rec-
ommendation algorithm is calculated using evaluation metrics. Based on the
users’ feedback and calculated performance, the system designer can refine the
recommendation algorithm for improving the performance of recommendation
system. The advantage of online evaluation is that users real interests and tastes
can be captured over time and used to refine the recommendation algorithm
accordingly. However, performing online evaluation requires access to a real-
world platform, which is not always available. Even when access to a real-world
platform is possible, there is a risk of degrading users’ satisfaction by delivering
low-quality recommendations to them. This is because experimentation and al-
gorithm development are tested on a platform that users are interacting and it
is possible that the algorithm does not work well.

To overcome the aforementioned issues for online evaluation, user studies
can be an alternative. In user studies, instead of performing experiments and
evaluation on a live platform, a set of users are asked to interact with the sys-
tem and provide their opinions about the items within the system. Then, based
on the data collected from the subjects, the recommendation algorithm would
be evaluated and refined. Although user studies helps to mimic the real-world
evaluation without taking the risk of online evaluation, they have some limita-
tions. User studies are expensive and complicated. They are expensive because
they require a fair number of subjects to be participated in the study. Also, they
require a specific design regarding the selection of subjects, generating recom-
mendations to them, and collecting feedback.

1Depending on the type of recommendation algorithm, users’ feedback can be ratings provided
on items or clicking of the items.
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Finally, offline evaluation is the widely-used evaluation method in research
on recommender systems. In this evaluation, previously collected data is used
to perform experiments and evaluate the performance of recommendation al-
gorithm. In this method, the collected data is divided into training and test
sets. The recommendation model is built on training set and using this model,
the recommendation lists for all users are generated. Then, by comparing the
generated recommendation lists and users’ true preferences in the test set, the
performance of recommendation algorithm is evaluated. Due to the simplic-
ity and possibility of performing this method, it is the commonly used method
among researchers. A disadvantage of offline evaluation is that it may not nec-
essarily reveal the real performance of a recommendation model as it may be
observed on a real-world platform or online evaluation. Also, this method some-
times requires access to a dataset with specific attributes such as users’ gender
or items’ genre information which is not always available.

Recommendation tasks and metrics

Besides the taxonomy mentioned above, there are generally two different tasks
in recommendations: rating prediction and ranking. The rating prediction task
only seeks to predict the rating that a target user may assign to a target item
(unseen item). On the other hand, the ranking task aims to generate a ranked
list of items for a target user that he/she might like to receive. Each of these
tasks has specific evaluation design and methodology which would be discussed
in this Section.

Metrics for rating prediction tasks. The well-known metrics for evaluating
the performance of recommender systems in rating prediction tasks are Mean
Absolute Error (MAE) [77] and Root Mean Square Error (RMSE) [181].

Given rui as the rating given by user u to item i and r̂ui as the predicted
rating by recommendation model that user u will give to item i , MAE computes
the average deviation of the predicted rating with the true rating for all user-
item pairs in test set as follows:

M AE =
∑

(u,i )∈Rtest |rui − r̂ui |
|Rtest |

(2.3)

where Rtest is the test set and |Rtest | is the size of test set. On the other hand,
RMSE is computed as follows:

RMSE =
√∑

(u,i )∈Rtest (rui − r̂ui )2

|Rtest |
(2.4)
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In contrast to MAE, the square of deviation between true and predicted rat-
ings in RMSE emphasises on larger errors and if there is large deviation between
true rating and predicted rating, it will result in higher error value.

There are some other variations of error estimation derived from MAE and
RMSE. For example, in [130, 131], User Mean Absolute Error (UMAE) has been
proposed that computes the MAE separately for each user and then takes the
average over the MAE values for all users. The purpose of this metric is to
account for user-level errors. Assume that, in the test set, there are 100 users
with small profile (e.g. one rating) and one user with large profile (e.g. hundred
ratings). If in this situation, recommendation model predicts the ratings for
users who have smaller profile with high error and predicts the ratings for users
who have larger profile with lower error, then MAE measures the performance
of this model as good enough. But, the fact is that in this situation, there are
100 unhappy users and the system needs to capture this. On the other hand,
UMAE properly captures this situation and computes the performance of the
model separately for each user.

Metrics for ranking tasks. In ranking tasks, instead of predicting the rating
value for a target item by a target user, the goal is to predict a list of items
as recommendations for a target user with which she might like to interact
[44]. To measure how good the generated list for a target user is, accuracy
or ranking quality metrics are considered. Accuracy metrics measure how well
the recommendation list is matched with the user’s profile in the test set, while
ranking quality metrics measure how well the recommended items are ordered
in the list according to the true preferences in the test set.

The well-established accuracy metrics in machine learning that are also used
in recommender systems are precision and recall. Before presenting the equa-
tions for precision and recall, I introduce some notations. Let Lu be the recom-
mendation list generated for user u and P test

u be the u’s profile in test set. For
each item i in Lu , if i exists in P test

u , then we have a hit, otherwise we have a
miss.

Precision computes the average ratio of hit in recommendation lists gener-
ated for all user and can be calculated as:

pr eci si on = 1

|U | .
∑

u∈U

∑
i∈Lu 1(i ∈ P test

u )

|Lu |
(2.5)

where 1(.) is the indicator function returning zero when its argument is False
and 1 otherwise. U is the whole users in the system. A disadvantage of precision
is that it does not take into account the number of relevant items in user’s profile
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in test set. For example, the precision value of one hit in recommendation list
of size 10 for a user with 100 item in her profile in test set is as same as that
for a user with 1 item in his profile in test set (both 0.1). Thus, it does not
consider the number of items in user’s profile in test set. On the other hand,
recall computes the ratio of the user’s profile in test set that are appeared in the
user’s recommendation list and can be calculated as:

r ecal l = 1

|U | .
∑

u∈U

∑
i∈Lu 1(i ∈ P test

u )

|P test
u | (2.6)

Although recall overcome the issue mentioned for precision, it does not
properly measure the quality of recommendations in some situations. One may
achieve higher recall value by increasing the size of the recommendation lists.
In extreme case, we may get a perfect recall by recommending all unseen items
to a user (though very low precision). Therefore, a better way for measuring
the quality of the recommendations is considering both metrics.

Precision and recall do not consider the rank of the items in the recommen-
dation lists. These metrics do not distinguish whether the relevant items are
placed on the bottom of the list or on top of the list. To address this issue, a
ranking-based metric is needed. For measuring the ranking quality of the recom-
mendation lists, Normalised Discount Cumulative Gain (nDCG) is a well-known
metric in information retrieval for measuring the quality of search results. nDCG
can be calculated as:

nDCG = 1

|U | .
∑

u∈U

1

i DCGu

∑
i∈Lu

21(i∈P test
u ) −1

log(K (i )+1)
(2.7)

where K (i ) returns the position of item i in the list and uDCGu is the normali-
sation factor and can be calculated as:

i DCGu =
mi n(|Lu |,|P test

u |)∑
j=1

1

log( j +1)
(2.8)

2.1.3 Challenges

For a long time, the main challenge and research question in recommender sys-
tem was increasing the accuracy of the recommendations to the users. Various
studies have been conducted and different recommendation algorithms have
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been developed to further improve the accuracy of recommendations [49, 61,
102,115,192]. However, other research questions have emerged.

One of these challenges was cold-start users problem [36, 63, 99, 106, 127,
149]. In this problem, the question is: how to accurately generate the recom-
mendation list or predict the rating of an item for a new user who recently joined
the system or there is not sufficient information about her in the system? The
problem with these users is that the system does not have enough information
about them and cannot properly learn their preferences. The same issue can be
considered for items as well. Thus, the question is: how to accurately recom-
mend a new item to the users or predict the rating that a user might assign to
a new item? Addressing cold-start users and items in recommender systems are
important considerations as new users/items often appear in the system in the
real-world. This can also be related to the problem of data sparsity [136, 154]
which there are many cold-start users or items in the input data. In this situ-
ation, the number of users and items is large, but the number of the ratings is
low which means the user-item matrix has too many empty cells.

Scalability of recommender system is also a challenge [62, 155]. In real-
world platforms, there are many users and items in the system which makes the
recommendation generation process difficult. First, the system has to generate
the recommendations for a large number of users. Second, the system has to
manage the large pool of candidate items for generating the recommendation
list for each user. Handling this issue requires designing an efficient recommen-
dation algorithm.

Another challenge in recommender system is diversity and novelty of the rec-
ommended items for the users. Diversity refers to the fact that recommended
items should be from different sets of categories [37,84,177]. In movie recom-
mendation, for example, recommending movies that are from different genres
is one way to achieve diversified recommendation. Novelty, on the other hand,
refers to recommending novel items to a user such that it makes her surprised
when seeing those recommended items [65,134,191]. In this regard, improving
diversity and novelty always brings the cost of losing accuracy. Therefore, the
trade-off between diversity/novelty and accuracy is another research problem
in this field [78,82].

Addressing algorithmic bias is another area of challenge in recommender
systems. Algorithmic bias refers to the fact that recommendation algorithms
tend not to treat different users and items in the system equally. From the users’
perspective, the recommendation algorithm may not deliver the recommenda-
tions with the same level of quality to every user in the system [54, 122]. This
means that some groups of users may represent the majority in the system and
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dominates the preferences of the minority groups in the system. In this situa-
tion, the recommendation algorithm only learns the preference of the majorities
and the delivered recommendations better match the preferences of the majori-
ties than the minorities. Another types of bias can happen on the item side
where some items may frequently appear in the interaction data, while some
other items may rarely be interacted by the users. This is known as popularity
bias [3,144]. This bias leads to unfair exposure of items in the recommendation
lists due to the algorithmic bias as recommendation algorithms frequently rec-
ommend popular items, while rarely recommend non-popular ones [8]. Con-
sidering the recommender system as a multi-sided or multi-stakeholder envi-
ronment [4,4], popularity bias can also negatively affect suppliers (i.e. content
providers) of the system [5,132].

The main focus of this dissertation is on mitigating algorithmic bias in rec-
ommender systems, in particular when the system is operating in a multi-sided
platform. This topic will be further discussed in Section 2.2.

2.2 Fairness in predictive modelling

Research on fairness in decision making and machine learning can be traced
back to 2008-2010 [34, 35, 143]. Recently, the topic of fairness has been ex-
tended to recommender systems and received extensive attention from researchers
[24,30,52,183]. This Section focuses on various aspects of fairness-aware rec-
ommender systems including the definitions of fairness, evaluation metrics, fac-
tors leading to unfair recommendations, impact of unfair recommendations,
and existing techniques for tackling unfairness in recommender systems.

Fairness in Machine Learning is mainly concerned with the fair treatment of
individuals based on human-aspect criteria and attempts to treat all individuals
equally regardless of their sensitive attributes (e.g. gender, ethnicity, sexual ori-
entation, disability, etc.). Given a dataset D =< A, X ,Y > where A is the whole
attributes of D, X ⊆ A is the sensitive attributes, and Y is the label of each in-
stance in D as the ground truth, the goal of predictive models is to predict the
target variable in a way that it does not use any information about X in D [59].
For example, in the recidivism domain, if certain race group showed higher
risk in reoffending, then this should not cause a predictive model to assign a
higher risk to an individual belonging to that race group. In fact, the predictive
model should use other information about the individuals for making decision,
not the sensitive attributes. In this situation, the predictive model either should
not use the sensitive attributes as input data, or should utilize bias mitigation
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techniques to not make a biased decisions.
On the other hand, fairness in recommender systems is mainly concerned

with delivering accurate and high-quality recommendations to all users such
that the recommended items are matched with the users’ preferences. There is
also another concern in recommender systems with respects to the suppliers in
the systems. In this regard, the system attempts to provide fair exposure to all
suppliers at least at the same level of their merit in the input data (i.e. repre-
sentation in input data such as popularity of the item). Note that in majority of
recommendation algorithms, no sensitive attributes are used as input for build-
ing the recommendation model, but the fairness evaluation using the sensitive
attributes is done on the recommendation outputs.

2.2.1 Fairness definitions

Various definitions have been proposed for defining fairness in Machine Learn-
ing. Examples include Error Parity [27], False Discovery or Omission rates [91],
Envy-freeness [98], Demographic Parity [50], Equality of False Positive or False
Negative rates [68].

Equality of False Positive or False Negative rates requires the percentage of
users falsely predicted to be positive or negative to be the same across true neg-
ative or positive individuals belonging to each group. Envy-freeness requires
that each individual prefer his allocation to anyone else’s allocation. Demo-
graphic parity aims at equalizing the percentage of users who are predicted to
be positive across different groups. False discovery or Omission rates aims at
equalizing the percentage of false positive or negative predictions among indi-
viduals predicted to be positive or negative in each group.

Some of the definitions mentioned above are adapted in recommender sys-
tems to measure the fairness of recommendation results. In the following, I
review the ones that are more relevant to the topic in this dissertation.

Fairness-aware recommender systems aims to provide fair treatment to each
entity in the system. Depending on the domain that the system is operating and
the goals defined by the system owner/designer, fair treatment can have certain
meaning and definition. Since recommender systems are operating in a multi-
sided platforms [4,4,11,33,195,196] where different actors are involved in the
system, addressing the fairness for each actor may require specific definition.
In this Section, I review the fairness definitions provided for each actor in the
literature.
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User-side fairness

Definition 1. On the user side, the main fairness goal is delivering recom-
mendations with the same level of quality to each user or user group based
on their interest [54, 121, 122]. This definition concerns about the accuracy of
recommendations for individual users or users’ groups. For example, if user A
receives recommendations that are 60% matched with her preferences, while
the recommendations for user B only matches 10% of his interests, then the
recommendation algorithm would be called unfair against user B. Thus, the
recommendation algorithm needs to be refined to better learn the interests of
all users and generates recommendations that are matched with the interests of
each user.

Definition 2. User-side fairness can also be defined with respect to user groups’
interest toward item categories (e.g. movie genres). In other words, the fairness
is defined as the degree to which a group’s preferences on various item cate-
gories is reflected in the recommendations they receive [9, 12, 126, 167, 173].
In some cases, biases in the original data may be amplified or reversed by the
underlying recommendation algorithm. This happens when the preferences of
one user group is dominant in the input data and a biased recommendation
algorithm only learns these preferences, which causes the generated recom-
mendations fail to represent the preferences of other user groups. In a movie
recommendation system, for example, if the profile of one user’s group consists
of 40% Action movies and 60% Comedy movies, then the recommendation sets
for this group should also consist of the same ratio from Action and Comedy
movies. Thus, this definition concerns the ability of a recommendation algo-
rithm to properly capture user groups preferences toward item categories.

Definition 3. User-side fairness can be defined as the interests of users toward
popular or non-popular items. Some users may have niche tastes, which make
them more interested in non-popular items, while some other users may have
blockbuster tastes which make them more interested in popular items. Due to
the nature of recommendation algorithms that are more biased toward popular
items [6,42,144,165], the generated recommendations usually fail to represent
the preferences of niche-taste users [10, 95]. Therefore, it is important that
a recommendation algorithm properly takes into account the interest of users
toward popularity of items when generating recommendations.
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Item-side and supplier-side fairness

The fairness definitions for item and supplier sides concentrate on fair exposure
for items and suppliers. This means that all items and suppliers have equal
chance to appear in the recommendation lists. To achieve fair exposure for
items and suppliers, items and suppliers should be recommended to the equal
number of users as much as possible, which leads to a uniform distribution for
recommended items in the recommendation lists.

2.2.2 Metrics for evaluating fairness in recommendations

Based on the first definition for user-side fairness in Section 2.2.1, various met-
rics are introduced to measure the disparity and difference in the quality of
recommendation delivered to different groups of users. Given pr otected and
unpr otected as the group of users who belong to the minority and majority
groups, respectively, based on a sensitive attribute (e.g. gender, race, age, eth-
nicity, etc) and hi t as the number of times that the recommended items to a
user matched the items in her profile in test set, Statistical parity difference [50]
measures the deviations from statistical parity as follows:

SPD = Pr (hi t |unpr otected)−Pr (hi t |pr otected) (2.9)

where Pr (hi t |unpr otected) is the probability of correct recommendations (based
on users’ preferences) for unpr otected group. hi t can be interpreted as the
precision of recommendation results. Other accuracy metrics such as recall,
f, nDCG, and calibration can also be considered. Lower SPD means that the
quality of recommendation for both groups are close and signifies a fairer rec-
ommendation system. Another similar metric is disparate impact [41] which
replaces the difference in this Equation with a ratio. Equal opportunity differ-
ence is a relaxed version of equality of opportunity [68,188], which returns the
difference in recall scores (True Positive Rate, TPR) between the unprotected
and protected groups. A value of 0 indicates equality of opportunity.

With respect to the second definition provided in Section 2.2.1, the degree
to which a group’s preferences on various item categories is reflected in the
recommendations they receive, various metric have been developed. Bias dis-
parity [173] measures how much an individual’s recommendation list deviates
from his or her original preferences in the training set. Given a group of users,
G, and an item category, C , bias disparity is defined as follow:

BD(G ,C ) = BR (G ,C )−BT (G ,C )

BT (G ,C )
(2.10)
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where BT (BR) is the bias value of group G on category C in training data
(recommendation list). BT is defined by:

BT (G ,C ) = PRT (G ,C )

P (C )
(2.11)

where P (C ) is the fraction of item category C in the dataset defined as
|C |/|m|, m is the size of the dataset. PRT is the preference ratio of group G
on category C calculated as:

PRT (G ,C ) =
∑

u∈G
∑

i∈C T (u, i )∑
u∈G

∑
i∈I T (u, i )

(2.12)

where T is the binarized user-item matrix. If user u has rated item i , then
T (u, i ) = 1, otherwise T (u, i ) = 0. The bias value of group G on category C in the
recommendation list, BR , is defined similarly.

Bias disparity separately measures the deviation of each group’s interests to-
ward item categories from the represented interest in recommendation sets and
does not give an overall view about the fairness of the system. To overcome this
issue, I introduced average disparity [126] that measures how much preference
disparity between the training data and the recommendation lists for one group
of users (e.g. unprotected groups) is different from that for another group of
users (e.g. protected group). Inspired by value unfairness metric proposed by
Yao and Huang [184], I introduce the average disparity as:

di spar i t y = 1

|C |
|C |∑
i=0

|(NR (GU ,Ci )−NT (GU ,Ci ))

−(NR (GP ,Ci )−NT (GP ,Ci ))|
(2.13)

where GU and GP are unprotected and protected groups, respectively. NR (G ,C )
and NT (G ,C ) return number of items from category C in recommendation lists
and training data, respectively, that are rated by users in group G.

Figure 2.1 compares the performance of thirteen recommendation algo-
rithms with respect to how accurately recommendation algorithms generate
recommendations with low disparity for unprotected and protected groups on
Yelp dataset2 [126]. Gender is used to define protected and unprotected groups
where male users represent unprotected group and female users represent pro-
tected group. In this figure, horizontal axis is the ranking quality of recom-
mendations (nDCG) and vertical axis is average disparity calculated by Equa-

2https://github.com/masoudmansoury/yelp_core40

https://github.com/masoudmansoury/yelp_core40


2.2 Fairness in predictive modelling 27

Figure 2.1: Comparison of recommendation algorithms by ranking quality and average
disparity.

tion 2.13. Details about the recommendation algorithms, dataset, and experi-
mental results are discussed in Chapter 5.

The results in Figure 2.1 show that neighborhood models generate recom-
mendations with the highest ranking quality and lowest average disparity. Also,
the results show that side information like trust information can even generate
better results in terms of average disparity compared to other recommendation
algorithms.

Analogous to the average disparity, the calibration of the recommendation
list(s) for an individual user or groups of users can be used to measure the
degree to which a group’s preferences on various item categories is reflected
in the recommendations they receive. Given the distribution of item categories
in user’s profile and recommendation list for that user as p and q, respectively,
miscalibration [167] can be calculated as the distance between p and q. For
this purpose, Kullback-Leibler divergence (KLD) [97] can be used to calculate
the distance between p and q as follows:

K LD(p|q̃) = ∑
c∈C

pc log
pc

q̃c
(2.14)

where C is item categories (e.g. genres in movie recommendations) and q̃ is
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approximately similar to q calculated as:

q̃c = (1−α).qc +α.pc (2.15)

The purpose of q̃ is to overcome the issue of zero values for some categories
in q. Small value for α> 0 guarantees q̃ ≈ q.

With respect to the third fairness definition provided in Section 2.2.1, in [8],
we introduced User Propensity Deviation (UPD) metric that calculates the devi-
ation between the ratio of item popularity groups in user profile and her rec-
ommendations. Given popular items as head, non-popular items as tail, and the
rest of the items as mid, this metric measures the distance between the ratio
of each of these item groups in users’ profile and their recommendation lists.
Lower distance indicates that the recommendation list is generated based on
user’s interest toward (un)popular items. For example, when a user profile con-
sists of 20% head items, 30% mid items, and 50% tail items, then it is expected
to see the same ratio in recommendation list for that user. Similar to calibration
metric mentioned above, given p and q as the distribution of item popularity
groups (head, mid, and tail) in user profile and recommendation lists, respec-
tively, UPD can be calculated as the KLD between p and q.

Finally, with respect to the item and supplier side fairness, various metrics
have been developed to measure the exposure of items and suppliers in recom-
mendation lists. Aggregate diversity [15,16,56,78,82,158] is a widely used met-
ric for measuring the coverage of items in recommendation lists. It measures
the fraction of items in catalog that appear at least once in recommendation
lists. The limitation of aggregate diversity is that it does not take into account
the whether or not the recommended items are popular or non-popular. A rec-
ommendation system may achieve high aggregate diversity by recommending
many popular items which would not be considered as fair as it does not give
opportunity to non-popular items to be seen by the users. Another issue with
aggregate diversity is that it does not take into account the frequency of recom-
mended items. For example, suppose a recommendation system recommends
popular items frequently (recommending those items to many users), but rec-
ommends non-popular items to few users (e.g. only once). Although this system
achieves high aggregate diversity, it is not fair as it does not give enough expo-
sure to all items.

