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ABSTRACT OF THE DISSERTATION

CONTEXT-AWARE PERSONALIZED POINT-OF-INTEREST

RECOMMENDATION SYSTEM

by

Ramesh Baral

Florida International University, 2019

Miami, Florida

Professor Sundaraja Sitharama Iyengar, Major Professor

The increasing volume of information has created overwhelming challenges to

extract the relevant items manually. Fortunately, the online systems, such

as e-commerce (e.g., Amazon1) and the location-based social networks (LB-

SNs) (e.g., Facebook2) among many others have the ability to track end users’

browsing and consumption experiences. Such explicit experiences (e.g., ratings,

likes/dislikes, etc.) and many implicit contexts (e.g., demographic, social, spa-

tial, temporal, and categorical, etc.) are useful in preference elicitation and

recommendation. As an emerging branch of information filtering, the recom-

mendation systems are already popular in many domains, such as movies (e.g.,

YouTube3), music (e.g., Pandora4), and Point-of-Interest (POI) (e.g., Yelp5).

The POI domain has many contextual challenges (e.g., spatial (preferences

to a near place), social (e.g., friend’s influence), temporal (e.g., popularity at

certain time), categorical (similar preferences to places with same category),

locality of POI, etc.) that can be crucial for an efficient recommendation. The

1www.amazon.com

2www.facebook.com

3www.youtube.com

4www.pandora.com

5www.yelp.com
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user reviews shared across different social networks provide granularity in users’

consumption experience. From the data mining and machine learning perspec-

tive, following three research directions were identified and considered relevant

to an efficient context-aware POI recommendation, (1) incorporation of major

contexts into a single model and a detailed analysis of the impact of those con-

texts, (2) exploitation of user activity and location influence to model hierar-

chical preferences, and (3) exploitation of user reviews to formulate the aspect

opinion relation and to generate explanation for recommendation. This disser-

tation presents different machine learning and data mining-based solutions to

address the above-mentioned research problems, including, (1) recommenda-

tion models inspired from contextualized ranking and matrix factorization that

incorporate the major contexts and help in analysis of their importance, (2)

hierarchical and matrix-factorization models that formulate users’ activity and

POI influences on different localities that model hierarchical preferences and

generate individual and sequence recommendations, and (3) graphical models

inspired from natural language processing and neural networks to generate rec-

ommendations augmented with aspect-based explanations and interpretation

of the generated recommendation.
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CHAPTER 1

INTRODUCTION

The evolution of the World Wide Web (WWW) and smart-phone tech-

nologies have played a key role in the revolution of our daily life. The service

providers (e.g., e-commerce systems, such as Amazon1, eBay2, etc.) post their

product for sale and the end users share their consumption experience via rat-

ings, tags, likes-dislikes, short tips, and reviews. Often, the end users scan

through the items they need, observe and analyze others’ consumption experi-

ence (e.g., ratings and reviews), and finally select the item that matches their

preferences. The increasing volume of information has made it overwhelm-

ingly difficult to filter and extract the information manually and locate the

items relevant to user preferences.

Fortunately, the service providers, such as e-commerce (e.g., Amazon1,

eBay2, etc.), location-based social networks (LBSNs) (e.g., Facebook3, Foursquare4,

etc.), and many others have the ability to store end users’ browsing, consump-

tion history, and several demographic attributes, correlate them with other

users’ consumption behavior and with the items in their repositories. These

systems can exploit such information for users’ preference elicitation. Some

of the systems even allow users to share explicit preferences and consumption

experiences in terms of star-ratings (e.g., rating of 5 is for best experience

and rating of 1 for worst experience), text reviews (e.g., users can write their

experience in free text or can fill out a template), likes-dislikes (e.g., users

can click on the like or dislike icon to share their experience), and tags (e.g.,

1www.amazon.com

2www.ebay.com

3www.facebook.com

4www.foursquare.com
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users can tag the items using their keywords) or tips (e.g., users can suggest

few words to recommend or not to recommend the items). The explicit pref-

erences (e.g., ratings, likes-dislikes, etc.) and implicit predictors or contexts

(e.g., songs listened, web pages accessed, social relations, spatial attributes,

demographic attributes, consumption times, item categories, aspect term pref-

erences, etc.) are the key factors used to filter relevant information and elicit

the potential interests of end users. This concept of information filtering is

the key idea behind the evolution of recommendation system that focuses on

the exploitation of explicit and implicit preference information to predict the

potential preferences of end users.

Conceptualized in early 90s [GNOT92, RIS+94, SM95], the recommen-

dation systems are already popular in many domains, such as music (e.g.,

Pandora5), movies (e.g., YouTube6), books (e.g., Amazon1), social tags (e.g.,

Facebook3), experts7, social and professional networks (e.g., LinkedIn8), dat-

ing partners9, point-of-interests (e.g., Yelp10), and products in general. Each

and every recommendation system adopt the technique that suits the features

relevant to them.

The classical recommendation systems fall under three core techniques: (1)

Collaborative filtering (CF): It builds a model from two major techniques: (a)

memory-based: it uses user-based CF (a user’s past behavior (items purchased,

selected, rated) is correlated with other users’ behavior to find similarity pref-

5www.pandora.com

6www.youtube.com

7www.aminer.org

8www.linkedin.com

9www.match.com

10www.yelp.com
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erences between users, and the items consumed by users with similar prefer-

ences are used to predict the potential preferences) or item-based CF (exploits

item-item similarity matrix and infers the likelihood of an item based on its

similarity to already consumed items), and (b) model-based: it uses available

data to build and train models which are then used to predict the preferences,

(2) Content-based filtering (CBF): It utilizes the features of an item (often

termed as a seed item) and recommends items that have similar properties to

the items previously consumed by users, and (3) Hybrid approach: It combines

both CF and CBF (e.g., a system that uses viewing and searching trends of

similar users (i.e., CF) and also the items that have features common to the

items that are rated highly by a user (i.e., CBF)). Although the classical models

are very popular, they have some limitations. The CF technique suffers from

the cold-start problem (unpredictability due to lack of user preference informa-

tion), scalability (computationally expensive when there are many user-item

entries), and data sparsity (regardless of the number of items, users rate or

review only few items and there is no explicit preference information for rest

of the items). The CBF tends to infer items similar to the seed item and lacks

variability in the recommended items.

Existing studies [AT11, ZTZX14, GZC+09] have shown that the cold-start

and data sparsity problems can be partially solved by context-aware recommen-

dation systems (CARS) which are the recommenders that incorporate different

contexts (e.g., time of the day, current location of user, social status of user,

time budget, and similar factors that have (in)direct influence on end users’

preferences) to leverage the quality of recommendations by recommending the

items that are contextually relevant and match user preferences (e.g., recom-

mending bar at evening and night is more relevant than recommending it in

the morning). The personalized recommendation systems incorporate individ-

ual user preferences because the preferences vary on items and contexts (e.g.,

3



some users might be interested in cheap items regardless of the distance but

other users might prefer near items regardless of the price, some users might

prefer good service and may be willing to pay high but others might focus on

cheap items, etc.).

Our study focuses on one of the emerging branches of recommendation,

known as Point-of-Interest (POI) recommendation which exploits the check-

in experience (e.g., POI visits), multimedia contents (e.g., review text), and

different contexts (e.g., check-in time) shared on LBSNs. Unlike the general

product recommenders, the POI domain has special features and contextual

challenges; for instance, the check-in frequencies vary across different users and

places, resulting in the sparsity of the user-location rating matrix. A check-in

activity is influenced by many contextual challenges (e.g., spatial (preferences

to a near place), social (influence of the social tie (e.g., friendship)), temporal

(influence of temporal check-in pattern (e.g., the popularity of bars is in the

evenings and nights)), categorical (similar preferences to places with the same

category), the utility of a POI regardless of the distance or cost, popularity

of POI (due to social or other impact), dynamic mobility (trend to visit new

places), promotions and coupons, popularity of a POI, locality of POI, current

time, previous check-in category, time budget, price, etc.) that can be crucial

for an efficient recommendation.

From the perspective of machine learning and data mining, we identified

three useful research directions relevant to efficient context-aware POI recom-

mendations.

1. Multi-context POI Recommendation: The user check-ins are influenced

by many factors, such as the current time, location category, social rela-

tion (e.g., friends or family), spatial (distance to POI), previous check-in,

locality, etc. Exploitation of these factors can be crucial for an efficient

recommendation; for instance, exploiting the current time of a day can
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be used to filter out the relevant POIs (e.g., better to recommend bars

at evening or night, some places might operate on specific hours or sea-

sons, etc.), the distance factor can be used to filter out distant places,

the target check-ins can vary with social factor (e.g., different prefer-

ences for family, friends, alone, etc.), unavailability of a potential pre-

ferred place can be diverted to place with similar category (e.g., visiting

a nearby cafe if the nearest coffee shop is closed), and so on. Existing

studies have shown significant improvement in recommendation qual-

ity by incorporating such contexts (e.g., geographical [YYLL11, BZM12,

WTM13, FYL13, HE13, ZC15], temporal [YCM+13, JSW+12, WTM13,

HJE13], social [YYLL11, CYKL12, FYL13, WTM13, ZC15], categorical

[BZM12, HSL14, RW13, LLAM13, ZC15], sentiment [YZYW13], popu-

larity [RW13, LLAM13]. The existing studies have not incorporated all

the major contexts in a single recommendation model. A detailed anal-

ysis of the impact of major factors (social, spatial, temporal, and the

categorical) and their incorporation for POI recommendation is a viable

research direction to explore.

2. Locality-aware POI Recommendation: The check-in behavior is contex-

tually dynamic and varies with the context, locality of visit, co-consumers,

etc. Generally, the check-ins within a geographical region are cluttered

around some centers (e.g., popular POIs) which influence the check-ins

on nearby POIs (e.g., the Empire State building has some influence on

the check-ins of nearby POIs). Similarly, users have some check-in or

activity trend (e.g., activity of a user varies by locality, item type, etc.).

The POI influence and user activity can be mapped to a joint latent space

to derive their latent features and can be exploited for POI recommenda-

tion [LZX+14, GAN15]. The contextual extension of such latent factors

is still an interesting direction to explore. The variation of contextual
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preference also implies cluttering of different preference trends in each

region. Another interesting research direction is to efficiently aggregate

the preference trends to model the locality preferences of users.

3. Explainable POI Recommendation: The end users share their consump-

tion experience via reviews. The reviews are one of the important features

of LBSNs and are helpful to elaborate opinions and share the extent of

consumption experience in terms of relevant factors of interest or aspects

(e.g., “Despite the high price of the camera, the photo quality was bad”).

Though some of the review-aware recommenders exist, most of them are

less transparent and non-interpretable (as they conceal the reason behind

recommendation). Some of the studies [SNM08, TM07, VSR09, TM12,

GJG14] have already claimed the persuasiveness of explanation for real-

world systems. To the best of our knowledge, none of the existing studies

have explored review-aware explainable POI recommendation. The ex-

plainable recommenders in other domains have coupled the influence of

all aspects. As the aspects have some influence among themselves, it is

better to model them individually. For instance, a place that is good in

“Price”category might be opposite in “Service”. A user who just cares

about the “Price”aspect might ignore some “Service”related problems.

An interesting research direction can be to separate the influence of as-

pects based on the order of aspect preference and use the aspects to gen-

erate explanation for recommendation (e.g., why is a POI recommended

to a user?).

This dissertation addressed the research topics outlined above. Concretely,

it focused on designing and developing data-driven solutions for contextual POI

recommendation, including: (1) Exploitation of contexts for personalized POI

recommendation, (2) Efficient modeling of location influence, user activity, and

locality preference for contextual POI recommendation, and (3) Extraction of
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aspect terms and aspect categories from review text to model explainable and

interpretable recommendation.

1.1 Problem Statement

This research focused on the concrete problems from each of the aforemen-

tioned directions, and presented the corresponding solutions. Specifically, the

following research problems were studied: (1) What will be the role of major

contexts (e.g., spatial, temporal, categorical, and social) in POI recommenda-

tion and what will be the impact of incorporation of all these contexts in POI

recommendation? (2) How do we incorporate the location influence, user ac-

tivity, and locality preference for POI recommendation?, and (3) How do we

extract aspect-based preferences from review text to model them for an explain-

able POI recommendation?

1.2 Contributions

This dissertation addressed the research topics outlined above. Concretely,

it focused on designing and developing data mining solutions to model the

contextual POI recommendations that incorporate the user activity, location

influence, and aspect-based explanation for the generated recommendation.

1.2.1 Contextual Point-of-Interest recommendation

The POI domain has many contexts that can have direct or indirect influence

on the check-in behavior of users. Careful selection of contexts can significantly

impact the efficiency of recommendation. In the study [BL16, BL17], we define

and analyze the fusion of different major contexts. The preference of a user u

to a location l at a time t is influenced by the check-in history of the user at

the time t. For instance, if a user’s check-in history has frequent check-ins in

Starbucks coffee shop at 2 P.M., then it is more likely that she will visit a coffee
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shop at that time in the future. This temporal aspect should be considered

while recommending some coffee (or relevant category) shops to her. If that

coffee shop is inaccessible, the user might not be surprised if a nearby cafe is

recommended. Such an affinity of the time and location category has motivated

us to incorporate them in the POI rankings. We represent the check-in history

as a graph where every location is termed as a node and the bag of 〈users, time〉

tuple is considered as its attribute. The location-location edges exist if they

have same category or are within a threshold distance. This categorical and

spatial sensitive model is inspired from the Topic-Sensitive PageRank [Hav02]

and incorporates the categorical, social, spatial, and temporal contexts to rank

the nodes. A personalized ranking relation is defined to model the preference

of a user to a POI. The evaluation on two real-world datasets (Weeplaces and

Gowalla) [LLAM13] using precision, recall, and F-Score metrics demonstrates

the efficiency of the proposed model.

1.2.2 User activity and location influence on Point-of-

Interest recommendation

We represent the locations as sequential grids of equal area, ensuring each grid

with some check-ins. The user’s influence area or activity area is defined as

the region that depicts high possibility of the appearance of the user. The

POI influence area is defined as the popularity of a POI within a grid. Our

study [BWLC16] is influenced by a Non-negative matrix factorization to de-

rive user and POI latent feature matrices, which are supplemented with the

users’ and POIs’ influence on the grids and are then contextually exploited to

generate efficient recommendation. The evaluation on two real-world datasets

(Weeplaces and Gowalla) [LLAM13] using precision, recall, and F-Score met-

rics demonstrates the efficiency of our proposed model. In the study [BILZ18],

we model the locality-based preference of user as a hierarchical structure and
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present a hierarchy aggregation technique to formulate the aggregated prefer-

ences of users and the locality trends. The extensive evaluation on two real-

world datasets (Weeplaces and Gowalla) [LLAM13] using pair F-score, diver-

sity, displacement, and NDCG metrics demonstrates significant performance

gain of proposed model over baseline models and relevant studies.

1.2.3 Aspect-based explanation of Point-of-Interest rec-

ommendation

Most of the existing recommendation systems are not interpretable because

they do not provide any explanation for the generated recommendation. An

explanation of the recommendation is essential to persuade end uesrs and hence

to maintain recommendation quality and usability. In the study [BZIL18], we

formulate three different techniques to model user reviews to generate explain-

able POI recommendation. The evaluation of our proposed model on three

real-world datasets (Yelp, TripAdvisor, and AirBnb) demonstrates its efficiency

over several baselines and relevant studies.

1.3 Summary and Roadmap

The aforementioned research problems are organized and presented as follows:

Chapter 2 presents a multi-context model for POI recommendation and also

extensively analyzes the role of different contexts on POI recommendation.

Chapter 3 presents a model that incorporates the user activity, location influ-

ence, and locality-based preference to generate POI recommendation. It also

presents a model that formulates locality-based user preferences as preference

hierarchy and presents a technique to aggregate the preference hierarchies.

Chapter 4 presents a model that extracts aspects or features from the review
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text and formulates it to generate explanation or interpretation for POI recom-

mendation. Chapter 5 presents some potential future directions and concludes

the dissertation.
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CHAPTER 2

MULTI-CONTEXT POINT-OF-INTEREST

RECOMMENDATION

The evolution of the World Wide Web (WWW) and the smart-phone tech-

nologies have played a key role in the revolution of our daily life. The location-

based social networks (LBSN) have emerged and facilitated the users to share

the check-in information and multimedia contents. The Point-of-Interest (POI)

recommendation system uses check-in information to predict the most poten-

tial check-in locations. The different attributes of check-in information, for

instance, geographical distance, category and temporal popularity of a POI,

and temporal check-in trends and social (friendship) information of a user play

a crucial role in an efficient recommendation.

In this chapter, we present a fused recommendation model termed MAPS

(Multi Aspect Personalized POI Recommender System) which fuses the cat-

egorical, temporal, social and spatial contexts into a single model. The major

contributions of this research are: (i) it formulates the recommendation prob-

lem as a graph of location nodes with constraints on the category and the

distance contexts (i.e. the edge between two locations is constrained by a

threshold distance and the category of the locations), (ii) it proposes a multi-

context fused POI recommendation model, and (iii) it extensively evaluates

the proposed model with two real-world data sets.

2.1 Introduction

The LBSNs, such as Facebook1, Foursquare2, Gowalla3, and so forth have fa-

cilitated users to share their check-in information relevant to places of interest.

1 www.facebook.com

2 www.foursquare.com

3 www.gowalla.com
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Such check-in information has been the subject of interest to predict the POIs

that are most likely to be visited in the future. Albeit, the generic recommen-

dation concept has been used for POI domain (for instance, the Collabora-

tive Filtering (CF) [LSEM12], Content Based Filtering [YSC+13], and Hybrid

approaches [YZYW13]), its special contexts have motivated the community

towards more sophisticated approaches for better results.

The frequency of check-ins varies across different users and places, resulting

in the sparsity of the user-location frequency matrix in comparison to the

user-item rating matrix in the generic systems. The check-in preference to a

near place introduces the spatial context (the distance to a POI). Though the

social context encourages to incorporate the social tie (e.g., friendship), it costs

the challenge from the unreliability of check-in information diffusion, which is

also supported by the findings from existing studies [YYL10] “only ∼ 96% of

people share < 10% of the commonly visited places and ∼ 87% of people share

nothing at all”. The temporal context depicts the temporal check-in pattern.

For instance, the popularity of the bars is in the evenings and nights. Many

other relevant factors, such as (i) the utility of a POI, regardless of the distance,

cost, (ii) the popularity of the POI (due to social or other impact), and (iii)

the dynamic mobility of a user (trend to visit new places) exist. Although the

problem is well explored [BWLC16, JSW+12, WTM13, YYLL11, YCM+13,

ZC15], incorporation of all the major contexts (the social, spatial, temporal,

and categorical) into a single model is barely explored.

2.2 Related Research

In this section, we group the relevant studies according to the context they

incorporated into their research model.
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2.2.1 Social context

Chao et al. [CML11] claimed that around 10% - 30% of human movements can

be socially influenced. They found that the influence of friendship on user’s

mobility could be around 61% and the influence of mobility on new friendship

could be around 24%. They used the Gaussian distribution with time of a

day as a parameter to model the probability distribution over the latent states

(work and home place) for a user. Contrary to the claim of Ye et al. [YYL10]

(∼ 96% of people share < 10% of the commonly visited places and ∼ 87% of

people share nothing at all), Gao et al. [GTL12] assumed that people share

their check-in activities among friends. Their model used the Hierarchical

Pitman-Yor (HPY) language model to represent the check-in pattern of a user

and has shown effective results. Although these models exploited the social

contexts, they did not focus on the temporal context of check-in activities.

2.2.2 Temporal context

Jin et al. [JSW+12] proposed a graph-based model where the following/follower

relation was realized as directed edge between user nodes. The nodes were

ranked using the topic-sensitive PageRank [Hav02]. Though they incorporated

the temporal context, other major contexts, such as geographical, categorical,

and the social contexts were not explored. Yuan et al. [YCM+13] incorporated

the spatial and temporal contexts. The prediction of a check-in to a location

was defined in terms of aggregate of visits count on that location across all the

users. The check-in time constraint was introduced for the temporal similar-

ity measure. Though the model incorporated spatial context by considering

its impact on the check-in trend, it did not define the social and categorical

contexts for recommendation. Though the matrix factorization model from
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Gao et al. [GTHL13] achieved exciting results by incorporating the temporal

contexts, however, other contexts were left unexplored.

2.2.3 Categorical context

Liu et al. [LLAM13] introduced the dependency of user’s check-in behavior

with her current location, and the implicit POI category preference based on

the categorical patterns on check-in data. They used K-means clustering al-

gorithm to group the users with similar check-in category and frequency val-

ues, and similar check-in time. The HITS [GKR98] based model from Bao et

al. [BZM12] addressed the users’ preferences and their social opinions. The

users’ location history was categorized according to the types (for instance,

shopping, restaurants, etc.). A user-location matrix was used to identify the

local experts who have the higher affinity towards a POI category, and the

experts’ social opinions were used for recommendation. Their model also did

not address the temporal context.

2.2.4 Spatial context

The First Law of Geography from Tobler [Tob70] which states “everything is

related to everything else, but near things are more related than the distant

things” is relevant to POI recommendation as well. Ye et al. [YYL10] incorpo-

rated the check-in willingness factor [Tob70], social, and spatial contexts. The

spatial influence was modeled by using Bayesian CF approach. The social con-

text was incorporated by considering a user’s friends’ check-in behavior rather

than finding similarities with all the users in the dataset. Liu et al. [LFYX13]

used the geographical probabilistic factor analysis framework that focused on

multiple factors, such as, the user check-in count, geographical influence on

POI selection, user mobility nature, and so forth. They modeled the users’
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mobility behavior by using multinomial distribution over latent regions and

different activity regions. The temporal context remained unexplored in their

model as well.

2.2.5 Other fused models

Wang et al. [WTM13] defined a heterogeneous graph with user and location

nodes and computed the nodes’ rank. The unobserved places which have the

highest rank and within a threshold distance (e.g., from user’s house) were

recommended. Yin et al. [YSC+13] exploited the POIs’ content information

(for instance, item tags or category keywords) to link the content-similar spa-

tial items. Liu et al. [LX13] incorporated the POIs’ content into users’ and

POIs’ profile and utilized the context-aware information through probabilistic

matrix factorization. Hu et al. [HE13] used topic modeling to exploit the spa-

tial and textual contexts of user posts. Cheng et al. [CYLK13] considered the

users’ movement constraint and proposed a successive personalized POI rec-

ommendation model using matrix factorization method which embedded the

personalized Markov chains and the localized regions.

Wang et al. [WYC+15] used both the users’ personal interests and the

preference of crowd (with same role, e.g., tourist or local) in the target re-

gion along with the co-occurrence pattern of spatial items and the content

(for instance, the tags and category keywords) of those spatial items. The

probabilistic generative model from Yin et al. [YZS+15] exploited the geo-

graphical, temporal, word-of-mouth, and semantic effect. Xie et al. [XYW+16]

used the geographical, temporal, and semantic contexts in their heterogeneous

graph embedding model that was based on the time decay method and was

claimed to be an efficient predictor for the user’s latest preferences. Lian et

al. [LZX+14] exploited matrix factorization to incorporate users activity area
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and POIs influence area and used the spatial clustering of users and POIs. Liu

et al. [LXP+15] used a geographical probabilistic factor model for POI recom-

mendation. Liu et al. [LLL+16] exploited the user interests and their evolving

sequential preferences with temporal interval assessment. Hu et al. [HSL14] ex-

ploited the impact of geographical neighborhood of a place on its rating. Wang

et al. [WWT+17] used the visual correlation between the places and the images

posted by users. A recent study from Stepan et al. [SMDM16] incorporated

the spatial, temporal and the social context in their recommendation model.

None of these models fused all the major contexts to generate personalized

POI recommendations.

2.3 Methodology

The PageRank [PBMW99] graph ranking model used the number and quality

of the links to a web page to estimate its importance. Its extension Topic-

Sensitive PageRank [Hav02] model introduced some bias to the PageRank vec-

tor. It incorporated the set of influential or representative (or additional context

relevant attributes) topics to address the importance of particular topics. For

a given query, it identified the most closely associated/contextual topics and

such relevant topic-sensitive (biased) vectors were used to rank the documents

satisfying the query. The convergence of PageRank is assured only if the graph

is strongly connected and aperiodic [MR10]. This becomes true if we add a

damping constant (1−α) to the rank propagation which improves the quality

of PageRank not only by limiting the effect of the rank sinks [BMPW98], but

also by assuring the convergence to a unique rank vector [Hav02].