To address the first issue, long-tail coverage metric is introduced [105, 140,
186]. Long-tail coverage measures the fraction of long-tail items that appear
in the recommendation lists. Long-tail items are the non-popular items that
received less attention (i.e. few interactions) from users. Also, to overcome
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the second issue, Gini Index and Entropy are used to measure the fairness of
distribution of recommended items [118, 175]. Both of these metrics measure
the uniformity of distribution of recommended items, with uniform distribution
indicating a fair recommendation as it provides equal exposure to all items.
Gini Index is the measure of fair distribution of recommended items. It takes
into account how uniformly items appear in recommendation lists. Uniform
distribution will have Gini index equal to zero which signifies equal exposure
for the items or suppliers in recommendation lists (lower Gini index is better).
Given all the recommendation lists for users, L, and p(ik |L) as the probability of
the k-th least recommended item being drawn from L calculated as [175]:

p(i |L) =
∑

u∈U 1i∈Lu∑
u∈U

∑
j∈I 1 j∈Lu

(2.16)

where Lu is the recommendation list for user u. Now, Gini index of L can be
computed as:

Gi ni (L) = 1

|I |−1

|I |∑
k=1

(2k −|I |−1)p(ik |L) (2.17)

Also, given the distribution of recommended items, entropy measures the
uniformity of that distribution. Uniform distribution has the highest entropy or
information gain, thus higher entropy is more desired when the goal is increas-
ing diversity.

Entr opy(L) =−∑
i∈I

p(i |L) log p(i |L) (2.18)

where p(i |L) is the observed probability value of item i in recommendation lists
L.

In terms of supplier fairness, I adapted the aforementioned metrics for mea-
suring the fairness of suppliers in recommendation results. Those metrics will
be discussed in Chapter 5.

2.2.3 Factors leading to unfair recommendations

There are various factors that may affect the fairness of recommendations.
One of the contributions of this dissertation is investigation of factors lead-
ing to unfairness in recommender systems. These contributions are published
in [121, 122]. In my investigation, I explored the relationship between several
characteristics of users’ profile with the quality of recommendations delivered
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to them. For this purpose, I used the definition provided in Equation 2.9 with
precision and (mis)calibration of recommendations as the measures of quality
of recommendations. The factors that I investigated are as follows:

• Profile anomaly (A ): One factor that could impact recommendation per-
formance is the degree of anomalous rating behavior relative to other
users. The authors in this paper showed that users whose rating behavior
is more consistent with other users in the system as a whole receive bet-
ter recommendations than those who have more anomalous ratings. This
happens because users who rate more in line with typical users are likely
to find more matching items or users. We measure the degree of profile
anomaly based on how similarly a user rates items compared to the ma-
jority of other users who have rated that item. Since collaborative filtering
approaches use opinions of other users (e.g. similar users) for generating
recommendations for a target user, it is highly possible that users with
anomalous ratings receive less accurate recommendations. Given a tar-
get user, u, and Iu as all items rated by u, profile anomaly of u can be
calculated as:

Au =
∑

i∈Iu |ru,i − ri |
Nu

(2.19)

where ru,i is the rating given by u to item i , ri is the average rating as-
signed to item i , and Nu is the number of items rated by u (i.e. the profile
size of u).

• Profile entropy (E ): Another possible factor that could impact recom-
mendation performance is how informative a user’s profile is. The more
diverse a user’s ratings are, the higher their entropy is. For example, has
the user only given high (or low) ratings to different items? Or are there a
wide range of different ratings given by the user? We measure the entropy
of user u’s profile as follows:

Eu =− ∑
v∈V

Du(v) logDu(v) (2.20)

where V is the set of discrete rating values (for example, 1,2,3,4,5) and
Du is the observed probability distribution over those values in u’s profile.

• Profile size (S ): The last factor I investigate in this paper is the pro-
file size of each user. I believe users who are more active in the system
(and have rated a larger number of items) receive better recommenda-
tions compared to those with shorter profiles.
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Table 2.1: Specification of ML1M for male and female users

#user s A E S

Male 4,331 0.781 4.174 139.2
Female 1,709 0.808 3.995 115.4

For this investigation, I performed a set of experiments on MovieLens1M
dataset [70] using four recommendation algorithms: user-based collaborative
filtering (UserKNN) [147], item-based collaborative filtering (ItemKNN) [153],
singular value decomposition (SVD++) [93], and list-wise matrix factorization
(ListRankMF) [159]. The MovieLens1M dataset has 6,040 users provided around
1M ratings (4,331 males provided 753,769 ratings and 1,709 females provided
246,440 ratings) on 3,706 movies. The ratings are in the range of 1-5 and the
density of the dataset is 4.468%. Also, each movie is assigned either a single
genre or a combination of several genres. Overall, there are 18 unique genres
in this dataset. Details of the dataset and algorithms are explained in Chapter 5.

Table 2.1 shows the specification of MovieLens1M dataset for male and fe-
male users. As shown in this table, there are more male users in the dataset
than female users. Moreover, on average, male users have larger profiles, and
their profile entropy is also higher than female users. In addition, the average
anomaly of male users’ profiles is slightly lower than female users.

I divided the dataset into training and test sets in an 80% - 20% ratio, respec-
tively. The training set is then used to build the model. After training different
recommendation algorithms, recommendation lists of size 10 are generated for
each user in the test set.

I created 20 user groups separately for males and females by measuring dif-
ferent factors: degree of anomaly, entropy, and profile size. Specifically, I sort
users based on each factor and then split them into 20 buckets in an ascending
order. Users that fall within each bucket represent one group. In order to cal-
culate the anomaly, entropy, profile size, precision, and miscalibration for each
group, I average the corresponding measure over all the users in the group. All
recommendation models are optimized using gridsearch over hyperparameters
and the configuration with the highest precision is selected. The precision val-
ues for UserKNN, ItemKNN, SVD++, and ListRankMF are 0.214, 0.223, 0.122, and
0.148, respectively.

Table 2.2 shows the performance of recommendation algorithms for male
and female users. In terms of precision, male users consistently receive more ac-
curate recommendations than females and in terms of miscalibration, except for
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Table 2.2: Precision and miscalibration of recommendation algorithms for male and fe-
male users

algorithm
Precision Miscalibration

Male Female Male Female

UserkNN 0.235 0.162 0.915 0.971
ItemkNN 0.242 0.175 0.874 0.973
SVD++ 0.133 0.095 1.156 1.130
ListRankMF 0.160 0.118 0.970 1.032

SVD++, male users receive less miscalibrated (i.e. more calibrated) recommen-
dations than females. Lower miscalibration for females than males on SVD++
shows an interesting result in the experiments that needs further investigation.

Figure 2.2 shows the relationship between the degree of anomaly, entropy,
and profile size for 20 user groups for both male and female users and the
miscalibration of the recommendations they received. As it can be seen in the
first column (anomaly vs miscalibration), in all algorithms except for SVD++, the
recommendations given to the female users have higher miscalibration (they are
less calibrated) regardless of the anomaly of their ratings compared to the male
user groups. Also, it can be seen that the positive correlation between profile
anomaly and recommendation miscalibration discussed in [121] can only be
seen on male users.

The second column of Figure 2.2 shows the relationship between the entropy
of the ratings and the miscalibration of their recommendations. Again, it can
be seen that except for SVD++, for all other algorithms, female user groups have
higher miscalibration in their recommendations regardless of the amount of
entropy of their ratings.

Finally, the last column of Figure 2.2 shows the correlation between the
average profile size of different user groups and the miscalibration of their rec-
ommendations. Looking at this plot, we can see that there is no significant cor-
relation between these two factors, indicating the profile size of the users does
not affect the miscalibration of their recommendations. However, except for
SVD++, again all algorithms have higher miscalibration for female user groups
regardless of their profile size. It seems that SVD++ is indeed the fairest algo-
rithm among the four as it gives a comparable performance for both male and
female users. It can also be seen that there is no data point for female groups
when the value of the x axis is larger than 400, meaning the largest average
profile size for female groups is 400 while there are some male user groups
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(a) UserKNN

(b) ItemKNN

(c) SVD++

(d) ListRankMF

Figure 2.2: The Correlation between anomaly, entropy, and size of the users’ profiles and
miscalibration of the recommendations generated for them. Numbers next to
the legends in the plots show the correlation coefficient for each user group.
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with an average profile size of around 700.
Figure 2.3 shows the correlation between the aforementioned factors for dif-

ferent user groups and the precision of their recommendations. Unlike miscali-
bration, it seems the correlations of these three factors with precision are much
stronger. For example, the first column of this figure shows that the higher
the inconsistency of the ratings, the lower the precision is, which is what we
expected.

The second column shows a strong correlation (correlation coefficient ≈ 0.9)
indicating that user groups with higher entropy (more information gain) in their
ratings receive more accurate (higher precision) recommendations. Also, from
the same figure, we can see for the lower values of entropy, the algorithms
behave more fairly, but, the larger the entropy gets, the discrimination between
female and male user groups becomes more apparent (higher precision for male
user groups).

The relationship between the average profile size and precision is also shown
in the last column of Figure 2.3. As expected, user groups with larger profiles
benefit from more accurate recommendations for both males and females. How-
ever, the discrimination can still be seen for some algorithms such as UserKNN
where female users with the same profile size still receive recommendations
with lower precision compared to the male users.

The factors described above mainly come from the input data where users’
interactions with the system are recorded. However, there are some other fac-
tors that come from the algorithm. It means that the algorithm even amplify
the bias when generating the recommendation lists. One of the well-known al-
gorithmic bias is popularity bias [42, 144, 165]: the tendency of recommender
system to frequently recommend popular items and rarely recommend non-
popular items. Recommending popular items may not bring much benefit for
users and they might be already known to the users. Also, recommending pop-
ular items hinders the system ability to better learn users’ preferences through
exploration and deliver more accurate recommendations.

In addition, in [10], we showed that popularity bias can cause unfairness
on the user side. A recommendation algorithm that is biased toward popular
items will not properly capture the interests of users who are interested in non-
popular items. This means that a biased recommendation system only learns the
interests of blockbuster users (users who are more interested in popular items),
while does not serve niche-taste users well. Also, in [5], we investigated the
supplier side unfairness of popularity bias in music recommendation domains.
This analysis showed that due to the algorithmic popularity bias, unpopular
artists may not have a chance to appear in recommendation lists to users.
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(a) UserKNN

(b) ItemKNN

(c) SVD++

(d) ListRankMF

Figure 2.3: The Correlation between anomaly, entropy, and size of the users’ profiles and
precision of the recommendations generated for them. Numbers next to the
legends in the plots show the correlation coefficient for each user group.
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In the next Section, I describe how algorithmic bias, in particular popularity
bias, can negatively affect the performance of the recommender system and
different actors in the system over time.

2.2.4 Impacts of unfair recommendations

Unfair recommendation can adversely impact the satisfaction of different actors
in the system:

• In item-side, unfair distribution of recommended items can amplify the
popularity bias [12, 42]. In this situation, popular items would be over-
recommended even more that their merit3 in the rating data and tail
items would be under-recommended. This skew in the frequency of rec-
ommended items in recommendation lists not only adversely impacts the
whole ecosystem, but also negatively affects the experience of both sup-
pliers (some suppliers may not receive enough attention) [5] and users
(those who are not interested in popular items still receive popular items
in their recommendations) [7].

• Unfair treatment of suppliers may cause the items belonging to some sup-
pliers to appear frequently in the recommendation lists, while the items
belong to the other suppliers do not receive proportionate or deserved
attention, leading to skew in the appearance of suppliers in the recom-
mendations [8]. This skewness in the appearance of suppliers in recom-
mendation lists may stimulate under-recommended suppliers to leave the
system, which will have negative impact on the whole system in long run.

• Finally, user-side unfairness not only perpetuates undesirable social dy-
namics, it can also degrade the satisfaction of certain groups of users [51].
Measuring user-side fairness is a challenging task and requires online
evaluation of recommendation lists on a real-world platform with steady
stream of data, which is not always available. But, in an offline setting, it
can be simply defined as any disparity in the quality of recommendation
generated for the users. For instance, if group A receives recommenda-
tions which are better matched with their preferences than those of group
B , it shows that the recommendation algorithm mainly learned the pref-
erences of group A, showing algorithmic bias against group B .

3Depending on the domain, item merit can be defined in various ways, but on simple approach
is considering the popularity of the item.
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The algorithmic bias could be intensified over time as users interact with the
given recommendations that are biased towards popular items and this inter-
action is added to the data. Users receiving recommendation lists may select
(e.g. by rating or clicking) some of the recommended items and the system will
add those items to their profiles as part of their interaction history. In this way,
recommendations and user profiles form a feedback loop [38,45]; the users and
the system are in a process of mutual dynamic evolution where user profiles get
updated over time via recommendations generated by the recommender system
and the effectiveness of the recommender system is also affected by the profile
of users.

The study on feedback loop in machine learning and particularly recom-
mender systems has recently received more attention from researchers [38,45,
162, 170]. D’Amour et al. [45] analyzed the long-term fairness of machine
learning based decision-making systems in three different domains through sim-
ulation studies: bank loans, allocation of attention, and college admission in an
agent-based environment. Their analysis showed that common single-step anal-
ysis does not show the dynamic behavior of the system and the need for explor-
ing the long-term effect of the decision-making systems. In another work which
is also based on a simulation using synthetic data, Chaney et al. [38] showed
that feedback loop causes homogenization of the user experience and shift in
item consumption. Homogenization in their study was measured as the ratio
of commonly rated items in a target user’s profile and her nearest neighbor’s
profile, and showed that homogenization leads to lower utility for the users.

In this section, I study the negative impacts of unfair recommendation on
the system, in particular the effect of feedback loop on amplifying bias in rec-
ommender systems. This contribution is published in [119]. I investigate popu-
larity bias amplification and the impact of this bias on other aspects of a recom-
mender system including declining aggregate diversity, shifting the representa-
tion of the users’ taste, and also homogenization of the users. In particular, I
show that the impact of feedback loop is generally stronger for the users who be-
long to the minority group. For the experiments, I simulate the users interaction
with recommender systems over time in an offline setting. The concept of time
here is not chronological but rather consecutive interactions of users with the
recommendations in different iterations. That is, in each iteration, users’ profile
is updated by adding selected items from the recommendation lists generated
at previous iteration to their profile.
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Feedback loop simulation

The ideal scenario for investigating the effect of feedback loop on amplifying
bias in recommender systems is to perform online testing on a real-world plat-
form with steady stream of data. However, due to the lack of access to real-
world platforms for experimentation, I simulated the recommender system pro-
cess in an offline setting. To do so, I simulated the recommendation process
over time by iteratively generating recommendation lists to the users and up-
dating their profile by adding the selected items from those recommendation
lists based on an acceptance probability.

Given the rating data D as an m ×n matrix formed by ratings provided by
the users U = {u1, ...,um} on different items I = {i1, ..., in}, the mechanism for sim-
ulating feedback loop is to generate recommendation lists for the users in each
iteration t ∈ {1, ...,T } and update their profile based on the delivered recommen-
dations in each iteration. The following steps show this mechanism:

1) Given D t as the rating data in iteration t , we split D t into training and
test sets as 80% for tr ai nt and 20% for test t .

2) We build the recommendation model on tr ai nt to generate the recom-
mendation lists R t to all users.

3) For each user u and recommendation list R t
u generated for u, we follow the

acceptance probability concept proposed in [4] to decide which item from
the recommendation list the user might select. The acceptance probability
assigns a probability value to each item in R t

u where more relevant items
(higher ranked) are assigned higher probability to be selected. Formally,
for each item i in R t

u , the acceptance probability can be calculated as
follows:

pr ob(i |R t
u) = eα×r anki (2.21)

where α is a negative value (α< 0) for controlling the probability assigned
to each recommended item and r anki is the rank of the item i in R t

u . Equa-
tion 2.21 is only a selection probability and does not assign a potential
rating a user might give to the selected item. This is particularly impor-
tant if we want to also include rating-based algorithms such as UserKNN
in our simulation as we have done in this paper. To estimate the rating a
user might give to the selected item, we follow the Item Response Theory
used in [75,162]. More formally,
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ω= su + (sd(su)× si )+ηu,i (2.22)

where su is the average of the ratings in u’s profile, sd(su) is the standard
deviation of the ratings in u’s profile, si is the average of ratings assigned
to i , and ηu,i is a noise term derived from a Gaussian distribution (i.e.
ηu,i ∼ N (0,1)). In order to estimate an integer rating value in the range
of [a,b] where a and b are the minimum and maximum rating values,
respectively, we use the Equation ŝu,i = max(mi n(r ound(ω),b), a) as pro-
posed in [162]. After estimating ŝu,i , we add (i , ŝu,i ) to u’s profile if i is
not already in u’s profile and we repeat this process for all users to form
D t+1.

The steps 1 through 3 are repeated in each iteration.

Modeling Bias Amplification

In this section, we formally model the propagation of this bias due to the feed-
back loop phenomenon. Let P D t and P R t be the average popularity (i.e. the
expected values) of the items in the rating data and the recommended items in
iteration t , respectively.

P R t ∝ P D t +θt (2.23)

where θt is the percent increase of the popularity of the recommendations com-
pared to that of rating data in iteration t . Now, assuming, out of all the recom-
mendations given to the users, we add K interactions (K >= 0) to the profiles of
the users, the size of the rating data in the next iteration would be |D t |+K and
its average popularity will be

P D t+1 ≈ |D t |×P D t +K × (P D t +θt )

|D t |+K

which can be simplified as

(|D1|+K )×P D t +K ×θt

|D t |+K
= P D t + K ×θt

|D t |+K

which means the average popularity of the items in the rating data is now in-
creased by
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K ×θt

|D t |+K

Based on Equation 2.23, by definition, the average popularity of the rec-
ommended items in each iteration is proportional to the average popularity of
the rating data in the same iteration plus a positive value and since P D t+1 has
increased compared to P D t , P R t+1 will be also higher than P R t due to transi-
tivity. In other words, in each iteration t , P R t+1 > P R t indicating the popularity
propagation/intensification from one iteration to the next one.

Experiments

In investigation of the effect of feedback loop on amplifying bias, I performed a
set of experiments on well-known MovieLens1M dataset [70] using three differ-
ent recommendation algorithms: user-based collaborative filtering (UserKNN)
[147], Bayesian Personalized Ranking (BPR) [146], and MostPopular. MostPopular
recommends the most popular items to everyone (the popular items that a user
has not seen yet). We set the number of factors in BPR and the number of neigh-
bors in UserKNN to 50 to achieve the best performance in terms of precision. For
our simulation, we performed the steps 1-3 in Section 2.2.4 for 20 iterations
(T = 20). Details of the dataset and algorithms are explained in Chapter 5.

Popularity bias amplification

As I formally showed in previous section (entitled Modeling Bias Amplifica-
tion), recommendation models can intensify the popularity bias in input data
over time due to the feedback loop. Figure 2.4 (left) shows the effect of this
loop on the average popularity of recommendation lists over time (i.e. in differ-
ent iterations). As shown in this plot, even though these algorithms start with
different average popularity values due to their inherent nature, they all show
an ascending pattern in terms of the average popularity over different itera-
tions. The curve for BPR seems to have a steeper slope compared to the other
algorithms indicating a stronger bias propagation of this algorithm. The ex-
act reason for these performance differences across different algorithms needs
further investigation and I leave it for future work.

Figure 2.4 (right) shows the aggregate diversity (aka catalog coverage) of
recommendation algorithms: the percentage of items that appear at least once
in the recommendation lists across all users. As a recommender system con-
centrates more on popular items, it will necessarily cover fewer items in its
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Figure 2.4: Average popularity (left) and aggregate diversity (right) of the recommen-
dations.

recommendations and that effect is clear here, especially for BPR, which starts
out with a relatively high aggregate diversity.

This bias amplification over different iterations could lead to two problems:
1) shifting the representation of the user’s taste over time, and 2) the domina-
tion of the preferences of one group of users (the majority group) over another
(the minority group) which eventually could diminish the differences between
the groups and create homogenization.

Shifting users’ taste representation

One consequence of the feedback loop is shifting the representation of the users’
taste revealed in user profiles. I define the users interest toward various movie
genres based on the rated items in their profile which creates a genre distribu-
tion over rating data. This genre distribution is calculated as the ratio of the
movies associated with each genre over different genres in the users’ profiles.
In the MovieLens1M dataset, some movies are assigned multiple genres hence,
in those case, I assign equal probability to each genre. For example, if an item
has genres a and b, the probability of either of a and b is 0.5.

Given genre distribution in iteration t = 1 as initial preferences represented
in the system, I am interested in investigating how initial users’ taste represen-
tation changes over time due to the feedback loop. For this purpose, in each
iteration t > 1, I calculate the Kullback-Leibler divergence (K LD) between the
initial genre distribution and the genre distribution in iteration t for each user.
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Figure 2.5: Deviation from the initial preferences (left) and the distance between the
representation of genre preferences of males and females in different itera-
tions (right).

Higher K LD value indicates higher deviation from the initial preference.
Figure 2.5 (left) shows the deviation of users taste from their initial pref-

erences. In all recommendation algorithms, we observe that the deviation of
users’ profiles from their initial preferences increases over time. It is worth not-
ing that the change in users preferences shown in this figure is the change in
the representation of users’ preferences in the system, not the change in users’
intrinsic preferences. One consequence of this change is that recommendation
models may not be able to capture the users’ true preferences when generating
recommendations for the users.

Homogenization

A shift in the users’ taste representation could happen in two situations: when
the recommendations given to the users are more diverse than what the users
are interested in (i.e. exploration), or when the recommendations are over-
concentrated on few items when the users’ profiles are more diverse. In the
latter case, since all users are exposed to a limited number of items over time,
their profiles all converge towards a common range of preferences.

Figure 2.5 (right) shows the distance between the representation of males
(majority group) and females (minority group) preferences over time. In each
iteration t , given the genre distribution separately extracted from males and
females ratings as GM and GF , respectively, I calculate the K LD of GM and GF ,
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Figure 2.6: Deviation of the representation of male and female preferences from the
representation of the population initial preferences (left) and deviation of the
representation of male and female preferences from their initial preferences
(right).

K LD(GM ||GF ), which measures the distance between the preferences of males
and females. As shown in the plot, the K LD value dramatically decreases over
time in all algorithms showing the strong homogenization of users’ preferences.

Now, an interesting question is that the preferences of which user group
is dominating the other. To answer this question I separately compare genre
preferences of males and females with the preferences of the whole population.
Given G as the initial genre preferences of all users, I calculate K LD(G||GF ) and
K LD(G||GM ) in each iteration t .

Figure 2.6 (left) separately shows K LD(G||GF ) and K LD(G||GM ) in different
iterations. We can see that, for all algorithms, the representation of females
preferences are approaching toward the representation of initial preferences of
the population. However, this value is slightly increasing for males showing that
they become distant from the preferences of the initial population. I believe the
reason is that male users are taking up the majority of the ratings in the data
and hence, initially, the population is closer to the male profiles. Over time,
since the recommended items are more likely to be those rated by males (as
males have rated more items), when added to the users’ profiles, causes the
female profiles to get closer to the initial population, which was dominated by
the male users.

Figure 2.6 (right) shows the deviation from the representation of initial pref-
erences of each user in the system separately for males and females. In all
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algorithms, the deviation for females is significantly higher than males, demon-
strating the severity of the impact of the feedback loop on the minority group.

Limitations

Simulation studies are often designed to mimic the real-world scenarios as much
as possible, but due to the complexity of these scenarios, it is not always possi-
ble. Therefore, the complexities are usually relaxed by making certain assump-
tions on the simulation process. I also made some assumptions in the proposed
simulation study which limit the ability of perfectly mimicking the real-world
scenario.

First, the selection technique in Equation 2.21 I used in this simulation lever-
ages the ranking position of the items in the list in order to define whether it
would be selected by the user or not. It assigns higher probability to the items
on top of the list to be selected than the items on bottom of the list. How-
ever, selection based on the ranking of the recommended items is not the only
factor that a real user may consider when selecting an item. A real user may
sometimes find the lowered ranked items more desired than the items on top
of the list based on his/her actual preference. Therefore, this limitation can
be addressed by modeling user behavior on selecting an item from the list or
considering other selection policies such as random selection.

Second, in some recommendation domains such as music, it is very common
for a user to listen to the same song repeatedly. Therefore, the restriction I
imposed on the selection algorithm in this simulation regrading the items that
were already in the users’ profile (those items were not added to the users’
profiles in the next iteration) can be lifted and, instead, the rating for that item
would be updated in each iteration.

2.2.5 Techniques for addressing unfair recommendations

The problem of unfair recommendations and the challenges it creates for the
recommender system has been well studied by other researchers. The solu-
tions for tackling bias in the machine learning and recommender systems lit-
erature can be categorized into three groups: pre-processing, in-processing,
and post-processing approaches [85]. In pre-processing approaches, the input
data is modified (e.g. over-sampled or under-sampled) to reduce the inherent
bias or skew in independent/dependent variables. In in-processing approaches,
the predictive algorithm is modified to mitigate the algorithmic bias. In post-
processing approaches, the results of the predictive model is processed to re-
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move any possible bias in the final output. In this Section, I review existing
techniques for tackling bias and unfairness in recommender systems.

Previous research has raised concerns about discrepancies in recommenda-
tion accuracy across different users [87,184,199]. For instance, [54] shows that
women on average receive less accurate, and consequently, less fair recommen-
dations than men using a movie dataset.

Burke et. al. in [32] have shown that inclusion of a balanced neighborhood
regularization term to SLIM algorithm [137] can improve the fairness of the
recommendations for protected and unprotected groups. Based on their defi-
nition for protected and unprotected groups, their solution takes into account
the group fairness of recommendation outputs. Analogously, Yao and Huang
in [184] improved the fairness of recommendation results by adding fairness
terms to objective function in model-based recommendation algorithms. They
proposed four fairness metrics that capture the degree of unfairness in recom-
mendation outputs and added these metrics to learning objective function to
further optimize it for fair results.

Zhu et al. in [199] proposed a fairness-aware tensor-based recommender
systems to improve the equity of recommendations while maintaining the rec-
ommendation quality. The idea in their paper is isolating sensitive information
from latent factor matrices of the tensor model and then using this information
to generate fairness-aware recommendations.

It is well-known that popularity bias leads to unfair exposure of items in rec-
ommendation lists to the users [3, 144]. Also, research conducted by authors
in [10,95] have shown that popularity bias can cause unfairness from the users’
perspective as users are not equally treated based on their interests toward pop-
ular items. Hence, several studies have been conducted to mitigate popularity
bias in recommender systems [20,25,140]. Authors in this work have mainly ex-
plored the overall accuracy of the recommendations in the presence of long-tail
distribution in rating data. In addition, some other researchers have proposed
algorithms that can control this bias and give more chance to long-tail items to
be recommended [7,15,86].

Jannach et al., [80] conducted a comprehensive set of analysis on popular-
ity bias of several recommendation algorithms. They analyzed recommended
items by different recommendation algorithms in terms of their average ratings
and their popularity. While it is very dependent to the characteristics of the
data sets, they found that some algorithms (e.g. SlopeOne [103], KNN tech-
niques [147,153], and ALS-variant of factorization models [171]) focus mostly
on high-rated items which bias them toward a small sets of items (low cover-
age). Also, they found that some algorithms (e.g. ALS-variants of factorization
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model) tend to recommend popular items, while some other algorithms (e.g.
UserKNN and SlopeOne) tend to recommend less-popular items. Abdollahpouri
et al., [6] addressed popularity bias in learning-to-rank algorithms by inclusion
of fairness-aware regularization term into objective function. They showed that
the fairness-aware regularization term controls the recommendations being to-
ward popular items.

Vargas and Castells in [176] proposed probabilistic models for improving
novelty and diversity of recommendations by taking into account both rele-
vance and novelty of target items when generating recommendation lists. In
other work [177], they proposed the idea of recommending users to items for
improving novelty and aggregate diversity. They applied this idea to nearest
neighbor models as an inverted neighbor and a factorization model as a proba-
bilistic reformulation that isolates the popularity components.

Adomavicius and Kwon [17] proposed the idea of diversity maximization
using a maximum flow approach. They used a specific setting for the bipartite
recommendation graph in a way that the maximum amount of flow that can be
sent from a source node to a sink node would be equal to the maximum aggre-
gate diversity for those recommendation lists. In their setting, given the number
of users is m, the source node can send a flow of up to m to the left nodes, left
nodes can send a flow of up to 1 to the right nodes, and right nodes can send
a flow of up to 1 to the sink node. Since the capacity of left nodes to right
nodes is set to 1, thus the maximum possible amount of flow through that rec-
ommendation bipartite graph would be equivalent to the maximum aggregate
diversity.

A more recent graph-based approach for improving aggregate diversity was
proposed by Antikacioglu and Ravi in [21]. They generalized the idea pro-
posed in [17] and showed that the minimum-cost network flow method can be
efficiently used for finding recommendation subgraphs that optimizes the di-
versity. In this work, an integer-valued constraint and an objective function are
introduced for discrepancy minimization. The constraint defines the maximum
number of times that each item should appear in the recommendation lists and
the objective function aims to find an optimal subgraph that gives the minimum
discrepancy from the constraint. This work shows improvement in aggregate di-
versity with a smaller accuracy loss compared to the work in [176] and [177].
Similar to this work, the proposed FairMatch algorithm in this dissertation (see
Chapter 7) also uses a graph-based approach to improve aggregate diversity.
However, unlike the work in [21] which tries to minimize the discrepancy be-
tween the distribution of the recommended items and a target distribution, the
FairMatch algorithm has more freedom in promoting high-quality items with
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low visibility since it does not assume any target distribution of the recommen-
dation frequency.

In addressing exposure bias in domains like job recommendations where job
seekers or qualified candidates are recommended, Zehlike et. al. [189] pro-
posed a re-ranking algorithm to improve the ranked group fairness in recom-
mendations. The algorithm creates queues of protected and unprotected items
and merges them using normalized scoring such that protected items get more
exposure.

Finally, in addressing supplier-side unfairness, Surer et al. in [201] pro-
posed a multi-stakeholder optimization model that works as a post-processing
approach for standard recommendation algorithms. In this model, a set of con-
straints for providers are considered when generating recommendation lists for
end users. Also, Liu and Burke in [111] proposed a fairness-aware re-ranking
approach that iteratively balances the ranking quality and provider fairness. In
this post-processing approach, users’ tolerance for diversity list is also consid-
ered to find trade-off between accuracy and provider fairness.

Mehrotra et al. [132] investigated the trade-off between the relevance of
recommendations for users and supplier fairness, and their impacts on users’
satisfaction. Relevance of the recommended items to a user is determined by
the score predicted by a recommendation algorithm. To determine the supplier
fairness in recommendation list, first, suppliers are grouped into several bins
based on their popularity in rating data and then the supplier fairness of a
recommendation list is measured as how diverse the list is in terms of covering
different supplier popularity bins.





Chapter 3
Multi-Sided Matching and
Recommendation Problem

In a multi-sided platform, various actors are involved in the system. Optimizing
an objective in this situation may need specific design and constraints. In this
chapter, I study multi-sided matching and recommendation problem through a
simulation on educational system.

3.1 Simulation study

In this simulation, I consider the matching between students and supervisors
in an educational system where the goal is to assign (match) students to the
supervisors under various settings. The number of settings and assumptions
can be overwhelming and may significantly complicate the problem. In this
simulation, I define the settings in a way to represent the real-world scenario
while keeping it simple.

The problem that I simulate in this chapter is the assignment of students to
supervisors in universities or any educational institutions. The goal is to find a
match between students and supervisors in a way to satisfy the demands and
requirements for both and make them happy. In realistic scenario, students are
not on the same level of qualification and supervisors also are not on the same
level of knowledge and expertise. Thus, I considers these facts when generat-
ing synthetic data for students and supervisors. Students always want to work
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Table 3.1: Summary of notation used in the simulation

Notation Description

P The set of all students

Q The set of all supervisors

R The ranked list of preferred supervi-
sors specified by students. Rp is the
list of preferred supervisors for stu-
dent p

X Students qualification in the range
of [0,1]. Xp is the qualification of
student p

A(p) Returns the supervisor assigned to
student p

A′(q) returns the students assigned to su-
pervisor q

Rank(q,Rp ) Returns the rank of supervisor q in
ranked list of preferred supervisors
by student p

qa , qb The capacity of supervisor q for su-
pervising students, qa as the mini-
mum number and qb as the maxi-
mum number of students that q can
supervise

with successful or reputable supervisors, and supervisors prefer to advise high-
qualified students. A fair match is the one that assigns students to supervisors
according the level of qualification and expertise of both. For simplicity, I do
not consider the information about the topics of interest for supervisors and
students in this simulation.

3.1.1 Notations and variables

There are n students P = {p1, p2, ..., pn} and m supervisors Q = {q1, q2, ..., qm} and
the goal is to match them by assigning students to each supervisor. Students
expressed their preferred ranked list of supervisors that shows the students’
preference toward supervisors. The preferred ranked list of student p is shown
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Figure 3.1: Normalized IQ distribution with mean 100 and standard deviation 15 [1].

by Rp which signifies an ordered list of supervisors that p wishes to work with.
For example, Rp = {q3, q1, q2} shows that student p is interested in being assigned
to supervisor q3, but if for some reasons this assignment is impossible, she is
interested in working with supervisor q1, and finally if this assignment is not
also possible, she would like to be assigned to supervisor q2. In this simulation, I
assume that each student expressed her preferred ranked list on all supervisors.

Additionally, each student has certain degree of qualification based on her
background and past achievements such as course grades and GPA. Thus, for
each student p, Xp shows the qualification of p. Indeed, Xp is a multivariate or
column vector variable as student qualification is measured based on multiple
elements. However, for simplicity, I assume that all those elements of student
qualification are aggregates and eventually ends up to a real number for each
student as her qualification. The reason for this assumption is that since this
study is on synthetically generated data, generating synthetic multivariate data
as student qualification may add noise to the experiments.

The notation introduced above are summarized in Table 3.1.

3.1.2 Synthetic data generation

Variables P and Q as students and supervisors, respectively, are generated by
successive integer numbers where each number represents a student (or super-
visor): P = {1,2,3, ...,n} and Q = {1,2,3, ...,m}. In this simulation, the number
of students is set to 200 (n = 200) and the number of supervisors is set to 20
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Figure 3.2: Distribution of student qualification.

(m = 20).
The data for student qualification variable, Xp , p ∈ P , can be generated equiv-

alent to the distribution of Intelligence Quotient (IQ) test1. It is well-known that
the distribution of IQ scores for a population follows Gaussian distribution or,
informally, bell curve. Figure 3.1 shows this distribution. According to this
figure:

• Approximately 95% of the population has IQ scores between 70 and 130.

• Approximately 99.7% of the population has IQ scores between 55 and
145.

• Only approximately 0.3% of the population has IQ scores outside of this
interval (less than 55 or higher than 145).

Therefore, in this simulation, X ∼N (µ, σ2), where µ= 100 and σ2 = 15. After
generating this distribution, the values of X are mapped to [0,1] using min-
max normalization technique where 0 means lowest qualification and 1 means
highest qualification. Note that |X | = n and each value in X represents the qual-
ification of a students. For example, the first value of X shows the qualification
of student 1, the second value of X shows the qualification of student 2, and so
on. Figure 3.2, shows the distribution of student qualification, variable X , as
explained above.

1https://en.wikipedia.org/wiki/Intelligence_quotient

https://en.wikipedia.org/wiki/Intelligence_quotient
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Figure 3.3: Supervisors distribution in students preferred ranking list in first, second,
third, and fourth ranks.

The data for variable R, preferred ranked list of supervisors for each stu-
dent, is generated in a way that interests toward supervisors follow a Normal
distribution. This means that some supervisors receive more attentions from
students than other supervisors and this attention forms a normal distribution.
This is what we usually see in real-world where some supervisors in a univer-
sity have better reputation than others. Therefore, when generating the ranked
preferred list of supervisors for each student, the distribution of selected super-
visors at each rank should eventually have normal shape. Since variable R is a
matrix (or 2D array) with dimensions n ×m (n students as rows and m super-
visors as columns), the distribution of selected supervisors by students at each
rank (first column, second column, ..., m-th column) will have normal shape,
meaning that some supervisors are selected more than other ones by students.
Figures 3.3 shows the distribution of selected supervisors for first four ranks of
R.

Finally, each supervisor has certain capacity for supervising a specific num-
ber of students. For this purpose, this capacity for supervisor q is defined as
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[qa , qb] which means that q can supervise at least qa and at most qb students.

3.2 Fairness and utility metrics

In this section, I introduce the utility and fairness metrics for students and super-
visors. In the literature, the term utility is used to represent the desired outcome
for each side. In the present simulation, it is meaningful to also interpret it as
happiness of students and supervisors. To be consistent with the notations in the
literature, I also use the term utility for defining the desired outcome for each
side.

3.2.1 Modeling utility for both sides

For students, the desired outcome can be achieved when the preferred supervi-
sor for each student p according to Rp is assigned to her. For example, if student
p stated her preferred ranked list of supervisors as Rp = {q3, q1, q2}, then assign-
ing q3 to p will result in the highest utility for p. Therefore, for each student
p ∈ P , the utility of p, U student

p , can be defined as:

U student
p = |Rp |−Rank(A(p),Rp )

|Rp |
(3.1)

where Rp is the ranked list of preferred supervisors specified by student p, A(p)
returns the supervisor assigned to p, and Rank(A(p),Rp ) returns rank of A(p)
(assigned supervisor to p). Higher value for U student

p means higher utility for p

and lower value for U student
p means lower utility.

On the other hand, the desired outcome for supervisors can be achieved
when students with high qualification are assigned to each supervisors. Since
students have various qualification levels, the matching model should maximize
the average qualification of students assigned to a supervisor in a way that each
supervisor receives certain degree of qualified students. Therefore, the utility of
supervisor q, can be defined as:

U super vi sor
q =

∑
p∈A′(q) Xp

|A′(q)| (3.2)

where A′(q) returns all students assigned to supervisor q and Xp is the quali-
fication of student p. Higher U super vi sor

q means higher utility for supervisor q

and lower U super vi sor
q means lower utility for q.
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It is also worth noting that Equation 3.2 does not take into account the
merit of supervisors, meaning that all supervisors are treated equally. However,
another definition for supervisor utility is proportional equality to supervisor’s
merit based on students preferences. According to this definition, a supervisor
with higher merit may be assigned students with higher qualification. Merit
can be measured as the number of students who selected the supervisor as the
lower rank (more preferred) of her ranked preferred list of supervisors. Hence,
proportional equality can be defined as:

PU super vi sor
q =

U super vi sor
q∑

p∈P Rank(q,Rp )
(3.3)

where PU super vi sor
q measures the utility of supervisor q (i.e. Equation 3.2) pro-

portional to the merit of q based on students preferences. The denominator is
sum of the ranking position of a supervisor in students’ ranked preferred list of
supervisors (R). This means that higher

∑
p∈P Rank(q,Rp ) means that students

ranked supervisor q in a higher rank (lower preference) of their ranked list of
preferred supervisors, while lower

∑
p∈P Rank(q,Rp ) means that students ranked

supervisor q in lower rank (higher preference) of their ranked list of preferred
supervisors. Therefore, higher value for denominator (lower merit) results in
lower utility (i.e. low value for PU super vi sor

q ) and lower value for denominator

(higher merit) results in higher utility (i.e. high value for PU super vi sor
q )

3.2.2 Modeling fairness for both sides

Fairness for students can be defined as how equally students are treated on
satisfying their utility. More precisely, it can be defined as how equally simi-
lar students are treated on assigning their preferred supervisors. For example,
if two students are similar in terms of their qualifications, it is expected that
they receive their preferred supervisors by matching model. Therefore, student
fairness can be defined as:

equal i t y student =

∑|P |
i=1

∑|P |
j>i

Si m(i , j )>α
|Ui −U j |

∑|P |
i=1

∑|P |
j>i 1(Si m(i , j ) >α)

(3.4)

where 1(.) is the indicator function returning zero when its argument is False
and 1 otherwise. Ui is the utility value for student i calculated as Equation 3.1,
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Si m(i , j ) calculates the similarity between students i and j based on their qual-
ification and can be calculated as Si m(i , j ) = 1− |Xi − X j |, and α is a threshold
for determining whether two students are similar or not. This Equation mea-
sures how similar students are treated equally by the matching algorithm on
assigning their preferred supervisors to them.

Analogously, fairness for supervisors can be defined as equal treatment of
matched students. In other words, the average qualification of all students
assigned to each supervisor should be equal. As an unfair situation, for in-
stance, when one supervisor is assigned students with the highest qualification
(i.e. high utility), while another supervisor is assigned students with the lowest
qualification (i.e. low utility), this will raise the issue of unfairness which needs
to be addressed. Therefore, based on the utility defined for supervisors in Equa-
tion 3.2, one may seek to equalize the utility for all supervisors to achieve the
supervisor fairness. Considering the utility values of all supervisors as distribu-
tion over these utilities, we need to calculate the uniformity of this distribution
(how close the values are).

There are various ways of measuring the uniformity of a distribution such
as standard deviation, Entropy, and Gini Index. Here, I use entropy to measure
how close the utility of supervisors is and can be calculated as:

Entr opy =−
|Q|∑

q=1
U super vi sor

q logU super vi sor
q (3.5)

where U super vi sor
q is the utility of supervisor q calculated by Equation 3.2.

In this formulation, equal treatment of supervisors in terms of their utility
calculated by Equation 3.2 is considered. In other words, no matter what the
merit of supervisors is, it defines fairness as equalizing their utility. However,
another way of defining fairness is equal treatment of supervisors by considering
their merit. To do so, entropy will be computed over utilities defined by Equa-
tion 3.5: instead of U super vi sor

q , PU super vi sor
q is used for calculating entropy. The

supervisor equality using PU super vi sor
q can be calculated as follows:

Entr opy pr op =−
|Q|∑

q=1
PU super vi sor

q logPU super vi sor
q (3.6)
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3.3 Matching models

In this section, various matching models will be discussed. The matching models
include optimizing only for student utility, optimizing only for supervisor utility,
and optimizing for both students and supervisors utility. I implemented all data
processing infrastructure and algorithms in Python using the Python interface
of the Gurobi Software2 for solving the optimizations.

3.3.1 Optimizing for student utility

This optimization seeks to maximize students’ utility and can be computed as:

max
p∈P

U student
p (3.7)

where U student
p is the utility of student p calculated by Equation 3.1. In other

words, this Equation aims to match student to the supervisor based on student
preference as much as possible. More precisely, this Equation can be written as:

min
p∈P

Rank(A(p),Rp )

s.t. |A(p)| = 1

∀q, qa ≤ |A′(q)| ≥ qb

(3.8)

where Rank(A(p),Rp ) returns the rank of assigned supervisor to student p (i.e.
A(p)) in ranked preferred list of supervisors specified by p. There are two con-
straints: |A(p)| = 1 which specifies that only one supervisor can be assigned to
each student, and ∀q, qa ≤ |A′(q)| ≥ qb specifies that the number of students
assigned to each supervisor should follow the supervisors’ capacity.

3.3.2 Optimizing for supervisor utility

This optimization seeks to maximize supervisors’ utility and can be computed
as:

max
q∈Q

U super vi sor
q

s.t. |A(p)| = 1

∀q, qa ≤ |A′(q)| ≥ qb

(3.9)

2http://www.gurobi.com
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Table 3.2: Utility and fairness of student-supervisor matching problem.

Metrics
Optimization models

Student
(equation 3.8)

Supervisor
(equation 3.9)

Both sides
(equation 3.10)

U student 0.9985 0.9536 0.9980
equal i t y 0.9969 0.9590 0.9956
U super vi sor 0.4759 0.4906 0.5047
PU super vi sor 0.0467 0.0059 0.0525
Entr opy 2.890 2.992 2.987
Entr opy pr op 2.899 2.875 2.885

where U super vi sor
q is the utility of supervisor q and can be computed as Equa-

tion 3.2.

3.3.3 Optimizing for both sides

This optimization seeks to maximize both students and supervisors’ utility by
simultaneously taking into account the rank of matched supervisor to a student
and qualification of students, and can be computed as:

max
p∈P,q∈Q

λ× |Rp |−Rank(q,Rp )

|Rp |
+ (1−λ)(1−Xp )

s.t. |A(p)| = 1

∀q, qa ≤ |A′(q)| ≥ qb

(3.10)

where |Rp |−Rank(q,Rp )
|Rp | is the utility for student p similar to Equation 3.1, Xp is the

qualification of student p, and λ is a hyperparameter for controlling the trade-
off between maximizing the utility of students and supervisors. The constraints
have the same definition as Equation 3.8.

3.4 Experiments

Experiments are performed using the optimization models for students, super-
visors, and both introduced in subsection 3.3.1. Also, the results for each op-
timization models are evaluated using utility and fairness metrics introduced
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Figure 3.4: Trade-off between student utility (Equation 3.1) and supervisors utility
(Equation 3.2) with various optimization models.

in subsection 3.2 for students and supervisors. The experimental results are
reported in Table 3.2.