Our model MAPS is influenced by Topic-Sensitive PageRank and the rep-

resentative topics are spatial and categorical contexts of the LBSN. The rank

of a location (l) in the context of a user (u) and a time (t) is influenced by the
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check-in history of user (u) at the time (t). For instance, if a user’s check-in

history has frequent check-ins in Starbucks coffee shop at 2 pm, then it is more

likely that she will visit a coffee shop at that time in future. This temporal

context should be taken care while recommending some coffee (or relevant cat-

egory) shops to her. If that coffee shop is inaccessible, the user might not be

surprised if a nearby cafe is recommended. Such a dual affinity of time and

location category has motivated us to incorporate the categorical and temporal

bias in the POI rankings.

Given two candidate POIs, suggesting the near one is more relevant [Tob70].

If the check-in history of a user depicts that the check-ins were made within

some distance of other check-ins, then introducing the distance constraint

might give better recommendation. MAPS uses such check-in trends to in-

corporate the spatial bias in the location ranking.

In MAPS, every location is represented as a node of a graph and the bag

of 〈user, time〉 tuple is considered as an attribute of the location node. The

location-location edges exist if they have the same category or are located

within some threshold distance. It uses the categorical and the spatial bias in

its context sensitive ranking model. The terms used in this paper are defined

in Table 2.1. The categorical sensitive PageRank for MAPS is defined as:

Πc
t1,t2

(l) = α ∗ βt1,t2(l) + (1− α) ∗
∑

(l′.cat=l.cat)

Πc
t1,t2

(l′), (2.1)

where βt1,t2(l) is the categoric sensitive factor, defined as:

βt1,t2(l) = τ1 ∗

∑
u∈U
| Vu,t1,t2(l) |∑

u∈U,l.cat=l′.cat
| Vu,t1,t2(l′) |

+ τ2 ∗

∑
u∈U,l.cat=l′.cat

| Vu,t1,t2(l′) |∑
p∈L,u∈U

| Vu,t1,t2(p) |
, (2.2)

where τ1, and τ2 are constant tuning factors. The relation 2.1 is somewhat

similar to LBSNRank [JSW+12] but the equation is specific to our approach.

Similarly, the distance sensitive rank of a location is defined as:

Πd
t1,t2

(l) = α ∗ θt1,t2(l) + (1− α) ∗
∑

(l′,l)∈E

Πd
t1,t2

(l′), (2.3)
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Terms Definition

Πa
t1,t2

(l)
rank of location l in the time range

t1, t2 using the context a

βt1,t2(l)
categoric sensitive factor of location

l in the time range t1, t2

θt1,t2(l)
distance sensitive factor of location

l in the time range t1, t2

P (u, l, t1, t2)
likelihood of checkin by user u to
location l in the time range t1, t2

Vu,t1,t2(l)
visits by the user u to the location

l, within the time interval t1, t2

dist(l1, l2) distance between locations l1 and l2

U the users in the dataset

L the locations in the dataset

l.cat category of the location l

ε the threshold distance

α the damping factor

Table 2.1: Terms used in the chapter for MAPS model

where θt1,t2(l) is the distance sensitive factor and is defined as:

θt1,t2(l) = γ1 ∗

∑
u∈U
| Vu,t1,t2(l) |∑

u∈U,dist(l,l′)≤ε
| Vu,t1,t2(l′) |

+ γ2 ∗

∑
u∈U,dist(l,l′)≤ε

| Vu,t1,t2(l′) |∑
p∈L,u∈U

| Vu,t1,t2(p) |
, (2.4)

where γ1 and γ2 are constant tuning factors. The unified rank is the fusion

of the two ranks and is defined as:

Πt1,t2(l) = ξ1 ∗ Πc
t1,t2

(l) + ξ2 ∗ Πd
t1,t2

(l), (2.5)

where ξ1 and ξ2 are tuning parameters for the two contexts.
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P (u, l, t1, t2) = Πt1,t2(l) ∗ (ψd ∗
∑
l′∈L,

dist(l,l′)≤ε

| Vu,t1,t2(l′) |

+ψc ∗
∑
l′∈L,

l.cat=l′.cat

| Vu,t1,t2(l′) |

+ψs ∗
∑

(u′,u)∈friend

| Vu′,t1,t2(l) |).

(2.6)

The likelihood of check-in of user u at location l within a time t1,t2 is shown in

Eqn. 2.6. The terms ψd, ψc, and ψs are defined using TF-IDF [SB88, WLWK08]

for each user. For a user u,

ψd =
nd
n
∗ log(1 +

N

Nd

), (2.7)

where nd is the number of visits by the user u that are within the threshold

distance ε, n is the total visits count by u, N is the number of POIs, and Nd

is the number of POIs that are within the threshold distance ε from the user’s

check-in history. For the categorial factor, we use the following relation:

ψc =
nc
n
.log(1 +

N

Nc

), (2.8)

where nc is the number of visits by the user u to the category c, and Nc is the

number of POIs with the category c. Similarly, for the social factor we define:

ψs =
ns
n
.log(1 +

N

Ns

), (2.9)

where ns is the number of visits by the user u in common to her friends, and

Ns is the number of visits in common to the friends for all the users u ∈ U .

According to the contexts used, we analyzed the performance of three dif-

ferent models, the categorical link based model (CLM) (defined in Eqn. 2.1

and Eqn. 2.2), the spatial link based model (SLM) (defined in Eqn. 2.3 and

Eqn. 2.4), and the fused model MAPS (defined in Eqn. 2.5 and Eqn. 2.6).
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2.4 Evaluation

In this section, we present the evaluation dataset, evaluation metrics, and the

results and discussion on our findings.

2.4.1 DataSet

We used the Weeplaces and the Gowalla dataset [LLAM13] which was collected

from the popular LBSNs Gowalla and Weeplaces. The statistics of the dataset

are shown in Table 2.2.

Dataset Check-ins Users Locations Links
Location

Categories
Gowalla 36,001,959 319,063 2,844,076 337,545 629

Weeplace 7,658,368 15,799 971,309 59,970 96

Table 2.2: Statistics of the dataset.

These datasets were well defined and had the attributes relevant to the con-

text of the problem, such as, (i) location category, (ii) geospatial co-ordinates,

(iii) friendship information, and (iv) check-in time. After avoiding incom-

plete records, the 5 most checked-in categories (and their check-in count)

were: (i) Home/Work/Other: Corporate/Office (437,824), (ii) Food: Cof-

fee Shop (267,589), (iii) Nightlife:Bar (248,565), (iv) Shop: Food & Drink:

Grocery/Supermarket (161,016), and (v) Travel: Train Station (152,114) for

Weeplaces, and (i) Corporate Office (1,750,707), (ii) Coffee Shop (1,063,961),

(iii) Mall (958,285), (iv) Grocery (884,557), and (iv) Gas & Automotive (863,199)

for the Gowalla dataset. The “work” or “home” related category (Home/Work/

Other: Corporate/Office) was popular from 6 am to 6 pm, with the highest

check-ins (42,019) made at 1 pm. Similarly, the “bars” had highest of 21,806

check-ins at 2 am and the lowest check-ins (15,209) at 5 am. Most of the check-
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ins were at 12 pm - 6 pm and were done either in POIs that are of “Home” or

“Work” related categories.

Figure 2.1: Impact of distance to check-in trend in Weeplaces dataset

Figure 2.1 illustrates the inverse relation of the distance to the check-in

frequency. It was obtained by plotting the distance between the chronologically

sorted consecutive check-ins of each user and the likelihood of the users’ check-

in in that distance (for ease, the distance was rounded to four decimals). The

check-ins centralized within some distance (the dense patches within 0.5 km)

illustrate the willingness to near places.

Models Precision Recall F-Score
Ye et al. [YYLL11] 0.02417 0.00095 0.00183

LBSNRank [JSW+12] 0.08496 0.00063 0.00125
Wang et al. [WTM13] 0.01818 0.00052 0.00101

CLM 0.00428 0.00024 0.00045
SLM 0.09085 0.00799 0.01468

MAPS 0.29769 0.01039 0.02008∗

Table 2.3: Average Performance of MAPS in Weeplaces dataset

Models Precision Recall F-Score
Ye et al. [YYLL11] 0.03000 0.00120 0.00230

LBSNRank [JSW+12] 0.40900 0.00300 0.00600
Wang et al. [WTM13] 0.10600 0.00200 0.00392

CLM 0.00633 0.00154 0.00247
SLM 0.25350 0.00973 0.01874

MAPS 0.35400 0.03100 0.05700∗

Table 2.4: Average Performance of MAPS in Gowalla dataset

21



2.4.2 Results and Discussions

A 5 -fold cross validation with top N (5, 10, 15 and 20) recommendation scores

was used for the precision (P), the recall (R) and the F-score (2*P*R/(P+R))

metrics.

We used α = 0.85 and the convergence was detected when the rank scores

of the nodes were not changing anymore. For each model, the tuning pa-

rameters were selected from the trials conducted with three set of parameters

((0.25:0.75), (0.5:0.5), and (0.75:0.25)). The categoric model performed best

when τ1 = 0.75 and τ2 = 0.25, and for distance model it was when γ1 = 0.75

and γ2 = 0.25. Similarly, among the three set of parameters the unified model

performed best with the categorical context weight of 0.25.

Models Precision@N Recall@N

Ye et al. [YYLL11]
@5= 0.0303
@10= 0.0230
@15= 0.0191

@5= 0.0008
@10= 0.0009
@15= 0.0011

LBSNRank [JSW+12]
@5= 0.0853
@10= 0.0848
@15= 0.4090

@5= 0.0006
@10= 0.0006
@15= 0.0030

Wang et al. [WTM13]
@5= 0.0449
@10= 0.0414
@15= 0.1060

@5= 0.0014
@10= 0.0020
@15= 0.0022

MAPS
@5= 0.2440
@10= 0.3050
@15= 0.3360

@5= 0.0045
@10= 0.0092
@15= 0.0310

Table 2.5: Precision@N, Recall@N of MAPS against other studies

The comparative performance of different models is illustrated in Table 2.3

and Table 2.4. The observed difference was statistically significant at 95%

confidence level. Table 2.5 shows the average metrics across the top 5, 10, and

15 recommended items .
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2.5 Analysis of roles of contexts

In the previous sections, we presented the analysis of check-in data based on

(a) the categorical, (b) social, (c) spatial, and (d) temporal contexts, however

we did not analyze the impact of the individual contexts. In this section, we

define and analyze the fusion of different major contexts for POI recommenda-

tion. Such a fusion and analysis is barely explored by other researchers. The

major contributions of this research are: (i) it analyzes the role of different con-

texts (e.g., check-in frequency, social, temporal, spatial, and categorical) in the

location recommendation, (ii) it proposes two fused models -a ranking-based,

and a matrix factorization-based, that incorporate all the major contexts into

a single recommendation model, and (iii) it evaluates the proposed models

against two real-world datasets.

Though some contexts might not be a sole contributor, combining them

with other contexts might positively impact the recommendation quality. The

role of above-mentioned contexts is illustrated in Figure 2.2. In the figure,

two users u1 and u2 are friends. The social impact of user u2 can influence

user u1 to the places that were visited by user u2. The spatial influence can

affect user u1 to select the nearest location among the available options. As

shown in the figure, the visit of user u1 to a “cafe” around the same hour

of days is due to temporal influence. Similarly, the categorical influence is

reflected when a coffee lover visits any place that serves coffee. There can be

additional influential factors, for instance, (i) the utility of a POI, regardless of

the distance and cost, (ii) the popularity of a POI (due to historical, cultural,

social or other impacts), (iii) the dynamic mobility of a user (trend to visit

new places), (iv) promotional offers, such as coupons, discounts, and so forth.

Though it might also be interesting to explore these factors, we defer them for

our future studies.
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Figure 2.2: Illustration of different contextual influence in LBSN

We can see that most of the existing studies are focused on the check-in

frequency and only few of them have exploited additional factors. Though the

study from Stepan et al. [SMDM16] looks more relevant to our work, two of

the major differences make our study more interesting. First, we incorporate

the location category but they did not. Second, we analyze the roles of major

contexts by combining different contexts in different fused models but their

model analyzed the role of one context at a time and only fused the contexts

in the final model. Our paper attempts to fill this gap via detailed analysis of

impact of different factors (for instance, (i) what might be the impact of using

social and temporal factors instead of spatial and temporal factors?, (ii) does

the social factor contribute more than categorical factor?, (iii) can we get better

results by having more factors?, and so on). To the best of our knowledge, none

of the existing recommendation models spanned to incorporate all the major

contexts. The exploitation of roles of different contexts and their incorporation

into a single model is the novelty of our paper. We present ranking-based and

matrix factorization-based fused models in this paper.
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2.5.1 Ranking-based approach

In this section, we present ranking-based models that fuse the categorical,

social, spatial, and temporal contexts.

1. Single context: This is based on check-in frequency (F). While it might

be possible to get several single context models, we mainly focus on

the check-in frequency because it is the basic criteria to be used for

the prediction. The other contexts mainly act like a supplement to this

context.

2. Two contexts: These models use check-in frequency along with some

other contexts. The following models are defined in this paper: (i) check-

in frequency and temporal (check-in time) (FT), (ii) check-in frequency

and social (friends) (FS), (iii) check-in frequency and location category

(FC), (iv) check-in frequency and spatial(location distance) (FD).

3. Three contexts: We combine three contexts to define following models:

(i) the check-in frequency, social, and temporal (FST), (ii) the check-in

frequency, categorical, and temporal (FCT), (iii) the check-in frequency,

spatial, and temporal (FDT), (iv) the check-in frequency, categorical,

and social (FCS), (v) the check-in frequency, spatial, and social (FDS),

(vi) the check-in frequency, categorical, and spatial (FCD).

4. Four contexts: We define the following models: (i) check-in frequency,

categorical, social, and temporal (FCST), (ii) check-in frequency, spatial,

social, and temporal (FDST), (iii) check-in frequency, categorical, spatial,

and temporal (FCDT), and (iv) check-in frequency, categorical, spatial,

and social (FCDS).

5. Five contexts (FCDST): It fuses the check-in frequency, categorical, spa-

tial, social, and temporal contexts.
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All of the models proposed in this section are based on the Topic-Sensitive

PageRank [Hav02] which can introduce some bias to the PageRank [PBMW99]

vector. The Topic-Sensitive PageRank [Hav02] is a state-of-art ranking method

for large graphs. It can incorporate the set of influential or representative (or

additional context relevant attributes) topics to address the importance of par-

ticular topics. For a given context, it can identify the most closely associated

(contextual) topics and such relevant topic-sensitive (biased) vectors can be

used to rank the documents satisfying the query. It is a good fit for us because

we can represent the users, locations, check-in relation, and social relation as a

graph and use the additional factors of LBSN to achieve personalized ranking of

user and place nodes. Similar to the web graph, we can assure the convergence

of ranking of user-location graph by adding the damping factor (1− α) to the

rank propagation. This can improve quality of PageRank not only by limiting

the effect of rank sinks [BMPW98], but also by assuring the convergence to a

unique rank vector [Hav02].

We define 16 different recommendation models. The terms used in this

section are defined in Table 2.6.

Single context

In this model, the check-in frequency of a location is solely used to define the

popularity of a location. The rank of a location is then defined as:

Πf (l) = αβf (l) + (1− α)
∑
l′∈L
l′ 6=l

Πf (l′),

βf (l) =

∑
u∈U
| Vu(l) |∑

u∈U
p∈L

| Vu(p) |
, (2.10)

where the term βf (l) is the check-in frequency personalization. The highly

ranked locations can be recommended to the users. This approach will al-

ways recommend the same set of locations to all the users because the rank
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Terms Definition

U the users in the dataset

L the locations in the dataset

uL locations visited by the user u

uf the friends of the user u

lU visitors to the location l

l.cat category of the location l

Vu(l) visit counts of user u to the location l

Vu,t1,t2(l) visit counts of user u to location l, in time range t1, t2

dist(l1, l2) distance between locations l1 and l2

Πa(l) rank of location l using the context a

Πa
t1,t2

(l) rank of location l in time range t1, t2 using the context a

βt1,t2(l) topic sensitive factor of location l in time range t1, t2

βa,b(l) topic sensitive factor of location l using the contexts a and b

P (u, l, t1, t2) likelihood of checkin by user u to location l in time range t1, t2

Ka
i constant parameters using context a

ψ+
+ weight factor estimated by TF-IDF

α the damping factor

ε the threshold distance

Table 2.6: Definition of terms used in the chapter

of a location is only dependent on the frequency of check-ins across all the

users. A better approach would be to personalize the recommendation by

using similarity of the target location to the locations already visited by the

user. The likelihood of a user u to visit a location l can be then defined as:

P f
u,l = Πf (l)∗ψlf . The term ψlf (defined later) is the weight factor which can be

estimated using TF-IDF [SB88, WLWK08]. This model favors the locations

with common visitors and assigns a non-zero, positive similarity value only to
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places with common visitors. So, in this case, the likelihood of visiting a loca-

tion will depend only on its rank. Though the common visitors count might be

used to measure the similarity between places, the places with common spatial,

temporal, or categorical trend cannot be addressed with this model.

Two contexts

In this model, two contexts are incorporated to get the following fused models:

1. Categorical (FC): This approach ameliorates the recommendation model

by incorporating the location category. The rank of a location is defined

as:

Πc(l) = αβc(l) + (1− α)
∑
l′∈L,
l′ 6=l,

l.cat=l′.cat

Πc(l′),

βc(l) = Kc
1 ∗

∑
u∈U
| Vu(l) |∑

l.cat=l′.cat
u∈U

| Vu(l′) |
+Kc

2 ∗

∑
l.cat=l′.cat

u∈U

| Vu(l′) |∑
u∈U
p∈L

| Vu(p) |
, (2.11)

where βc(l) is the categorical personalization, Kc
1 ∈ [0, 1] and Kc

2 ∈ [0, 1]

are constants. The likelihood of a user (u) to visit a location (l) is then

defined as: P c
u,l = Πc(l) ∗ ψlc, where ψlc is estimated using TF-IDF.

2. Temporal (FT): Any two locations that have same check-in hour (or

within a threshold time interval) can be more likely similar than the

ones having check-in time beyond the threshold. The rank of a location

can then be defined using the following relation:

Πt(l) = αβt(l) + (1− α)
∑
l∈L,
l′ 6=l,
l.t=l′.t

Πt(l′),

βt(l) = Kt
1 ∗

∑
u∈U
| Vu,t(l) |∑

u∈U
l′∈L

| Vu,t(l′) |
+Kt

2 ∗

∑
u∈U
l′∈L

| Vu,t(l′) |∑
u∈U
p∈L

| Vu(p) |
, (2.12)
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where βt(l) is the temporal personalization. The likelihood of check-in

for user u, in location l, at time t is then defined as: P t
u,l = Πt(l) ∗ ψlt.

3. Spatial (FD): This model is influenced by Tobler’s Law (“everything is

related to everything else, but near things are more related than the distant

things”) [Tob70]. Using this and the distance context we define the rank

as:

Πd(l) = αβd(l) + (1− α)
∑
l′∈L,
l′ 6=l,

dist(l,l′)≤ε

Πd(l′),

βd(l) = Kd
1 ∗

∑
u∈U
| Vu(l) |∑

dist(l,l’)≤ε
u∈U

| Vu(l′) |
+Kd

2 ∗

∑
dist(l,l’)≤ε

u∈U

| Vu(l′) |

∑
u∈U
p∈L

| Vu(p) |
, (2.13)

where the term βd(l) is the spatial personalization, Kd
1 ∈ [0, 1] and Kd

2 ∈

[0, 1] are constants. The likelihood of a user u to visit a location l is then

defined as: P d
u,l = Πd(l) ∗ ψld.

4. Social (FS): Generally, the social networks define the social-tie between

users (for instance, friends, followers, and so forth). Using this concept,

we formulate the impact of social relation as:

Πs(l) = αβs(l) + (1− α)
∑
u∈lU ,
u′∈uf ,
l′∈u′L

Πs(l′),

βs(l) =
∑
u∈U

(
Ks

1 ∗

∑
u′∈uf

| Vu′(l) |∑
u′∈uf
l′∈L

| Vu′(l′) |
+Ks

2 ∗

∑
u′∈uf
l′∈L

| Vu′(l′) |

∑
u∈U
p∈L

| Vu(p) |

)
, (2.14)

where βs(l) is the social personalization, Ks
1 ∈ [0, 1] and Ks

2 ∈ [0, 1] are

constants. In this model, the popularity of a location is computed by

taking into account the fraction of check-in counts it gets among the

check-in counts in the friend circle. The likelihood of a user u to visit a

location l is then defined as: P s
u,l = Πs(l) ∗ ψls.
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Three contexts

In this model, three contexts are incorporated to get the following fused models:

1. Categoric-Temporal (FCT): We define the categoric-temporal ranking as:

Πc
t1,t2

(l) = α ∗ βt1,t2(l) + (1− α) ∗
∑
l′∈L,

l′ 6=l,l′.cat=l.cat

Πc
t1,t2

(l′),

βt1,t2(l) = Kct
1 ∗

∑
u∈U
| Vu,t1,t2(l) |∑

l.cat=l′.cat
u∈U

| Vu,t1,t2(l′) |
+Kct

2 ∗

∑
l.cat=l′.cat

u∈U

| Vu,t1,t2(l′) |∑
p∈L,u∈U

| Vu,t1,t2(p) |
, (2.15)

where βt1,t2(l) is the categoric sensitive factor. The likelihood of a user

(u) to visit a location (l) is then defined as: P ct
u,l = Πc

t1,t2
(l) ∗ ψlct.

2. Socio-Temporal (FST): This model is defined by substituting the categor-

ical constraint with social constraint in the Categoric-Temporal (FCT)

model.

3. Spatio-Temporal (FDT): This model is defined by substituting categori-

cal context with spatial in the Categoric-Temporal (FCT) model.

4. Categorical-Spatial (FCD): This model uses the categorical and spatial

factors to rank the locations as:

Πd
c(l) = α ∗ βcd(l) + (1− α) ∗

∑
l′∈L,
l′ 6=l,

dist(l′,l)≤ε,
l′.cat=l.cat

Πd
c(l
′),

βcd(l) = Kcd
1 ∗

∑
u∈U
| Vu(l) |∑

u∈U
dist(l,l′)≤ε
l.cat=l′.cat

| Vu(l′) |
+Kcd

2 ∗

∑
u∈U

dist(l,l′)≤ε
l.cat=l′.cat

| Vu(l′) |

∑
p∈L,u∈U

| Vu(p) |
, (2.16)

where βcd(l) is the categoric-distance sensitive factor, Kcd
1 , and Kcd

2 are

constant tuning factors. The likelihood of a user to visit a location is

then defined as: P cd
u,l = Πd

c(l) ∗ ψlcd.
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5. Spatio-Social (FDS): The ranking of a location in terms of spatial and

social factors is defined as:

Πd
s(l) = α ∗ βsd(l) + (1− α) ∗

∑
l′∈L,

dist(l′,l)≤ε,
u′∈lU ,
l′∈u′fL

Πd
s(l
′),

βsd(l) =
∑
u∈U

(
Ksd

1 ∗

∑
u′∈uf
| Vu′(l) |∑

u′∈uf
dist(l,l′)≤ε

| Vu′(l′) |
+Ksd

2 ∗

∑
dist(l,l′)≤ε
u′∈uf

| Vu′(l′) |

∑
p∈L
u′∈uf

| Vu(p) |

)
, (2.17)

where βsd(l) is the spatio-social sensitive factor, Ksd
1 , and Ksd

2 are con-

stant tuning factors. The likelihood of a user to visit a location is then

defined as: P sd
u,l = Πd

s(l) ∗ ψlds.

6. Categorical-Social (FCS): This model can be defined by substituting the

spatial constraint with categorical constraint in the definition of Spatio-

Social (FDS) model.

Four contexts

These recommendation models have three other contexts along with the check-

in frequency.

1. Categoric-Spatial-Temporal (FCDT): In this model, the categorical, spa-

tial, and temporal contexts are incorporated into a single recommenda-

tion model. The rank of a location can then be defined as:

Πcd
t1,t2

(l) = α ∗ βcdt(l) + (1− α) ∗
∑

dist(l′,l)≤ε,
l′.cat=l.cat

Πcs
t1,t2

(l′),

βcdt(l) = K1
cdt ∗

∑
u∈U
| Vu,t1,t2(l) |∑

l.cat=l′.cat
dist(l,l′)≤ε

u∈U

| Vu,t1,t2(l′) |
+K2

cdt ∗

∑
l.cat=l′.cat
dist(l,l′)≤ε

u∈U

| Vu,t1,t2(l′) |

∑
p∈L,u∈U

| Vu,t1,t2(p) |
, (2.18)
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where βcdt(l) is the categoric-spatial-temporal sensitive factor, K1
cdt and K2

cdt

are constant tuning factors. The likelihood of a user to visit a location

is then defined as: P cdt
u,l = Πcd

t1,t2
(l) ∗ ψlcdt.

2. Categoric-Spatial-Social (FCDS): In this model, the categorical, spatial,

and social contexts are incorporated into a single recommendation model.

The rank of a location can then be defined as:

Πcs
d (l) = α ∗ βcds(l) + (1− α) ∗

∑
dist(l′,l)≤ε,
l′.cat=l.cat,

u∈lU ,
l′∈ufL

Πcs
d (l′),

βcds(l) =
∑
u∈U

(
Kcds

1 ∗

∑
u′∈uf

| Vu′(l) |∑
l.cat=l′.cat
dist(l,l′)≤ε
u′∈uf
l′∈L

| Vu′(l′) |
+Kcds

2 ∗

∑
l.cat=l′.cat
dist(l,l′)≤ε
u′∈uf
l′∈L

| Vu′(l′) |

∑
p∈L
u∈U

| Vu(p) |

)
, (2.19)

where βcds(l) is the categoric-spatial-social sensitive factor, Kcds
1 and Kcds

2

are constant tuning factors.

3. Categoric-Social-Temporal (FCST): In this model, the categorical, social,

and temporal contexts are incorporated into a single recommendation

model. The rank of a location can then be defined as:

Πcs
t1,t2

(l) = α ∗ βcst(l) + (1− α) ∗
∑

l′.cat=l.cat,
u∈lU ,
l′∈ufL ,
l′∈L

Πcs
t1,t2

(l′),

βcst(l) =
∑
u∈U

(Kcst
1 ∗

∑
u′∈uf
| Vu′,t1,t2(l) |∑

l.cat=l′.cat
u′∈uf

| Vu′,t1,t2(l′) |
+Kcst

2 ∗

∑
l.cat=l′.cat
u′∈uf

| Vu′,t1,t2(l′) |

∑
p∈L
u∈U

| Vu,t1,t2(p) |
), (2.20)

where βcst(l) is the categoric-social-temporal sensitive factor, Kcst
1 and Kcst

2

are constant tuning factors, and t1 ≤ t ≤ t2. The likelihood of a user to

visit a location is then defined as: P cst
u,l = Πcs

t1,t2
(l) ∗ ψlcst.
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4. Spatial-Social-Temporal (FDST): This model can be defined by substi-

tuting the categorical constraint with spatial constraint in the definition

of Categoric-Social-Temporal (FCST) model.

Five contexts

In this model (FCDST), all the major contexts (e.g., categorical, social, spatial,

and temporal) along with the check-in frequency are incorporated into a single

model. The categorical sensitive ranking is defined as:

Πc
t1,t2

(l) = α ∗ βt1,t2(l) + (1− α) ∗
∑

l′.cat=l.cat,
l′∈L,
l′ 6=l

Πc
t1,t2

(l′),

βt1,t2(l) = Kc
1 ∗

∑
u∈U
| Vu,t1,t2(l) |∑

l.cat=l′.cat
u∈U

| Vu,t1,t2(l′) |
+Kc

2 ∗

∑
l.cat=l′.cat

u∈U

| Vu,t1,t2(l′) |∑
p∈L
u∈U

| Vu,t1,t2(p) |
, (2.21)

where βt1,t2(l) is the categoric sensitive factor, Kc
1, and Kc

2 are constant tuning

factors.

Similarly, the distance sensitive rank of a location is defined as:

Πd
t1,t2

(l) = α ∗ θt1,t2(l) + (1− α) ∗
∑

dist(l′,l)≤ε
l′∈L
l′ 6=l

Πd
t1,t2

(l′),

θt1,t2(l) = Kd
1 ∗

∑
u∈U
| Vu,t1,t2(l) |∑

dist(l,l′)≤ε
u∈U

| Vu,t1,t2(l′) |
+Kd

2 ∗

∑
dist(l,l′)≤ε

u∈U

| Vu,t1,t2(l′) |

∑
p∈L
u∈U

| Vu,t1,t2(p) |
, (2.22)

where θt1,t2(l) is the distance sensitive factor, Kd
1 , and Kd

2 are constant tuning

factors. The unified rank is the fusion of the two ranks and is defined as:

Πt1,t2(l) = ξ1 ∗ Πc
t1,t2

(l) + ξ2 ∗ Πd
t1,t2

(l), (2.23)
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where ξ1, ξ2 are tuning parameters for the two contexts. The likelihood of

check-in for the user u at location l within the time frame t1,t2 is defined as:

P (u, l, t1, t2) = Πt1,t2(l) ∗
(
ψd ∗

∑
l′∈L,

dist(l,l′)≤ε

| Vu,t1,t2(l′) | +ψc ∗
∑
l′∈L,

l.cat=l′.cat

| Vu,t1,t2(l′) |

+ψs ∗
∑

(u′,u)∈friend

| Vu′,t1,t2(l) |
)
,

(2.24)

where the terms ψ∗ are estimated using TF-IDF.

Parameters Estimation

The parameters used in the likelihood relations are defined using TF-IDF [SB88,

WLWK08] for each user. For a user u, ψd =
nd
n
.log(1 +

N

Nd

), where nd is the

number of visits by user u that are within the threshold distance ε, and Nd is

the number of POIs that are within the threshold distance ε from the user’s

check-in history, n is the total visits made by user u, and N is the number of

POIs. For the categorical factor, we use the relation: ψc =
nc
n
.log(1 +

N

Nc

),

where nc is the number of visits by user u to category c, and Nc is the number

of POIs with the category c. Similarly, ψs =
ns
n
.log(1 +

N

Ns

), where ns is the

number of visits by a user u in common to her friends, and Ns is the number of

visits in common to the friends for all the users u ∈ U . The other parameters

are defined accordingly.

2.5.2 Matrix Factorization-based approach

After demonstrating its effectiveness in the Netflix Prize competition4, the

Matrix Factorization [KBV09] technique has been widely renowned in recom-

mendation domain. The basic factorization model attempts to predict the

user-item rating by mapping the original rating matrix into low dimensional

4http://www.netflixprize.com/
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latent factor matrices. Given rui as the rating of a user u to the item i, the

basic idea is to approximate the rating by using the lower order latent user

matrix p and latent item matrix q which can be realized as: r̂ui = qTi .pu. Basi-

cally, the entries at qi represent the extent to which the item i possesses these

factors, and the entries at pu represent the extent of preference of user u on

the items that are high on these factors. The main intuition is to minimize the

following objective function by regularizing the above relation as:

min
q,p

∑
(u,i)∈k

(rui − qTi pu)2 + λ(|| qi ||2 + || pu ||2). (2.25)

where k is the number of user-item pairs whose rating is known in the training

set, and λ is a regularization constant.

For the POI domain, the check-in frequency can be taken as an implicit

rating. Inspired from [KBV09], we extend the above relation to incorporate

additional factors as mentioned below:

r̂ui(t) = µ+ bi(t) + bu(t) + qTi [pu(t) +
∑
a∈A(u)

ya +
∑
l∈uL

xl], (2.26)

where r̂ui(t) is the estimated rating of a user u to the item i at time t, µ is

the global average rating of all places, bi(t) is the location bias at time t (the

difference of rating of location i to the average rating µ of all locations for the

visits made at time t), bu(t) is the user bias, A(u) is the set of user attributes,

and xl represent the factors of locations visited by the user.

For user attributes, we use the vector < rcat1 , rcat2 , ...., rcatk , rsoc, rdist >,

where for a user u, rcat1 =

∑
l.cat=cat1

Vu(l)∑
l′∈uL

Vu(l)
is the ratio of total check-ins made to the

places with category cat1 to that of total check-ins made on all places, rsoc =∑
l∈ufL

Vu(l)∑
l′∈uL

Vu(l′)
is the ratio of total check-ins made on the places visited due to social

influence to that of total check-ins on all places, and rdist =

∑
dist(l)≤ε

Vu(l)∑
l′∈uL

Vu(l′)
is the

ratio of total check-ins on the places within a threshold distance ε (from users

home or work place) to that of total check-ins on all places. Similarly, we use
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the vector < rcat, rsoc, rdist > for places, where rcat is the ratio of number of

check-ins made to this place to that of check-ins made to places with the same

category, rdist is the ratio of number of check-ins made to this place to that of

check-ins made in its nearby places, and rsoc is the fraction of check-ins due to

social influence of the visitors of this place. Furthermore, these attributes can

be time constrained by accounting only the check-ins within a time interval.

2.5.3 Evaluation

This section defines the dataset, analysis of the contexts, and the performance

of different models. We evaluated the ranking-based models as defined ear-

lier, Non-negative Matrix Factorization (simple) that just used the check-in

frequency, Non-negative Matrix Factorization (fused) that incorporated addi-

tional factors (see Eqn. 2.26, and three relevant models [YYLL11], [JSW+12],

and [WTM13]). For Matrix Factorization, the check-in count of every user

to a place was normalized in the range (0,10), the non-negative singular value

decomposition [BG08] was used for initialization, and up to 5,000 iterations

were observed. The hour of a day was used to analyze the temporal trend.

Dataset

The Weeplaces and the Gowalla datasets were collected from the popular LB-

SNs - Gowalla and the Weeplaces [LLAM13]. We found that the datasets were

well-defined and also had all the attributes (the location category, geo-spatial

coordinates, friendship information, and the check-in time) relevant to our

model. The incomplete records were eliminated in the analysis and evaluation.

The Gowalla dataset had records from November 2010 to June 1, 2011, and

had only 7 main location categories, so we used the well defined subcategories

instead. The statistics of the datasets is defined in Table 2.2.
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Impact of distance to the check-ins

For every user, the check-ins were chronologically sorted and the distance be-

tween consecutive check-ins of each user was computed. The likelihood of a

user to check-in at a particular distance (for convenience, the distance was

arbitrarily rounded to four decimals) was estimated by her visit history. The

inverse relation of check-in trend to the distance of POI in Weeplaces dataset

(though the trend on Gowalla dataset is not shown, it also had similar trend)

is illustrated in Figure 2.1. We can see that most of the users’ check-ins are

centralized within some distance (the dense patches within 0.5 k.m indicate

that most of the users’ had the check-ins to the near places). The figure also

shows that the willingness of check-in decreases with the increasing distance of

the location.

Distribution of check-ins based on location category and check-in

time

The top-10 visited location categories (and their check-in counts) for Weeplace

were: (i) Home/Work /Other: Corporate/Office (437,730), (ii) Home/Work

/Other: Home (306,105), (iii) Food:Coffee Shop (267,572), (iv) Nightlife:Bar

(248,563), (v) Shops: Food & Drink:Grocery Supermarket (160,913), (vi)

Travel:Train Station (152,104), (vii) Food:Cafe (129,205), (viii) Travel:Subway

(107,879), (ix) Food: American (100,174), and (x) Travel:Airport (98,183).

Similarly, for Gowalla, we had: (i) Corporate Office(1,660,159), (ii) Coffee Shop

(988,999), (iii) Mall (872,873), (iv) Grocery (820,326), (v) Gas&Automotive

(806,916), (vi) Apartment (753,547), (vii) Asian (735,453), (viii) Train Station

(680,612), (ix) Other - Food (665,229), and (x) American (634,031).

The work or home related category (Home / Work / Other: Corporate / Of-

fice) was popular from 6 am to 6 pm, with the highest check-ins (42,019) made

at 1 pm. Similarly, the “bars” had highest of 21,806 check-ins at 2 am and the
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lowest check-ins (15,209) at 5 am. Most of the check-ins were made between 12

pm - 6 pm and were in either “Home” or “Work” related categories. Figure 2.3

and Figure 2.4 illustrate the hourly distribution of top-5 categories. The loca-

tion categories are abbreviated as: HWOC = Home /Work /Other:Corporate

/Office, HWO = Home/Work/Other : Home, FCS=Food: coffee: Shop, NB =

Nightlife:Bar, SFG = Shops:Food & Drink:Grocery/Supermarket, CO = Cor-

porate Office, CS = Coffee Shop, M = Mall, G = Grocery, G&A = Gas &

Automotive.
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Figure 2.3: Hourly check-ins distribution for top - 5 categories in Weeplace
dataset

Distribution of check-ins based on place

The top 10 places (and check-in counts) for Weeplace dataset were: (1) jr

(13,769), (2) seoul (10,973), (3) san-francisco-international- airport-sfo-san-

franci (10,658), (4) starbucks -new-york (10,329), (5) new-york-penn-station-

new-york (7,809), (6) los-angeles-international- airport-lax-los-angeles (5,859),

(7) grand-central-terminal-new-york (5,668), (8) john-f-kennedy-international-

airport-jfk-queens (5,360), (9) whole-foods-new-york (4,562), and (10) station-
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Figure 2.4: Hourly check-ins distribution for top - 5 categories in Gowalla
dataset

utrecht-centraal-utrecht (4,227). Similarly the top 10 places (and check-in

counts) for Gowalla5 dataset were: (1) 55033 (28,414), (2) 19542 (19,996), (3)

66171 (19,186), (4) 9410 (18,542), (5) 58725 (18,457), (6) 23519 (18,136), (7)

10259 (17,397), (8) 9246 (15,909), (9) 155746 (15,640), and (10) 10190 (14,127).

Distribution of check-ins based on user

The check-in count of top-10 users in Weeplace dataset were: 1) thadd-fiala

(6,517), (2) boon-yap (5,573), (3) eric-andersen (5,394), (4) sandro-pigoni

(5,055), (5) john-lyons (4,963), (6) bob-boles (4,560), (7) hillary-lannan (4,342),

(8) nate-folkert (4,289), (9) jason-allen (4,279), and (10) rue (4,237). Similarly,

for the Gowalla dataset, the top-10 users were: 1) 84414 (45,375), (2) 213489

(44,960), (3) 269889 (44,726), (4) 27125 (41,017), (5) 30603 (33,851), (6)9298

(32,791), (7) 114774 (32,347), (8) 5153 (29,075), (9) 76390 (28,636), and (10)

5The Gowalla place id is numeric.
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28509 (28,194). The hourly check-in distribution of top-5 visitors is shown

in Figure 2.5 and Figure 2.66.

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

thadd-fiala boon-yap eric-andersen sandro-pigoni john-lyons

hours

c
h

e
c
k

-i
n

 c
o

u
n

t
s

Figure 2.5: Hourly check-in distribution of top - 5 users in Weeplace dataset
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Figure 2.6: Hourly check-in distribution of top - 5 users in Gowalla dataset

Distribution of check-ins based on hour of a day

The hourly distribution of check-in counts are shown in Table 2.7. We present

the hours of a day as in the range 0 to 23.

6The Gowalla user id is numeric.
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Hours 00 01 02 03 04 05 06 07
D1 396,066 353,423 316,200 274,667 224,824 199,217 206,555 210,419
D2 1593,460 1,404,780 1,178,790 981,032 870,534 896,153 932,948 941,970

Hours 08 09 10 11 12 13 14 15
D1 185,940 170,621 196,994 240,939 305,864 332,520 328,622 362,591
D2 887,360 925,178 1,116,408 1,294,830 1,445,426 1,569,247 1,691,046 1,886,372

Hours 16 17 18 19 20 21 22 23
D1 448,212 469,033 428,219 404,414 380,106 378,907 416,496 430,522
D2 2,143,873 2,260,887 2,153,428 1,971,677 1,808,640 1,691,609 1,677,072 1,682,730

Table 2.7: Hourly check-in distribution for D1 = Weeplaces and D2 = Gowalla
dataset.

Experimental Results

We used a 5 - fold cross validation and considered top N (5, 10, 15 and 20) rec-

ommendation scores to compute the precision (P = |true positive|
|true positive|+|false positive|),

recall (R = |true positive|
|true positive|+|false negative|), and F-score (2*P*R/(P+R)) metrics.

Though the goal of this paper is just to exploit the role of different contexts

and not to compare the ranking based models with matrix factorization based

models, we still illustrate the performance of these models in this section.

The average performance of different models is illustrated in Table 2.8 and Ta-

ble 2.9. The average metrics across the top@N recommendations are illustrated

in Table 2.10 and Table 2.11.

Experimental setup

We used Python 2.77, Pandas 0.19.18, and Networkx 2.09 in a 24 core 2.40

GHz Intel(R) Xeon(R) CPU E5-2430L v2 CPU, 32 GB RAM, and a Scientific

Linux release 6.5 (Carbon) for development and evaluation.

7https://www.python.org

8http://www.pandas.pydata.org

9https://www.networkx.github.io
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Models Precision Recall F-Score
F 0.067110 0.001175 0.002308

FC 0.003000 0.002140 0.002498
FS 0.064100 0.001900 0.003690
FT 0.026957 0.001804 0.003381
FD 0.035578 0.001100 0.002134

FCT 0.050933 0.000993 0.001948
FDT 0.091116 0.008065 0.014818
FCD 0.046334 0.001258 0.002449
FCS 0.079333 0.001683 0.003297
FDS 0.078166 0.002966 0.005716
FST 0.066260 0.007533 0.013528

FCST 0.094066 0.007700 0.014234
FDST 0.090636 0.006667 0.012420
FCDT 0.094166 0.008556 0.015687
FCDS 0.094166 0.008566 0.015704

FCDST 0.297690 0.010390 0.020080
Ye et al. [YYLL11] 0.024170 0.000950 0.001834
Jin et al. [JSW+12] 0.084969 0.000639 0.001268

Wang et al. [WTM13] 0.018180 0.000520 0.001010
Simple Matrix
Factorization

0.012747 0.044715 0.019838

Fused Matrix
Factorization

0.330390 0.021793 0.040888∗

Table 2.8: Average performance of fused models in Weeplaces dataset

Parameter Analysis

We observed that the greater value of α resulted in slow convergence, had

more impact from the inbound links, and had more evenly distributed impact

to the nodes on outgoing links. This means the places with more visitors

could be impacted with the higher value of α. We used α = 0.85 which is

a standard value for most graphs. The convergence was detected when the

rank scores of the nodes were not changing anymore. The distance threshold

ε was set to 1 k.m., which was simply based on the observation of the spatial

check-in pattern of the users. For each model, the tuning parameters were

selected from random trials conducted with three set of parameters ((0.25:0.75),

(0.5:0.5), and (0.75:0.25)). The categorical module performed best when Kc
1
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Models Precision Recall F-Score
F 0.099857 0.001523 0.003000

FC 0.006370 0.001970 0.003009
FS 0.100708 0.004261 0.008176
FT 0.032011 0.002529 0.004687
FD 0.047063 0.001446 0.002806

FCT 0.061397 0.001591 0.003102
FDT 0.102230 0.009005 0.016552
FCD 0.048900 0.002438 0.004644
FCS 0.083138 0.003764 0.007202
FDS 0.078144 0.003884 0.007401
FST 0.078210 0.007611 0.013872

FCST 0.107462 0.008802 0.016271
FDST 0.124064 0.010270 0.018970
FCDT 0.129663 0.021236 0.036495
FCDS 0.106753 0.009580 0.017582

FCDST 0.354013 0.031066 0.057120
Ye et al. [YYLL11] 0.030000 0.001200 0.002307
Jin et al. [JSW+12] 0.409000 0.003000 0.005956

Wang et al. [WTM13] 0.106000 0.002000 0.003925
Simple Matrix
Factorization

0.014614 0.042218 0.021712

Fused Matrix
Factorization

0.392227 0.038130 0.069503∗

Table 2.9: Average performance of fused models in Gowalla dataset

was 0.75. This implies the higher importance of the categorical popularity of

a place than that of the popularity of the category. In other words, though

the categorical factor can be influential, places with same category might have

different popularity. For instance, one coffee shop might dominate the coffee

business of a community. The spatial module performed best when Kd
1 was

0.75. This implies the popularity of a location in its locality is of higher

importance than the popularity of the whole locality itself. In other words, all

places within a community may not have similar popularity. The five context

model performed best when ξ1 was 0.25. The weights for other modules were

selected accordingly. The observed difference was statistically significant at

95% confidence level.
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F FC FS FT FD
Precision@N
@5= 0.100573
@10= 0.055769
@15= 0.044989

Recall@N
@5= 0.002856
@10= 0.000304
@15= 0.000364

Precision@N
@5= 0.002380
@10= 0.002441
@15= 0.004200

Recall@N
@5= 0.001790
@10= 0.001635
@15= 0.003000

Precision@N
@5= 0.044900
@10= 0.041400
@15= 0.106000

Recall@N
@5= 0.001400
@10= 0.002000
@15= 0.002300

Precision@N
@5= 0.029053
@10= 0.029693
@15= 0.022126

Recall@N
@5= 0.001052
@10= 0.002170
@15= 0.002190

Precision@N
@5= 0.025729
@10= 0.030010
@15= 0.051000

Recall@N
@5= 0.000890
@10= 0.000982
@15= 0.001340

FCT FDT FCD FCS FDS
Precision@N
@5= 0.042800
@10= 0.045000
@15= 0.065000

Recall@N
@5= 0.000840
@10= 0.000860
@15= 0.001279

Precision@N
@5= 0.090850
@10= 0.091100
@15= 0.091400

Recall@N
@5= 0.007990
@10= 0.008100
@15= 0.008106

Precision@N
@5= 0.037000
@10= 0.045000
@15= 0.057000

Recall@N
@5= 0.000824
@10= 0.000950
@15= 0.002000

Precision@N
@5= 0.077000
@10= 0.079000
@15= 0.082000

Recall@N
@5= 0.001700
@10= 0.001100
@15= 0.002251

Precision@N
@5= 0.067500
@10= 0.079000
@15= 0.088000

Recall@N
@5= 0.001500
@10= 0.003500
@15= 0.003900

FST FCST FDST FCDT FCDS
Precision@N
@5= 0.052100
@10= 0.067790
@15= 0.078880

Recall@N
@5= 0.005910
@10= 0.007990
@15= 0.008700

Precision@N
@5= 0.091200
@10= 0.094000
@15= 0.097000

Recall@N
@5= 0.007600
@10= 0.007600
@15= 0.007900

Precision@N
@5= 0.090330
@10= 0.090700
@15= 0.090880

Recall@N
@5= 0.006560
@10= 0.006660
@15= 0.006760

Precision@N
@5= 0.091100
@10= 0.093500
@15= 0.097900

Recall@N
@5= 0.008210
@10= 0.008490
@15= 0.008970

Precision@N
@5= 0.091100
@10= 0.093500
@15= 0.097900

Recall@N
@5= 0.008227
@10= 0.008493
@15= 0.008980

FCDST [YYLL11] [JSW+12] [WTM13]
Fused Matrix
Factorization

Precision@N
@5= 0.244000
@10= 0.305000
@15= 0.336000

Recall@N
@5= 0.004500
@10= 0.009200
@15= 0.031000

Precision@N
@5= 0.030300
@10= 0.023020
@15= 0.019180

Recall@N
@5= 0.000800
@10= 0.000900
@15= 0.001160

Precision@N
@5= 0.085300
@10= 0.084800
@15= 0.409000

Recall@N
@5= 0.000610
@10= 0.000610
@15= 0.003000

Precision@N
@5= 0.0449
@10= 0.0414
@15= 0.1060

Recall@N
@5= 0.0014
@10= 0.0020
@15= 0.0022

Precision@N
@5= 0.291260
@10= 0.31995
@15= 0.375890

Recall@N
@5= 0.019793
@10= 0.021992
@15= 0.022651

Table 2.10: Precision@N, Recall@N of different models in Weeplace dataset

Results and Discussion

1. We compared the performance of different models using the Precision,

Recall, and F-Score metrics. From the evaluation (see Table 2.8 - 2.9),

we observed that the fused models performed better than just the simple

check-in frequency-based model. We can see that the quality of recom-

mendation not only relied on the number of contexts fused, but also on

the importance of the contexts fused.
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F FC FS FT FD
Precision@N
@5= 0.176573
@10= 0.057000
@15= 0.066000