The results show that although optimizing only for one side (only student
or supervisor) improves the utility and fairness for that side, it will negatively
affect the utility and fairness of the other side. As shown in Table 3.2, optimiz-
ing only for students yields the highest utility for students (i.e. 0.9985) and the
lowest utility for supervisors (i.e. 0.4759). Also, optimizing only for students
yields the same results based on fairness: the highest fairness for students (i.e.
0.9969) and the lowest fairness for supervisors (i.e. 2.890). The same patterns
can also be observed in Table 3.2 when only optimizing for supervisors. How-
ever, optimizing for both sides yields better results for both sides. This means
that optimizing for both sides balances the outcome for both students and su-
pervisors by not greedily only taking into account improving the utilities of one
side and losing utility for the other side. Figures 3.4, 3.5, 3.6, and 3.7 show
the trade-off between the utilities and fairness for students and supervisors us-
ing various optimization models. The horizontal axis shows the utility/fairness
for students and vertical axis shows the utility/fairness for supervisors. For all
metrics the higher values are desired (upper right in the plots has better results,
higher utility/fairness for both sides).

In all these plots, it can be observed that optimizing for students (blue cir-
cle) achieves the highest utility/fairness for students and lowest utility/fairness
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Figure 3.5: Trade-off between student utility (Equation 3.1) and supervisors propor-
tional utility (Equation 3.3) with various optimization models.

for supervisors. Also, optimizing for supervisors (orange square) achieves the
highest utility/fairness for supervisors and lowest utility/fairness for students
(except for supervisor utility in Figures 3.5 and 3.7 that is due to the defini-
tion of proportional utility). However, when simultaneously optimizing for both
sides (green triangle) yields fairly high utility/fairness for both sides.

The results shown in this simulation show the importance of having multi-
sided perspective for optimizing the utility and fairness of actors in a multi-sided
platform.

3.5 Discussion

This simulation showed the importance of multi-sided view when optimizing
an objective for multiple stakeholders in the system. In this simulation, I stud-
ied the assignment of students and supervisors in universities. To simplify the
simulation and avoid any possible noise, I made several assumptions. However,
there are several other settings that can be considered to further improve the
simulation and to make it closer to real-world scenarios.

Incorporating the topic of interest to the simulation for students and super-
visors can reveal interesting patterns. Supervisors usually have certain expertise
and their knowledge falls into a specific topics in a field, and also students have
certain research interests and prefer to work with a supervisor on those topics.
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Figure 3.6: Trade-off between student fairness (Equation 3.4) and supervisors fairness
(Equation 3.5) with various optimization models.

Thus, a constraint for topics of interest for supervisors and students needs to
be added to the optimization objective. This constraint controls the topic of
interest for students and supervisors when forming an assignment and assigns
students to supervisors that are interested in the same topics.

Incorporation of research interests for students and supervisors can also add
new challenges to the simulation, specially to the synthetic data generation
process. For example, a student can have an excellent fit for topic A, less so for
topic B , and not at all for topic C . Then, the challenge in data generation phase
is how to generate such topic interests for students that also represents the
real-world scenario for the whole population. Also, defining utility and fairness
for students and supervisors in this situation can be challenging. I leave these
challenges as a future work for this dissertation.
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Figure 3.7: Trade-off between student fairness (Equation 3.4) and supervisors propor-
tional fairness (Equation 3.6) with various optimization models.



Chapter 4

Multi-Sided Exposure Bias in
Recommendation

There are certain types of bias in recommender systems that adversely impact
the performance of these systems and distort the recommendation process. One
type of these biases is Exposure Bias that causes skew in the representation/dis-
tribution of recommended items and suppliers in recommendation lists. Expo-
sure bias refers to the fact that some items or suppliers appear frequently in the
recommendation lists and some other items or suppliers have appeared rarely.
In other words, frequently recommended items (items belong to those suppli-
ers) will be exposed to many users even if those items are not matched with
the users preferences. This way, exposure bias can impact various actors in the
recommendation systems.

In this chapter, I discuss exposure bias in recommender systems with multi-
sided perspective and its impact on various actors in the system. I also em-
pirically show how existing recommendation algorithm are affected by expo-
sure bias. Analysis and contributions in this chapter are published in [116]
and [120]1.

1Accepted in ACM Transactions on Information Systems (TOIS)
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4.1 Types of bias in recommender systems

Various types of bias are recognized in recommender systems [39]. In this Sec-
tion, I briefly review well-known biases in recommender systems.

• Selection bias: Selection bias refers to the fact that users only observe
and rate part of the whole items in the catalog and this partial observation
is not a proper representation of all ratings. In fact, the system only has
information about the rated items and there is no information about the
rest of the items. It is not clear unobserved items are either positive or
negative samples for a user. This type of bias comes from the input data
where users’ interaction with the system are collected [73,128,166].

• Conformity bias: Conformity bias refers to the fact that the ratings pro-
vided by users do not always represents users’ true preferences as users
usually tend to follow the opinions of the majority when rating an item.
This means that if users may rate an item similar to other users even if
they find it against their true preferences. This type of bias comes from
the input data and can end up with inaccurate recommendations for users
as ratings are not perfectly matched with users’ preferences [96,112,180].

• Exposure bias: Exposure bias refers to the fact that only few items or
suppliers have chance to appear in the recommendation lists to the users
and other items and suppliers may not receive proportionate attention.
This skew in representation of items and suppliers raises the issue of unfair
treatment of items and suppliers. Although this is an issue in item and
supplier sides, it can also negatively affect users as users are only exposed
to specific sets of items or suppliers which may not properly captures the
interests of them. This type of bias usually originates from the data due
to the inherent popularity bias in the input data and is even intensified by
the recommendation algorithm. [5,8,197].

• Position bias: Position bias refers to the fact that users tend to interact
with the few items on top of the recommendation lists and may ignore
the rest of the items in the lists. Those ignored items are usually consid-
ered as low-quality ones by the recommendation algorithms as user did
not show an interest to them, but the fact is that users usually do not even
examine those items (i.e. neither like nor dislike). Although this is a result
from low effort from user side that does not examine the whole list, rec-
ommendation algorithms can be designed to avoid this bias [43,92,139].
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As a solution, for instance, recommendation algorithms can mitigate this
bias by providing equal chance to different items to appear on top of the
recommendations lists delivered to the users. As another solution used
in Cascading Bandit algorithms [74, 104, 117, 200], the recommendation
algorithms can be designed to consider the items on the bottom of the list
as unobserved, not as disliked.

• Popularity bias: Popularity bias refers to the fact that few popular items
are frequently recommended and majority of unpopular items are rarely
recommended. This is a serious issue as popular items are recommended
even more that what their popularity in rating data warrants. This over-
recommendation of popular items and under-recommendation of unpop-
ular items would also intensify the inherent popularity bias in input data
over time as users interact with the system and add the recommended
items to their profile. This type of bias originates from the input data as
users interact with the popular items more than unpopular items and rec-
ommendation algorithm also intensifies this bias by over-recommending
popular items to the users [8,10,165].

In this thesis, I mainly focus on exposure bias and popularity bias to address
the unfairness in recommendation results by mitigating those types of biases.

4.2 Exposure bias in recommendations

It is well-known that recommendation algorithms favor popular items which
leads to an unfair exposure of other items that might not be as popular [6,165].
This bias towards popular items can negatively affect the less popular items,
items that are new to the system (aka cold start items), and even the supplier
of the items [4, 141]. In this Section, I illustrate the exposure bias of several
recommendation algorithms from both the items and suppliers perspective.

4.2.1 Bias in item exposure

An exposure for an item is the percentage of the times it has appeared in the
recommendations [90, 161]. Recommendation algorithms are often biased to-
wards more popular items giving them more exposure than many other items.
Figure 4.1 shows the visibility of different items in the recommendations pro-
duced by three recommendation algorithms NCF, UserKNN, and BPR. Items are
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(a) BPR (b) NCF (c) UserKNN

Figure 4.1: Visibility of recommended items for different recommendation algorithms on
ML1M dataset.

binned into ten groups based on their visibility in recommendation lists. We
can see that in all three algorithms, there is a long-tail shape for the visibility of
the items indicating few popular item groups are recommended much more fre-
quently than the others creating an item exposure bias in the recommendations.
Not every algorithm has the same level of exposure bias for different items. For
instance, we can see that UserKNN has recommended items from group G1 to
roughly 80% of the users while this number is near 70% and 65% for BPR and
NCF, respectively. On the other hand, G2 has received less exposure in UserKNN
(10%) compared to BPR and NCF which have given 17% and 19% visibility to
items in this group, respectively.

4.2.2 Bias in supplier exposure

The unfair exposure does not only affect the items in a recommender system.
We know that in many recommendation platforms the items that are candi-
dates to be recommended are provided by different suppliers. Therefore, the
dynamic of how recommendation algorithms can impact the experience of the
suppliers is also crucial. Authors in [8] empirically show that recommendation
algorithms often over-promote items from popular suppliers while suppressing
the less popular ones. Figure 4.2 shows a similar plot to Figure 4.1 but for the
suppliers of the items. Similar to items, suppliers are binned into ten groups
based on their visibility in recommendation lists. The same problem that we
observed in Figure 4.1 also exists here: in all three algorithms, there is a long-
tail shape for the visibility of the suppliers indicating few supplier groups are
recommended much more frequently than the others.

There are many existing works for improving the visibility of different items
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(a) BPR (b) NCF (c) UserKNN

Figure 4.2: Visibility of suppliers for different recommendation algorithms on ML1M
dataset.

in the recommendations and reducing the exposure bias in items. However, the
same cannot be said about the suppliers and there has not been much attention
to improving the supplier visibility/exposure. Although, improving the item
visibility can, indirectly, help suppliers as well as it was demonstrated in [11],
a more explicit incorporation of suppliers in the recommendation process can
yield fairer outcomes for different suppliers in terms of visibility.

This dissertation aims to address this problem by directly incorporating the
suppliers in the recommendation process to mitigate the exposure bias from the
suppliers perspective.

4.3 Exposure bias mitigation techniques

The concept of popularity bias has been studied by many researchers often un-
der different names such as long-tail recommendation [6, 186], Matthew ef-
fect [135], and aggregate diversity [15, 109] all of which refer to the fact that
the recommender system should recommend a wider variety of items across all
users.

Authors in [6] proposed a regularization term to control the popularity of
recommended items that could be added to an existing objective function of a
learning-to-rank algorithm [89] to improve the aggregate diversity of the rec-
ommendations. In another work, Vargas and Castells in [174] proposed proba-
bilistic models for improving novelty and diversity of recommendations by tak-
ing into account both relevance and novelty of target items when generating
recommendation lists. Moreover, authors in [175], proposed the idea of rec-
ommending users to items for improving novelty and aggregate diversity. They
applied this idea to nearest neighbor models as an inverted neighbor and a
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factorization model as a probabilistic reformulation that isolates the popularity
components.

Adomavicius and Kwon [16] proposed the idea of diversity maximization
using a maximum flow approach. They used a specific setting for the bipartite
recommendation graph in a way that the maximum amount of flow that can be
sent from a source node to a sink node would be equal to the maximum aggre-
gate diversity for those recommendation lists. In their setting, given the number
of users is m, the source node can send a flow of up to m to the left nodes, left
nodes can send a flow of up to 1 to the right nodes, and right nodes can send
a flow of up to 1 to the sink node. Since the capacity of left nodes to right
nodes is set to 1, thus the maximum possible amount of flow through that rec-
ommendation bipartite graph would be equivalent to the maximum aggregate
diversity.

A more recent graph-based approach for improving aggregate diversity which
also falls into the reranking category was proposed by Antikacioglu and Ravi
in [21]. They generalized the idea proposed in [16] and showed that the
minimum-cost network flow method can be efficiently used for finding recom-
mendation subgraphs that optimizes the diversity. In this work, an integer-
valued constraint and an objective function are introduced for discrepancy min-
imization. The constraint defines the maximum number of times that each item
should appear in the recommendation lists and the objective function aims to
find an optimal subgraph that gives the minimum discrepancy from the con-
straint. This work shows improvement in aggregate diversity of the items with
a smaller accuracy loss compared to the work in [174] and [175]. Our algo-
rithm is also a graph-based approach that not only is it able to improve aggre-
gate diversity and the exposure fairness of items, it also gives the suppliers of
the recommended items a fairer chance to be seen by different users. Moreover,
unlike the work in [21] which tries to minimize the discrepancy between the
distribution of the recommended items and a target distribution, our FairMatch
algorithm has more freedom in promoting high-quality items or suppliers with
low visibility since it does not assume any target distribution of the recommen-
dation frequency.

Another work that also uses a re-ranking approach is by Abdollahpouri et al.
[7] where authors proposed a diversification method for improving aggregate
diversity and long-tail coverage in recommender systems. Their method was
based on eXplicit Query Aspect Diversification (xQuAD) algorithm [151] that was
designed for diversifying the query result such that it covers different aspects
related to a given query. In [7], the authors used xQuAD algorithm for balancing
the ratio of popular and less popular (long-tail) items in final recommendation
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lists.
In addition, in [118], I proposed a graph-based algorithm that finds high

quality items that have low visibility in the recommendation lists by iteratively
solving the maximum flow problem on recommendation bipartite graph. An
extended version of this algorithm that also takes into account the supplier side
exposure is presented in Chapter 7.

In addressing exposure bias in domains like job recommendations where job
seekers or qualified candidates are recommended, Zehlike et. al. [189] pro-
posed a re-ranking algorithm to improve the ranked group fairness in recom-
mendations. The algorithm creates queues of protected and unprotected items
and merges them using normalized scoring such that protected items get more
exposure. In their setting, a recommendation set of candidates satisfies the
ranked group fairness criterion if it fairly represents candidates belong to the
protected group, contains the most qualified candidates, and orders the candi-
dates based on their qualification (more qualified candidates should appear on
top of the recommendation set). The fair representation of protected candidates
in a recommendation list is determined by comparing the number of protected
candidates in the ranked list and the expected number of candidates if they
were selected at random. The algorithm optimizes to re-rank the candidates to
achieve the fair representation of protected candidates in recommendation lists
while considering the qualification of the candidates.

Most of the existing works in the literature for improving aggregate diver-
sity and exposure fairness have only concentrated on the items and ignored
the fact that in many recommendation domains the recommended items are
often provided by different suppliers and hence their utility should also be in-
vestigated. To the best of our knowledge, there are only few prior works that
have addressed this issue such as [11] and [132]. In [11], authors illustrated
how popularity bias is a multistakeholder problem and hence they evaluated
their solution for mitigating this bias from the perspective of different stake-
holders. Mehrotra et al. [132] investigated the trade-off between the relevance
of recommendations for users and supplier fairness, and their impacts on users’
satisfaction. Relevance of the recommended items to a user is determined by
the score predicted by a recommendation algorithm. To determine the supplier
fairness in recommendation list, first, suppliers are grouped into several bins
based on their popularity in rating data and then the supplier fairness of a rec-
ommendation list is measured as how diverse the list is in terms of covering
different supplier popularity bins.

The work in this dissertation also observes the importance of evaluating al-
gorithms from the perspective of multiple stakeholders and I propose algorithms
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that can directly improve the visibility of the suppliers without losing much ac-
curacy from the users’ perspective.

4.3.1 Limitations of existing bias mitigation techniques

Various algorithmic solutions have been proposed to tackle the unfairness in rec-
ommender systems. However, there are several limitations in those solutions.
In this Section, I discuss the limitations of existing solutions for addressing un-
fairness in recommender systems.

First, a large body of existing solutions has one-sided view on addressing the
unfairness of recommendation systems, meaning that they optimize to improve
the fairness of one actor, overlooking the fairness of other actors in the system.
For example, research works in [32, 51, 53, 54, 184, 189] optimize for user-side
fairness or research works in [6,7,16,21,175,176,179] only optimize for item-
side fairness. Although these works showed improvement on one side, it is not
clear how they are affecting other sides, most likely those approaches adversely
affected the other sides of the system . It has been shown that only improving
the fairness of one side will hurt the fairness of the other sides [132].

Second, existing solutions with multi-sided view usually optimize to gen-
erate a list of recommendations for each user to contain items from different
suppliers while maintaining the relevance of items for each user [132, 168]. In
these approaches, the proposed models optimize to locally improve the supplier
fairness for the list generated for one user in the hope that improving sup-
plier fairness separately for a user’s list results in global optimum for the whole
recommendation lists. However, I argue that optimizing for supplier fairness
requires a holistic view over the whole recommendation lists, not the recom-
mendation list for a user. For instance, consider a recommendation algorithm
that recommended 10 items from 10 different suppliers to each user. In this
situation, the recommendation list for each user will have items from different
suppliers, while the overall recommendation lists only have items from 10 sup-
pliers which is unfair against other suppliers. Thus, it is important to keep track
of supplier fairness over the whole recommendation lists.

Third, some of the existing solutions are designed to specifically address the
fairness in a domain and cannot be generalized to fairness definitions of other
domains [132,167,184].

For example, Mehrota et al., in [132] used equality of attention as the utility
of supplier and the relevance score of target item predicted by the base recom-
mender for target user as the utility of users. As another example, Sühr et. al.,
in [168] addressed multi-sided fairness in ride-hailing platforms as a case study
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for their research. They designed a multi-sided objective function to address
the fairness for both passengers and drivers by specific definition for each side.
However, fairness is a general concept and may have different definitions de-
pending on the application and the domain under study. Therefore, a flexible
algorithmic solution with capability of being generalized for different notion of
fairness is needed.
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Chapter 5
Experimental Methodology

In this chapter, I introduce the datasets, recommendation algorithms, and re-
ranking techniques that are used for performing the experiments. The details
about the experiments such as the choice of model, hyperparameter tuning, and
comparison would be discussed. To prepare the datesets for my experimental
design, I used online APIs from different datasets to collect necessary informa-
tion. As part of my contributions in this dissertation, in section 5.3, I discuss the
limitations of existing metrics for measuring the exposure bias in recommender
systems and introduce appropriate metrics for evaluating the exposure bias of
recommendations results. These contributions are published in [120]1. Finally,
I introduce a recommendation tool, librec-auto2, that I worked on during my
PhD program. I used this tool for my experimentation in this dissertation. My
contributions on this tool are published in [31,123,125,164].

5.1 Data

Experiments are performed on four publicly available datasets: Last.fm3 [156],
two versions of MovieLens [70], and Goodreads4. The characteristics of the
datasets are summarized in Table 5.1.

1Accepted in ACM Transactions on Information Systems (TOIS)
2The source code can be found in https://github.com/that-recsys-lab/librec-auto and

the documentation can be found in librec-auto.readthedocs.io.
3http://www.cp.jku.at/datasets/LFM-1b/
4https://www.kaggle.com/bahramjannesarr/goodreads-book-datasets-10m

https://github.com/that-recsys-lab/librec-auto
librec-auto.readthedocs.io
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Table 5.1: Statistical properties of datasets

Dataset #users #items #ratings range density supplier #suppliers

Last.fm 2,000 6,817 218,985 [1,5] 1.61% artist 2,856
MovieLens1M 6,040 3,706 1,000,209 [1,5] 4.47% - -
ML1M 6,040 3,079 928,739 [1,5] 4.99% movie-maker 1,699
Goodreads 2,225 3,423 137,045 [1,5] 1.8% publisher 912

Last.fm dataset contains user interactions with songs (and the corresponding
albums). I used the same methodology in [95] to turn the interaction data
into rating data using the frequency of the interactions with each item (more
interactions with an item will result in higher rating). In addition, I used albums
as the items to reduce the size and sparsity of the item dimension, therefore the
recommendation task is to recommend albums to users. I considered the artists
associated with each album as the supplier of that album. In pre-processing
step, I removed users with less than 50 ratings and items less than 200 ratings
to create a denser dataset and then, I randomly sampled 2,000 users from the
data.

The MovieLens dataset is a movie rating data and was collected by the Grou-
pLens5 research group. I considered the movie-maker associated with each
movie as the supplier of that movie. Since this dataset does not originally con-
tain information about the movie-makers, I used the API provided by OMDB
(not to be confused with IMDB) website6 to extract the information about
movie-makers associated with different movies. I created a subset of MovieLens
dataset by filtering out the movies that information about their movie-makers
was not found. Therefore, there are two different versions of MovieLens dataset
in this dissertation which I distinguish them by MovieLens1M which refers to the
original one without movie-makers information and ML1M which refers to the
sampled data with movie-makers information.

Finally, Goodreads dataset contains users’ feedback on books. In this dataset,
each user has rated at least 10 books and each book is rated by at least 10 users.
Also, publishers of the books are considered as the suppliers.

These datasets are from different domains, have different levels of sparsity,
and are different in terms of popularity distribution of different items. Fig-
ure 5.1 shows the distribution of item popularity for all datasets. Vertical axis
shows the percentage of items in the datasets ordered according to their pop-

5https://grouplens.org/datasets/movielens/
6http://www.omdbapi.com/
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Figure 5.1: Distribution of item popularity for Last.fm, ML1M, Goodreads, and
Bookcrossing datasets. Items are ordered according to popularity (most pop-
ular at the bottom).

ularity, most popular at the bottom. Horizontal axis shows the percentage of
ratings that are assigned to items. It can be observed that these datasets have
different characteristics in terms of popularity. In Goodreads dataset, only 4.7%
of popular items have collectively taken 33% of the ratings in the datasets. The
distribution in ML1M dataset is slightly less long-tailed such that 6.5% of the
items have collectively taken 33% of the ratings. Finally, Last.fm dataset shows
even lesser long-tail properties in which 18.3% of items have collectively taken
33% of the ratings.

Also it is worth noting that different suppliers do not own the same num-
ber of items as we can see in Figure 5.2 where the majority of suppliers have
only one item. Because of this, it will be seen that both versions of the pro-
posed FairMatch algorithm (Chapter 7) perform relatively similar in some cases
since improving item visibility for those items that belong to suppliers with only
one item is indeed equivalent to improving the visibility of the corresponding
supplier.
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(a) Last.fm (b) ML1M (c) Goodreads

Figure 5.2: Histogram of suppliers inventory (number of items each supplier owns).

5.2 Setup

For experiments, I used 80% of each dataset as the training set and the other
20% for the test. The training set was used for building a recommendation
model and generating recommendation lists, and the test set was used for eval-
uating the performance of generated recommendations. As mentioned earlier,
in this dissertation, two solutions for mitigating exposure bias in recommender
systems are proposed: pre-processing and post-processing solutions.

In pre-processing solution, the pre-processed training set is used as input
for a recommendation algorithm, while in post-processing solution, longer rec-
ommendation lists generated by a recommendation algorithm is processed to
generate the final shorter recommendation lists. In other words, I generated
recommendation lists of size t = 50 (longer recommendation lists) for each user
using each recommendation algorithm. I then extract the final recommendation
lists of size n = 10 using the proposed and each reranking method by processing
the recommendation lists of size 50. I used librec-auto and LibRec for running
the experiments [67,123,125].

The recommendation algorithms for generating the recommendation lists of
size 10 in pre-processing solution are Biased Matrix Factorization (BiasedMF)
[94], Singular Value Decomposition (SVD++) [93], and List-wise Matrix Fac-
torization (ListRankMF) [160]. The recommendation algorithms for gener-
ating the longer recommendation lists of size 50 in post-processing solution
are Bayesian Personalized Ranking (BPR) [146], Neural Collaborative Filtering
(NCF) [71], User-based Collaborative Filtering (UserKNN) [147]. I chose these
algorithms to cover different approaches in recommender systems: matrix fac-
torization, neural networks, and neighborhood models.

The reason why different recommendation algorithms are used for each so-
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Table 5.2: Hyperparameter configuration for recommendation algorithms.

model hyperparameter values

Factorization models

regularizers {0.0001,0.001,0.01}
number of iterations {30,50,100,200,300}
number of factors {50,100,200,300,400}
learning rate {0.0001,0.001,0.005,0.01}

Neural models
epochs {10,20}
number of factors {8,15,30}
learning rate {0.0001,0.001}

Neighborhood models
number of neighbors {10,30,50,100,200,300}
shrinkage {10,30,50,100,200,300}

lution is due to the limitations of the proposed pre-processing approach. The
pre-processing solution is a rating transformation technique that only works
on recommendation algorithms that use rating values for their internal pro-
cessing/optimization. For instance, implicit feedback algorithms that use unary
data, such as BPR, would be inappropriate to use with the proposed pre-processing
approach because they use binary interaction information and ignore rating val-
ues. Therefore, only recommendation algorithms that use rating values are used
for experiments on pre-processing approach. On the other hand, the proposed
post-processing approach has more flexibility on the choice of recommendation
algorithm and for this reason, I chose more advanced and diverse sets of algo-
rithms for experiments7.

Each recommendation algorithm involves several hyperparameters. To iden-
tify the best-performing sets of hyperparameters for each algorithms, I per-
formed gridsearch on hyperparameters space and selected the results with the
highest precision for the next analysis. Table 5.2 shows the hyperparameter
values that gridsearch was performed.

5.3 Evaluation metrics

For evaluation, we use the following metrics to measure different aspects of the
effectiveness of each method:

1. Precision (P): The fraction of the recommended items shown to the users

7Improvement over other recommendation algorithms are also observed, though not reported.
For instance, in [118], I showed that the proposed post-processing technique yields superior perfor-
mance compared to other baselines using ListRankMF.
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that are part of the users’ profile in the test set.

2. Item Visibility Shift (IV S): The percentage of increase or decrease in
the visibility of item groups in final recommendation lists generated by a
reranking algorithm compared to their visibility in recommendation lists
generated by a base recommender. Given long recommendation lists of
size t , L′, generated by a base recommender and the visibility of each item
i computed as the fraction of times that it appears in the recommendation
lists of different users , I create 10 groups of items based on their visibility
in L′. To do so, first, I sort the recommended items based on their visi-
bility in L′ in descending order, and then I group the recommended items
into 10 equal-sized bins where the first group represents the items with
the highest visibility and 10th group represents the items with the lowest
visibility in L′. Item Visibility (IV ) of each item i in final recommendation
lists can be calculated as:

IV (i ) =
∑

j∈L1( j = i )

|L| (5.1)

where 1(.) is the indicator function returning zero when its argument is
False and 1 otherwise. Item Group Visibility (IGV ) for each item group τ

can be calculated as:

IGV (τ) =
∑

i∈τ IV (i )

|τ| (5.2)

Therefore, Item Visibility Shift (IV S) of group τ can be calculated as:

IV S(τ) = IGV (τ)Rer anker − IGV (τ)B ase

IGV (τ)B ase
(5.3)

where IGV (τ)Rer anker and IGV (τ)B ase are the visibility of item group τ in
recommendation lists of size n generated by reranking algorithm and the
base algorithm, respectively.

3. Supplier Visibility Shift (SV S): The percentage of increase or decrease
in the visibility of supplier groups in final recommendation lists generated
by a reranking algorithm compared to their visibility in recommendation
lists generated by a base recommender. SV S can be calculated similar to
IV S, but instead of calculating the percentage change over item groups, I
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calculate it over supplier groups in SV S. Thus, given long recommenda-
tion lists L′ generated by a base recommender and the visibility of each
supplier s computed as the fraction of times the items belonging to that
supplier appear in the recommendation lists of different users , analogous
to IV S, I create 10 groups of suppliers based on their visibility in L′. Sup-
plier Visibility (SV ) of each supplier s in final recommendation lists L can
be calculated as:

SV (s) = ∑
s∈g

∑
i∈A(s)

IV (i ) (5.4)

where A(s) returns the items belonging to supplier s. Supplier Group Vis-
ibility (SGV ) for each supplier group g can be calculated as:

SGV (g ) = SV (s)

|g | (5.5)

Therefore, Supplier Visibility Shift (SV S) of group g can be calculated as:

SV S(g ) = SGV (g )Rer anker −SGV (g )B ase

SGV (g )B ase
(5.6)

where SGV (g )Rer anker and SGV (g )B ase are the visibility of item group g in
recommendation lists of size n generated by reranking algorithm and the
base algorithm, respectively.

4. Item Aggregate Diversity (α-I A): I propose α-I A as the fraction of items
which appear at least α times in the recommendation lists and can be
calculated as:

α-I A =
∑

i∈I 1(
∑

j∈L1( j = i ) ≥α)

|I | , (α ∈N) (5.7)

This metric is a generalization of standard aggregate diversity as it is used
in [16,174] where α= 1.

5. Long-tail Coverage (LT ): The fraction of the long-tail items covered in
the recommendation lists. To determine the long-tail items, I separated
the top items which cumulatively make up 20% of the ratings in train
data as short-head and the rest of the items are considered as long-tail
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items. Given these long-tail items, I calculated LT as the fraction of these
items appeared in recommendation lists.

6. Supplier Aggregate Diversity (α-S A): I propose α-S A as the fraction of
suppliers which appear at least α times in the recommendation lists and
can be calculated as:

α-S A =
∑

s∈S 1(
∑

i∈A(s)
∑

j∈L1( j = i ) ≥α)

|S| , (α ∈N) (5.8)

where A(s) returns all the items belonging to supplier s and S is the set of
all suppliers.

7. Item Gini Index (IG): The measure of fair distribution of recommended
items. It takes into account how uniformly items appear in recommenda-
tion lists. Uniform distribution will have Gini index equal to zero which is
the ideal case (lower Gini index is better). IG is calculated as follows over
all the recommended items across all users:

IG = 1

|I |−1

|I |∑
k=1

(2k −|I |−1)IV (ik ) (5.9)

where IV (ik ) is the visibility of the k-th least recommended item being
drawn from L and is calculated using Equation 5.1.

8. Supplier Gini Index (SG): The measure of fair distribution of suppliers
in recommendation lists. This metric can be calculated similar to IG, but
instead of considering the distribution of recommended items, I consider
the distribution of recommended suppliers and it can be calculated as:

SG = 1

|S|−1

|S|∑
k=1

(2k −|S|−1)SV (sk ) (5.10)

where SV (sk ) is the visibility of the k-th least recommended supplier being
drawn from L and is calculated using Equation 5.4.

9. Item Entropy (SE): Given the distribution of recommended items, en-
tropy measures the uniformity of that distribution. Uniform distribution
has the highest entropy or information gain, thus higher entropy is more
desired when the goal is increasing diversity.
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I E =−∑
i∈I

IV (i ) log IV (i ) (5.11)

10. Supplier Entropy (SE): The measure of uniformity of the distribution of
suppliers in the recommendation lists. Similar to Gini where we had both
IG and SG, we can also measure the entropy for suppliers as follows:

SE =−∑
s∈S

SV (s) logSV (s) (5.12)
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Table 5.3: Summary of evaluation metrics

Metric Abb. Description

Precision Precision The fraction of correctly recom-
mended items.

Item Visibility Shift IV S The percentage of increase or de-
crease in the visibility of item groups
in final recommendation lists gener-
ated by a reranking algorithm com-
pared to their visibility in recom-
mendation lists generated by a base
recommender

Supplier Visibility Shift SV S The percentage of increase or de-
crease in the visibility of supplier
groups in final recommendation lists
generated by a reranking algorithm
compared to their visibility in rec-
ommendation lists generated by a
base recommender.

Item Aggregate Diversity α-I A The fraction of items which appear
at least α times in the recommenda-
tion lists.

Long-tail Coverage LT The fraction of the long-tail items
covered in the recommendation
lists.

Supplier Aggregate Diversity α-S A The fraction of suppliers which ap-
pear at least α times in the recom-
mendation lists.

Item Gini Index IG The measure of fair distribution of
recommended items.

Supplier Gini Index SG The measure of fair distribution of
suppliers in recommendation lists.

Item Entropy SE Given the distribution of recom-
mended items, entropy measures
the uniformity of that distribution.

Supplier Entropy SE The measure of uniformity of the
distribution of suppliers in the rec-
ommendation lists.



Chapter 6
Solution 1: A Pre-processing
Approach for Mitigating
Multi-sided Exposure Bias

In this chapter, I introduce a pre-processing technique that transforms the item
ratings before recommendation generation. The proposed technique transforms
the ratings provided by users on different items into percentile values and then
those percentile values are used as input for recommendation algorithm. I orig-
inally proposed this technique in [124] and showed its superiority on improving
the ranking quality of recommender systems. In this chapter, I adapt this tech-
nique for tackling multi-sided exposure bias in recommender systems. The ex-
perimental results show that the proposed technique is able to mitigate exposure
bias by outperforming other pre-processing techniques on different datasets. I
am currently working on a paper with all the contributions in this chapter to
submit to a relevant venue.

6.1 Introduction

Recommender systems use information from user profiles to generate personal-
ized recommendations. User profiles are either implicitly inferred by the system
through user interaction, or explicitly provided by users [18, 19]. In the latter
case, users are asked to rate different items based on their preferences and may
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(a) ML1M (b) Goodreads

Figure 6.1: Rating distribution of ML1M and Goodreads datasets.

have individual differences in how they use explicit rating scales: some users
may tend to rate higher, while some users may tend to rate lower; some users
may use the full extent of the rating scale, while others might use just a small
subset. [72].

When a user concentrates his or her ratings in only a small subset of the rat-
ing scale, this often results in ratings distributions that are skewed – most often
towards the high end of the scale. This is because items are not rated at random,
but rather preferred items are more likely to be selected and therefore rated due
to selection bias [129]. Figure 6.1 shows the overall rating distribution of two
datasets that exhibit typically right-skewed distributions. Users in the ML1M
dataset in Figure 6.1a, for example, have assigned less than 17% of the ratings
to ratings 1 and 2 and some 57% of ratings are values 4 and 5. As another
example, users in the Goodreads dataset in 6.1b have assigned less than 10% of
the ratings to ratings 1 and 2 and more than 65% of ratings are values 4 and 5.
We can assume, in ML1M dataset for instance, this is not because there are so
many more good movies than bad, but rather than users are selecting movies
to view that they are likely to enjoy and the ratings are concentrated among
those selections. A drawback of this skew to the distribution is that we have
more information about preferred items and less information about items that
are not liked as well. It also means that a given rating value may be ambiguous
in meaning.

As an example, assume that Alice and Bob both purchase an item X and rate
it. Alice is a user who tends to rate lower and tends to use the whole rating
scale, while Bob is a user who tends to rate higher and never uses ratings at
the bottom of the scale. Their profiles, sorted by rating value, are shown in
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Table 6.1: User rating profiles with percentile transformation

Alice rating 〈1,1,2,2,3,3,3,4,5〉
Bob rating 〈3,3,4,4,4,5,5,5,5〉
Alice percentile 〈20,20,40,40,70,70,70,80,90〉
Bob percentile 〈20,20,50,50,50,90,90,90,90〉

Table 6.1. After using item X, Alice is fully satisfied with it, but Bob is only par-
tially satisfied. As a result, both rate the item X as 4 out of 5 although they have
different levels of satisfaction toward that item. These ratings, while identical,
do not carry the same meaning. A transformation based on percentiles, shown
in the bottom rows of the Table, captures this distinction well: a rating of 4
for Alice is percentile 80; whereas for Bob, the same score has a score of 50.
In addition, unlike the original profiles, where the users’ ratings are distributed
over different ranges, these profiles span the same numerical range from 20 to
90.

In [124], we showed that percentile transformation on users’ profile (as
illustrated in Table 6.1) can improve the accuracy of recommendations. In per-
centile transformation on users’ profile, each value associated with an item in
the users’ profile reflects its rank among all of the items that the user has rated.
Thus, the percentile captures an item’s position within a user’s profile better
than the raw rating value and compensates for differences in users’ overall rat-
ing behavior. Also, the percentile, by definition, will span the whole range of
rating values and gives rise to a more uniform rating distribution. These two
properties of the percentile transformation on users’ profile – its ability to com-
pensate for individual user biases and its ability to create a more uniform rating
distribution – lead to enhanced recommender system performance.

In this chapter, I formalize a rating transformation model as above that con-
verts the ratings assigned to items into percentile values as a pre-processing
step before recommendation generation. This transformation would be applied
on items’ profiles and is able to mitigate multi-sided exposure bias in recom-
mender systems. As discussed in previous chapters and shown in [2, 6], popu-
larity bias in input data is the major source of exposure bias in recommendation
results where popular items frequently appear in recommendation lists, while
non-popular items rarely appear in recommendation lists. Popular items are
the ones that not only, by definition [6], received many interactions and rat-
ings from different users, but also are assigned high rating values. Figure 6.2
shows the average ratings assigned to different items with different degree of
popularity on ML1M and Goodreads datasets. In both datasets, it can be seen
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(a) ML1M (b) Goodreads

Figure 6.2: Average rating assigned to items versus popularity of items based on the
number of interactions made on those items.

that popular items received high ratings. This pattern is even stronger in ML1M
dataset as popular items are mainly assigned rating 4 on average. These two
properties of popular items – large number of ratings and high rating values –
cause the recommendation algorithm to mainly focus on them and recommend
them to many users.

Percentile transformation is able to compensate for the high rating values
assigned to popular items and alleviate the existing bias in input data. Fig-
ure 6.3 shows the average percentile values assigned to different items with
different degree of popularity on ML1M and Goodreads datasets. Unlike the
ratings values in Figure 6.2 that popular items were assigned high ratings, after
transforming the ratings into percentile values in Figure 6.3, the percentile val-
ues assigned to popular items are shifted to almost neutral values (i.e. around
percentile value 65 in the range of 1 to 100). I hypothesize that this compensa-
tion on high rating values assigned to the popular items will mitigate exposure
bias in recommendation lists.

As an example, Table 6.2 shows the ratings for two items. Assume that item
B is a popular items that received high ratings from 9 users, while item A is not
that popular and received various rating values from 4 users. The corresponding
percentile values for each item show that the percentile transformation assigned
lower percentile values to the many high rating values assigned to the popular
items. The average of ratings assigned to items B is 4 (in the scale of 1 to 5),
while the average of percentile values is 63.3 (in the scale of 1 to 100). On the
other hand, the average of ratings assigned to item A is 2.75 (a bit lower than
the neural rating 3), while the average of percentile values is 55 (a bit higher
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(a) ML1M (b) Goodreads

Figure 6.3: Average percentile assigned to items versus popularity of items based on the
number of interactions made on those items.

Table 6.2: Item rating profiles with percentile transformation

A rating 〈1,3,3,4〉
B rating 〈3,3,4,4,4,4,4,5,5〉
A percentile 〈20,60,60,80〉
B percentile 〈20,20,70,70,70,70,70,90,90〉

than the neutral percentile 50). This signifies that the percentile transformation
is able to alleviate the emphasis or weight assigned to the popular items in the
rating data, while slightly promote the non-popular items. This can help to
mitigate the over-recommendation of the popular items.

To show the effectiveness of the proposed percentile technique on items’ pro-
files, extensive experiments are performed using three different recommenda-
tion algorithms on two publicly-available datasets and the results are evaluated
in terms of various metrics including recommendation accuracy, item aggregate
diversity, supplier aggregate diversity, and fair distribution of recommended
items and suppliers. Also, comparison with original rating values and z-score
transformation show the superiority of percentile transformation on improving
multi-sided exposure fairness in recommendation results.

6.2 Percentile transformation

In statistics, given a series of measurements, percentile (or quantile) methods
are used to estimate the value corresponding to a certain percentile. Given
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the Pth percentile, these methods attempt to put P% of the data set below and
(100-P)% of the data set above. There are a number of different definitions in
the literature for computing percentiles [76,100]. Although they are apparently
different, the answers produced by these methods are very similar and the slight
differences are negligible [100]. In this paper, we use a definition from [76].

The percentile value, p, corresponding to a measurement, x, in a series of
measurements, M , is computed with regard to the position of x in the ordered
list M , o(M), as follows:

p(x, M) = 100×posi t i on(x,o(M))

|M |+1
(6.1)

where posi t i on(x,o(M)) returns the index of occurrence of x in o(M), or the
position in the order where x would appear if it is not present, and |M | is the
number of measurements in M . For more details see [76].

This transformation assumes that values are distinct and there is no repe-
tition in the series. However, with rating data, we often have a different sit-
uation. User profiles usually contain many repetitive ratings, and it is unclear
how to specify the position of a rating. For example, in a series of ratings
v = 〈2,3,3,3,3,3,5,5,5〉, it is not clear what the position of rating 3 should be. We
could take the first occurrence, position 2, or the last occurrence 6, or some-
thing in between.

I explored the performance of the proposed percentile technique by tak-
ing the index of the first and the last occurrence of repeated ratings in the
ordered vector. But, the experiments showed that last index percentile trans-
formation better compensate for the high rating values in input data and con-
sequently yielded consistent results in terms of mitigating multi-sided exposure
bias. Therefore, for the rest of this chapter, the percentile transformation is
performed using the last index occurrence of the repetitive ratings in items’ pro-
file1.

Even in contexts where ratings are gathered implicitly, they are often con-
verted into numeric scores representing user preference or relevance. For exam-
ple, time spent on a page is often considered a measure of user interest [185] or
number of seconds watched of a video [193]. Profiles generated in these ways
can also be normalized using the percentile transform as well, although they
are less likely to have repeated entries.

For the purposes of this dissertation, the entire set of ratings provided on an
item i is considered as a rating vector for i , denoted by Ri with an individual

1See https://github.com/masoudmansoury/percentile for the code for computing these and
other transformations described in this thesis.
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rating given by a user u, denoted as rui . Let p(v,`) be the percentile mapping
in Equation 6.1 from a rating value v in a list of values `, using the first and
last index methods. Then, the percentile value of a rating r provided by user u
on an item i is computed by taking the rating rui and calculating its percentile
value within the whole profile of the item. For example, based on the first in-
dex rule, for the item A from Table 6.2, rating 3 would have percentile value
100∗2/(4+1) = 40. We define the percentile function, Per , as follows:

Per(u, i ) = p(rui ,Ri ) (6.2)

6.3 Experiments

I evaluated the performance of percentile transformation on ML1M and Goodreads
datasets. The characteristics of the datasets are summarized in Chapter 5. These
datasets are from various domains and have different degrees of sparsity.

Extensive experiments are performed to evaluate the effect of the percentile
transformation on mitigating the exposure bias of a number of recommen-
dation algorithms. Due to the nature of the proposed percentile technique,
the experiments are only performed with algorithms that make use of rating
magnitude. Therefore, the experiments include biased matrix factorization
(BiasedMF) [94], singular value decomposition (SVD++) [93], and list-wise rank-
ing matrix factorization (ListRankMF) [160].

The results produced by percentile values as input for the recommenda-
tion algorithms are compared with the original rating values (no transforma-
tion) and z-score values. Z-score values are computed using well-known z-score
transformation [101]. In statistics, z-score transformation is used to standardize
the raw scores and measures how a value deviates from the population mean.
Given R̄i and sdRi as the average and standard deviation of ratings assigned to
item i , respectively, the z-score value corresponding to rating rui is computed
as follows:

zscor e(rui , R̄i , sdRi ) = rui − R̄i

sdRi

(6.3)

The results are reported for nine experimental conditions. Three recommen-
dation algorithms evaluated over three different inputs: the original ratings, the
results of the percentile transformation, and the results of the z-score transfor-
mation.
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6.3.1 Best-performing results

For each algorithm used for experiments, I optimized the recommendation algo-
rithms using gridsearch over hyperparameters (details are explained in Chap-
ter 5) to achieve the highest possible precision. What I am interested in by
reporting these results is to see which input value is able to generate more ac-
curate recommendations to users. Since there is always a trade-off between
accuracy (i.e. precision) and non-accuracy (i.e. aggregate diversity, gini index,
and entropy) metrics, improving one group of metrics would cause performance
loss in another group of metrics. Thus, it is expected that an experimental con-
dition that yields the high accuracy will results in poor performance in terms of
non-accuracy metrics.

Table 6.3 shows the best-performing results in terms of precision for each
experimental condition on ML1M and Goodreads datasets. Using BiasedMF,
percentile transformation yielded the highest precision by 0.112 and 0.062 on
ML1M and Goodreads datasets, respectively. However, the highest precision
that could be achieved by original ratings is 0.097 and 0.030, and by z-score
transformation is 0.085 and 0.027 on ML1M and Goodreads, respectively. Al-
though z-score transformation achieved the highest performance in terms of
aggregate diversity and fair distribution of recommended items and suppliers
compared to original ratings and percentile transformation, this is not a reli-
able improvement as the precision value for z-score is significantly lower than
other input values. This shows that percentile transformation provides more
meaningful and informative input for recommender systems and enables the al-
gorithm to achieve higher precision than other input values. In the next Section,
the results with the same precision value would be further discussed.