Recall@N
@5= 0.003721
@10= 0.000462
@15= 0.000387

Precision@N
@5= 0.004897
@10= 0.005972
@15= 0.008231

Recall@N
@5= 0.000993
@10= 0.001940
@15= 0.002970

Precision@N
@5= 0.044595
@10= 0.05771
@15= 0.19982

Recall@N
@5= 0.003542
@10= 0.003820
@15= 0.005422

Precision@N
@5= 0.029820
@10= 0.031877
@15= 0.034337

Recall@N
@5= 0.001577
@10= 0.002878
@15= 0.003133

Precision@N
@5= 0.037864
@10= 0.038882
@15= 0.064443

Recall@N
@5= 0.000721
@10= 0.000858
@15= 0.00276

FCT FDT FCD FCS FDS
Precision@N
@5= 0.041983
@10= 0.05121
@15= 0.091000

Recall@N
@5= 0.000899
@10= 0.001776
@15= 0.002100

Precision@N
@5= 0.081100
@10= 0.09335
@15= 0.13224

Recall@N
@5= 0.006998
@10= 0.007763
@15= 0.012254

Precision@N
@5= 0.04470

@10= 0.045000
@15= 0.057000

Recall@N
@5= 0.001556

@10= 0.0019823
@15= 0.003776

Precision@N
@5= 0.069971
@10= 0.088221
@15= 0.091223

Recall@N
@5= 0.003349
@10= 0.003622
@15= 0.004322

Precision@N
@5= 0.063310
@10= 0.081130
@15= 0.089993

Recall@N
@5= 0.002331
@10= 0.004112
@15= 0.005211

FST FCST FDST FCDT FCDS
Precision@N
@5= 0.070000
@10= 0.075510
@15= 0.089110

Recall@N
@5= 0.007100
@10= 0.007137
@15= 0.008598

Precision@N
@5= 0.093117
@10= 0.113750
@15= 0.115520

Recall@N
@5= 0.008001
@10= 0.008773
@15= 0.009633

Precision@N
@5= 0.098883
@10= 0.110020
@15= 0.163290

Recall@N
@5= 0.009921
@10= 0.009631
@15= 0.011260

Precision@N
@5= 0.083621
@10= 0.11713
@15= 0.18824

Recall@N
@5= 0.008114
@10= 0.013361
@15= 0.042235

Precision@N
@5= 0.086640
@10= 0.099910
@15= 0.133710

Recall@N
@5= 0.007763
@10= 0.009977
@15= 0.011001

FCDST [YYLL11] [JSW+12] [WTM13]
Fused Matrix
Factorization

Precision@N
@5= 0.199120
@10= 0.34181
@15= 0.521000

Recall@N
@5= 0.030000
@10= 0.03101
@15= 0.031992

Precision@N
@5= 0.029000
@10= 0.029000
@15= 0.033000

Recall@N
@5= 0.001277
@10= 0.001190
@15= 0.001198

Precision@N
@5= 0.403000
@10= 0.405000
@15= 0.419000

Recall@N
@5= 0.002900
@10= 0.003000
@15= 0.003100

Precision@N
@5= 0.091000
@10= 0.109100
@15= 0.117900

Recall@N
@5= 0.001970
@10= 0.001900
@15= 0.002200

Precision@N
@5= 0.339992
@10= 0.399227
@15= 0.435961

Recall@N
@5= 0.032054
@10= 0.037000
@15= 0.045000

Table 2.11: Precision@N, Recall@N of different models in Gowalla dataset

2. The frequency-based model had good precision in both datasets but the

recall was quite low. This is because it relied on the common visitors to

the locations. Besides the common visitors, other contexts also play a

major role in the check-in behavior. As this model ignored those contexts,

it had many false negatives.

3. The categorical model could not do as expected. This might be due to

the avoidance of the spatial context. Though places are of same category,
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the farther location would be less likely to be visited. The spatial model

also could not perform well. The evaluation shows that the combination

of categorical and social or the categorical and spatial gives better result.

4. The social model was found to be best among the models with two con-

texts. It’s performance was better in Gowalla dataset because it is bigger

and has lots of friendship relation.

5. It is better to select the social or temporal model if an additional context

beyond check-in frequency is to be incorporated.

6. The combination of the spatial and temporal (FDT) contexts was found

to be the outperforming among the counterparts. The combination of

categorical and social contexts (FCS) were found to be better than the

combination of categorical and the spatial (FCD) contexts.

7. The combination of categorical and the temporal contexts (FCT) per-

formed worse than the combination of the social and the temporal con-

texts (FST).

8. Based on the evaluation, we can see that it is better to select the spatio-

temporal (DT) model if we need to incorporate just two contexts. Though

the categoric-spatio-social (CDS) slightly outperformed the categoric-

spatio-temporal (CDT) in Weeplace dataset, the case was opposite with

Gowalla dataset. It is better to select the categoric-spatio-temporal

(CDT) or categoric-spatio-social (CDS) model if we need to incorpo-

rate just three contexts. The inconsistent performance of FDST among

two datasets also indicates that the social relation may not always be a

reliable factor for recommendation. This can also be due to the noisy

social links (people with non-matching preferences being in a social tie).

9. The category context only works as a good supplement to the other

models (FCD performs better than FD, FCST performs better than
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FST, FCDS performs better than FDS, and FCDST performs better

than FDST) but is not a sole contributor for the good result. So, if we

have to opt out an context, then the category context could be the right

choice.

10. The FCDST model not only outperformed all of our ranking-based fused

models, but also outperformed the relevant fused models proposed in

other studies. It also bet the normal matrix factorization-based model

(with five latent factors). This is because we had rating matrices of

∼98.5% sparsity. FCDST model incorporated more contexts than all of

those fused models. This implies that an efficient fusion of the major

contexts can improve the recommendation quality.

11. The performance of simple matrix factorization-based model was better

when more latent factors were used (we found the model with latent

factor 5 performed better than the models with latent factor of 2 and 3).

The performance improvement was not that significant with more than

5 factors. The matrix factorization-based fused model (see Eqn. 2.25)

performed better with the increasing latent factors (performance with 5

latent factors was better than 2 and 3 latent factors) and also slightly

outperformed the FCDST model.

12. The single context model has better execution time because of the simple

graph and rank formulation. The FCDST model’s better result costs

the execution time because unlike other models, it needs to separately

compute the spatial and the categorical based ranking to get the unified

rank. The computational cost of matrix factorization-based fused model

increased with the number of latent factors.
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2.6 Conclusion and Future Work

We formulated the personalized POI recommendation using multiple contexts.

We also analyzed the impacts of different contexts (the categorical, spatial,

social, and temporal) in POI recommendation. We fused different major con-

texts to get different recommendation models and analyzed the impact of the

major contexts. We also fused all the major contexts into a single recommen-

dation model and demonstrated that it can perform better than other fused

models. The analysis of the combination of the contexts and the multi-context

recommendation model with reasonable performance gain is a novel touch in

the relevant area. There are certain limitations of the linearly fused models,

for instance, the selected weights of different factors in the linear fusion may

be inconsistent across different sets of training, validation, and testing data

sets. Inappropriate selection of weights might introduce unnecessary bias in

the model. There are many interesting directions to explore, for instance,

the analysis of different other factors (for instance, the utility of POI), other

datasets, and different other models.
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CHAPTER 3

USER ACTIVITY AND LOCATION INFLUENCE ON

POINT-OF-INTEREST RECOMMENDATION

The maturity of the smartphone and the World Wide Web (www) technologies

have driven many social network applications which have facilitated people to

share text and multimedia contents. The social networks that facilitate users to

share the check-in (location visit) information are known as the location-based

social networks (LBSN)s and provide various information for a recommenda-

tion problem that spans beyond the user-location ratings, and comments, for

instance the time of the check-in, the category of the Point-of-Interest (POI),

the distance of POI from the user’s home, the user’s friends’ visit to that

place, and so forth. It’s worthwhile to explore and efficiently integrate such

information for the desired purpose. A POI recommendation system uses a

user’s historical check-in information from LBSNs and different contexts to

recommend a list of places that are potentially preferable.

Many of the existing POI recommendation systems have focused on either

of the temporal (time of the check-in), the geographical/spatial (distance be-

tween check-in locations), or the social (friendship, and trust based) contexts.

Incorporation of all the major contexts (the categorical, the geographical, the

social, and the temporal) of check-ins into a single model is barely explored

by other studies. In this paper, we propose a fused model termed GeoTeCS

(Geographical Temporal Categorical and Social) for personalized location rec-

ommendation. GeoTeCS uses the matrix factorization technique to fuse the

major check-in contexts into a recommendation model. The contributions of

this chapter are: (i) it proposes a matrix factorization based location recom-

mender that incorporates all the major contexts -the categorical, the geograph-

ical, the social, and the temporal contexts into a single model and (ii) it exten-

sively evaluates the proposed model against two real-world datasets Gowalla
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and Weeplaces. We also present an extension of this study that is focused

on modeling the locality-based hierarchical preferences to generate contextual

Point-of-Interest sequence recommendation.

3.1 Introduction

The LBSNs, such as Facebook1, Foursquare2, Gowalla3, and so forth have fa-

cilitated the users to share their check-in behavior accompanied by the multi-

media contents. The analysis of such check-in information has been an interest

for effective prediction in the location recommendation domain. Though some

success has been achieved using the check-in frequency and the generic recom-

mendation approaches, the better results of recent studies have motivated the

community towards the incorporation of the major contexts of the check-in

behaviors.

The role of multiple contexts makes the POI recommendation domain spe-

cial than other domains. Unlike the traditional recommendation problems,

the visit frequency can vary across different users and places, resulting in the

sparsity of the user-location frequency matrix. The user’s affinity towards the

nearby locations adds the constraint of the spatial context in this domain.

Although most of our daily activities are highly influenced by our society, its

impact on the check-in trends is not always reliable. For instance, the research

[YYL10] has shown that only ∼ 96% of people share < 10% of the commonly

visited places and ∼ 87% of people share nothing at all. This unreliability

of check-in information diffusion piles up the challenge for the social context

incorporation. Similarly, the temporal popularity (time of the check-in) of a

1https://www.facebook.com

2https://www.foursquare.com

3https://www.gowalla.com
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Figure 3.1: Impact of different contexts in check-in trends

place is also another major context. For instance, the bars are more popular

in the evenings and the nights. So, relying on just one or two major factors

might not be enough for an efficient recommendation.

The Figure-1 illustrates the influence of the categorical, the social, the

spatial and the temporal influences in the check-in trend of the users. The

figure shows a friendship relation between the users u1 and u2. The social

context can influence the user u1 to visit the places that were already visited

(or recommended) by his friend (u2). The user (u1) has check-in(s) at the

coffee shop at 1 pm. The temporal context may influence the user to visit

the same (or other) coffee shop(s) at the same time (of a day). The categorical

context is reflected if the user visits other places that serve coffee. For instance,

most of the shops that serve a breakfast serve the coffee too. The users have

preference to the nearest locations [YYLL11]. There are many shops that serve

coffee in the afternoon, but the user prefers the nearest one (spatial influence)

(for instance, the shop at distance d1 is preferred than the farthest ones (at

distance d2, and d3)).

There are many other relevant factors, such as, (i) the utility of a POI,

(ii) the popularity of the POI (due to the social or other impacts), (iii) the
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trend of visiting new places, and so forth, which can influence the check-in

trend. For instance, users might plan to visit popular places regardless of their

distance. The utility of a service is defined in terms of preference of attributes

of a service. For instance, if a user is a hiking enthusiast, then she may hike

places that are far from her house. The trend to visit new places can influence

a user to visit places that might be far, might not have been visited by her

friends, and might be of different location type than her past visits. An efficient

incorporation of all such major contexts can be challenging as well as beneficial

for a good POI recommendation system.

Though the POI recommendation problem is a special area, the tech-

niques used in generic recommendation systems have been explored for POI

domain too. For instance, many of them are based on the popular concepts

such as, the Collaborative Filtering (CF) [ZCXM09, LSEM12], the Content

Based Filtering [YSC+13], and the Hybrid [YZYW13] approaches. Albeit, the

POI recommendation is a well explored topic (temporal [YCM+13, JSW+12,

WTM13, HJE13, BL16], geographical [YYLL11, BZM12, WTM13, FYL13,

HE13, LZX+14, HSL14, ZC15, BL16], social [YYLL11, CYKL12, FYL13, WTM13,

ZC15, BL16], categorical [BZM12, HSL14, RW13, LLAM13, ZC15, BL16], sen-

timent [YZYW13], popularity [RW13, LLAM13]), to our knowledge, the incor-

poration of all the major contexts (the categorical, social, spatial, and temporal)

into a single model is not well explored. The main beauty of GeoTeCS is the

fusion of all those major contexts into a single efficient recommendation model.

The rest of the chapter is organized as follows: Section 3.2 describes the rel-

evant studies in this area, Section 3.3 describes the methodology of GeoTeCS,

Section 3.4 presents the evaluation of our proposed model, Section 3.5 presents

the locality-based hierarchical preferences, and Section 3.5.4 presents the con-

cluding remarks of the chapter.
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3.2 Related Research

This sections presents the related studies by grouping them according to the

approach they used to design their research model.

3.2.1 Simple similarity-based approaches

The spatial context has been defined in Tobler’s First Law of Geography

[Tob70], (“everything is related to everything else, but the near things are

more related than the distant things”). Based on this, Yuan et al. [YCM+13]

designed a model with the spatial and the temporal context. They used the

cosine similarity measure to identify the users’ with similar check-in profiles.

They defined the recommendation score for a user-location tuple in terms of

the aggregate of the visits count on that location over all the users in the

dataset. This was further time constrained by considering only the check-ins

that were made in the same location and at the same check-in time. They

experimentally claimed that the willingness of a user to visit a location has an

inverse relation to the distance from the user’s current location. Though their

evaluation favored their model, their research didn’t address the social, and

the categorical contexts.

The social and the spatial contexts were fused in the study from Ye et

al. [YYLL11]. They also used the willingness factor and the weighted cosine

similarity measure to compare the user profiles for the recommendation. The

categorical and the temporal contexts were not explored in their proposed

model.

3.2.2 Graph-based approaches

The usage of link analysis has been proposed by Jin et al. [JSW+12] in their

personalized PageRank [Hav02] based model. They represented the LBSN as
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a graph with the users as the nodes, and the users’ following/followers link as

the directed edges. The model used the personalized PageRank algorithm to

compute the rank of the users with respect to a location and a time range. The

personalized factor for the (user, location (p), time (t1 : t2)) tuple was defined

as the ratio of the number of check-ins for the tuple to the number of check-

ins for the (location (p), time (t1 : t2)) tuple across all the users. They also

used similar approach to define the rank of a location within a time interval.

Though they incorporated the temporal context, they ignored the geographical,

categorical and social contexts.

Wang et al. [WTM13] defined the problem as a graph with the users

and the locations as the graph nodes, the friendship relation as the user-user

edges, and the user-location relation as the user-location check-in edges. The

friendship based similarity was computed by starting from the target user and

by ranking all the users (that formed the user-user link). This was followed

by the ranking of all the places visited by those users. The locations with the

highest rank value and within a given distance from the past visits of the users

were recommended. Their model also ignored the location category context.

3.2.3 Matrix approximation-based approaches

Ding et al. [DJLS07] explored the user-item recommendation problem using

the label information propagation. The label propagation is similar to the

random walk technique [JS02]. They proposed a learning framework based on

the Green’s function and applied that to estimate the missing ratings in the

user-item rating matrix. In the case of a graph of pairwise similarities, the

Green’s function can be realized as the inverse of the combinatorial Laplacian.

Given the item similarity matrix W, the propagation takes from the labeled

data (i.e., items with ratings) to the unlabeled data. The computation of the
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missing rating was realized as the linear influence propagation. For instance,

given the rating from a user as yT0 = (1, 4, ?, ?, ?, 7), the estimation of the

missing values was made using the influence propagation and was defined as

y = Gy0, where the term G was the Green’s function that was obtained from

the user-item graph. The rating prediction was then defined as RT = GRT
0 ,

where R0, is the incomplete user-item rating matrix.

Shao et al. [SWLO09] also used the Green’s function as the basis for the

linear influence propagation to compute the missing values in the user-music

preference matrix for their music recommendation system.

Recently, the matrix factorization models have caught considerable atten-

tion due to their scalability and accuracy, which was demonstrated in the

seminal research from Koren et al. [KBV09]. Generally, such models learn

the low-rank representations (also referred as latent factors) of the users and

the items from the user-item rating matrix, which are further used to predict

new scores between the users and the items. The non-negative matrix factor-

ization (NMF) approach has attracted the attention of many research areas.

Li et al. [LD13] have defined the usage of NMF methods for clustering (for

instance, co-clustering, semi-supervised clustering, consensus clustering) and

have explained the potential directions of NMF.

Recently, some notable studies in POI recommendation have exploited the

fused matrix factorization. Cheng et al. [CYKL12] proposed FMMGM (fused

matrix factorization with MultiCenter Gaussian model) that used the Multi-

center Gaussian model (MGM) to fuse the geographical and the social contexts

of POI recommendation. The MGM relied on the following assumptions: (i)

the check-in locations usually clutter around several centers, and (ii) the prob-

ability of a user’s visit to a location is inversely proportional to the distance

from its nearest center. The FMMGM adopted the Gaussian distribution to

model the users’ check-in behavior. The users’ check-ins to a location were
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sorted based on the check-in frequency and then clustered into centers or re-

gions. All other visited locations within a threshold distance from such centers

were considered in the model. If the ratio of the total check-ins (by all the

users) in such a region to the total check-ins (from all users to all the places)

was greater than a threshold, then those check-ins locations were assumed as

a valid region. The likelihood of a user visiting a location was then defined in

terms of the aggregated normalized check-in frequency in each center and the

normalized probability of the location belonging to that center.

Their fusion framework was a combination of the likelihood of a location

belonging to a center (region), and the preference of the user (u) to that

location (l). This was defined as: Pul = P (Ful).P (l | Cu), where the term

P (Ful) ∝ UT
uLl was obtained by using the user topic matrix U and the location

topic matrix L obtained from the factorization of the user-location frequency

matrix. Though the experimental results were in favor of the fused social and

spatial contexts, the model didn’t incorporate the categorical and the temporal

contexts.

Lian et al. [LZX+14] proposed the GeoMF which used the factorization

model along with the spatial clustering with the two-dimensional kernel den-

sity estimation. The locations were divided into grids and the influence of users

and locations on those grids were computed. A user’s activity or influence area

was determined by grid locations l ∈ L where the user had check-ins. The POI

influence area was defined in terms of the collection of locations in grid l ∈ L

to which the influence of this POI could be propagated. The prediction model

used the factorized user topic matrix, location topic matrix, user activity ma-

trix and location influence matrix. The fused model was claimed efficient but

the impact of categorical, temporal and social contexts remained unexplored.

The GeoMFTD model from Griesner et al. [GAN15] extended the GeoMF

model from Lian et al. [LZX+14] to fuse the spatial and the temporal influence
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but still didn’t incorporate other major contexts for the recommendation. For

the temporal context, on each POI i, they computed the average time spent

by each user to reach the POI j (j ∈ gl, where gl is the lth geographical

grid/region) from the POI i. This was computed for every user who had at

least one check-in at POI i and another (more recent) check-in at the POI j

into gl. The average of such time (tgli ) for the POI i and all the collocated

POIs in the grid gl for each of the users was computed. The temporal context

was addressed by incorporating the temporal coefficients to the POI influence.

Although this model outperformed the traditional ones, it did not incor-

porate the social and categorical contexts. Furthermore, we think that the

check-in time to a POI is as relevant as the time that one spends traveling

to that POI or the time that was spent in that particular POI. So, GeoTeCS

defines the temporal context as the check-in time to a location and uses this

as the basis of the temporal popularity of a location.

3.3 Methodology

The matrix factorization method is one of the most popular methods in the

recommender systems. It characterizes both items and users by vectors of

factors inferred from the user-item rating matrix. The high correspondence

between the item and the user factors leads to a recommendation. The basic

idea is to map both the users and the items to a joint latent factor space of

dimensionality f, which gives the way to model or define the user-item inter-

actions in terms of the inner products in that space. The factor matrices are

approximated (for instance by using the gradient descent or by other relevant

approaches) to have minimal reconstruction error.

Given the user factor matrix U=[u1,u2, ...,um] ∈ Rlxm and the item factor

matrix V= [v1,v2, ...,vn] ∈ Rlxn, the approximation of the rating matrix R

57



can be achieved by the multiplication of the low rank factors and can be defined

as: R ≈ UTV. Due to the sparseness of the rating matrix R, only the observed

ratings in the matrix R can be factorized to define the objective function of

the form:

min
U,V

1

2

m∑
i=1

n∑
j=1

Iij(Rij −UT
i Vj)

2, (3.1)

where the term Iij ∈ [0, 1] is an indicator function where Iij = 1 only if the user

ui has a rating for the item vj. The problem of overfitting can be addressed

by regularizing Eqn. (1) as:

min
U, V

1

2

m∑
i=1

n∑
j=1

Iij(Rij −UT
i Vj)

2 +
λ1
2
‖ U ‖2F +

λ2
2
‖ V ‖2F , (3.2)

where the constants λ1>0, λ2>0 and ‖ . ‖F is the Frobenius norm.

According to this concept, each item i is associated with a vector qi ∈ Rf

and each user u is associated with a vector pu ∈ Rf . The resulting dot product

(qTi .pu) defines the preference of the user u to the item i. This gives the

approximation of the user u’s rating on the item i, which is denoted by rui,

and the estimate is defined as: r̂ui = qTi .pu. Often, such model is related to the

singular value decomposition (SVD), whose conventional variant is undefined

when the knowledge about the matrix is incomplete and is highly prone to

over-fitting, if only few known entries are incorporated. Usually, the factor

vectors (pu and qi) are learned from some objective function by minimizing

the regularized squared error on the set of the known ratings. The generic

objective function can be defined as:

min
q, p

∑
(u,i)∈k

(rui − qTi pu)
2 + λ(‖ qi ‖2 + ‖ pu ‖2), (3.3)

where, k is the set of the user-item (u,i) pairs for which the rating/score (rui)

is known and the constant λ is used to control the extent of the regularization.

Many recommendation systems have used the matrix factorization on top of

the collaborative filtering because the matrix factorization provides flexibility
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Terms Definition

R
user-location check-in

frequency matrix R∈ RM×N

P user’s latent matrix, P∈ RMxK

Q location’s latent matrix Q∈ RNxK

AT the transpose of the matrix A

‖ . ‖F Frobenius norm

gl a location grid

Fu friends of the user u

ru,i rating from user u to item i

xltu,i

activity/influence of the user u in
location i at

time t, given the grid gl

Pu set of locations visited by user u

Put set of locations visited by user u at time t

Lu
POIs Pu mapped to the visited areas

on the grids;Lu ∈ L

yli influence of the location i to the grid gl

ylti
influence of the location i to the grid gl

at time t

nltu
visit frequency of the user u to the grid gl

at time t

σ the standard deviation

K(.) the standard normal distribution

d(l1, l2)
geographical distance function between

two locations l1 and l2

λ the regularization constant

α, β tuning parameters

Table 3.1: Terms used in the paper
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in terms of bias (for instance, the various data contexts and other application-

specific requirements). This facilitates GeoTeCS to incorporate this approach

to fuse the major contexts into a single recommendation model.

GeoTeCS is a weighted matrix factorization based model and is inspired

from the relevant studies [LZX+14, KBV09, GAN15, Kor10, HKV08]. The

incorporation of major contexts makes our model advanced than the studies

from Lian et al. [LZX+14] and Griesner et al. [GAN15]. The terms used in

this paper are defined in the Table- I. Given a user-location check-in frequency

matrix (R) of dimension M×N , it maps the users and the locations into a joint

latent space of dimension K � min(M,N) in a way that a user’s preference

to a location can be defined as the inner product between them in the latent

space. The approximation of the frequency matrix can be achieved by solving

the following optimization problem:

min
P,Q
‖ R−PQT ‖2F , (3.4)

where the terms P and Q are the user and location latent matrices. The gener-

alization error can be reduced by using the following variant of the optimization

function:

min
P,Q
‖W � (R−PQT ) ‖2F +λ(‖ P ‖2F + ‖ Q ‖2F ), (3.5)

where the Hadamard operator (�) represents the element wise matrix multi-

plication and W is a binary weighted matrix with wui ∈ {0, 1}, and is 1 only

if there is at least one check-in by the user u to the location i.