Using ListRankMF, the best-performing precision for all input values on both
datasets are at the same level. These results show an interesting pattern. With
the same level of precision for all input values, percentile transformation signif-
icantly outperformed other input values in terms of mitigating exposure bias.
This result indicates the ability of percentile transformation in improving multi-
sided exposure fairness compared to other input values.

Using SVD++ on Goodreads datset, again, percentile transformation yielded
the highest precision by 0.066 compared to 0.034 and 0.028 for original rat-
ings and z-score transformation, respectively. On ML1M, original ratings and
z-score transformation achieved the highest and lowest precision, respectively.
Although percentile transformation was outperformed by original ratings, it sig-
nificantly achieved outperformed original ratings in terms of improving expo-
sure fairness. For instance, with 4.8% loss in precision compared to original
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Table 6.3: Best-performing performance of recommendation algorithms in terms of pre-
cision at top-n=10. The bolded entries show the best values and the under-
lined entries show the statistically significant change from the second-best
result with p < 0.05.

algorithm metric ML1M Goodreads
rating z-score percentile rating z-score percentile

BiasedMF

precision 0.097 0.085 0.112 0.030 0.027 0.062
1-I A 0.245 0.500 0.368 0.060 0.321 0.107
5-I A 0.161 0.359 0.258 0.032 0.176 0.064
LT 0.194 0.468 0.325 0.043 0.273 0.051
1-S A 0.261 0.469 0.359 0.149 0.485 0.206
5-S A 0.187 0.348 0.267 0.089 0.326 0.146
IG 0.950 0.827 0.902 0.990 0.900 0.978
I E 5.32 6.62 6.00 3.74 6.12 4.59
SG 0.949 0.867 0.914 0.969 0.877 0.949
SE 4.62 5.66 5.19 3.60 4.93 4.12

ListRankMF

precision 0.143 0.151 0.150 0.067 0.078 0.079
1-I A 0.103 0.028 0.151 0.052 0.020 0.111
5-I A 0.026 0.015 0.047 0.010 0.009 0.024
LT 0.065 0.009 0.095 0.030 0.007 0.070
1-S A 0.140 0.041 0.174 0.133 0.058 0.232
5-S A 0.041 0.021 0.070 0.037 0.030 0.078
IG 0.993 0.995 0.992 0.995 0.996 0.993
I E 3.23 3.07 3.24 2.85 2.83 3.13
SG 0.990 0.993 0.990 0.984 0.988 0.982
SE 2.96 2.65 2.87 2.81 2.55 2.86

SVD++

precision 0.145 0.086 0.138 0.034 0.028 0.066
1-I A 0.024 0.367 0.288 0.035 0.447 0.019
5-I A 0.019 0.263 0.197 0.023 0.216 0.015
LT 0.006 0.329 0.240 0.025 0.407 0.004
1-S A 0.032 0.403 0.306 0.099 0.611 0.057
5-S A 0.028 0.304 0.222 0.068 0.396 0.045
IG 0.994 0.882 0.924 0.993 0.862 0.993
I E 3.18 6.21 5.76 3.34 6.40 3.35
SG 0.991 0.879 0.924 0.979 0.849 0.979
SE 2.87 5.59 5.10 3.17 5.11 3.17

ratings, percentile transformation achieved 0.288, 0.197, 0.306, 0.222, 0.924,
5.76, 0.924, 5.10 compared to 0.024, 0.019, 0.032, 0.028, 0.994, 3.18, 0.991,
2.87 for original ratings in terms of 1-I A, 5-I A, 1-S A, 5-S A, IG, I E , SG, and SE .

For a fair comparison, results with the same precision values for each input
value and experimental condition is reported in Table 6.4. Those results would
be discussed in the following Sections.
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Table 6.4: Performance of recommendation algorithms with almost the same precision
at top-n=10. The bolded entries show the best values and the underlined
entries show the statistically significant change from the second-best result
with p < 0.05.

algorithm metric ML1M Goodreads
rating z-score percentile rating z-score percentile

BiasedMF

precision 0.072 0.072 0.072 0.030 0.027 0.032
1-I A 0.387 0.621 0.548 0.060 0.321 0.415
5-I A 0.264 0.403 0.426 0.032 0.176 0.229
LT 0.346 0.598 0.519 0.043 0.273 0.373
1-S A 0.382 0.627 0.510 0.149 0.485 0.567
5-S A 0.278 0.426 0.403 0.089 0.326 0.382
IG 0.888 0.808 0.779 0.990 0.900 0.861
I E 6.18 6.69 6.82 3.74 6.12 6.43
SG 0.902 0.840 0.842 0.969 0.877 0.847
SE 5.35 5.81 5.81 3.60 4.93 5.17

ListRankMF

precision 0.125 0.125 0.125 0.059 0.066 0.059
1-I A 0.218 0.056 0.443 0.103 0.060 0.221
5-I A 0.140 0.012 0.268 0.013 0.008 0.050
LT 0.164 0.024 0.406 0.059 0.025 0.173
1-S A 0.242 0.081 0.442 0.213 0.138 0.366
5-S A 0.171 0.020 0.295 0.060 0.035 0.156
IG 0.964 0.995 0.936 0.994 0.995 0.983
I E 4.93 2.99 4.68 2.91 2.82 3.63
SG 0.962 0.991 0.947 0.982 0.985 0.967
SE 4.31 2.85 4.12 2.85 2.69 3.38

SVD++

precision 0.096 0.086 0.100 0.025 0.028 0.029
1-I A 0.402 0.367 0.549 0.351 0.447 0.430
5-I A 0.264 0.263 0.399 0.191 0.216 0.257
LT 0.362 0.329 0.520 0.305 0.407 0.389
1-S A 0.398 0.403 0.513 0.526 0.611 0.593
5-S A 0.281 0.304 0.391 0.355 0.396 0.424
IG 0.892 0.881 0.815 0.889 0.862 0.829
I E 6.10 6.21 6.63 6.20 6.40 6.66
SG 0.904 0.879 0.856 0.862 0.849 0.821
SE 5.31 5.59 5.71 5.06 5.11 5.30

6.3.2 Item aggregate diversity
Table 6.4 shows the 1-I A and 5-I A for the same precision value for each in-
put value on both datasets. Using BiasedMF on Goodreads dataset, percentile
transformation yielded significantly higher item aggregate diversity compared
to rating and z-score transformation2. On ML1M dataset, although in terms of

2We can think of the original ratings as a null transformation.
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(a) ML1M

(b) Goodreads

Figure 6.4: Comparison of recommendation algorithms with different input values in
terms of item aggregate diversity (α-I A) with varying α on ML1M and
Goodreads datasets.

1-I A, percentile transformation is outperformed by z-score transformation, in
terms of 5-I A, it outperformed both original ratings and z-score transformation.
This result can also be observed on Goodreads dataset using SVD++. These re-
sults show how regular item aggregate diversity (1-I A) can be misleading on
measuring the exposure bias. When many items are recommended to only few
users, even though it achieves high item aggregate diversity, the exposure for
each item would not be fair because many items are rarely appeared in the
recommendation lists, while few items are frequently appeared in the recom-
mendation lists.

To clarify that percentile transformation really outperforms other input val-
ues using BiasedMF, Figure 6.4 shows the performance of each input values
in terms of α-I A with varying α from 1 to 20. As shown in this Figure, on
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Goodreads dataset, percentile transformation clearly outperforms original rat-
ings and z-score transformation, but on ML1M dataset, although for α ∈ {1,2,3,4}
the percentile transformation is outperformed by z-score transformation, for
α> 4, percentile transformation outperformed the z-score and original ratings.

Using ListRankMF on both datasets, percentile transformation outperformed
original ratings and z-score transformation in terms of both 1-I A and 5-I A. The
improvement on both datasets is significant and substantial. For example, on
ML1M dataset, 1-I A and 5-I A for percentile values are 0.443 and 0.268, for orig-
inal ratings are 0.218 and 0.140, and for z-score values are 0.056 and 0.012,
respectively. Also, Figure 6.4 shows that using ListRankMF on both datasets,
percentile transformation significantly outperforms other transformation tech-
niques for all α values.

Finally, using SVD++ on ML1M, percentile transformation outperformed other
transformations in terms of 1-I A and 5-I A with even higher precision value.
On Goodreads dataset, for 5-I A, percentile transformation outperformed both
original ratings and z-score transformation. Also, Figure 6.4 confirms the im-
provement by percentile transformation where on ML1M the improvement is
significant for all α values and on Goodreads, for α > 4 it outperformed other
transformations.

6.3.3 Supplier aggregate diversity

Looking at Table 6.4 reveals that percentile transformation outperformed other
transformations except for BiasedMF on ML1M dataset and for SVD++ on Goodreads
only in terms of 1-S A. The improvement by percentile transformation on ListRankMF
is even more significant as it increased supplier aggregate diversity by 82.6%
and 71.8% in terms of 1-S A on ML1M and Goodreads datasets, respectively,
and by 72.5% and 160% in terms of 5-S A on ML1M and Goodreads, respec-
tively. The same results can also be observed for BiasedMF on Goodreads and
SVD++ on ML1M.

Also, Figure 6.5 shows that percentile transformation significantly improved
supplier aggregate diversity (α-S A) compared to other transformations for dif-
ferent values of α except for BiasedMF on ML1M dataset. For BiasedMF on
ML1M dataset, although percentile transformation is outperformed for α ≤ 10,
it yielded the same supplier aggregate diversity with z-score transformation for
α > 10. In other cases, percentile transformation outperformed other transfor-
mations for α values.
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(a) ML1M

(b) Goodreads

Figure 6.5: Comparison of recommendation algorithms with different input values in
terms of supplier aggregate diversity (α-S A) with varying α on ML1M and
Goodreads datasets.

6.3.4 Long-tail analysis

Long-tail coverage (LT ) is also another metric for showing how much an algo-
rithm give chance to non-popular items to be shown in recommendation lists.
Hence, LT measures the fraction of non-popular items that appeared in the
recommendation lists. According to Table 6.4, percentile transformation re-
sulted in improved long-tail coverage in all experimental conditions except for
BiasedMF on ML1M and SVD++ on Goodreads.
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6.3.5 Fair distribution of recommended items
Fair distribution of recommended items refers to the fact that how equally each
item is represented in recommendation lists. If distribution of recommended
items represents the number of times each item appeared in the recommenda-
tion lists, a uniform distribution signifies that all items are equally appeared in
the lists. Thus, uniform distribution for the recommended items would be an
ideal distribution for achieving a fair exposure for recommended items. For this
purpose, Gini index and Entropy (discussed in 5) are used to measure how fair
the distribution of recommended items is.

Results reported in Table 6.4 shows that percentile transformation yielded a
fairer distribution of recommended items compared to rating and z-score trans-
formations. The results are consistent over all recommendation algorithms,
datasets, and evaluation metrics except for ListRankMF on ML1M dataset in
terms of item Entropy. Even for ListRankMF on ML1M dataset, although per-
centile transformation is outperformed by rating values in terms of item Entropy,
it outperformed rating and z-score transformations in terms of item Gini index.

6.3.6 Fair distribution of suppliers in recommendation lists
Fair distribution of suppliers refers to the fact that how items belong to different
suppliers are recommended such that those suppliers have equal representation
in the recommendation lists. Analogous to fair distribution of recommended
items, the recommendation lists that give uniform distribution for suppliers is
an ideal situation for achieving fair exposure in suppliers perspective. This can
be measured using Gini index and Entropy on distribution of suppliers.

According to Table 6.4, percentile transformation consistently gives fairer
exposure to suppliers compared to other transformations on Goodreads dataset
for all recommendation algorithms and both SG and SE metrics. On ML1M
dataset, percentile transformation shows superior on achieving fair exposure
suppliers only based on one of the evaluation metrics.

6.4 Discussion and Limitations
Experimental results showed the superiority of percentile transformation on im-
proving the multi-sided exposure fairness in recommendation results. This in-
cludes recommending more items from the catalog (high aggregate diversity)
and providing equal representation or exposure to recommended items or sup-
pliers. In addition, the experimental results showed that input data derived
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from percentile transformation can lead to more accurate recommendation re-
sults. This means that percentile values provide meaningful and informative
input for recommendation algorithms in which enable those algorithms to opti-
mize to achieve the highest precision in recommendation results.

There are several limitations associated with the proposed percentile tech-
nique. First, the percentile transformation does not work on binary data. Ac-
cording to the definition for percentile transformation, a range of more than
two (non-binary) rating members is needed to find the position of a rating in
the vector, otherwise, finding the position of a rating in the vector may be impos-
sible. However, the proposed transformation can be applied on explicit rating
data (as shown in this chapter) and implicit feedback data. Example of implicit
feedback data can be listening history of songs by users: number of times that a
user listened to a song in his/her profile can be converted into percentile value
to show the degree of interest toward that song.

Second, the proposed percentile technique only makes sense to be used as
input in the recommendation algorithms that utilize the rating values as part
of its optimization or model learning. When a recommendation algorithm does
not utilize the rating values, using the percentile values as input for that recom-
mendation algorithm will not make any improvement in the recommendation
performance.

Finally, the proposed percentile technique may not work well on sparse
datasets. In a sparse dataset, there can be many items with few ratings assigned
to them which makes the percentile transformation inaccurate. For example, for
an item with only one rating, it is not clear what would be the position of that
rating in the item’s profile. As another example, for items with several identical
ratings, calculating the percentile values would not be accurate for the same
reason that accurately finding the position of rating in the profile would not be
possible.

These limitations can be considered as possible future works and further im-
proving the performance of the proposed percentile transformation. For exam-
ple, the third limitation, weakness on sparse data, may be lifted by considering
smoothed percentile transformation [124]. Although my initial experimental re-
sults did not show the effectiveness of this method on overcoming data sparsity
issue, I plan to further investigate it in the future.





Chapter 7
Solution 2: A Post-processing
Approach for Mitigating
Multi-sided Exposure Bias

In this chapter, I introduce a graph-based technique for tackling exposure bias
in recommender systems. The proposed technique is general and can be used
for mitigating exposure bias of both items and suppliers. The experimental re-
sults show the superiority of the proposed technique on mitigating exposure bias
compared to other baselines on different datasets. I named the proposed tech-
nique as FairMatch algorithm. My contributions in this chapter are published
in [118] and also are submitted to ACM Transactions on Information Systems
(TOIS).

7.1 Introduction
One of the main reasons for different items and suppliers not getting a fair expo-
sure in the recommendations is the popularity bias problem where few popular
items/suppliers are over-recommended while the majority of other items/sup-
pliers do not get a deserved attention. For example, in a music recommendation
system, few popular artists might take up the majority of the streamings leading
to under-exposure of less popular artists. This bias, if not mitigated, can nega-
tively affect the experience of different users and items on the platform [8,132].
It could also be perpetuated over time by the interaction of users with biased
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Figure 7.1: Comparison between a relevance based recommendation algorithm (Al g 1),
item visibility-aware reranker (Al g 2), and supplier visibility-aware reranker
(Al g 3).

recommendations and, as a result, using biased interactions for training the
model in the subsequent times [38,45,119,162,170].

There are numerous methods to tackle exposure bias by either modifying
the underlying recommendation algorithms by incorporating the popularity of
each item [6,14,170,175] or as a post-processing re-ranking step to modify an
existing, often larger, recommendation list and extract a shorter list that has
a better characteristics in terms of fair exposure of different items or suppli-
ers [7, 15, 16, 21]. However, most of these algorithms solely concentrated on
mitigating the exposure (visibility) bias in an item level. What these algorithms
ignore is the complexity of many real world recommender systems where there
are different suppliers that provide the recommended items and hence the fair-
ness of exposure in a supplier level need to be also addressed [4].

One way to improve supplier exposure fairness is to improve the visibility
of items hoping it will also lead to giving a more balanced exposure to differ-
ent suppliers as often there is a positive correlation between the popularity of
suppliers and their items. However, only optimizing for item visibility with-
out explicitly taking into account the suppliers in the recommendations does
not necessarily make the recommendations fairer for suppliers. This can be
observed in the following example.

Figure 7.1 shows a scenario where we have a list of items as candidate pool
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and the goal is to extract a list of recommendations (in this example the size
is 3 for illustration purposes) and recommend it to the user. In addition, items
are categorized to either high visibility (i.e. frequently recommended) and low
visibility (less frequently recommended). Moreover, each item is also provided
by either supplier A or B . Three recommendation algorithms (these are just for
illustration purposes) are compared in terms of how they extract the final list of
three items. The first algorithm Alg1 extracts the three most relevant items from
the top of the list without considering the visibility of items or which supplier
they belong to. Obviously, this algorithm performs poorly in terms of fairness of
item exposure and supplier exposure since only highly relevant items are recom-
mended and they are all from supplier A. In contrast, the second algorithm Alg2
extracts the final recommendation list by also taking into account the visibility
of items. This algorithm could represent many existing approaches to overcome
exposure bias in recommendation. However, although the list of recommended
items are now more diverse in terms of different type of items (high visibility
vs low visibility) it still only contains items from supplier A since the supplier
information was not incorporated in the algorithm. The third algorithm Alg3,
on the other hand, has recommended a diverse list of items not only in terms of
items, but also in terms of the suppliers of those items. Therefore, it is important
to also optimize for suppliers for achieving fairer recommendation results.

7.2 FairMatch algorithm

FairMatch algorithm is formulated as a post-processing step after the recom-
mendation generation. In other words, first recommendation lists of size larger
than what ultimately is desired for each user is generated using any standard
recommendation algorithm and then those large recommendation lists are used
to build the final recommendation lists. FairMatch works as a batch process,
similar to that proposed in [201] where all the recommendation lists are pro-
duced at once and re-ranked simultaneously to achieve the objective. In this
formulation, a longer recommendation list of size t for each user is produced
and then, after identifying candidate items (based on defined utility, more de-
tails in Section 7.2.2) by iteratively solving the maximum flow problem on rec-
ommendation bipartite graph, a shorter recommendation list of size n (where
t >> n) is generated.

Let G = (I ,U ,E) be a bipartite graph of recommendation lists where I is the
set of left nodes, U is the set of right nodes, and E is the set of edges between
left and right nodes when recommendation occurred. G is initially a uniformly
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Algorithm 1 The FairMatch Algorithm

function FAIRMATCH(Recommendations R, TopN n, Suppliers S, Coefficient λ)
Build graph G = (I ,U ,E) from R
Initialize subgraphs to empty
repeat

G=WeightComputation(G, R, S, λ)
IC = Push-relabel(G)
Initialize subg r aph to empty
for each i ∈IC do

if l abeli ≥ |I |+ |U |+2 then
for each u ∈ Nei g hbor s(i ) do

Append < i ,u,ei u > to subgraph
end for

end if
end for
if subg r aph is empty then

br eak
end if
Append subg r aph to subg r aphs
G=Remove subg r aph from G

until (tr ue)
Reconstruct R of size n based on subgraphs

end function

weighted graph, but we will update the weights for edges as part of the algo-
rithm. I will discuss the initialization and the weighting method in Section 7.2.2.

Given a weighted bipartite graph G, the goal of our FairMatch algorithm is to
improve the exposure fairness of recommendations without a significant loss in
accuracy of the recommendations. I define exposure fairness as providing equal
chance for items or suppliers to appear in recommendation lists. The FairMatch
algorithm does this by identifying items or suppliers with low visibility in rec-
ommendation lists and promote them in the final recommendation lists while
maintaining the relevance of recommended items for users.

FairMatch algorithm uses an iterative process to identify the subgraphs of
G that satisfy the underlying definitions of fairness without a significant loss in
accuracy of the recommendation for each user. After identifying a subgraph Γ at
each iteration, Γ will be removed from G and the process of finding subgraphs
on the rest of the graph (i.e. G/Γ) will continue. The algorithm keeps track of
all the subgraphs as it uses them to generate the final recommendations in the
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Figure 7.2: The process of FairMatch algorithm.

last step.
Identifying Γ at each iteration is done by solving a Maximum Flow problem

(explained in Section 7.2.3) on the graph obtained from the previous iteration.
Solving the maximum flow problem returns the left nodes connected to the
edges with lower weight on the graph. After finding those left nodes, we form
subgraph Γ by separating identified left nodes and their connected right nodes
from G. Finally, < user, i tem > pairs in subgraphs are used to construct the
final recommendation lists of size n. I will discuss this process in detail in the
following Sections.

Algorithm 1 shows the pseudocode for FairMatch. Overall, FairMatch al-
gorithm consists of the following four steps: 1) Graph preparation, 2) Weight
computation, 3) Candidate selection, and 4) Recommendation list construction.
Figure 7.2 shows the process of FairMatch algorithm. FairMatch takes the long
recommendation lists of size t generated by a base recommendation algorithm
as input, and then over four consecutive steps, as mentioned above, it gener-
ates the final recommendation lists. The detail about each step in FairMatch
algorithm would be discussed in the following Sections.

7.2.1 Graph preparation
Given long recommendation lists of size t generated by a standard recommenda-
tion algorithm, we create a bipartite graph from recommendation lists in which
items and users are the nodes and recommendations are expressed as edges.

Since FairMatch algorithm is formulated as a maximum flow problem, we
also add two nodes, source (s1) and sink (s2). The purpose of having a source
and sink node in the maximum flow problem is to have a start and endpoint
for the flow going through the graph. We connect s1 node to all left nodes and
also we connect all right nodes to s2. Figure 7.3 shows a sample bipartite graph
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Figure 7.3: An example of a recommendation bipartite graph of recommendation lists of
size 3.

resulted in this step.

7.2.2 Weight computation
Weight computation step plays an important role on improving the exposure
fairness of recommendations in the proposed model. Depending on the fairness
definition that we desire to achieve, weight computation step should be adapted
accordingly. In this Section, I discuss how weight computation can be adapted
for improving the exposure fairness of items or suppliers.

Given the bipartite recommendation graph, G = (I ,U ,E), the task of weight
computation is to calculate the weight for edges between the source node and
left nodes, left nodes and right nodes, and right nodes and sink node.

For edges between left nodes and right nodes, I define the weights as the
weighted sum of user utility and supplier utility (or instead, item utility). The
utility of each user is defined as the relevance of recommended items for that
user. Given the long recommendation list of size t for user u as Lu , in this
formulation, I define the relevance of an item i for user u as rank of i in sorted
Lu in descending order based on predicted score by the base recommender. This
way, items in lower rank will be more relevant to the user (e.g. item in the first
rank is the most relevant one).
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The utility for each item and supplier is defined as their exposure or visibility
in the long recommendation lists. The visibility of each item is defined as the
degree of the node corresponding to that item (excluding the edge with the
source node). Item degree is the number of edges going out from that node
connecting it to the user nodes and that shows how often it is recommended to
different users. Analogously, the visibility for each supplier is defined as sum of
the degree of all nodes corresponding to the items belonging to that supplier.
Therefore, I introduce two separate weight computation schemes, one for item
utility and another for supplier utility, which eventually results in two variations
of FairMatch algorithm as follows:

• F ai r M atchi tem: For computing the weight for edges between i ∈ I and
u ∈U , I use the following Equation:

wi u =λ× r anki u + (1−λ)×deg r eei (7.1)

where r anki u is the position of item i in the sorted recommendation list of
size t generated for user u, deg r eei is the number of edges from i to right
nodes (i.e. u ∈U), and λ is a coefficient to control the trade-off between
the relevance of the recommendations and the exposure of items.

• F ai r M atchSup : For computing the weight for edges between i ∈ I and
u ∈U , I use the following Equation:

wi u =λ× r anki u + (1−λ)× ∑
i∈A(B(i ))

deg r eei (7.2)

where B(i ) returns the supplier of item i and A(B(i )) returns all items
belonging to the supplier of item i . Therefore, the term

∑
i∈A(B(i )) deg r eei

computes the visibility of supplier of item i (i.e. sum of visibility of all
items that belong to the supplier of item i). r anki u and λ have the same
definition as Equation 7.1.

Note that in Equation 7.1 and 7.2, r anki u and visibility for suppliers and
items have different ranges. The range for r anki u is from 1 to t (there are t
different positions in the original list) and the range of visibility depends on
the frequency of the item (or its supplier) recommended to the users (the more
frequent it is recommended to different users the higher its degree is). Hence,
for a meaningful weighted sum, I normalize visibility of items and suppliers to
be in the same range as r anki u .
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Given weights of the edges between i ∈ I and u ∈U , wi u , total capacity of I
and U would be CT =∑

i∈I

∑
u∈U wi u which simply shows the sum of the weights

of the edges connecting left nodes to the right nodes.
For computing the weight for edges connected to the source and sink nodes,

first, I equally distribute CT to left and right nodes. Therefore, the capacity of
each left node, Ceq (I ), and right node, Ceq (U ), would be as follow:

Ceq (I ) =
⌈CT

|I |
⌉

, Ceq (U ) =
⌈ CT

|U |
⌉

(7.3)

where
⌈

a
⌉

returns the ceil value of a. For example, suppose the total capacity,
CT , is 100. If we have 5 left nodes and 8 right nodes (similar to Figure 7.3), then
the capacity of each left node would be 20 (

⌈
100/5

⌉
) and the capacity of each

right node would be 13 (
⌈

100/8
⌉
). Then, based on equal capacity assigned to

each left and right nodes, we follow the method introduced in [60] to compute
weights for edges connected to source and sink nodes as follow:

∀i ∈ I , ws1i =
⌈

mi n(
Ceq (I )

g cd(Ceq (I ),Ceq (U ))
,

Ceq (U )

g cd(Ceq (I ),Ceq (U ))
)
⌉

(7.4)

∀u ∈U , wus2 =
⌈ Ceq (I )

g cd(Ceq (I ),Ceq (U ))

⌉
(7.5)

where g cd(Ceq (I ),Ceq (U )) is the Greatest Common Divisor of the distributed
capacity of left and right nodes. Assigning the same weight to edges connected
to the source and sink nodes guaranties that all nodes in I and U are treated
equally and the weights between them play an important role in FairMatch
algorithm. In Section 7.2.3, I further discuss the impact of these weights on
effectiveness of FairMatch algorithm.

7.2.3 Candidate selection
The graph constructed in previous steps is ready to be used for solving the max-
imum flow problem. In a maximum flow problem, the main goal is to find the
maximum amount of feasible flow that can be sent from the source node to
the sink node through the flow network. Several algorithms have been pro-
posed for solving a maximum flow problem. Well-known algorithms are Ford–
Fulkerson [58], Push-relabel [64], and Dinic’s algorithm [48]. In FairMatch
algorithm, I use Push-relabel algorithm to solve the maximum flow problem on
the bipartite recommendation graph as it is one of the efficient algorithms for
this matter and also it provides some functionalities that FairMatch algorithm
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(a) Original graph (b) Residual graph (c) Pushing excess flow of u

Figure 7.4: Example of push and relabel operations.

benefits them.
In push-relabel algorithm, each node will be assigned two attributes: label

and excess flow. The label attribute is an integer value that is used to identify
the neighbors to which the current node can send flow. A node can only send
flow to neighbors that have lower label than the current node. Excess flow is the
remaining flow of a node that can still be sent to the neighbors. When all nodes
of the graph have excess flow equals to zero, the algorithm will terminate.

The push-relabel algorithm combines push operations that send a specific
amount of flow to a neighbor, and r el abel operations that change the label of
a node under a certain condition (when the node has excess flow greater than
zero and there is no neighbor with label lower than the label of this node).

Here is how the push-relabel algorithm works: Figure 7.4 shows a typical
graph in the maximum flow problem and an example of push and relabel op-
erations. In Figure 7.4a, f and w are current flow and weight of the given
edge, respectively. In Push-relabel algorithm, a residual graph, G

′
, will be also

created from graph G. As graph G shows the flow of forward edges, graph G
′

shows the flow of backward edges calculated as fbackw ar d = w − f . Figure 7.4b
shows residual graph of graph G in Figure 7.4a. Now, we want to perform a
push operation on node u and send its excess flow to its neighbors.

Given xu as excess flow of node u, push(u, v) operation will send a flow of
amount ∆ = mi n(xu , fuv ) from node u to node v and then will decrease excess
flow of u by ∆ (i.e. xu = xu −∆) and will increase excess flow of v by ∆ (i.e.
xv = xv +∆). After push(u, v) operation, node v will be put in a queue of active
nodes to be considered by the push-relabel algorithm in the next iterations and
residual graph would be updated. Figure 7.4c shows the result of push(u, v)
and push(u,k) on the graph shown in Figure 7.4b. In push(u, v), for instance,
since u and all of its neighbors have the same label value, in order to perform
push operation, first we need to perform relabel operation on node u to in-
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crease the label of u by one unit more than the minimum label of its neighbors
to guaranty that there is at least one neighbor with lower label for performing
push operation. After that, node u can send flow to its neighbors.

Given xu = 15, fuv = 8, and fuk = 4 in Figure 7.4b, after performing relabel
operation, we can only send the flow of amount 8 from u to v and the flow of
amount 4 from u to k. After these operations, residual graph (backward flow
from v and k to u) will be updated.

The push-relabel algorithm starts with a "preflow" operation to initialize the
variables and then it iteratively performs push or relabel operations until no
active node exists for performing operations. Assuming Lv as the label of node
v , in preflow step, we initialize all nodes as follow: Ls1 = |I |+ |U |+2, Li∈I = 2,
Lu∈U = 1, and Ls2 = 0. This way, we will be able to send the flow from s1 to s2

as the left nodes have higher label than the right nodes. Also, we will push the
flow of amount ws1i (where i ∈ I) from s1 to all the left nodes.

After preflow, all of the left nodes i ∈ I will be in the queue, Q, as active
nodes because all those nodes now have positive excess flow. The main part of
the algorithm will now start by dequeuing an active node v from Q and per-
forming either push or relabel operations on v as explained above. This process
will continue until Q is empty. At the end, each node will have specific label
value and the sum of all the coming flows to node s2 would be the maximum
flow of graph G. For more details see [64]

An important question is: how does the Push-relabel algorithm can find high-
quality (more relevant) nodes (items and their suppliers) with low degree (visi-
bility)? I answer this question by referring to the example in Figure 7.4c. In
this figure, assume that u has a backward edge to s1. Since u has excess flow
greater than zero, it should send it to its neighbors. However, as you can see
in the figure, u does not have any forward edge to v or k nodes. Therefore, it
has to send its excess flow back to s1 as s1 is the only reachable neighbor for
u. Since s1 has the highest label in our setting, in order for u to push all its
excess flow back to s1, it should go through a relabel operation so that its label
becomes larger than that of s1. Therefore, the label of u will be set to Ls1 +1
for an admissible push.

The reason that u receives high label value is the fact that it initially receives
high flow from s1 (it is important how to assign weight to edges between s1 and
left nodes), but it does not have enough capacity (the sum of weights between
u and its neighbors is smaller than its excess flow. i.e. 8+4<15) to send all that
flow to them.

In FairMatch, in step 2 (i.e. Section 7.2.2), the same weight is assigned to
all edges connected to s1 and s2. This means that the capacity of edges from
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s1 to all item nodes would be the same and also the capacity of edges from all
user nodes to s2 would be the same. However, the weights assigned to edges
between item and user nodes depend on the quality and visibility of the recom-
mended items to users in the recommendation lists and play an important role
in finding the desired output in FairMatch algorithm. Assume that the weights
for edges between s1 and item nodes are ws1 and the weights for edges between
user nodes and s2 are ws2 .

In preflow step, s1 sends flow of amount ws1 to each item node in I and this
flow would be recorded in each item nodes as their excess flow. When Push-
relabel starts after preflow, the algorithm tries as much as possible to send the
excess flow in item nodes to user nodes and then finally to s2. However, the
possibility of achieving this objective depends on the capacity of edges between
item and user nodes. Items connected to edges with low capacity will not be
able to send all their excess flow to their neighbors (user nodes) and will be
returned as candidate items in step 3 of FairMatch algorithm.

There are two possible reasons for some items to not be able to send all their
excess flow to their neighbors: 1) they have few neighbors (user nodes) which
signifies that those items are recommended to few users and consequently they
have low visibility in recommendation lists, 2) they are relevant to the users’
preferences meaning that their rank in the recommendation list (sorted based
on the predicted score by a base recommender) for users is low and conse-
quently make those items more relevant to users. Hence, these two reasons–low
visibility and high relevance–cause some items to not have sufficient capacity to
send their excess flow to their neighbors (user nodes) and have to send it back
to s1 similar to what we illustrated above. As a result, sending back the excess
flow to s1 means first running relabel operation as s1 has higher label value
than item nodes and then push the excess flow to s1. Performing relabel op-
eration will assign the highest label value to those items which makes them to
be distinguishable from other nodes after push-relabel algorithm terminated.
Therefore, in step 3 (i.e. Section 7.2.3), left nodes without sufficient capacity
on their edges will be returned as part of the outputs from push-relabel algo-
rithm and are considered for constructing the final recommendation list in step
4 (i.e. Section 7.2.4). FairMatch aims at promoting those high relevance items
(or suppliers) with low visibility.

7.2.4 Recommendation list construction
In this step, the goal is to construct a recommendation list of size n by the
< user, i tem > pairs identified in previous step. Given a recommendation list
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of size n for user u, Lu , sorted based on the scores generated by a base recom-
mendation algorithm, candidate items identified by FairMatch connected to u
as IC , and visibility of each item i in recommendation lists of size n as Vi , I use
the following process for generating recommendation list for u.

First, I sort recommended items in Lu and IC based on their Vi in ascend-
ing order. Then, I remove mi n(β×n, |IC |) from the bottom of sorted Lu and
add mi n(β×n, |IC |) items from IC to the end of Lu . β is a hyperparameter in
0 <β≤ 1 that specifies the fraction of items in the original recommendation lists
that we want to replace with the identified items in previous step.

This process will ensure that extracted items in the previous step will re-
place the frequently recommended items meaning that it decreases the visibil-
ity of the frequently recommended items/suppliers and increases the visibility
of rarely recommended items/suppliers to generate a fairer distribution on rec-
ommended items/suppliers.

7.3 Experimental results
In this Section, I analyze the performance of FairMatch algorithm in compari-
son with some of the state-of-the-art re-ranking algorithms using three differ-
ent standard recommendation algorithms as the base for the re-ranking algo-
rithms on two datasets. The datasets are MovieLens1M and Last.fm which their
specifications are described in Chapter 5. The base recommender algorithms
are Bayesian Personalized Ranking (BPR) [146], Neural Collaborative Filtering
(NCF) [71], User-based Collaborative Filtering (UserKNN) [147]. These base rec-
ommendation algorithms are used to generate the long recommendation lists of
size 50. These long recommendation lists are used as input for the proposed
FairMatch and other re-ranking algorithms to generate the final recommenda-
tion lists of size 10.

The baseline re-ranking algorithms used for comparison with the FairMatch
algorithms are as follow.

1. FA*IR. This is the method introduced in [189] and is originally used for
improving the representation of protected group in ranked recommenda-
tion lists. However, I adapted this method for improving the visibility of
long-tail items in recommendation lists. I defined protected and unpro-
tected groups as long-tail and short-head items, respectively. For separat-
ing short-head from long-tail items, I considered those top items which
cumulatively make up 20% of the ratings according the Pareto princi-
ple [150] as the short-head and the rest as long-tail items. Also, I set
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the other two hyperparameters, proportion of protected candidates in the
top n items1 and significance level2, to {0.2,0.6,0.8} and {0.05,0.1}, respec-
tively.

2. xQuAD. This is the method introduced in [7]. I specifically included
xQuAD method since it attempts to promote less popular items (most
likely items with low visibility in recommendation lists) by balancing the
ratio of popular and less popular items in recommendation lists. This
method involves a hyperparameter to control the trade-off between rele-
vance and long-tail promotion, and I experimented with different values
for this hyperparameter in {0.2,0.4,0.6,0.8,1}. Also, the separation of short-
head and long-tail items is done according to Pareto principle as described
above.

3. Discrepancy Minimization (DM). This is the method introduced in [21]
and was explained in Chapter 4. For hyperparameter tuning, I followed
the experimental settings suggested by the original paper for the experi-
ments. I set the target degree distribution to {1,5,10} and relative weight
of the relevance term to {0.01,0.5,1}.

4. ProbPolicy. This is the method introduced in [132] and was mentioned
in Chapter 4. I included this method as it was designed for improving sup-
plier fairness and visibility in recommendation lists. This method involves
a hyperparameter for controlling the trade-off between the relevance of
recommended items to users and supplier fairness. I set the value for this
hyperparameter to {0.2,0.4,0.6,0.8,1}.

I also used two simple methods to show the extreme case in bias mitigation
for comparison purposes.

1. Reverse. Given a recommendation list of size t for each user generated by
base recommendation algorithm, in this method, instead of picking the n
items from the top (most relevant items), we pick them from the bottom
of the list (least relevant items). In this approach, it is expected to see
an increase in aggregate diversity as we are giving higher priority to the
items with lower relevance to be picked first. However, the accuracy of the
recommendations will decrease as we give higher priority to less relevant
items.

1Based on suggestion from the released code, the range should be in [0.02,0.98]
2Based on suggestion from the released code, the range should be in [0.01,0.15]
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2. Random. Given a recommendation list of size t for each user generated by
base recommendation algorithm, we randomly choose n items from that
list and create a final recommendation list for that user. Note that this is
different from randomly choosing items from all catalog to recommend
to users. The reason we randomly choose the items from the original
recommended list of items (size t) is to compare other post-processing
and re-ranking techniques with a simple random re-ranking.

Random and Reverse are mainly included to demonstrate the extreme ver-
sion of a re-ranking algorithm where the sole focus is on improving aggregate
diversity and exposure and we ignore the relevance of the recommended items
as can be seen by the low precision for these two algorithms.

Extensive experiments are performed using each re-ranking algorithm with
multiple hyperparameter values. For the purpose of fair comparison, from each
of those re-ranking algorithms (FA*IR, xQuAD, DM, ProbPolicy, and the both
variations of FairMatch algorithm) the configuration which yields, more of less,
the same precision loss is reported. These results enable us to better compare
the performance of each technique on improving exposure fairness and other
non-accuracy metrics while maintaining the same level of accuracy. The preci-
sion of each re-ranking algorithm on both datasets is reported in Tables 7.1 and
7.2.

7.3.1 Visibility analysis
Since the proposed FairMatch algorithm aims at improving the visibility of dif-
ferent items in the recommendations, I start my analysis with comparing dif-
ferent algorithms in terms of the visibility change (IV S) of the recommended
items. Figure 7.5 shows the percentage change in the visibility of the recom-
mended item groups in recommendation lists generated by each re-ranking al-
gorithm compared to their visibility in the recommendation lists generated by
three base recommenders. In these plots, horizontal axis is the recommended
item groups (created as explained in Section 5.3) and vertical axis is IV S metric.
Item groups are sorted from the highest visibility (i.e. G1) to the lowest visibil-
ity (i.e. G10). It can be seen that both versions of FairMatch algorithm on both
datasets have significantly increased the visibility of item groups with lower
visibility while slightly taking away from the visibility of items with originally
extreme visibility. F ai r M atchi tem performs slightly better than F ai r M atchSup

especially for item groups for very low visibility (G9 and G10) as it was expected
since F ai r M atchi tem directly optimizes for improving the exposure of the low
visibility items.
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(a) Last.fm

(b) ML1M

Figure 7.5: Percentage increase/decrease (IV S) in visibility of item groups for different
reranking algorithms.

Looking at NCF on ML1M, it seems different re-ranking algorithms do not
have a predictable behavior in terms of improving visibility of different item
groups and, in some cases, even decreasing the visibility of item groups with
already low visibility. However, a closer look at the scale of vertical axis reveals
that these changes are very small and not significant. The reason is, on this
dataset, NCF has already done a good job in terms of fair item visibility and
not much can be done via a re-ranking method. Among other reranking meth-
ods, xQuAD seems to also perform relatively well but still is outperformed by
FairMatch. One interesting observation in this figure is that, using UserKNN on
ML1M, we can see that both FairMatch algorithms have significantly improved
the visibility of item groups with medium visibility even more than the ones
with lower visibility. Although these are items with medium visibility using our
grouping strategy, they still get significantly less visibility compared to G1 and
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(a) Last.fm

(b) ML1M

Figure 7.6: Percentage increase/decrease (SV S) in visibility of supplier groups for differ-
ent reranking algorithms.

G2 in the base algorithm as we saw in Figure 4.1. Therefore, we can still con-
sider these item groups as items with relatively low visibility and FairMatch has
increased their visibility.

Figure 7.6 is similar to Figure 7.5 but here we show the percentage change in
the visibility of the supplier groups in recommendation lists generated by each
re-ranking algorithm compared to their visibility in the recommendation lists
generated by three base recommenders. The first thing that can be observed
from this figure is that, on both datasets, FairMatch algorithms outperform the
other re-ranking methods especially for groups with lower visibility. NCF on
Last.fm has the same problem as we observed in Figure 7.5 where the changes in
vertical axis are not significant and all algorithms more or less perform equally.
F ai r M atchi tem and F ai r M atchSup are performing equally well for groups with
extremely low visibility although F ai r M atchSup tend to also improve the vis-
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ibility of some other item groups such as G7, G8, and G9 on ML1M using BPR
and on Last.fm using UserKNN. Overall, F ai r M atchSup has done a better job
in terms of supplier visibility fairness and that was also expected since supplier
visibility was directly incorporated into the objective function.

In addition to measuring the improvement in visibility of different items, I
also conducted an extensive analysis on other existing metrics in the literature
to have a better picture of how each of these re-ranking methods help reduc-
ing the over-concentration of the recommendations around few highly visible
items. Tables 7.1 and 7.2 show the results for different re-ranking algorithms on
Last.fm and ML1M datasets, respectively. I compare these algorithms in terms of
item and supplier aggregate diversity and also fair distribution of recommended
items and suppliers.

7.3.2 Item aggregate diversity
When it comes to increasing the number of unique recommended items (aggre-
gate diversity), we can see that all re-ranking algorithms have improved this
metric over the base algorithms on both datasets. I have only included 1-I A
(each item should be recommended at least once to be counted) and 5-I A (each
item should be recommended at least 5 times to be counted). I experimented
with different values of α from 1 to 20 and the results can be seen in Figure 7.7
which I will describe afterwards. Generally speaking, all re-ranking methods
have lost a certain degree of precision in order to improve aggregate diver-
sity and other metrics related to fair distribution of recommended items and
suppliers as can be seen from Tables 7.1 and 7.2. The reason is that the base
algorithms are mainly optimized for relevance and therefore it is more likely for
the items on top of the recommended list to be relevant to the users. As a result,
when we re-rank the recommended lists and push some items in the bottom to
go up to the top-n, we might swipe some relevant items with items that may not
be as relevant.