The basic idea behind GeoTeCS is to divide the check-in locations into L

grids or regions (gl such that L = {g1, g2, ...., gL }). The division can be done

either by using the Haversine Formula (which gives the great circle distances

between two points using their geo-co-ordinates) or simply by dividing the

distance into equal regions (based on the latitude value or based on the density

of the check-ins). GeoTeCS realizes the locations as the sequential grids of
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equal area ensuring each area has location with some check-ins. Along with

the two-factor matrices, the users’ influence and the POIs’ influence are also

incorporated into the grids. The user’s influence area or activity area is defined

as the region/area which depicts high possibility of the appearance of the user.

The POI influence area is defined as the popularity of a POI within a grid.

We assume that the influence areas of the POIs have the normal distribution

centered at them. The POI influence area is represented by a non-negative

vector y ∈ RL
+, where the term yli is the influence of the location i to the grid

gl and is defined as:

yli =
1

σ
K(

d(i, l)

σ
), (3.6)

where K(.) is the standard normal distribution and the term σ is the standard

deviation of the distance between the locations in the grid.

There can be some locations with the same category as the location i and

still not explored in the past. This may not necessarily indicate the negative

preference to this location. As already explained in the Figure 3.1, the locations

with the same category might have potential visits. Similarly, if there are some

locations in the vicinity that have a check-in time similar to the location i, then

their temporal popularity might make them potential POIs too. Such temporal

and the categorical bias can be incorporated by extending the POI influence

relation (of Eqn. 3.6) and can be defined as:

ylti = yli +
1

| gl |
∑
l′∈gl

(Cα ∗ yl′i + T β ∗ yl′i ), (3.7)

where C ∈ {1, 0} and is 1 only if the two locations (l, l’ ) are of the same

category, T ∈ {1, 0} and is 1 only if the check-in time of the two locations

are within some threshold (4T , we assume the same hour of a day). When

none of these is satisfied, we have ylti = yli (only the spatial context). The

terms α and β are tuning parameters. This relation defines the integration of

the categorical and the temporal context in the popularity of a location. The

61



location’s influence area can then be defined in terms of a non-negative vector

y ∈ RL
+, where the term yl,ti ∈ y is the influence of a location i at the time t,

to the location grid gl ∈ L.

Similarly, the activity of a user in a given location can be defined using the

location grids. The basic idea is to dissipate the check-in history among the

grids and to find the activity of the user in those grids. The estimated density

of a user u at a POI i can be defined as:

1

| Pu | σ
∑
j∈Pu

K(
d(i, j)

σ
), (3.8)

where Pu is the set of locations visited by the user u and the σ is the standard

deviation of the distances previously visited by the user.

The user’s activity can then be defined in terms of a non-negative vector

x ∈ RL
+, where the term xl,tu,i ∈ x is the influence of a user u to the location i

at the time t, with respect to the locations belonging to the grid/region gl ∈ L.

As the user’s visit is influenced by the social context, we integrate the

influence of all the friends while computing the influence of a user. The user’s

activity vector x can then be defined as:

xtu,i =
1

| Put |
∑
l∈Lu

nltu
σ
K(

d(i, l)

σ
) +

∑
u′∈Fu

1

| Pu′t |
∑
l′∈L′u

nltu′

σ′
K(

d(i, l′)

σ′
). (3.9)

Using the POI influence area and the user’s influence area, the optimization

problem can be redefined as:

min
P,Q, X

‖W � (R−PQT )−XYT ‖2F +λ(‖ P ‖2F + ‖ Q ‖2F ) + γ ‖ X ‖2F .

(3.10)

The term γ is used to control the sparsity across the user-location-grids. The

dimension of X and Y matrices is dependent on the number of location grids

L � min(M,N), so we have X ∈ RM×L and Y ∈ RN×L. We have | T | copies

of X and Y matrices, where each copy represents one of the time slot t ∈ T .
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The preference matrix can then be defined by integrating these factor ma-

trices and can be defined as:

R̂ = PQT + XYT , (3.11)

where P and Q are the user topic and the location topic matrices, and X and

Y are the user’s activity and the location influence matrices respectively.

Using the factorized matrices P, Q and the influential matrices X and Y,

the estimated preference of a user u, to the location i at the time t is then

defined as:

pu,i,t = PuQ
T
i + Xu,tY

T
i,t, (3.12)

3.4 Evaluation

This section presents the details of the dataset, the metrics used for evaluation,

and the findings and detailed discussions on them.

3.4.1 DataSet

The Weeplaces and the Gowalla dataset [LLAM13], which was collected from

the popular LBSNs Gowalla and Weeplaces was used for evaluation. These

datasets are well defined and had all the attributes (the location category, the

geo-spatial co-ordinates, the friendship information, and the check-in time) rel-

evant to the model. The incomplete records were eliminated in the evaluation.

The statistics of the dataset is defined in the Table 3.2. The Gowalla dataset

had only 7 main location categories, so we used the well defined subcategories

instead.

The 5 most checked-in location categories are listed in Table 3.3. The work

or home related category “Home / Work / Other: Corporate / Office” was

popular from 6 am to 6 pm, with the highest check-ins (42,019) made at 1
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Attributes Gowalla Weeplaces

Checkins 36,001,959 7,658,368

Users 319,063 15,799

Locations 2,844,076 971,309

Social links (undirected) 337,545 59,970

Location Categories 629 96

Table 3.2: Statistics of the dataset

Gowalla Weeplaces

Corporate Office (1,750,707)
Home / Work / Other:

Corporate / Office (437,824)

Coffee Shop (1,063,961)
Home / Work /

Other:Home (306,126)

Mall (958,285) Food:Coffee Shop (267,589)

Grocery (884,557) Nightlife:Bar (248,565)

Gas & Automotive (863,199)
Shops:Food & Drink:Grocery

Supermarket (161,016)

Table 3.3: Top -5 visited location categories (and their check-ins count)

Figure 3.2: Impact of distance to check-in trend in Weeplaces dataset
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Models Precision Recall F-Score
Ye et al. [YYLL11] 0.02417 0.00095 0.00183

LBSNRank [JSW+12] 0.08496 0.00063 0.00125
Wang et al. [WTM13] 0.01818 0.00052 0.00100

FMFMGM 0.06549 0.00487 0.00906
GeoMFTD 0.09415 0.00676 0.01261
GeoTeCS 0.29800 0.01546 0.02939∗

Table 3.4: Average Performance of GeoTeCS and other models in Weeplace
dataset

pm. Similarly, the bars had highest of 21,806 check-ins at 2 am and the lowest

check-ins (15,209) at 5 am. Most of the check-ins were at 12 pm to 6 pm and

were in either home or work related categories.

We also analyzed the impact of distance on the check-in behavior. For ev-

ery user, the check-ins were chronologically sorted and the distance between

consecutive check-ins of each user was computed. The likelihood of a user to

check-in at particular distance (for convenience, the distance was arbitrarily

rounded to four decimals) was estimated by her visit history. Figure 3.2 il-

lustrates the inverse relation of check-in trend to the distance of the POI in

Weeplaces dataset4. We can see that most of the users’ check-ins are central-

ized within some distance (the dense patches within 0.5 km indicate that most

of the users’ had the check-ins in the near places). The figure shows that the

willingness of check-in decreases with the increasing distance of the location.

3.4.2 Results

GeoTeCS was evaluated using 5-fold cross-validation. The precision (P), the re-

call (R) and the F-score (2*P*R/(P+R))) metrics for the top N recommended

items (we considered four cases, (i) top 5, (ii) top 10, (iii) top 15, and (iv)

top 20 items with the highest recommendation score) were used. The process

was repeated with three sets of values for α:β (0.25:0.75, 0.5:0.5, 0.75:0.25).

4though the trend on Gowalla dataset is not shown, it also had similar trend
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Models Precision Recall F-Score
Ye et al. [YYLL11] 0.03000 0.00120 0.00230

LBSNRank [JSW+12] 0.40900 0.00300 0.00600
Wang et al. [WTM13] 0.10600 0.00200 0.00392

FMFMGM 0.07220 0.00800 0.01440
GeoMFTD 0.09900 0.01570 0.02710
GeoTeCS 0.38477 0.03410 0.06264∗

Table 3.5: Average Performance of GeoTeCS and other models in Gowalla
dataset

Models Precision@N Recall@N

Ye et al. [YYLL11]
@5= 0.03030
@10= 0.02300
@15= 0.01910

@5= 0.00080
@10= 0.00090
@15= 0.00100

LBSNRank [JSW+12]
@5= 0.08530
@10= 0.08480
@15= 0.40900

@5= 0.00060
@10= 0.00060
@15= 0.00300

Wang et al. [WTM13]
@5= 0.04490
@10= 0.04140
@15= 0.04070

@5= 0.00140
@10= 0.00207
@15= 0.00220

FMFMGM
@5= 0.05900
@10= 0.06800
@15= 0.08700

@5= 0.00489
@10= 0.00687
@15= 0.00873

GeoMFTD
@5= 0.07719
@10= 0.08947
@15= 0.11578

@5= 0.00641
@10= 0.00824
@15= 0.00924

GeoTeCS
@5= 0.28400
@10= 0.36500
@15= 0.38800

@5= 0.00950
@10= 0.00920
@15= 0.02770

Table 3.6: Precision@N, Recall@N of GeoTeCS against other studies

When computing the POI influence region (refer Eqn. (7)), the best result was

achieved when the categorical factor (α) was set to 0.25 and the temporal fac-

tor (β) was set to 0.75. The hourly time slot was used to compare the check-in

hours. We compared the performance of the following fused models: (i) model

from Ye et al. [YYLL11], (ii) LBSNRank [JSW+12] (iii) the model from Wang

et al. [WTM13], (iv) FMMGM, (v) GeoMFTD, and (vi) GeoTeCS. The com-

parative performance of the different models is illustrated in the Table 3.4 and

Table 3.5 The comparison of average precision, recall measure across top 5,
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10, 15 recommendation scores for Weeplaces dataset is illustrated in Table 3.6.

From the evaluation, we can see that GeoTeCS consistently outperforms the

relevant models. Based on this evaluation, we claim that the efficient inte-

gration of the major contexts of check-in behavior results in a more accurate

recommendation.

3.5 Locality-based influence on hierarchical preferences

The POI preference of a user varies by locality, item type, and the co-visitors,

e.g., user1 and user2 can have closest preference on food items but not on his-

toric sites, etc. A locality can have different preference trends (e.g., popular

for food, recreation, etc.) and a user’s preference can span across multiple

such trends. A good recommender should also exploit the aggregated local-

ity preference trends. Most of the existing studies group items by category

or global user preferences which might not be relevant for locality-based ag-

gregated preferences. We propose a model termed as HiRecS (Hierarchical

Contextual Location Recommendation System) that formulates user prefer-

ences as hierarchical structure and presents a hierarchy aggregation technique

for POI recommendation. The top level of locality hierarchy contains preferred

k items from a set of users and the subsequent levels contain preference wise

subsets. The core contributions of this research are: (i) it formulates user

preferences as a preference hierarchy, presents a technique to aggregate pref-

erence hierarchies of a similar users, and models the target users’ preference

in terms of aggregated trend in a locality, (ii) it contextually exploits the ag-

gregated trend to generate personalized POI sequences, and (iii) it extensively

evaluates the proposed model with two real-world datasets and demonstrates

performance gain (0.03 - 0.28 on pair F-score, 0.006 - 5.91 on diversity, 0.0349

- 17.51 on displacement, and 0.114 - 0.289 on NDCG) over baseline models.
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The POI (also referred as location) recommenders exploit explicit check-

in information and some implicit contexts [YCM+13, ZC15, BL16, XNL+17,

XLLZ17] to generate a list of POIs that are relevant to user preferences. Gen-

erally, most of the POI recommenders recommend a single POI or a list of

POIs [YCM+13, ZC15, BWLC16, BL16, BL17, AK17] that satisfy the per-

sonalized user preferences. However, the user preferences are contextually dy-

namic, for instance a user might prefer historical sites when she visits one

locality and might prefer religious sites in another locality, similarly she might

prefer one set of POIs when she is with family and another set of POIs when

with her friends. Figure 3.3 illustrates the dynamic preferences of users. The

user u1 has the closest match with u2 and u3 for religious sites (item type1),

with u2 and u6 for food (item type3). The user u2 has no match with u1 for

recreational sites (item type2). Such a locality-based contextually dynamic

preferences are not easily captured if we model preferences globally.

We address the contextual and locality preferences by modeling user prefer-

ences based on regions they have visited. The exploitation of such a contextual

and locality-based influence on user preferences is still a viable problem. Tra-

ditional systems design categorical hierarchy of items or globally categorize

users and items based on the consumption experience. However, the extensive

hierarchical relation can be difficult to obtain, complex in structure (e.g., it is

not only the categorical attribute that defines user preferences and the global

preference of users can have many constraints and patterns which may not be

represented by simple hierarchies, on the other hand locality-based preference

hierarchies are smaller, confined to a locality, and are simple in structure),

difficult to model (e.g., it is difficult to handle extensive preference hierarchies

in efficient and scalable manner), and computationally expensive.

Unlike the traditional categorical hierarchy of items or global consumption-

based extensive hierarchy, we represent the user preferences as locality-based
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hierarchical structures, where the preferences of users are modeled on each

locality/region and are represented as hierarchical structures. We define the

contextual preference-based hierarchical structure, and exploit it to generate

POI sequence recommendation. The top level of hierarchy contains the k pre-

ferred items of a set of users and the lower levels contain preference wise subsets

(e.g., the top level can contain a set of preferred items to a user, the second

level can distinguish the items by social context, i.e. preferable for visit with

friends or preferable for visit with family, etc.). We perform region/locality-

based separation of hierarchy to represent a semantically coherent set of POIs

that have a similar trend of user preferences. For a target user, the closest

matching k clusters of former visitors in a locality are discovered. The hier-

archical preferences of each cluster are generated. As a user’s preferences can

overlap across multiple sets of preferences, we define a hierarchy aggregation

technique to aggregate the preference hierarchies of top-k clusters that are sim-

ilar to the target user. The aggregated hierarchy is contextually traversed to

generate the recommendation.

The main contributions of this research are: (i) it models the user locality

preferences as hierarchical structure, (ii) it presents a hierarchy aggregation

technique to model the aggregated preferences of multiple sets of users in a

locality and contextually exploits the aggregated hierarchy for POI sequence

recommendation, and (iii) it demonstrates the efficiency of proposed model

using pair F-score, diversity, displacement, and NDCG metrics on two real-

world datasets.

The contextual preference hierarchy formulated by our model can be of

potential interest for many real-world applications, such as:

1. Personalization: The contextually aggregated hierarchy represents the

personal preferences of users. The hierarchy can be traversed to track

the personalized preferences at different levels (e.g., the top level of the
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hierarchy can represent preference on ”Food”, the lower level can repre-

sent preference on specific food item).

2. Preference-based association mining: We can define the association of

items which match the preferences of similar users at different levels

of hierarchy. The hierarchy can be exploited to mine association rules

[BL97, HPK11]. The top level of hierarchy can be used to extract generic

rules, such as: “20% of users who visited a Restaurant are most likely

to visit a Coffee Shop”, and the lower level of hierarchy can be used

to extract specific rules, such as “10% of users who visited “Townhouse

Grill” (a specific restaurant) are most likely to visit the “Starbucks” (a

specific coffee shop)”.

3. Question answering: The hierarchical structure can be adapted to a ques-

tion answering system in an interactive environment. The initial input

can be applied to the root of the hierarchy and the interaction can pro-

ceed by matching the user inputs with the levels of hierarchy.

4. Recommendation System: The preference-based hierarchy can be ex-

ploited for contextual and personalized recommendation system. The

contexts can be applied to the hierarchy in order to reach the best match-

ing leaf node and to find the best item. Our study presents the applica-

tion of contextual hierarchy to generate POI sequence recommendation.

5. Knowledge Discovery: The preference-based relation between user-user,

user-item, and item-item can be extracted by comparing their relevant

hierarchies.

6. Clustering of POIs and users: The common preferences of users and items

extracted from the hierarchy can be used to cluster users and items. For

instance, cluster of users who prefer recreational sites, cluster of users
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Figure 3.3: User locality preferences

who prefer religious sites, cluster of POIs popular in evening, cluster of

POIs popular for food, etc.

7. Preference-based comparison: The hierarchical structure can also facili-

tate comparison of consumption and preference information of different

users. For instance, the check-in information of users can be represented

as trees which can be used to compare and analyze the consumption

experience of users.

Most of the existing studies exploited collaborative filtering [YXYG16],

apriori principle [YXYG16], topic-modeling [LCX+14], tree-based [ZLWS15],

matrix factorization [GLX+11], and neural networks [BILB18]. The model

from Wang et al. [WLC+16] handled crowd constraints (e.g., peak hours of

POIs) by extending the Ant Colony Optimization algorithm. The ranking

model [JQMF16] personalized travel sequences in different seasons by merg-

ing textual data and viewpoint information extracted from images but ignored

social and temporal preferences. Lim et al. [LCLK17] exploited geo-tagged

images and contexts, such as visit duration, users’ preferences, and start/end

POIs to define time-based user preferences but ignored the categorical, tem-
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poral, and social constraints. A probabilistic model [COX16] used Rank-SVM

to rank the items and used Markov model to predict the transition between

POIs. Most of the existing studies have exploited few contexts and have fo-

cused on personalized POI visit durations. To the best of our knowledge, none

of the previous studies have exploited locality-based hierarchical preference

aggregation for contextual POI sequence generation.

3.5.1 Methodology

This section defines the relevant preliminary concepts and the proposed model.

Preliminaries

In this subsection, we define the preliminary concepts used in this paper.

1. Context: A context (e.g., current time, POI distance, etc.) of a check-

in represents the current and previous scenarios which have (in)direct

influence on the selection of next POI and can be represented as a high

dimensional vector.

2. Context-aware POI sequence: Given a set of contexts C = {c1, c2, ..., ci},

our objective is to predict a sequence of POIs relevant to the given con-

text and user preferences. For a user u, we define the travel history

as an ordered sequence Hu = (V1, V2, ..., Vn), where the check-in triplet

Vi = (li, ai, di) indicates the location (li), arrival time (ai) to li, and the

departure time (di) from the location li.
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ST (i) =
1

| U |
∑
u∈U
Vu∈Hu
Vu.l=i

1

| Vu,i |
∑
l∈Vu,i

(dl − al)

=
1

| U |
∑
u∈U
Vu∈Hu
Vu.l=i

1

| Vu,i |
∑
l∈Vu,i

(al+1 − TT (l, l + 1)− al). (3.13)

3. Visit duration of POI: The stay time or visit duration of a POI is defined

by the time spent on the POI. The average visit stay time (ST) of a POI

i is the average time spent by all visitors and is defined as in Eqn. 3.13.

The term U is the set of all users, Vu,l is the set of visits made by the

user u to location l, TT(a,b) is the travel time between POI a and POI

b. We use a log-normal distribution to compute the travel time between

two POIs visited consecutively. The stay time is [0,1] normalized using

min-max normalization and is represented as ST ′(i).

We define the user interest to a place in terms of an aggregate of stay time

(AST) to that place. This term, in turn, relies on the visit frequency, stay

time to that place, and the stay time to the places of the same category:

AST (u, i)cat = (1− α) ∗ S(u, i) + α ∗ C(u, i)
∑
l∈Vu

l.cat=i.cat

ST ′(l)

V ′u,l
, (3.14)

where Vu is the set of visits by user u, l.cat is the category of location l,

Vu,l is the set of visits by user u to location l, V ′u,l =
|Vu,l|
|Vu| is the normalized

visit count of user u to location l, and 0 ≤ α ≤ 1 is a constant tuning

factor used to balance the impact of stay time on a place and that of the

places with same category, and can be obtained by using the fraction of

check-ins that are of same category as location i (see Sec. 3.5.3 for more

detail). The term S(u, i) = ST ′(i)
V ′u,i

, if | Vu,i |> 0 and S(u, i) = 0 otherwise,

is the contribution of historical check-ins. The term C(u, i) = 1∑
l∈Vu

l.cat=i.cat

1
, if u has
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check-ins on category i.cat and C(u, i) = 0 otherwise is the categorical

contribution to the stay time. Similarly, using the social impact, the

average stay time on a location i can be defined as:

AST (u, i) = (1− ψ1) ∗ AST (u, i)cat + ψ1 ∗ G(Fu)
∑
k∈Fu

AST (k, i)cat,

G(Fu) =
1

| Fu |
if | Fu |> 0, G(Fu) = 0, otherwise, (3.15)

where Fu denotes the set of friends of user u, 0 ≤ ψ1 ≤ 1 is a tuning factor

to model the social impact, and can be estimated using the fraction of

check-ins of the user u that are common to her friends (see Sec. 3.5.3 for

further detail). The average stay time by a user u to a location category

‘cat’ can be defined as:

AST (u)cat = (1− γ1) ∗ (
∑
i∈Vu

i.cat=cat

AST (u, i)cat) + γ1 ∗ (
∑
j∈Fu
k∈Vj

k.cat=cat

AST (j, k)cat),

(3.16)

where 0 ≤ γ1 ≤ 1 is a tuning factor estimated using the fraction of

check-ins of user u that are common to her friends and have category

‘cat’. ASTcat is the aggregate of average stay on the category ‘cat’ from

all users and AST tcat gives the measure for time t.

4. Preference score of POI: Given a user u, her preference score (PS) for

a place l at time t is composed of the historical check-ins, categorical

contribution, and the average stay time:

PS(u, l, t) = β ∗ {(1− θ) ∗ P(u, l)∗ | Vu,l,t | +θ ∗ Q(u, l)
∑
l′∈L

l′.cat=l.cat

| Vu,l′,t |
| Vu,l′ |

}

+ (1− β) ∗ AST (u, l), (3.17)

where Vu,l,t is the set of visits made by user u to location l at time t, L

is the set of all locations, 0 ≤ θ ≤ 1 can be estimated as in Eqn. 3.14,
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and 0 ≤ β ≤ 1 is a tuning factor (see Sec. 3.5.3 for detail). The term

P(u, l) = 1
|Vu,l|

, if | Vu,l |> 0 and P(u, l) = 0 otherwise, is the contribution

from historical check-ins. The term Q(u, l) = 1∑
l∈Vu

l.cat=i.cat

1
, if ∃Vu,l ∧ l.cat =

i.cat and Q(u, l) = 0 otherwise, is the categorical contribution. This

relation addresses the trade-offs between visit frequency and stay time,

which is crucial to reward the preferred check-ins with low frequency but

reasonable stay time. The relations defined above incorporate categorical

and social contexts and can handle the cold-start items (items with no

check-ins) and cold-start users (users with no check-ins) to some extent.

The generalized preference PS(l, t) is derived from above relation by

considering the visit frequencies and stay time of all the visitors of this

location at time t. A consolidated preference score is defined to address

the trade-off between constraints (e.g., travel time, distance, etc.) and

preference score:

P (u, l, t) = PS(u, l, t) ∗ (1− 1

m

m∑
i=1

Constrainti(l, p)), (3.18)

where Constrainti(l, p) is a normalized numeric measure of ith constraint

between the users’ current location p and the target location l. For in-

stance, the spatial constraint is the measure of distance between locations

p and l which is min-max normalized by using the distance traveled by

any user to reach location l from any other location.

3.5.2 System architecture

Figure 3.4 shows the block diagram and Figure 3.5 shows the high-level overview

of the proposed model. The core functionalities of the model are:

1. Location profile creation: A location profile is a concatenation of the

category vector 〈cat1, cat2, ..., cati〉, distance vector 〈dist1, dist2,..., distj〉,
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Figure 3.4: Block diagram of the proposed model
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Figure 3.5: High level overview of the proposed model
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and time vector 〈time1, time2, ..., timek〉. The vectors’ value is defined by

the vector type, e.g., the index of element cat1 is set to 1(0) if the place

is (is not) of category cat1, index of time1 has the frequency of check-ins

made at time time1 on this place, and index of dist1 has the number of

check-ins to this place when the previous place was dist1 distance far from

it. The vectors are normalized (see Sec. 2a for normalization approach)

before concatenation. We use hourly variants for time and five variants

(i.e., 1 Km, 2 Km, 5 Km, 10 Km, and more than 10 Km) for distance.

2. User Profile creation: The user profiles are created using the historical

check-in information of the users.

(a) Single user profile creation: A user profile is a concatenation of

feature vectors as in the location profile. It contains the relevant fre-

quency, for e.g., the term cat1 represents the number of user check-

ins to category cat1, etc. The individual features are weighted ac-

cording to user preferences. For e.g., a user might have more affinity

for the distance of places rather than price, etc. We use the check-in

counts and the frequency counts of a feature to calculate the pref-

erence of features. The preference of a user on feature fi is defined

as pref(u, fi) = |Vu|
φ(u,fi)

, where | Vu | is the total visits made by the

user u and φ(u, fi) is the count of unique feature fi from all visits

of u. For e.g., if all of the 100 check-ins of a user are made to 100

different categories, then there is no repetition of the category and

the categorical preference is 100/100 = 1. However, if the check-ins

are on 50 different categories, then some categories are preferred

and repeated, hence the user has some categorical preference (here

100/50 = 2). As the variants for a feature might be different (for

e.g., there might be 20 variants for place category, 24 variants (i.e.

hourly) for check-in time, 4 variants (single, family, friends, couple)
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for social feature, etc.), the preference-weighted feature vectors are

normalized (we use min-max normalization) before concatenation.

(b) User group profile creation: The user group/cluster profile is an

aggregation of all users’ profile in the group. It is an aggregated

preference of its members on all the features and represents the

preferences of the group. As we use soft clustering of users, the

preference of a user to a group/cluster should be taken into account.

Given a group G ={(u1, w1), (u2, w2), ..., (um, wm) }, where each pair

represents a user’s profile and the preference of user to the group

G, the aggregated profile P(G) is defined as:

P(G) =
1

m
(
w1

w
u1 +

w2

w
u2 + ...+

wm
w
um), (3.19)

where wi is the fraction of check-ins from ui that contribute to the

group G, and w =
m∑
i=1

wi. As user preferences vary by regions, we

define user clusters for each region and the preferences of users on

the regions are incorporated accordingly.

3. Geographical clustering: Inspired from the relevant studies [LZX+14,

BILZ18, BWLC16, BIM19], we divide the check-in locations into L uni-

form grids such that L ={g1, g2, ..., gL}. We use Haversine Formula

(it gives the great circle distances between two points using their geo-

coordinates) to create regions which can contain overlapping sets of lo-

cations.

4. Clustering of visitors in each region: The visitors of each region are clus-

tered to represent the users with similar check-in preferences and most

likely with similar preference on order of features. We use soft clus-

tering to incorporate dynamic user preferences which are not captured

by a single cluster. We adopt the Gaussian mixture model to define a
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probabilistic model for cluster membership of each object xi as:

p(xi | K) =
K∑
k=1

πkgk(xi), (3.20)

where the term gk(xi) = N (xi | µk,Covk) is the Gaussian distribution

with mean µk and covariance matrix Covk, πk is the weight of kth mixture

component,
∑
k

πk = 1, and K is the number of clusters. Each of the

Gaussian distribution component represents a locality of user activity,

and the mean value denotes the latitude and longitude of the locality

center. The centers can be user’s home, office, or her favorite place.

The parameters of the model and the membership can be determined by

maximizing the following relation:

l(K) =
n∑
i=1

log(p(xi | K)) (3.21)

We use the Expectation-Maximization (EM) algorithm to achieve the

above objective. The Expectation step evaluates the responsibility using

initial parameters as:

γki =
πkgk(xi)
K∑
k=1

πkgk(xi)

, (3.22)

where γki is the responsibility of item xi to cluster k and i = 1, 2, ..., n.

The Maximization step re-estimates parameters using the responsibilities

computed in expectation step:

µ′k =
1

nk

n∑
i=1

γki xi,

Cov′k =
1

nk

n∑
i=1

γki (xi − µMLE)(xi − µMLE)T ,

π′k =
nk
n
, (3.23)

where nk =
n∑
i=1

γki , µMLE = 1
n

n∑
i=1

xi, and we repeat until convergence.
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5. Target user and user cluster similarity: The user clusters (see Sec. 2b) are

used to capture the location preferences of users. For a target user who

visits a region, the top-k matching clusters’ profiles are used to represent

her preferences and can be used to recommend relevant places in the

region. A cosine similarity is intuitively used to find the top-k matching

clusters for a target user uj.

similarity(uj, Ck) =

n∑
i=1

uj,i ∗ Ck,i√
n∑
i=1

u2j,i

√
n∑
i=1

C2
k,i

, (3.24)

where Ck,i is the ith term from the vector for cluster Ck and uj,i is the ith

term from the profile of user uj.

6. Hierarchy generation for each user cluster: The hierarchical structures

of the top-k matching clusters are generated to model the hierarchical

preferences of users in the clusters. For each user cluster, the prefer-

ence is hierarchically defined using the set of places from the target re-

gion. Inspired from [ZLHL13], we use the conditional mutual information

(CMI) [CT12] metric to generate the hierarchy. For every two places X

and Y and a cluster Ci, the CMI metric gives the expected value of the

mutual information of X and Y on the cluster Ci and is defined as:

CMI(X;Y |Ci) = H(X,Ci) +H(Y,Ci)−H(X, Y,Ci)−H(Ci), (3.25)

where the function H(.) denotes an entropy. H(X,Ci) is defined in terms

of the fraction of check-ins to POI X that are contributed by members

of Ci. We use:

p(X,Ci) =

α +
∑
u∈Ci
| Vu,X |

α ∗N+ | VX |

and

H(X,Ci) = −p(X,Ci) log2(p(X,Ci)), (3.26)
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where VX is the number of check-ins made to POI X,
∑
u∈Ci
| Vu,X | is the

number of check-ins made by members of cluster Ci to the POI X, α>0

is a smoothing factor (used to simplify the computations for POIs with

no check-ins), and N is the total number of users. The term H(Y,Ci)

is defined accordingly. Similarly, the term H(X, Y,Ci) is defined by the

fraction of check-ins from users of cluster Ci who have visited both POIs

X and Y. The term H(Ci) is defined in terms of the number of user

clusters to be used:

H(Ci) = −p(Ci) log2(p(Ci)), (3.27)

where p(Ci) = 1
K

and K is the number of user clusters to be used. This

gives the CMI matrix for each cluster of users.

It is to be noted that the simple similarity measure between places X and

Y is always same on all user clusters and is unable to model contextually

dynamic preferences of different user clusters. The similarity between

places is dependent on the visitors of a locality (e.g., for users u1 and u2

places l1 and l2 might be semantically similar but not for users u2 and

u3) and should be modeled accordingly. The CMI metric facilitates us to

incorporate the preference of user clusters on any pair of POIs X and Y.

For a given cluster of users, its CMI metric matrix can be transformed

into region/locality specific places similarity matrix by setting the diag-

onal entries to 1 and normalizing other entries. We use this similarity

matrix and the complete link clustering to get a user cluster hierarchy

because it is less susceptible to noise and outliers [TSK06]. The obtained

hierarchy may not explicitly split places using mutually explicit criteria,

but performs the splitting based on their entropy. Given a set of places

in a region, a hierarchy represents the check-in preference for a cluster of
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users, and each node of the hierarchy represents some implicit preference

association.
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Figure 3.6: A dendrogram descriptor and PMD derivation

7. Hierarchy aggregation: For a target user, the hierarchies of top-k match-

ing clusters are ensembled to represent her hierarchical preferences. Al-

though there are many popular descriptors (e.g., partition membership

divergence (PMD), cophenetic divergence, cluster membership divergence

(CMD)) for hierarchical structure comparison, the PMD was found to be

better [PD84].

The PMD gives the number of partitions in which the two objects in

the hierarchy are not assigned together to a group. It preserves the or-

der of hierarchical levels, has only fewer (2*n-4 values in an n*n matrix)

nearest neighbor interchange affects, and the magnitude of changes is

dependent on the number of hierarchical levels falling between the two

levels undergoing the interchange. Figure 3.6 illustrates the PMD compu-

tation of a hierarchical structure where the items are grouped as (see the

group ordering from bottom to top in Figure 3.6): {1}{2}{3}{4}{5}{6};

{1}{2}{3}{4,5,6}; {1}{2}{3,4,5,6}; {1,2 }{3,4,5,6}; {1,2,3,4,5,6}. Start-

ing from the bottom of the hierarchy, all the nodes are isolated. As we

go up, the nodes 4,5,6 get aggregated and the rest are still isolated. This

level of aggregation results in the set {1}{2}{3}{4,5,6}. Similarly, in
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Figure 3.7: Hierarchy aggregation and ultrametric transformation

the next level, the node 3 also gets aggregated to the set {4,5,6}and the

resulting aggregation becomes {1}{2}{3,4,5,6}, and so on.

The aggregation is repeated until all the nodes are aggregated into a

single set (see Figure 3.6 for detail). After we get different level of ag-

gregations, derivation of the PMD matrix can be achieved by counting

the number of levels where two nodes are not assigned to same set. For

instance, the node 3 and node 4 are on different set at the bottom level

(where all nodes have their individual set) and at the first level (where

the node 4 gets merged with nodes 5 and 6 to get {4,5,6}but the node 3

still exists with its own set), hence the PMD matrix has the value 2 for

the nodes 3 and 4. The PMD matrix can be populated accordingly.

We do an element-wise aggregation of the PMDs to get a single PMD (see

Figure 3.7). The goal of agglomerative hierarchical clustering is to ensure

that the closest clusters get merged, however, the aggregated PMD does

not ensure that the closest clusters get merged.

In order to ensure the closest clusters merge, we use the concept of ul-

trametric space which is more strict than triangle inequality. As the

aggregated PMD may not satisfy ultrametric property, the hierarchical

structure obtained from this metric may not be topologically correct.

The correct topology ensures proper order of merging of closest clus-
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ters. In order to achieve this, we transform the aggregated PMD into an

ultrametric form.

The ultrametric distance is an approximation of the distance matrix,

which can be derived from the aggregated PMD. Any distance matrix

distI×J is ultrametric iff following conditions hold:

(a) non-negativity (a 6= b, dist(a, b)>0),

(b) symmetry (dist(a, b) = dist(b, a)), and

(c) ultrametricity (dist(a, c) ≤ max(dist(a, b), dist(b, c))

Intuitively, the hierarchical clustering merges closest clusters Ci and Cj

if the following distance property is satisfied:

dist(Ci, Cj) ≤ min(dist(Ci, Ck), dist(Cj, Ck)). (3.28)

This also implies that:

∀i,j,k,min(dist(Ci, Ck), dist(Cj, Ck)) ≤ dist(Ci ∪ Cj, Ck). (3.29)

This reducibility condition [HJ97] illustrates that the merge takes place

between closest pairs and maintains the initial merge order. As long as

the reducibility condition is satisfied, the updated dissimilarities satisfy

the ultra-metric inequality [HJ97]:

dist(xi, xj) ≤ max(dist(xi, xk), dist(xj, xk)),∀xi,xj ,xk∈X . (3.30)

We use the transitive dissimilarity T (Pij) of any path Pij between vertices

Vi and Vj which is defined as:

T (Pij) = max(dist(i, k1), ..., dist(kn−1, kn), dist(kn, j)). (3.31)

The minimal transitive dissimilarity is defined as the minimum of tran-

sitive dissimilarity among all paths between vertices Vi and Vj: mij =
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minPij(T (Pij)). The minimal transitive dissimilarity between any two ver-

tices satisfy ultrametric inequality [ZLD10]. As the minimal transitive

dissimilarity satisfies the ultrametric inequality: mij ≤ max(mik,mjk),∀i,j,k

[ZLHL13], we exploit the modified Floyd-Warshall algorithm [DHX+06]

to find the new transitive dissimilarity matrix which is the closest ap-

proximation of the original matrix and is also ultrametric.

Figure 3.7 presents the PMD aggregation and ultrametric transforma-

tion process. Algorithm 1 shows the steps for the transformation of

aggregated PMD matrix. After the ultrametric transformation, we can

use any hierarchical clustering method to get the aggregated hierarchy

from the transformed matrix.

Algorithm 1 FindTransitiveDissimilarityMatrix

1: Input G: the pair-wise distance matrix
2: Output H: minimum transitive dissimilarity

matrix closure of G
3: Initialize H to G
4: for k=1 to N do
5: for i=1 to N do
6: for j =1 to N do
7: Hi,j = min(Hi,j,max(Hi,k, Hj,k))
8: end for
9: end for

10: end for
11: return H

8. Recommendation generation: We traverse the aggregated hierarchical

structure to generate a recommendation.

(a) POI Recommendation: The ensembled hierarchy for a region is tra-

versed to find the best match between a user profile, current context,

and the items at each level. The set of items at each node of hierar-

chy represents items that match similar preferences of users. At each

level of the hierarchy, we compute the preference score of the user on

the available branching nodes, and traverse on the branch that has
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high preference score and has the best contextual match between

item profile and current context. The process is repeated until we

reach a leaf node. Any already recommended item is ignored in next

item recommendation. As the users’ preference score (see Eqn. 3.17)

incorporates different contexts, the traversal of aggregated hierar-

chy ensures the best contextual match of users’ preferences and the

items in the hierarchy.

(b) POI sequence recommendation: The sequence generation is based

on the previous POI recommended. For instance, given a user’s

current location, the first step is to identify the best matching region

for the user. This is accomplished by finding the k-nearest regions to

the user’s current location. The trees of these regions are traversed

using the current context and preference score of the user.

From the best matching leaf node (i.e. a set of locations that satisfy

the context across the path/branch with maximum preference score

and with the items’ profiles matching the current context), the lo-

cation with highest preference score (the contextual preference as

defined in Eqn. 3.17) is added to the sequence. We skip the previ-

ously selected item during traversal, traverse the tree from the root

node, and follow a branch (i.e. consider next high scored first level

branch and so on). Using this approach, we generate k-sequences

that match the current context.

A simple approach will be to perform DFS (depth-first search)

traversal on the same hierarchy to generate remaining recommen-

dations. The evaluation section presents this model as HiRecSI. As

removing an item from the item pool can have an effect on the user

clusters, an interesting approach would be to repeat the user cluster-

ing, hierarchy generation, hierarchy aggregation, and DFS traversal
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to get next recommended item. The evaluation section presents this

model as HiRecSII.

3.5.3 Evaluation

This section presents the dataset, evaluation metrics, baseline and relevant

models, and the experimental settings.

Dataset

We used the Weeplace5 and Gowalla [LLAM13] dataset collected from two

popular LBSNs - Gowalla and Weeplaces. These datasets are well defined and

have all attributes relevant to our study, such as (i) the location category,

(ii) geospatial coordinates, (iii) friendship information, and (iv) check-in time.

The statistics of the dataset is shown in Table 3.7. The top five checked-in

categories and the check-in counts are shown in Table 3.8.

Dataset Check-ins Users POI Links POI Categories

Gowalla 36,001,959 319,063 2,844,076 337,545 629

Weeplace 7,658,368 15,799 971,309 59,970 96

Table 3.7: Statistics of the datasets.

The work or home related category “Home/Work/ Other:Corporate/Office”

was popular from 6 am to 6 pm, with the highest check-ins (42,019) made at

1 pm. Similarly, the “bars” had the highest of 21,806 check-ins at 2 am and

the lowest check-ins (15,209) at 5 am. Most of the check-ins were at 12 pm -

6 pm and were either in home or work related categories.

5http://www.yongliu.org/datasets/
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Weeplace dataset Gowalla dataset

Categories
No. of

Checkins
Categories

No. of
Checkins

Home/Work/Other:
Corporate/Office

437,730 Corporate Office 1,660,159

Food:Coffee Shop 267,572 Coffee Shop 988,999
Nightlife:Bar 248,563 Mall 872,873

Shops:Food & Drink:
Grocery Supermarket

160,913 Grocery 820,326

Travel:
Train Station

152,104 Gas & Automotive 806,916

Table 3.8: Check-in counts on top five categories of Weeplace and Gowalla
dataset.

Evaluation Metrics

We evaluate the performance of POI recommendation using precision, recall,

and F-Score metrics. The correctness of the POI sequence is evaluated using

diversity, displacement, and NDCG metrics. The diversity metric [BS01] of

a sequence measures the variety of category and is measured using their cat-

egorical similarity (i.e. Similarity =1 if two places are of same category and

Similarity = 0 otherwise). The high value of diversity means the list of items

is more diverse in category.

Diversity (c1, c2, ..., cn) =

n∑
i=1

n∑
j=i+1

(1− Similarity (ci, cj))

n
2
∗ (n− 1)

. (3.32)

The displacement measures the distance (in Km) between the predicted

sequence (seqa) and actual sequence (seqe):

Displacement (seqa, seqe) =
k∑
i=1

| Distance(seqai , seqei) | (3.33)

A high displacement means the predicted list items are far from the actual ones.

We evaluate the generated sequence using normalized discounted cumulative
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gain (NDCG) metric:

NDCGN =
DCGN

IDCGN

,

DCGN =
N∑
i=1

2reli − 1

log2(i+ 1)
,

IDCGN =

|REL|∑
i=1

2reli − 1

log2(i+ 1)
, (3.34)

where DCGN is the discounted cumulative gain from the relevance score of all

items up to position N, reli is the relevance score of ith item in the generated

sequence, IDCGN is the ideal discounted cumulative gain, and | REL | is the

list of relevant items in the dataset up to position N.

Evaluation Baselines

We evaluate the POI recommendation performance against the following base-

lines:

1. POI Popularity: It is a naive approach that uses the popularity of POIs.

An area within a predefined radius is used to find the most popular POI

(i.e. most visits in the locality) within it. The radius is dynamically

updated by a predefined factor when no location is found in the area.

2. UCF: It is a user-based collaborative filtering model that relies on the

user-item matrix and uses the cosine similarity to measure user-user sim-

ilarity.

3. UCF+G [YYLL11]: It is an extension of UCF model that integrates

geographical information into user-based CF in a linear interpolation

fashion.

4. GeoMF [LZX+14]: It is a state-of-art POI recommender that first incor-

porates the geographical information into matrix factorization by com-

bining users’ activity area vectors and POIs’ influence area vectors into

original users’ latent factors and POIs’ latent factors.
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5. HSR [WTWL15]: It is a matrix factorization framework which explores

the implicit hierarchical structures of users and items simultaneously for

recommendation. It overcomes the gap between the importance of hier-

archical structures and their unavailability.

6. Hierarchical Geographical Matrix Factorization model (HGMF) [ZXL+17]:

It is an extension of GeoMF [LZX+14] and uses a two-dimensional normal

distribution to represent the extent of POI influence over a geographical

region. It then exploits matrix factorization on user content preference

matrix, user spatial preference matrix, and POIs characteristic matrix

jointly by modeling the implicit hierarchical structures, which is learned

with an optimization process.

We use following baselines to evaluate the performance of sequence recommen-

dation:

1. POI Popularity model as defined above.

2. Markov Chain-based approach: A first-order Markov Chain is used to

generate the sequences. A Laplace smoothed state-transition and initial

probability matrices are derived from the check-in data and are person-

alized for each user.

3. Hierarchical Geographical Matrix Factorization model (HGMF) [ZXL+17].

4. Recurrent Neural Network (RNN): RNN-based sequence models are quite

popular in the language domain (e.g., machine translation). In our case,

it is a simple vanilla RNN-based model which uses the embedding of

input sequence and generates output sequences. We also consider the

Long-short term memory (LSTM) and Gated Recurrent Units (GRU).

5. Spatio-Temporal RNN (ST-RNN) from Liu et al. [LWWT16]: It incor-

porates local temporal contexts in each layer of RNN to model sequential
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elements. It utilizes the recurrent structure to capture the periodical tem-

poral contexts and employs time-specific and distance-specific transition

matrices to characterize contextually dynamic location sequences.

Experimental Settings

We used a 5-fold cross-validation to measure the performance of the models.

An Ubuntu 14.04.5 LTS, 32 GB RAM, a Quadcore Intel(R) Core(TM) i7-3820

CPU @ 3.60 GHz was used to evaluate the models. The same configuration

with a Tesla K20c 6 GB GPU was used to evaluate the neural network-based

models. For each user, the 10 most frequently checked-in places from the

test set were taken as starting point, and 10 sequences per starting point was

generated. The average metrics on the generated sequences were observed.

The POI-Popularity used distance threshold of 2 Km.

The RNN model used 5 layers and 256 nodes. The input sequence length

was set to 25, the data was fed in batches of size 50, embedding vectors were

of size 384, and the experiment was repeated for 100 epochs. The learning rate

was set to 0.002, and the gradients were clipped at 5 to prevent overfitting.

For ST-RNN, the parameters were estimated using Back Propagation Through

Time (BPTT) [RHW86]. In HGMF, following the original work, the number of

sub-categories in the second layer of user spatial implicit hierarchical structure

was taken as {50, 100, 200, 400, 800}, the number of user latent sub-categories

in the second layer was taken as {50, 100, 200, 400, 800}, the POI latent

subcategories was taken as {100, 200, 400, 800, 1000}, and the dimension of

the latent factors was set to 100.

The parameters used in our models can be estimated by using the relevant

fraction of check-ins from our training dataset (e.g., for social impact, we check

the fraction of check-ins that are common among friends). Our observation

found that most of these relevant fraction of check-ins were ∼0.25, or ∼0.5, so
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we defined three different values {0.25, 0.5, 0.75} and observed the performance

of our models on these values of the relevant parameters. For Eqn. 3.14, we

observed the impact of three different values α ∈{0.25, 0.5, 0.75} and found

that α = 0.25 gave the better result.

For Eqn. 3.15, we repeated with the same set of values and found better

result with ψ1 = 0.5. For the preference score defined in Equation 3.17, we

also used the three set of values {0.25, 0.5, 0.75} for θ and β. Our models

performed better when β = 0.25 and θ = 0.25. Although, these parameters

might vary on the nature of dataset, our observation on all the experimental

datasets found that the temporal factor should be weighted more than the

categorical factor.

Experimental Results and Discussion

The precision, recall, and F-score of different models are presented in Table 3.9.

The precision@N and recall@N performance of different models are presented

in Table 3.10 and Table 3.11. The average diversity of different models in

Weeplace and Gowalla dataset is presented in Table 3.12 and the displacement

on Weeplace and Gowalla dataset is presented in Table 3.13. The displacement

trend with increasing sequence length is shown in Figure 3.8 and Figure 3.9

and the diversity trend is shown in Figure 3.10 and Figure 3.11. The NDCG

performance of different models is presented in Table 3.14.