Regarding 1-I A, F ai r M atchi tem seems to perform relatively better than the
other re-rankers using all three base algorithms (BPR, NCF and UserKNN) on
both datasets indicating it recommends a larger number of items across all
users. The same pattern can be seen for LT which measures only the unique
recommended items that fall into the long-tail category. This is however, not
the case for 5-I A where in some cases F ai r M atchi tem is outperformed by other
re-rankers. That shows, the improvement in recommending more unique items
using F ai r M atchi tem is not achieved by recommending them frequent enough.
On ML1M, however, F ai r M atchi tem performs very well on 5-I A metric. This
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Table 7.1: Comparison of different reranking algorithms on Last.fm dataset for long rec-
ommendation lists of size 50 (t = 50) and final recommendation lists of size
10 (n = 10). The bolded entries show the best values and the underlined en-
tries show the statistically significant change from the second-best baseline
with p < 0.05 (comparison between FairMatch algorithms and other baselines
ignoring Random and Reverse).

algorithms baselines Precision 1-I A 5-I A LT 1-S A 5-S A IG I E SG SE

BPR

Base 0.097 0.555 0.218 0.53 0.668 0.374 0.693 7.83 0.686 7
Random 0.062 0.695 0.237 0.678 0.781 0.424 0.568 8.16 0.607 7.23
Reverse 0.041 0.768 0.243 0.755 0.847 0.455 0.492 8.31 0.564 7.33
FA*IR 0.096 0.613 0.242 0.591 0.715 0.421 0.627 8.01 0.642 7.13
xQuAD 0.094 0.677 0.188 0.659 0.787 0.373 0.646 7.95 0.653 7.1
DM 0.096 0.644 0.221 0.625 0.736 0.399 0.627 8.01 0.649 7.11
ProbPolicy 0.092 0.607 0.22 0.586 0.784 0.419 0.659 7.93 0.618 7.19
F ai r M atchi tem 0.092 0.686 0.223 0.669 0.791 0.404 0.602 8.08 0.623 7.19
F ai r M atchSup 0.095 0.675 0.21 0.657 0.791 0.404 0.623 8.03 0.617 7.22

NCF

Base 0.08 0.638 0.211 0.62 0.754 0.4 0.666 7.95 0.661 7.12
Random 0.056 0.74 0.221 0.726 0.824 0.441 0.552 8.22 0.592 7.28
Reverse 0.044 0.791 0.227 0.779 0.857 0.463 0.492 8.34 0.561 7.35
FA*IR 0.079 0.653 0.21 0.639 0.768 0.41 0.639 8.01 0.639 7.16
xQuAD 0.075 0.694 0.212 0.683 0.804 0.424 0.61 8.08 0.616 7.22
DM 0.079 0.723 0.205 0.707 0.808 0.412 0.594 8.11 0.624 7.2
ProbPolicy 0.072 0.659 0.207 0.643 0.809 0.43 0.647 7.98 0.611 7.22
F ai r M atchi tem 0.064 0.729 0.224 0.716 0.821 0.42 0.589 8.15 0.608 7.25
F ai r M atchSup 0.071 0.711 0.229 0.699 0.828 0.485 0.588 8.15 0.535 7.41

UserKNN

Base 0.08 0.461 0.127 0.431 0.588 0.257 0.833 7.07 0.813 6.39
Random 0.044 0.635 0.164 0.615 0.738 0.341 0.689 7.77 0.702 6.91
Reverse 0.027 0.712 0.204 0.696 0.797 0.394 0.591 8.09 0.634 7.14
FA*IR 0.074 0.629 0.172 0.609 0.73 0.351 0.687 7.73 0.706 6.86
xQuAD 0.078 0.577 0.117 0.554 0.701 0.269 0.781 7.31 0.771 6.58
DM 0.077 0.537 0.134 0.512 0.638 0.283 0.782 7.33 0.781 6.55
ProbPolicy 0.067 0.559 0.14 0.535 0.785 0.332 0.765 7.4 0.7 6.84
F ai r M atchi tem 0.062 0.626 0.102 0.606 0.751 0.266 0.745 7.51 0.736 6.78
F ai r M atchSup 0.073 0.629 0.123 0.609 0.895 0.266 0.73 7.54 0.659 6.97
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Table 7.2: Comparison of different reranking algorithms on ML1M dataset for long rec-
ommendation lists of size 50 (t = 50) and final recommendation lists of size
10 (n = 10). The bolded entries show the best values and the underlined en-
tries show the statistically significant change from the second-best baseline
with p < 0.05 (comparison between FairMatch algorithms and other baselines
ignoring Random and Reverse).

algorithms baselines Precision 1-I A 5-I A LT 1-S A 5-S A IG I E SG SE

BPR

Base 0.332 0.392 0.262 0.351 0.418 0.276 0.833 6.01 0.845 5.4
Random 0.198 0.502 0.359 0.47 0.509 0.365 0.726 6.55 0.773 5.8
Reverse 0.125 0.547 0.404 0.518 0.545 0.394 0.653 6.81 0.728 6
FA*IR 0.306 0.402 0.283 0.362 0.4 0.296 0.779 6.33 0.802 5.5
xQuAD 0.322 0.461 0.311 0.426 0.451 0.324 0.797 6.19 0.822 5.34
DM 0.314 0.47 0.343 0.435 0.453 0.345 0.749 6.43 0.791 5.51
ProbPolicy 0.289 0.439 0.297 0.402 0.451 0.343 0.792 6.23 0.782 5.49
F ai r M atchi tem 0.322 0.544 0.323 0.515 0.536 0.355 0.796 6.17 0.82 5.32
F ai r M atchSup 0.311 0.547 0.363 0.518 0.578 0.41 0.768 6.28 0.779 5.51

NCF

Base 0.312 0.433 0.286 0.395 0.424 0.297 0.83 6.17 0.848 5.32
Random 0.198 0.566 0.396 0.539 0.571 0.406 0.728 6.66 0.776 5.89
Reverse 0.128 0.615 0.448 0.592 0.614 0.446 0.661 6.9 0.735 6.07
FA*IR 0.296 0.467 0.316 0.432 0.467 0.324 0.786 6.42 0.81 5.58
xQuAD 0.31 0.535 0.4 0.505 0.556 0.41 0.774 6.26 0.752 5.87
DM 0.298 0.53 0.383 0.499 0.509 0.386 0.752 6.54 0.797 5.6
ProbPolicy 0.301 0.469 0.315 0.434 0.426 0.344 0.812 6.24 0.819 5.45
F ai r M atchi tem 0.301 0.623 0.375 0.6 0.604 0.397 0.778 6.37 0.81 5.49
F ai r M atchSup 0.292 0.622 0.407 0.599 0.62 0.446 0.757 6.45 0.777 5.66

UserKNN

Base 0.190 0.161 0.108 0.102 0.167 0.119 0.889 4.87 0.896 4.13
Random 0.128 0.219 0.145 0.164 0.231 0.157 0.798 5.51 0.829 4.79
Reverse 0.093 0.238 0.164 0.185 0.251 0.177 0.728 5.8 0.78 5.06
FA*IR 0.19 0.166 0.113 0.107 0.175 0.122 0.885 4.9 0.893 4.16
xQuAD 0.196 0.204 0.136 0.148 0.215 0.148 0.869 4.97 0.88 4.25
DM 0.19 0.183 0.125 0.125 0.194 0.133 0.873 4.98 0.885 4.22
ProbPolicy 0.19 0.165 0.11 0.106 0.175 0.122 0.886 4.89 0.891 4.17
F ai r M atchi tem 0.19 0.214 0.152 0.159 0.224 0.171 0.804 5.18 0.831 4.41
F ai r M atchSup 0.206 0.207 0.131 0.152 0.222 0.158 0.867 4.77 0.871 4.15
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difference in behavior across the datasets can be explained by the characteris-
tics of the data as we saw in Figure 5.1. Overall, F ai r M atchSup seems to also
perform relatively well on item aggregate diversity and in some cases even bet-
ter than F ai r M atchi tem such as on 5-I A using NCF and UserKNN on Last.fm and
BPR and NCF on ML1M.

7.3.3 Supplier aggregate diversity
Suppliers of the recommended items are also important to be fairly represented
in the recommendations. First and foremost, looking at the Tables 7.1 and 7.2,
we can see that there is an overall positive connection between improving item
aggregate diversity and supplier aggregate diversity indicating optimizing for ei-
ther item or supplier visibility, can benefit the other side as well. However, when
we directly incorporate the supplier visibility into our recommendation process
as I did in F ai r M atchSup , we can see that the supplier aggregate diversity can
be significantly improved. For example, we can see that F ai r M atchSup has the
best 1-S A on both datasets except for when the base algorithm is UserKNN on
ML1M where it was outperformed by F ai r M atchi tem . So, overall, we can say
that FairMatch (either F ai r M atchSup or F ai r M atchi tem) has the best 1-S A on
both datasets using all three base algorithms.

Regarding 5-S A, FairMatch algorithms tend to also perform better than other
re-rankers. Between the two variations of FairMatch, we can see that F ai r M atchSup

gives a better supplier aggregate diversity in most cases which is something that
we expected. Similar to item aggregate diversity, we only included 1-S A and
5-S A for supplier aggregate diversity in the Tables. A more comprehensive anal-
ysis of the effect of α on this metric is illustrated in Section 7.3.6 which I will
describe later.

7.3.4 Fair distribution of recommended items
I also wanted to evaluate different re-rankers in terms of fair distribution of
recommendations across different items. I used Gini (IG) and Entropy (I E)
as ways to measure how equally the recommendations are distributed across
different recommended items. Even though I have not directly optimized for
equal representation of different items, these two metrics show that the pro-
posed FairMatch algorithm has given a much fairer chance to different items
to be recommended compared to the base algorithms and some of the other
re-rankers by having a low Gini and high Entropy.

Between F ai r M atchSup and F ai r M atchi tem there is no clear winner in



7.3 Experimental results 121

(a) Last.fm

(b) ML1M

Figure 7.7: Comparison of reranking algorithms in terms of item aggregate diversity
(α-I A) with different α values.

terms of Gini and entropy for items as in some cases F ai r M atchSup has a bet-
ter Gini while in other cases F ai r M atchi tem performs better. Among other
re-rankers, DM and FA*IR seem to also perform well on these two metrics indi-
cating they also give a fair chance to different items to be recommended.

7.3.5 Fair distribution of suppliers in recommendation lists

In addition to standard Gini (i.e. IG) and Entropy (i.e. I E) which are generally
calculated in an item level, I also measured the same metric but from the suppli-
ers perspective and it can be seen in the Tables 7.1 and 7.2 as SG and SE which
measure the extent to which different suppliers are fairly recommended across
different users. Overall, F ai r M atchSup has the best SG and SE on both datasets
in all situations except for NCF and UserKNN on ML1M. Also, using UserKNN on
ML1M, F ai r M atchi tem has the second best SG and SE . This shows that in-
corporating the supplier visibility directly into the recommendation process can
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(a) Last.fm

(b) ML1M

Figure 7.8: Comparison of reranking algorithms in terms of supplier aggregate diversity
(α-S A) with different α values.

positively affect the fairness of representation across different suppliers and it is
indeed supporting my initial hypothesis about the importance of incorporating
suppliers in the recommendation process. The Probpolicy algorithm which also
incorporates the supplier fairness in its recommendation generation, has also
performed better than other re-rankers in terms of SG and SE .

7.3.6 The effect of α in aggregate diversity

Standard aggregate diversity metric as it is used in [16, 174] counts an item
even if it is recommended only once. Therefore, it is possible for an algorithm
to perform really well on this metric while it has not really given enough visi-
bility to different items. For this reason, I introduced α-I A and α-S A which are
the generalization of standard aggregate diversity where we only count an item
or supplier if it is recommended at least α times.

Figures 7.7 and 7.8 show the behavior of different re-ranking algorithms on
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aggregate diversity for different values of α. The most important takeaway from
this figure is that some algorithms perform better than others for smaller values
of α while they are outperformed for larger values of α. That means if we only
look at standard aggregate diversity (1-I A or 1-S A), we might think a certain
algorithm is giving more visibility to different items while in reality that is not
the case. For example, using BPR as base on ML1M, F ai r M atchSup has bet-
ter aggregate diversity for smaller values of α (α ≤ 8) than DM while for lager
values of α its curve goes under DM indicating lower aggregate diversity. That
shows that if we want to make sure different items are recommended more than
8 times, DM would be a better choice but if we want more items to be recom-
mended even if they are recommended less than 8 times, then F ai r M atchSup

can be better.
On supplier aggregate diversity, however, we can see that F ai r M atchSup

performs better than DM for all values of α indicating no matter how fre-
quent we want the recommended items to appear in the recommendations,
F ai r M atchSup is still superior.

7.3.7 Trade-off between accuracy and non-accuracy metrics
for FairMatch

I investigated the trade-off between the precision and non-accuracy metrics un-
der various settings. Figures 7.9 and 7.10 show the experimental results for
item and supplier exposure, respectively, on Last.fm and ML1M datasets using
all three base recommenders. In these plots, horizontal axis shows the preci-
sion and vertical axis shows the non-accuracy metrics (i.e. 1-I A, 5-I A, I E , and
IG in Figure 7.9 for measuring item exposure and 1-S A, 5-S A, SE , and SG in
Figure 7.10 for measuring supplier exposure) of the recommendation results at
size 10. Each point on the plot corresponds to a specific λ value and the black
cross shows the performance of original recommendation lists at size 10.

Results in Figures 7.9 and 7.10 show that λ plays an important role in con-
trolling the trade-off between the relevance of the recommended items for users
(precision) and improving the utility for items and suppliers (non-accuracy met-
rics). As we decrease the λ value, precision decreases, while non-accuracy met-
rics increase. According to Equations 7.1 and 7.2, for a higher λ value, Fair-
Match will concentrate more on improving the accuracy of the recommenda-
tions, while for lower λ value, it will have a higher concentration on improving
the utility for items and suppliers.

I only report the results for t = 50, but my analysis on longer initial recom-
mendation lists (e.g. t = 100) showed that by increasing the size of the initial
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recommendation lists we will obtain higher improvement on non-accuracy met-
rics especially on aggregate diversity metrics. However, we will lose accuracy as
more items with lower relevance might be added to the final recommendation
lists. These parameters allow system designers to better control the trade-off
between the precision and non-accuracy metrics.

7.3.8 Complexity analysis of FairMatch algorithm
Solving the maximum flow problem is the core computation part of the Fair-
Match algorithm. I used Push-relabel algorithm as one of the efficient algo-
rithms for solving the maximum flow problem. This algorithm has a polynomial
time complexity as O(V 2E) where V is the number of nodes and E is the number
of edges in bipartite graph. For other parts of the FairMatch algorithm, the time
complexity would be in the order of the number of edges as it mainly iterates
over the edges in the bipartite graph.

Since FairMatch is an iterative process, unlike other maximum flow based
techniques [16, 21], it requires solving maximum flow problem on the graph
multiple times and this could be one limitation of this algorithm. However, ex-
cept for the first iteration that FairMatch executes on the original graph, at the
next iterations, the graph will be shrunk as FairMatch removes some parts of the
graph at each iteration. Regardless, the upper-bound for the complexity of Fair-
Match will be O(V 3E) assuming in each iteration we still have the entire graph
(which is not the case). Therefore, the complexity of FairMatch is certainly less
than O(V 3E) which is still polynomial.
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(a) Last.fm, BPR

(b) Last.fm, NCF

(c) Last.fm, UserKNN

(d) ML1M, BPR

(e) ML1M, NCF

(f) ML1M, UserKNN

Figure 7.9: Trade-off between accuracy and non-accuracy metrics for measuring the ex-
posure fairness of items in FairMatch algorithms on Last.fm and ML1M
datasets using all three base recommenders. The black cross shows the per-
formance of original recommendation lists at size 10.
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(a) Last.fm, BPR

(b) Last.fm, NCF

(c) Last.fm, UserKNN

(d) ML1M, BPR

(e) ML1M, NCF

(f) ML1M, UserKNN

Figure 7.10: Trade-off between accuracy and non-accuracy metrics for measuring the ex-
posure fairness of suppliers in FairMatch algorithms on Last.fm and ML1M
datasets using all three base recommenders. The black cross shows the
performance of original recommendation lists at size 10.



Chapter 8
Conclusion and Future Work

In this dissertation, I studied the issue of unfairness in recommender systems. I
observed that recommender systems suffer from algorithmic bias and unfairness
against certain groups of users, items, and suppliers. In particular, I found that
unfair recommendations negatively affect different actors or sides in the system
and in the long run, lead to issues like declining the aggregate diversity, shifting
the representation of users’ taste, and homogenization of users.

To understand the importance of multi-sided view for addressing bias and
unfairness in recommender systems, I conducted a simulation study in educa-
tional systems as a case study. In this simulation, I designed a recommender
system that optimizes to match students to the supervisors under different sce-
narios. The scenarios were considering solely the students utilities, solely the
supervisors utilities, and the utilities of both. I observed that the best perfor-
mance in terms of utilities and fairness is achieved when simultaneously consid-
ering the utilities of both side, indicative of the importance of multi-sided view
when optimizing a recommender system.

I further explored the issue of popularity bias and exposure bias in recom-
mender systems, and proposed solutions to address them. The first solution
was a pre-processing approach that transforms the ratings into percentile val-
ues before recommendation generation step. Through extensive experiments, I
observed that the proposed transformation technique is able to compensate the
high rating values of popular items and improves the exposure fairness of the
recommendations by mitigating the popularity bias in input data. The second
solution was a post-processing approach that improves the exposure fairness for
items and suppliers by identifying high quality items that have low visibility in
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long recommendation lists and promoting them to appear in the final recom-
mendation lists. Experimental results showed the superiority of the proposed
technique compared to other baselines in improving exposure fairness. In the
next section, I briefly discuss the contributions and achievements introduced in
the dissertation.

8.1 Contributions
• Factors leading to unfair recommendations. I investigated potential

factors that lead to unfair recommendations. The factors that I explored
were characteristics of users’ profile such as profile size, profile anomaly,
and profile entropy. Then, I investigated the relationship between those
characteristics for two groups of users and the quality of recommenda-
tions that each group receives. In the dataset that I used for this analysis,
females were less in terms of number of users compared to males and
also they provided much fewer ratings compared to males. Hence, I de-
fined females as minority group and males as the majority group. Based
on common definition of discrimination and unfairness, the recommender
systems mainly learn the preferences of majority groups and better serve
them than the minority groups. My analysis also confirmed this. Besides
this definition, my analysis showed that there are also some other char-
acteristics that may affect the fairness of recommendation results. For
example, I observed that females who had larger profile size consistently
received more accurate recommendations even though most of the other
females received less accurate recommendations. The same results was
also observed for profiles with high entropy. This shows that the char-
acteristics of users’ profile can reveal important information about their
treatment by recommender systems. A user might belong to a minority
group (based on a sensitive attribute), but the characteristics of her/his
profile may help the recommendation algorithm to better learn her/his
preferences and consequently delivers more accurate recommendations
to her/him.

• The impact of algorithmic bias on the system. In my exploration on
the impact of algorithmic bias on recommender systems, I simulated the
recommendation process over time in a offline setting. The interaction
between users and recommender systems will form feedback loop which
recommendations generated to users would be consumed and added to
the users’ profile in the next iterations. I formally and empirically showed
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that algorithmic bias can be propagated over time and substantially ampli-
fies the bias in input data in the next iterations. Moreover, I observed that
this bias amplification causes some other negative impacts on the system
such as declining the aggregate diversity, shifting the representation of
users’ tastes, and homogenization of users. Also, another interesting ob-
servation was that this bias amplification was stronger on minority group.

• Evaluating multi-sided exposure bias. I reviewed and explored exist-
ing metrics for measuring multi-sided exposure bias in the literature. My
analysis showed those metrics have limitations and are unable to properly
measure various aspects of exposure bias in recommender systems. I ob-
served that some of the existing metrics for evaluating the performance of
recommendation algorithms in terms of exposure bias mitigation such as
aggregate diversity hide important information about the exposure fair-
ness of items and suppliers since those metrics do not take into account
how frequent different items are recommended. Although Gini index can
be used to address this issue, it also has its own limitations where an al-
gorithm can achieve a good Gini index by equally recommending large
number of items or suppliers (even if they are popular) while the rest of
items or suppliers still get unfair exposure. My analysis showed that it is
crucial to evaluate bias mitigation algorithms using multiple metrics each
of which captures a certain aspect of the algorithm’s performance. To
overcome the limitations of the existing metrics, I proposed new metrics
and modified existing metrics for measuring exposure bias for items and
suppliers in recommender systems.

• Percentile transformation as a pre-processing technique for tackling
exposure bias. To mitigate exposure bias in recommender systems, I pro-
posed percentile transformation which works as a pre-processing step be-
fore recommendation generation. I showed that the proposed percentile
transformation is able to compensate for high rating values assigned to
the popular items and as a result, it can mitigate popularity bias in input
data. Extensive experiments using several recommendation algorithms on
two datasets showed that the proposed percentile transformation is able
to mitigate the multi-sided exposure bias, but also significantly improves
the accuracy of recommendations compared to other transformation tech-
niques.

• A graph-based approach for addressing multi-sided exposure bias. I
proposed a graph-based approach, FairMatch, for improving the aggregate
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diversity and exposure fairness of items and suppliers in recommender
systems. FairMatch is a post-processing technique that works on the top
of any recommendation algorithm. In other words, it re-ranks the output
from the base recommendation algorithms such that it improves the ex-
posure fairness of final recommendation lists with minimum loss in accu-
racy of recommendations. FairMatch algorithm is flexible and can be used
for improving the exposure fairness of items and suppliers. Experimental
results on two publicly available datasets showed that the FairMatch al-
gorithm outperforms several state-of-the-art bias mitigation re-rankers in
improving multi-sided exposure fairness.

8.2 Future work
• Considering other definitions for exposure fairness. The definition of

exposure fairness in this dissertation was solely based on the visibility of
the items or suppliers in the recommendations without taking into account
their original popularity in training data. One possible future work is to
take this information into account such that the fairness of exposure for
items or suppliers is measured relative to their original popularity. This
can be in particular important when fairness of exposure is defined as the
equity of representation instead of equality of representation. In equity of
representation for items and suppliers, exposure fairness is defined as the
representation or visibility of items or suppliers based on their merit in
input data. For example, if item A is more popular than item B , then a fair
exposure is achieved when item A receives more exposure than item B in
recommendation results. Besides these definitions, another way for defin-
ing exposure fairness is considering the position of items in the recommen-
dation lists. All these definitions for exposure fairness do not consider the
position of recommended items in the recommendation lists. When an
item is shown in the first position in the recommendation list, it has better
exposure than other items in the subsequent positions. Therefore, consid-
ering item position in recommendation list for defining exposure fairness
can be an interesting future work.

• Long-term fairness. The simulation study in Chapter 2, Section 2.2.4
showed that users and recommender system are in a process of mutual dy-
namic evolution where users profile get updated over time via recommen-
dations generated by the recommender system and this way algorithmic
bias will amplify inherent bias in users’ interaction data. In this research, I
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investigated several factors including popularity amplification, decline in
aggregate diversity, shift in the representation of users’ taste, and homog-
enization of users, but other interesting investigations can be considered
such as content diversity of the recommended items, analysis on supplier
exposure, and grouping user based on various criteria (e.g. interest toward
popular items) for studying homogenization of users. Also, conducting
empirical research using the existing bias mitigation techniques (includ-
ing the ones proposed in this thesis) in this simulation (experimentation
over time) can shed more lights on the effectiveness of those techniques
on achieving long-terms fairness and mitigating bias amplification in rec-
ommender systems.

• Online evaluation. Consistent with many prior work on re-ranking meth-
ods, I observed a drop in precision for different re-rankers, including the
proposed FairMatch algorithm, in my offline evaluation setting. However,
how users will perceive the recommendations in an online setting can bet-
ter assess the effectiveness of this type of re-rankers. The reason is, the
data is skewed towards popular items and it is less likely to observe a hit
when recommending less popular items using offline evaluation. Another
potential future work is to investigate how users will react to the re-ranked
recommendations by conducting online experiments on real users.
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