Discussion

The popularity-based model performed worst among all the models. It gen-

erated almost similar sequences for all the users and was not relevant to per-

sonalized preferences. This might be due to the ignorance of personalized user

preferences. The diversity measure was also quite low, which means the POIs

in the generated sequences included few categories. The high displacement
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Weeplace dataset Gowalla dataset
Models Precision Recall F-Score Precision Recall F-Score

Popularity 0.0098 0.0038 0.0054 0.0101 0.0041 0.0058
UCF 0.0249 0.0284 0.0265 0.0172 0.0295 0.0217

UCF+G 0.0302 0.0303 0.0302 0.0191 0.0322 0.0239
GeoMF[LZX+14] 0.0609 0.0545 0.0575 0.0450 0.0663 0.0536
HSR [WTWL15] 0.0441 0.0306 0.0361 0.0273 0.0402 0.0325
HGMF [ZXL+17] 0.0672 0.0560 0.0611 0.0526 0.0644 0.0579

HiRecSI 0.0725 0.0591 0.06512 0.0577 0.0653 0.0612
HiRecSII 0.0738 0.0610 0.0668∗ 0.0621 0.0659 0.0639∗

Table 3.9: Precision, Recall, and F-Score of different models (∗ means statisti-
cally significant at 95% confidence level)

Weeplace dataset Gowalla dataset
Models @5 @10 @15 @20 @5 @10 @15 @20

Popularity 0.0106 0.0101 0.0094 0.0091 0.0108 0.0103 0.0098 0.0094
UCF 0.0281 0.0253 0.0237 0.0227 0.0201 0.0187 0.0152 0.0148

UCF+G 0.0328 0.0305 0.0293 0.0283 0.0252 0.0194 0.0162 0.0157
GeoMF[LZX+14] 0.0648 0.0615 0.0591 0.0585 0.0557 0.0482 0.0392 0.0371
HSR [WTWL15] 0.0452 0.04481 0.0456 0.0410 0.0361 0.0287 0.0226 0.0221
HGMF [ZXL+17] 0.0724 0.0683 0.0655 0.0627 0.0626 0.0574 0.0457 0.0450

HiRecSI 0.0774 0.0743 0.0710 0.0673 0.0638 0.0620 0.0541 0.0510
HiRecSII 0.0781 0.0754 0.0727 0.0692 0.0661 0.0640 0.0613 0.0572

Table 3.10: Precision@N Performance of different models

Weeplace dataset Gowalla dataset
Models @5 @10 @15 @20 @5 @10 @15 @20

Popularity 0.0014 0.0018 0.0020 0.0101 0.0016 0.0018 0.0022 0.0107
UCF 0.0214 0.0257 0.0324 0.0341 0.0221 0.0253 0.0344 0.0362

UCF+G 0.0235 0.0278 0.0341 0.0360 0.0251 0.0311 0.0357 0.0370
GeoMF[LZX+14] 0.0453 0.0526 0.0579 0.0625 0.0521 0.0611 0.0750 0.0772
HSR [WTWL15] 0.0271 0.0301 0.0326 0.0326 0.0311 0.0357 0.0452 0.0491
HGMF [ZXL+17] 0.0411 0.0566 0.0612 0.0652 0.0574 0.0610 0.0682 0.0711

HiRecSI 0.0473 0.0583 0.0636 0.0672 0.0568 0.0626 0.0693 0.0725
HiRecSII 0.0477 0.0590 0.0677 0.0696 0.0570 0.0633 0.0700 0.0735

Table 3.11: Recall@N Performance of different models

Models Diversity in Weeplace Diversity in Gowalla
Popularity 1.2000 3.2000

Markov 2.5000 3.6000
HGMF 6.9110 7.6600
RNN 7.0010 7.8301

LSTM 7.1100 7.9026
GRU 7.2250 7.9400

ST-RNN 7.3301 8.1826
HiRecSI 7.2180 8.0476
HiRecSII 7.4912 8.4500

Table 3.12: Diversity in Weeplace and Gowalla dataset on sequence length of
25
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Models Displacement in Weeplace Displacement in Gowalla
Popularity 25.3078 25.2287

Markov 16.7213 13.2211
HGMF 9.1916 9.5931
RNN 8.6103 9.0715

LSTM 8.3251 8.7934
GRU 8.1051 8.4820

ST-RNN 7.9600 7.8620
HiRecSI 7.7001 7.7766
HiRecSII 7.3701 7.7100

Table 3.13: Displacement (Km) in Weeplace and Gowalla dataset on sequence
length of 25

Weeplace dataset Gowalla dataset
Models NDCG10 NDCG20 NDCG30 NDCG10 NDCG20 NDCG30

Popularity 0.2867 0.2892 0.2895 0.2885 0.2901 0.2975
Markov 0.2979 0.3009 0.3079 0.2989 0.3103 0.3119
HGMF 0.4210 0.4258 0.4372 0.4251 0.4278 0.4372
RNN 0.4536 0.4696 0.4783 0.4566 0.4702 0.4785

LSTM 0.4844 0.4926 0.4983 0.4661 0.4882 0.4892
GRU 0.5262 0.5337 0.5381 0.5427 0.5551 0.5581

ST-RNN 0.5633 0.5639 0.5679 0.5683 0.5701 0.5759
HiRecSI 0.5565 0.5600 0.5601 0.5625 0.5685 0.5715
HiRecSII 0.5771 0.5799 0.5803 0.5791 0.5799 0.5873

Table 3.14: NDCGN of different models on Weeplace dataset
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metrics indicate that the predicted POIs were far from the actual ones. The

NDCG metric was also least for popularity-based model.
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Figure 3.8: Displacement trend in Weeplace

The UCF and UCF-G models were better than Popularity model but were

outperformed by the contextual models GeoMF and HSR. The HGMF out-

performed HSR and has slightly lower performance than HiReCSI. HiReCSII

outperformed all the other models in terms of precision, recall and F-Score

metrics.

For the generated sequences, Popularity model performed least. The first-

order Markov model relied on one previous check-in data to determine next

location and hence was not able to fully model the check-in sequence genera-

tion process. However, its diversity, and displacement metrics were better than

popularity-based model which is due to the personalization implied from sep-

arate initial-probability and state-transition tables for each user. The HGMF

modeled the hierarchical relation between user and item latent factors and out-

performed Markov model on both datasets and on all the evaluation metrics.

However, its performance was lower than RNN because sequence modeling and
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Figure 3.9: Displacement trend in Gowalla

locality preference aggregation was not handled efficiently in this model. The

regular RNN models handled the sequence modeling better than HGMF but

did not incorporate the spatial and temporal contexts. The LSTM and GRU

performed slightly better than RNN. The ST-RNN model incorporated the

sequence along with the spatiotemporal contexts, and was better than regular

RNN model. The performance of ST-RNN was in par with HiRecSI in terms

of diversity and NDCG metrics. However, HiRecSI was better in terms of

displacement.

The HiRecSII model outperformed all the other models. Its performance

was slightly better than HiRecSI and ST-RNN in both datasets. The per-

formance of HiReCSI and HiReCSII was in par on displacement on Gowalla

dataset. The HiRecSII regenerated the hierarchy once an item is selected for

an output sequence. This ensures better modeling of the similarities between

the remaining items, and hence results in better preference hierarchy. On the

other hand, HiRecsI generates the hierarchy only once, and uses it to generate

the whole list.
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Figure 3.10: Diversity trend in Weeplace

Impact of number of regions and clusters

To better incorporate the spatial distribution of coherent POIs, we analyzed

the impact of area of regions on the length of sequences on the dataset. The

grid regions on every 5, 10, 15, and 20 Km distances were analyzed. With 5

Km, the average sequence length was 10 (i.e. 10 different check-ins within the

region) and it was 18, 25, 30 for 10, 15, and 20 Km respectively. So, we selected

the grids with 20 Km overlapped by 1 Km to have reasonable sequence length.

As ensembling of many clusters implies preference aggregation from many users

which might not result in best preference match, we used an aggregation of

top 5 clusters that matched to a target user.

Case Studies on POI sequence generation

We provide a case study on sequences generated by popularity-based model and

HiRecS on Gowalla dataset6. We selected sequences of length 5 for two different

users ‘thadd-fiala’, ‘boon-yap’ (known as u1, u2 now onwards) with most check-

6a similar trend was observed on Weeplace dataset as well
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Figure 3.11: Diversity trend in Gowalla

ins and analyze the relevance of the sequences for them. For u1, a sequence

of length 5 from popularity-based model was {‘sycamore-place-lofts-cincinnati’,

‘pg-gardens-cincinnati’, ‘lytle-park-cincinnati’, ‘piatt-park-cincinnati’, ‘sycamore-

place-at-st-xavier-park-apartments-cincin’}, and their respective categories were

{‘Home/Work/Other:Home’, ‘Parks & Outdoors: Plaza / Square’, ‘Parks &

Outdoors:Park’, ‘Parks & Outdoors: Plaza / Square’, ‘Home/Work/Other:

Home’}. Similarly for user u2 a length 5 sequence was {‘starbucks-boston’,

‘mbta-south-station-boston’, ‘boston-common-boston’, ‘dunkin-donuts-boston’,

‘mbta-park-street-station-boston’} and their respective categories were {’Food:

Coffee Shop’, ‘Travel: Train Station’, ‘Parks & Outdoors:Park’, ‘Food: Coffee

Shop’, ‘Travel:Train Station’}. Most of the places recommended were the pop-

ular ones and the generated sequences had less diversity. For both users, there

were three different categories in the generated sequences. With the increasing

sequence length, the diversity showed some increasing trend (see Figure 3.10

and Figure 3.11) but this was lower in both datasets.

With HiRecSII, a sequence generated for user u1 was {‘sycamore-place-lofts-
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cincinnati’, ‘pg-gardens-cincinnati’, ‘piatt-park-cincinnati’, ‘lytle-park-cincinnati’,

‘lpk-cincinnati’} and their categories were {‘Home/ Work/ Other: Home’,

‘Parks & Outdoors: Plaza/Square’, ‘Parks & Outdoors: Plaza/Square’, ‘Parks

& Outdoors: Park’, ‘Home/Work/ Other: Corporate/ Office’}. For user u2 a

sequence was {‘starbucks-boston’, ‘mbta-park-street-station-boston’, ‘boston-

common-boston’, ‘digitas-boston-boston’, ‘hubspot-cambridge’} and their cat-

egories were {‘Food:Coffee Shop’, ‘Travel:Train Station’, ‘Parks & Outdoors:

Park’, ‘Nightlife: Speakeasy / Secret Spot’, ‘Home/Work/Other: Corporate/

Office’}. We can observe that for both users, there are at least four different

categories in the sequence and the recommendations were more contextual.

With the increasing sequence length, the diversity showed some increasing

trend (see Figure 3.10 and 3.11) which was best with HiRecSII.

With the popularity-based model, the average displacement of the above

sequence was 19.36 Km for user u1 and it was 20.03 Km for user u2. With

HiRecSII, the average displacement of the above sequence was 5.02 Km for

user u1 and it was 5.61 Km for user u2. This shows that HiRecSII addresses

the distance constraint better. With the increasing sequence length, the dis-

placement trend increased for both models and followed the trend as shown in

Figure 3.8 and 3.9.

3.5.4 Conclusion and Future Work

We modeled user activity and location influence to generate context-aware rec-

ommendation. Evaluation of the proposed model on two real-world datasets

demonstrated the efficiency of proposed model. We also formulated the con-

textual and locality-based user preferences in terms of hierarchy and presented

a hierarchy aggregation technique to generate POI sequence recommendation.

We defined user preferences using different contexts (e.g., social, temporal, cat-
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egorical, and spatial) and generated POI sequences to match both the locality

preferences and user preferences.

We extensively evaluated the performance of the proposed models using F-

score, diversity, displacement, and NDCG metrics on two real-world datasets.

We demonstrated the significant performance gain using our model (of 0.006 -

5.91 on diversity, 0.0349 - 17.51 on displacement, and 0.114 - 0.289 on NDCG

metrics) when compared to several baseline models and relevant studies. There

are many interesting directions to explore as future studies. We would like

to incorporate the textual (e.g., tags, tips, and review text) and also visual

information (e.g., the image of places) to define the preferences of users and the

popularity of places. We would like to exploit the knowledge discovery from the

aggregated hierarchy and like to extend the model for group recommendation.

100



CHAPTER 4

REVIEW-AWARE EXPLANATION OF RECOMMENDATION

The Location-Based Social Networks (LBSN) (e.g., Facebook, etc.) have

many attributes (e.g., ratings, reviews, etc.) that play a crucial role for the

Point-of-Interest (POI) recommendations. Unlike ratings, the reviews can help

users to elaborate their consumption experience in terms of relevant factors of

interest (aspects). Though some of the existing systems have exploited user re-

views, most of them are less transparent and non-interpretable (as they conceal

the reason behind recommendation). These reasons have motivated us towards

explainable and interpretable recommendation. To the best of our knowledge,

only few of the researchers have exploited user reviews to incorporate the sen-

timent and opinions on different aspects for personalized and explainable POI

recommendation.

This paper proposes a model termed as ReEL (Review aware Explanation

of Location Recommendation) which models the review-aspect correlation by

exploiting deep neural network, formulates user-aspect bipartite relation as a

bipartite graph, and models the explainable recommendation by using dense

subgraph extraction and ranking-based techniques. The major contributions of

this paper are: (i) it models users and POIs using the aspects posted on user

reviews and provisions incorporation of multiple contexts (e.g., categorical,

spatial, etc.) in POI recommendation, (ii) it formulates preference of users’ on

aspects as a bipartite relation, represents it as a location-aspect bipartite graph,

and models the explainable recommendation with the notion of ordered dense

subgraph extraction using bipartite cores, shingles, and ranking techniques,

and (iii) it extensively evaluates the proposed models with three real-world

datasets and demonstrates an improvement of 5.8% to 29.5% on F-score metric

over relevant studies.
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4.1 Introduction

Most of the existing e-commerce systems (e.g., Amazon.com, etc.) have been

facilitating users to share their consumption experience via ratings and reviews.

The LBSNs have also been a useful platform to share consumption experiences

on different factors of interest (e.g., price, service, accessibility, product qual-

ity, etc.). For instance, the review text “The breakfast was awesome but the

front-desk service was really bad” implies a positive experience of the reviewer

towards “breakfast” and opposite for “front-desk”. The words “breakfast”

and “front-desk” are known as aspect terms and their equivalent categories

“Food” and “Service” are known as aspects. Such experiences from a real

customer have been crucial in the purchase decision for potential customers,

and product improvement for manufacturers.

Despite the usefulness, reading time and uniform interpretability of reviews

have been a major concern. It would have been easier if one can summarize

and explain the opinions on key aspects, for instance, (i) place A has a good

rating for food, (ii) place B is renowned for cleanliness, etc. Though a ded-

icated community has been focusing on the extraction of such aspects and

opinions [WPDX17, WHZ+16, CZZ+17], the recommendation domain can also

use such aspect-based summarization to enhance and explain the generated

recommendation.

The exploitation of different factors of LBSN for an efficient recommenda-

tion has been quite popular in the last decade [YCM+13, ZYHW16]. Most of

the studies have focused on non-text attributes, such as categorical, tempo-

ral, spatial, and social [BL16, XLLZ18, BL17, XNL+17, BWLC16] but have

been less transparent and less interpretable (i.e. the factors used for recom-

mendation are hidden from end users). Contrary to that, some of the stud-

ies [VSR09, SNM08, TM12, GJG14, MLS16, GGJ11, ZCYZ15, MNL+16] have
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already claimed the user persuasiveness due to explainability in real-world

systems. The similarity-based approaches [HKR00, BM05] have proposed

user-based neighbor style (e.g., “users with similar interest have purchased the

following items...”) explanations. The item-based neighbor style (e.g., “items

similar to you viewed or purchased in the past...”), influence style (how the

users’ input have influenced the generation of recommendation), and keyword-

style (items that have similar description content to purchase history) can be

other variants of explanations.

To the best of our knowledge, only few studies have focused on review-

aware explainable recommendation. There are many factors that make this

problem challenging and interesting. The aspect extraction from ambiguous

and noisy text, organizing the numerous aspect terms into relevant categories

(e.g., food, service, etc.), and personalization of recommendation are some of

the main challenges. The aspect-based personalized explanation is challenging

as it needs to handle the sentiments of each aspects, and also the individual

user preferences and item features to get relevant explanation.

The ease of adaptation of arbitrary continuous and categorical attributes

in a scalable manner makes the Convolutional Neural Networks (CNN) a good

candidate for classification problems (e.g., [Kim14, CWB+11]). This also

makes them ideal for a supervised review-aspect classification problem. We

formulate the problem of review and aspect correlation using CNNs. This sim-

plifies the process of mapping the user sentiments to the 〈POI, aspect〉 tuples

and modeling the users’ aspect preferences as the aspect-POI bipartite relation.

We represent such a bipartite relation using a bipartite graph, extract users’

ordered aspect preferences using dense subgraph extraction and ranking-based

methods, and generate an explainable POI recommendation. The core con-

tributions of this chapter are: (i) it models users and POIs using the aspects

extracted from reviews and different contexts (e.g., categorical, spatial, etc.),
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(ii) it formulates the user preferences as an ordered aspect-POI bipartite rela-

tion, represents it as a bipartite graph, and proposes bipartite core, shingles,

and ranking-based methods to generate personalized and explainable POI rec-

ommendation, and (iii) it evaluates the proposed model using three real-world

datasets. As an important by-product, our model can implicitly identify the

user communities and categorize them by their preferred aspects. It can also

identify the implicit POI groups that are known for a set of aspects.

4.2 Related Research

The problem of aspect extraction from review text has been quite popu-

lar [LWZ12, ZLXJ11, CBdG+17] for various problems (e.g., rating predic-

tion [ML13], aspect-sentiment summarization [TM08, ME11, JO11], recom-

mendation [ZCZ15, MMO16], etc.). To the best of our knowledge, exploita-

tion of aspects for explainable POI recommendation has been less explored.

We present the relevant studies in following two categories:

4.2.1 Aspect-based approaches

Yang et al. [YZYW13] exploited sentiment lexicon (e.g., SentiWordNet)-based

approach and defined user preferences based on tips, check-ins, and social re-

lations but did not fully exploit user preferences at aspect level. Wang et

al. [WZN+15] exploited multi-modal (i.e. text, image, etc.) topics-based POI

semantic similarity but ignored aspect level preference modeling and recom-

mendation explanation. Covington et al. [CAS16] exploited different factors,

such as users’ activity history, demographics, etc., but did not incorporate opin-

ions from user comments and also did not focus on recommendation for each

aspect. Guo et al. [GSZ+17] represented users, POIs, aspects, and geo-social

relations with a graph and ranked the nodes to define the POI recommen-
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dations. Some of the studies [DS17] used the features extracted from user

reviews to build user and item profiles and generated the recommendation.

Zhang et al. [ZCZ15] used the aspect opinions, social, and geographical at-

tributes to generate the recommendation. Chen et al. [CC15] used aspect-based

user preferences in their recommendation. Recently, Zheng et al. [ZNY17]

adapted [CWB+11] to exploit user reviews and mapped user and item feature

vectors into same space to estimate user-item rating. Our model has following

advantages than [ZNY17]: (i) it uses sentiment polarity of reviews at sentence

level rather than the whole review text, (ii) it learns to classify each review

sentence into aspects and models users and places using these aspects and em-

bedding of additional contexts (e.g., POI category, check-in time, etc.), and

(iii) it efficiently exploits a bipartite core extraction, shingles extraction, and

ranking-based methods to extract densely connected aspects and relevant POIs

for an explainable recommendation.

4.2.2 Explanation-based approaches

Chen et al. [COX16] personalized ranking based tensor factorization model and

used phrase-level sentiment analysis across multiple categories. They extracted

aspect-sentiment pairs from review text and used Bayesian Personalized Rank-

ing [RFGST09] to rank the features from user reviews. Finally, feature wise

preference of a user was derived using the user-item-feature cube and rank of

the feature obtained earlier. Zhang et al. [ZLZ+14] used matrix factorization

to estimate the missing values and a recommendation was made by matching

the most favorite features of a user and properties of items. They used simple

text templates to generate a feature-based explanation of positive and neg-

ative recommendations. However, incorporation of additional features (e.g.,

POI category) was not explored. Lawlor et al. [LMRS15] exploited sentiment-
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based approach to explain why a place might(not) be interesting to a user. For

each aspect, they compared the recommended place to the alternatives and

provided explanation (e.g., better (worse) than 90% (20%) of alternatives for

room quality (price), etc.). However, they relied on frequency of aspects of

POIs and users to get such relation and incorporation of additional features

remained unexplored. He et al. [HCKC15] exploited tri-partite modeling of

user-item-aspect tuples and used graph-based ranking to find the most rele-

vant aspects of a user that match with relevant aspects of places. The common

relevant aspects were used in the explanation. Li et al. [CW17] proposed an

explanation interface to explain the tradeoff properties within a set of rec-

ommendations, in terms of their static specifications and feature sentiments.

However, their interface requires users to explicitly provide their preference on

different aspects.

We have found that only few of the existing studies have fused few addi-

tional attributes (e.g., social), whereas most of them had no provision for them.

Most of the studies were tightly coupled to aspects and their sentiments, and

analyzed influence of all aspects together. The influence of aspects among each

other can have adverse impact on recommendation quality, for e.g., a place that

is good in “Price” aspect might be opposite in “Service” aspect. A user who

just cares about “Price” aspect might ignore some “Service” related problems

in that place. So we need to minimize the influence of aspects among each

other. This is crucial for aspect-based recommendation systems, and to the

best of our knowledge, this direction is less explored and is still a viable re-

search problem. We attempt to fill this gap by exploiting bipartite graph and

dense subgraph extraction techniques. For a user, the most dense subgraph

represents the set of most preferred aspects and places popular for those as-

pects. The dense subgraph extraction is followed by disconnecting the edges

within the dense subgraph which ensures less interference from the aspects al-
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ready discovered in previous dense subgraphs. This claim is also supported by

our evaluation where one of our model ReEL-Core performs better than our

another model ReEL-Rank (see Sec. 4.4.1, Sec. 4.4.3, and Sec. 4.5 for details

on the performance of these models).

4.3 Methodology

The block diagram of proposed model is shown in Figure 4.1 and the high-level

overview is shown in Figure 4.2. The core components of the proposed system

are as follows:
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Figure 4.1: Block diagram of review classification module

4.3.1 Components of proposed model

In this section, we describe the individual components of the proposed model.

1. Review preprocessing: The review texts are splitted into individual sen-

tences and the stop words are removed.
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Figure 4.2: Overview of recommendation module

2. Aspect term extraction: The pre-processed review sentences are fed to

the aspect extraction module to extract aspect terms. A simple two-step

process is applied. First, we filter out nouns and noun phrases using

some experimentally set frequency threshold. Most of the reviews focus

on a set of topics, hence this approach can capture such topics [ME10].

Second, we use a rule-based approach [ZL14] that adopts the dependency

parsing [MSB+14] to capture the aspect terms missed in the previous

step.

3. Aspect-categorization: As there can be numerous aspect terms, we nar-

row down them to few well-known aspects (see Table 4.1) for easy com-

putation. The aspect terms and their synsets from WordNet [Fel98] are

used to assign the best matching aspect. We select top 3 synsets to

handle ambiguity of aspect terms and to capture the relevant aspect.
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4. Sentence-aspect training data preparation: As the aspect extraction and

labeling is not the core focus of this paper, we rely on supervised sentence-

aspect classification concept. The review text (after aspect term extrac-

tion) is labeled by the aspect that has closest match to its aspect terms.

The distance between aspect terms and the aspects (and their synonyms)

from the WordNet [Fel98] are used to assign the closest possible label.

As we assign top 3 matching synsets, a single aspect term can have three

matching aspects. The sentences with multiple aspect terms get multiple

label. This labeled data is used to train the CNN-based sentence-aspect

classifier. The performance of this module is defined in the evaluation

section (see Sec. 4.5).

5. CNN-based sentence-aspect classifier: The review-aspect correlation mod-

ule is a multi-class classifier (see Figure 4.1) that classifies a review sen-

tence into relevant aspects. Inspired from [Kim14], we use a CNN-based

classifier to label each review sentence. The network consists of a con-

volution, an activation function, a max-pooling, a dense layer, and a

softmax layer (see [Kim14] for detail). The input to this classifier is word

embedding of review sentences. We use Word2Vec [MSC+13] to map ev-

ery word to a uniform size vector in a latent feature space. The outcome

of the classifier is a bipartite relation between review and the aspects.

For every user, the classifier gives a set of sentence feature vectors (later

known as user feature vectors in this chapter) that are embedding of

her preferred aspects. Similarly, for every POI, the sentence feature vec-

tors (later known as POI feature vectors in this chapter) are embeddings

of the aspects specified in its reviews. As every user tends to mention

some opinion on preferred aspects in her reviews and every place is men-

tioned about the aspects it was reviewed for, such vectors incorporate

the aspects relevant to users and POIs. As a POI can be positively
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or negatively reviewed for an aspect, we extract the sentiments of each

review sentence by using the trigrams around the aspect terms. The

embeddings of the sentiment term [MSC+13] is concatenated to the POI

feature vector. As each POI can get multiple reviews on same aspect, the

POI feature vector is normalized on feature vectors of each aspect. This

review-aspect bipartite relation is then used to define the POI-aspect tu-

ples and user-aspect tuples. Such a bipartite relation can be exploited

to model user preferences via ordered aspect-POI relation using bipartite

graph and dense subgraphs of such graph (see Sec. 4.4.1, and Sec. 4.4.3

for details). The POI-aspect pair is supplemented with the aggregated

sentiment extracted from all the review sentences.

6. Recommendation generation: This variant of proposed model is termed

as Deep Aspect-based POI recommender (DAP). Besides the review

text, we also incorporate additional context (e.g., categorical, spatial,

etc.) into the feature vector of the POIs obtained from the classifier.

We formulate the recommendation problem as a matrix, whose rows rep-

resent a user, POI, and elements of different contexts. For each row, the

check-in flag of a user to a POI is treated as the target. For instance, if

a user ui has feature vector as 〈ue1, ue2, ...., uem〉, a place lj has its sen-

timent concatenated feature vector as 〈le1, le2, ..., len〉, and the user ui

has visited the place lj, then a row in the design matrix is obtained

simply by concatenating the user feature vector, POI feature vector,

and context vectors, and is defined as:
−−−−−→
ui, lj, fk = 〈uie1, uie2, ...., uiem

, lje1, lje2, ..., ljen, fke1, fke2, ....fkeo, 1〉, where uiea, ljea, and fkea are the

ath item (a real-valued number) of the feature vector of user (ui), place

(lj), and context (fk). The last element 1 represents the check-in flag

for the user-place-context tuple in the training data and represents the

score to be estimated for the test data.
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For a user u, the context vector is concatenation of temporal 〈vt1 , vt2 , vt3〉,

spatial 〈vdist1 , vdist2 , vdist3〉, categorical 〈vcat1 , vcat2 , ..., vcatk〉, and social 〈vsoc〉

vectors. The term vcat1 is the multiplication of embedding vector of cat-

egory cat1 and the factor rcat1 =

∑
l.cat=cat1

Vu(l)∑
l′∈uL

Vu(l)
(i.e. the ratio of total check-ins

made to places with category cat1 to that of all check-ins). vdist1 =

∑
dist(l)≤ε1

Vu(l)∑
l′∈uL

Vu(l′)

is ratio of total check-ins on places within a threshold distance ε1 (from

users’ home, work place or most frequently checked-in place) to that of

all check-ins (we consider ε1 ≤ 1, 1<ε2 ≤ 5, ε3>5 as three distance thresh-

olds (in K.M.)). vsoc =

∑
l∈ufL

Vu(l)∑
l′∈uL

Vu(l′)
is the ratio of total check-ins made on

places visited due to social influence to that of all check-ins. vt1 is the

ratio of total check-ins made in time t1 (we use three values for time -

morning, afternoon, and others (night and evening)). The POI context

vector consists of category, time, and distance vectors.

A factorization machine [Ren12] is exploited to estimate the value of the

check-in flag for every user-place-context tuple. As the factorization ma-

chine has the ability to deal with additional features, a user-place pair

can have multiple rows but just one row for each user-place-context tu-

ple. So, the prediction is already personalized for the user-place-context

tuple. The top-N scorers from factorization machine are further filtered

out using the preferred aspects of user (determined by the frequency of

aspects mentioned on her reviews) and are recommended to the users.

The high-level overview of the recommendation module is illustrated in

Figure 4.2.

7. Explanation of recommendation: After getting the place-aspect bipartite

relation from CNN-based classifier, we represent the user-aspect prefer-

ence as a bipartite graph and generate the recommendation explana-

tion by extracting the most dense subgraphs from this bipartite graph.
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Aspects Example

Price cheap, deals, coupons, cost

Food
food quality, food variety, free

breakfast
Service serving time, friendly staffs

Amenities
comfort, laundry, security,

free parking, free WiFi

Accessibility
near, disability access,

information on web
Others security, pet friendly

Table 4.1: Aspects

We propose three different methods- a bipartite core extraction, shingles

extraction, and ranking-based methods for explanation generation (see

Sec. 4.4 for detail).

4.3.2 Factorization Machine

The Factorization Machine [Ren12] formulates the prediction problem as a

design matrix X ∈ Rn×p. The ith row ~xi ∈ Rp of the design matrix defines a

case with p real-valued variables. The main goal is to predict the target variable

ŷ(~x) using Eqn. 4.1. The proposed recommendation module is formulated as

a sparse matrix. The rows of the matrix are generated by concatenating the

embeddings of a user feature vector, POI feature vector, and context vector.

We consider the check-in flag as the target variable for each row. The proposed

model is operated with the following objective function:

ŷ(~x) = w0 +
n∑
i=1

wixi +
n∑
i=1

n∑
j=i+1

< ~vi, ~vj > xixj, (4.1)

where w0 is the global bias of all user-POI-context tuples, ~x is a concatenation

of user feature vector, POI feature vector, and context vector, n is the size

of input variables, < ~vi, ~vj >=
k∑

f=1

vi,f .vj,f , and k is the dimensionality of

factorization. The Factorization Machine can learn latent factors for all the
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variables, and can also allow the interactions between all pairs of variables.

This makes them an ideal candidate to model complex relationships in the

data.

4.4 Explanation of recommendation

The POI-aspect bipartite relation derived from Sec. 4.3 is represented as a

bipartite graph and the ordered preference of user on aspect categories is ex-

tracted and used for explanation of the generated recommendation.

4.4.1 Bipartite Core Extraction (ReEL-Core)

A k-core of a graph is a maximal connected subgraph whose every vertex

is connected to at least k other vertices. The k-core analysis is popular for

community detection, dense subgraph extraction, and in dynamic graphs. Our

method for bipartite core detection is inspired from [Kle99] where each node is

assigned two scores - hub score and authority score, which are defined in terms

of the outgoing and incoming edges respectively. The hub score (hi) of a node

is proportional to the sum of authority scores of the nodes it links to. The

authority score (ai) of a node is proportional to the sum of hub scores of the

nodes it is linked from. Given the initial authority and hub scores of all the

nodes, the scores are iteratively updated until the graph converges. For a given

user, we consider all the recommended places as the seed nodes and connect

them to the aspect nodes for which they have overall positive sentiments (i.e.

(no. of positive opinions) > (no. of negative opinions)). This filters out the

negatively reviewed places and gives us a bipartite graph as shown in Fig 4.3

(left graph).

We calculate the eigenvectors of the adjacency matrix of the graph to iden-

tify the primary eigenpair (largest eigenvalue). The eigenvalue is used as a
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measure of the density of links in the graph. The iterative algorithm gives the

largest eigenvalue (primary eigenpair). The primary eigenpair corresponds to

the primary bipartite core (most prevalent set of POI-aspect pairs) and non-

primary eigenpairs correspond to the secondary bipartite cores (less prevalent

set of POI-aspect pairs). The most dense subgraph (e.g., the right subgraph

in Figure 4.3 with nodes AC1, P1, P2, and P3) is extracted as the primary

bipartite core. After finding the primary core, the edges relevant to this core

are removed and the process is repeated on residual graph to get the next

prevalent bipartite cores. Removal of edges within the primary core will still

leave the nodes connected to other aspect nodes which belong to the secondary

bipartite cores. The bipartite cores are used in the order (primary, secondary,

etc.) when recommendation is generated. The aspects in the bipartite cores

are used to explain recommendation of relevant places.

P_1

AC_1

AC_3

AC_2P_2

P_3

P_4

P_1

AC_1

P_2

P_3

P_5

Figure 4.3: Place Aspect Graph (ACk = aspect k, Pi = places) (Left subgraph
is a bipartite graph and the right one is a primary bipartite core)

Price

Service

Food

Amenities

Accessibility

Figure 4.4: Aspect score to star ratings for a POI
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Explanation generation: A bipartite core consists of densely connected

nodes and resembles the set of place nodes which are mostly known for the

relevant aspect nodes. For a user, we generate the POI-aspect relations from

the ordered bipartite cores as:

Aspect 1: POI1, POI2, ..., POIi

Aspect 2: POIi, POIj, ..., POIj+k

.....

Aspect k: POI1, POIi, ..., POIj,

where each row gives the aspect from the ordered bipartite core and the rele-

vant set of POIs that are popular for that aspect. We also generate the score

of each POIi on each aspect as:

Aspect 1: Scorei,1

Aspect 2: Scorei,2

.....

Aspect k: Scorei,k,

where Scorel,a represents the score of POIl by the aspect a for all users, and

is defined as: Scorel,a=
k∑
i=1

1
i
∗ | corel,a,i |, where the term | corel,a,i | represents

the number of times the POIl was in ith bipartite core for the aspect a on all

users, and k represents the ordered number of bipartite cores used (e.g., k=1

is for primary bipartite core, k=2 for secondary core, and so on). The scores

computed are interpolated to the 5-star rating scheme (see Figure 4.4).

As an example, the review text “Tasty free hot breakfast and friendly staffs”,

implies that the reviewer cares about the “Price” and “Service” aspects, and

a primary bipartite core for this user should contain these aspects and relevant

places. Given the place “Hyatt Regency” and “The Setai Miami Beach” have

overall positive opinions for the “Price” aspect, they are included in the pri-

mary bipartite core (i.e. related to “Price”) and the explanation is generated

graphically as shown in Figure 4.4 and is supplemented with text as:
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Recommended Place: Hyatt Regency, The Setai Miami Beach, ...;

Explanation: Popular for Price.

4.4.2 Dense subgraph extraction (ReEL-Dense)

This model exploits the weight of user-aspect and place-aspect relation to incor-

porate the extent of user preferences on aspects and the popularity information

of a place through the aspects.

Figure 4.5 shows a basic representation of the network and extraction of

dense subgraphs. The POI-aspect edge is weighted by the normalized measure

of frequency of overall positive opinions on the aspect for the POI. The user-

aspect edge is weighted by the normalized measure of number of times the

user reviewed on the aspect. We exploit the random extraction of connected

components from the network and proceed with the components having high

similarity score. If γ is a random permutation applied on the homogeneous

sets A and B (e.g., set A has only user nodes and set B has only aspect nodes),

then their similarity score is defined as:

Simγ(A,B) =
f(A,B)

f(A) + f(B)
(4.2)

where f(A,B) =
∑

a∈A,b∈B
(a,b)∈E

Wa,b, where Wa,b is the weight of edge (a,b) that is nor-

malized to all the edges outgoing from node a, f(A) =
∑

(a,i)∈E
Wa,i is the sum of

normalized weights of all edges outgoing from node a, and f(B) =
∑

(i,b)∈E
Wi,b is

the sum of normalized weights of all edges incidence on node b. We assume

that absence of POI-aspect edge indicates that the place is not known for that

aspect (e.g., the aspect is irrelevant). We can use the min-wise independent

permutations [BGMZ97, BCFM00] technique to avoid exploitation on each

and every permutation to find the sets with high similarity score. We use some

predefined number of permutations (c=10) and do not focus on the min-wise

independence of the permutations.
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Algorithm 2 ShingleFinder(G = (V,E), c, s, k)

1: //G is the input graph, V is the set of vertices, and E is the set of
edges, c is the number of permutations, s is the length of each set, k is
the number of shingles to be extracted

2: initialize L as an empty list
3: for each place node do
4: for j = 1 to c do
5: get a set of s aspect nodes
6: find aggregated similarity for the place and aspect nodes in this

set using Eqn. 4.2
7: store this set and its score in L
8: end for
9: end for

10: return k sets with high similarity score (these sets are called shingles)
from L

Algorithm 2 defines shingles extraction process from a bipartite graph. For

each POI, we apply Algorithm 2 to find the set of aspect nodes linked to it

and extract the k shingles for it. For each shingle, we find the list of all POI

nodes that contain it. These are the POIs that are mostly reviewed for the

aspect nodes contained in the shingle (see Figure 4.5). As shingles can contain

overlapping set of aspects, it can represent the POIs and user preferences of

overlapping aspects as well.

The shingles of a user node represent the set of aspects that adhere to her

preferences (the preference can be ordered based on the similarity score of a

user node to the shingles). As our goal is to cluster (user, POI) tuples, we need

to find the sets of user and POI nodes that share sufficiently large number of

shingles. Each shingle contains the associated aspects which relates users and

POIs. We can easily find the top nu users and top nl POIs whose similarity

score is high for this shingle.

The overall process can be achieved in polynomial time [BGMZ97, BCFM00]

and is dependent on the number of nodes in the graph, number of shingles to

use, and the size of a shingle. The normalized similarity score between a POIl
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Users PlacesAspect

Users Shingles Places

Figure 4.5: Shingles extraction (shown without edge weights)

and an aspect (a) from all shingles is defined as:

Score(l, a) =
1

| Sh |
∑
a∈Sh

1

k
simγ(l, Sh), (4.3)

where Sh is the set of ordered shingles that contain aspect a, and k is the

similarity-based order of the relevant shingle. This score is interpolated to the

5-star rating scheme similar to ReEL-Core.

Finding the subsets of aspects with highest similarity score not only fa-

cilitates explanation of recommendation but also provisions clustering of users

who have similar preferences on aspects (even in absence of explicit social links)

and generating a group recommendation. It can also be used to generate pref-

erence wise recommendation (e.g., for the set of users {u1, u2, u5} the set of

aspects {“food”, “service”}might be interesting, for the set of users {u1, u2, u3}

the set of aspects {“food”, “price”} might be interesting, etc.). This can also

facilitate the clustering of POIs that are preferred for similar aspects (e.g., the

set of hotels that are popular for “service”).
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4.4.3 Ranking Method (ReEL-Rank)

This model uses the frequency of usage of an aspect to a place. The places

recommended to a user and the places’ relevant aspects are used as graph nodes.

The weight of a place-aspect edge indicates the overall positive opinions on the

place for the aspect. A ranking function is then defined as:

Rank(i) =
1− d
N

+ d ∗
∑

(j,i)∈E

Rank(j) ∗Wj,i

Oj

, (4.4)

where Rank(i) is the rank of a node i, d (=0.85) is the damping factor, N is

number of nodes in the graph, E is set of edges in the graph, Wj,i is weight

of the edge (j, i), and Oj is number of outgoing links from node j. The ranks

are iteratively updated till the graph is converged. The highest ranking aspect

node and its highest ranking neighbors give the places that are noted for this

aspect. Similarly, other higher ranking aspect nodes and their neighbors are

accessed to get the other place-aspect pairs. For a given aspect, the neighbor

nodes are sorted based on their rank before the explanation is generated. An

explanation of the following form is generated: (i) Food: Places ordered by

rank: Place 1, Place 2, ...(ii) Service: Places ordered by rank: Place 4, Place

5, ..., etc. The rank of a place on an aspect is aggregated from all the users to

get the star rating score.

4.5 Evaluation

We defined four models: (i) DAP - the model that used a deep network and fac-

torization machine for recommendations and has no provision for explanation,

1https://www.yelp.com/dataset challenge

2Wang et al. [WLZ11]

3http://insideairbnb.com/get-the-data.html

4explicitly missing ratings, neutral, and zero ratings are not shown
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Aspect Terms

Price
cash, redeem, cheap, expensive,

afford, refund, skyrocket,
economize, reimburse, discount

Food
cappuccino, buffet, shell,

salami, healthy, mushroom,
croissant, cranberry , sushi, broccoli

Pet
mew, swan, cat, fish, ant,

pony, dog, bird, duck, purr

Service

friendly, repair, employment,
safari, servings, discount,

checkouts, cleansing,
sightseeing, attitude

Amenities

breakfast, massage, yoga,
gabmle, excursion, exercise,
sightseeing, housekeeping,

exercise, television

Table 4.2: Top-10 terms in different aspect categories

Bipartite Cores User u1 User u2 User u3

First core
Price

103 places

Service

137 places

Price

272 places

Second core
Pet

103 places

Price

137 places

Service

272 places

Third core
Service

47 places

Pet

137 places

Pet

272 places

Fourth core
Food

103 places

Food

42 places

Food

1 place

Fifth core
Amenities

9 places

Amenities

137 places

Amenities

81 places

Table 4.3: Summary of bipartite cores of three users
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Attributes Yelp1 TripAdvisor2 AirBnB3

Reviews 2,225,213 246,399 570,654

Users 552,339 148,480 472,701

Places 77,079 1,850 26,734

Words 302,979,760 43,273,874 54,878,077

Sentences 18,972,604 2,167,783 284,1004

Avgerage
Sentences/review

8.53 8.79 4.98

Avgerage
Words/review

136.15 175.62 96.16

Avgerage
Reviews/user

4.03 1.66 1.20

Avgerage
Reviews/place

28.87 133.18 21.34

4, 5 stars4
591,618

and 900,940
78,404

and 104,442
479,842

1, 2 stars
260,492

and 190,048
15,152

and 20,040
5,766

Table 4.4: Statistics of the datasets

(ii) ReEL-Core - the model that used bipartite core, (iii) ReEL-Dense - the

model that used dense subgraph extraction, and (iv) ReEL-Rank - the model

that used a ranking approach for explanation generation. We also evaluated the

Aspect extraction, Aspect categorization, Sentence-aspect classification mod-

ules in terms of accuracy.

1. Aspect extraction: We used the SemEval 2014 Task 4: Aspect Based

Sentiment Analysis Annotation dataset as the benchmark data and were

able to get an accuracy of 70.04%.

2. Aspect categorization: We got an accuracy of 67.12% with the SemEval

2014 Task 4: Aspect Based Sentiment Analysis Annotation dataset.

3. Sentence-aspect classification: We used 100, 150, and 200 epochs with

32 and 64 batches. With 200 epochs and 64 batches, we got 69.01%

accuracy on Yelp dataset.
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We compared the performance of our proposed models with the following mod-

els: (1) UCF [HKBR99] uses the user-based collaborative filtering technique,

(2) ICF [SKKR01] uses item-based collaborative filtering, (3) PPR [Hav02]

uses personalized page ranking, (4) Guo et al. [GSZ+17] uses aspect-aware

POI recommendation, (5) ORec [ZCZ15] uses opinion-based POI recommen-

dation, (6) Word-embedding approach: In this approach, the review sentences

from a user and the one for an item are mapped to a latent space using the

word embedding [MSC+13]. For a user, the K-nearest neighbors in the space

were considered as the top-K recommendations, (7) Latent Dirichlet Alloca-

tion approach [BNJ03]: In this model, we extract the topics relevant to a user

and the topics relevant to places. The user-place tuples with most common

topics are used for the recommendation, and (8) DeepConn [ZNY17]: This is

the CNN-based model which uses the review embeddings but ignores the other

contextual embedding and the polarity of reviews.

4.5.1 Dataset

We used three real-world datasets to evaluate the proposed models. Table 4.4

shows that in all three datasets, most of the users tend to give high (positive)

ratings to the places. The top-10 terms of different aspects are illustrated in

Table 4.2.

Experimental settings: We used a 5-fold cross validation to evaluate the

models. The frequency thresholds for noun and noun phrase extraction were

set to 100, 250, and 500. Our experimental analysis show better results with

100. The CNN used 128 filters, 64 batches, 200 epochs, and embedding vectors

of size 384. We used an Ubuntu 14.04.5 LTS, 32 GB RAM, a Quadcore Intel(R)

Core(TM) i7-3820 CPU @ 3.60 GHz machine. We used the same configuration

with Tesla K20c 6 GB GPU to evaluate neural network-based models.
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Models Precision Recall F-Score
UCF [HKBR99] 0.23000 0.56800 0.32741
ICF [SKKR01] 0.20100 0.51000 0.28835
PPR [Hav02] 0.23640 0.57000 0.33420

Guo et al. [GSZ+17] 0.52000 0.77420 0.62213
ORec [ZCZ15] 0.50030 0.61000 0.54973
LDA [BNJ03] 0.50160 0.48280 0.49200

Embedding [MMO16] 0.50020 0.71250 0.58780
DeepConn [ZNY17] 0.50510 0.79350 0.61720

DAP 0.61550 0.89630 0.72980
ReEL-Core 0.71680 0.89960 0.79780∗

ReEL-Rank 0.67740 0.88420 0.76710
ReEL-Dense 0.67310 0.87940 0.76250

Table 4.5: Performance of models (∗ means statistically significant at 95%
confidence interval) in Yelp dataset

Models Precision Recall F-Score
UCF [HKBR99] 0.30000 0.55700 0.38996
ICF [SKKR01] 0.25000 0.52000 0.33766
PPR [Hav02] 0.35000 0.58000 0.43656

Guo et al. [GSZ+17] 0.55000 0.77430 0.64315
ORec [ZCZ15] 0.51000 0.65130 0.57205
LDA [BNJ03] 0.50000 0.79680 0.61440

Embedding [MMO16] 0.57110 0.79710 0.66540
DeepConn [ZNY17] 0.56340 0.87810 0.68640

DAP 0.61310 0.79880 0.69370
ReEL-Core 0.63880 0.83410 0.72350∗

ReEL-Rank 0.63660 0.81120 0.71330
ReEL-Dense 0.62540 0.79980 0.70190

Table 4.6: Performance of models (∗ means statistically significant at 95%
confidence interval) in TripAdvisor dataset
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Models Precision Recall F-Score
UCF [HKBR99] 0.23200 0.56500 0.32893
ICF [SKKR01] 0.20200 0.50000 0.28775
PPR [Hav02] 0.24700 0.56000 0.34280

Guo et al. [GSZ+17] 0.54000 0.76100 0.63173
ORec [ZCZ15] 0.52700 0.60200 0.56201
LDA [BNJ03] 0.50000 0.59480 0.54330

Embedding [MMO16] 0.61640 0.62430 0.62030
DeepConn [ZNY17] 0.60010 0.68320 0.63890

DAP 0.59720 0.78450 0.67810
ReEL-Core 0.62160 0.81830 0.70650∗

ReEL-Rank 0.61610 0.80730 0.69880
ReEL-Dense 0.60770 0.79700 0.68960

Table 4.7: Performance of models (∗ means statistically significant at 95%
confidence interval) in Airbnb dataset
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Figure 4.6: Precion@N for Yelp dataset
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Figure 4.7: Recall@N for Yelp dataset
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Figure 4.8: Precion@N for TripAdvisor dataset
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Figure 4.9: Recall@N for TripAdvisor dataset
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Figure 4.10: Precion@N for Airbnb dataset
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Figure 4.11: Recall@N for Airbnb dataset

4.5.2 Experimental Results and Discussion

We used the reviews of users and places with at least five reviews. We used a 5-

fold cross validation and the precision (p), recall (r), and f-score (2*p*r/(p+r))

metrics for evaluation. We considered the top @5, @10, @15, and @20 recom-

mended items for the evaluation. The evaluation of different models is shown

in Table 4.5 - 4.7. The Precision@N and Recall@N of different models is shown

in Figure 4.6 - 4.11.

The results show that the ICF performed least, UCF and PPR performed

on par, model from Guo et al. [GSZ+17] performed better than ORec [ZCZ15],

LDA [BNJ03], and Embedding [MMO16] models. Among the ones without

explanation, DAP performed best on the Yelp dataset. Though it outperformed

in other two datasets as well, the difference was not significant. This implies

that for larger datasets, the performance of the proposed model is outstanding.

This is common with DNNs which need a reasonably large training data for

better performance. The recall of DeepConn [ZNY17] was higher than that of

DAP in the TripAdvisor dataset but its precision was lower. This might be
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because of the sentence-level sentiment which was exploited in DAP but not

in DeepConn [ZNY17].

Unlike DAP, which provided a single list of recommendations and selected

top@N POIs from the list, the ReEL-Core and ReEL-Rank produced indi-

vidual lists for each aspect, and outperformed DAP because they categorized

recommendations into different aspect categories which led to the re-ordering

of the items into small recommendation lists. This re-ordering can help in-

crease the number of true positives and decrease the false positives, as the

least preferred items might move to the later part of the recommended lists

and the more preferred ones move to the front part of the lists. The ReEL-Core

outperformed ReEL-Rank and ReEL-Dense. One reason is due to the repeated

bipartite core extraction by ReEL-Core where the nodes got re-ranked for every

bipartite core but the ReEL-Rank only ranked all the nodes just once. After

having the ordered set of places within each aspect, having an explanation of

type similar to [LMRS15] (i.e. place A is better than 80% of places for “Food”,

etc.) can be achieved by counting the number of places behind the target place

in the recommended list.

4.5.3 Evaluation of Explainability

For a place p, the aspect popularity of an aspect a can be defined in terms of

the number of positive and negative mentions:

AspectPopularity(pa) =
∑

sentence∈Reviewp

(| positive | a− | negative | a). (4.5)

To check the presence of correct aspects in the explanation, we ordered the

aspects of every place based on the aspect popularity score. We used a trigram

across the extracted aspects to identify the sentiment polarity of the aspects.

The relevant aspects were ordered by the aspect popularity score. So, a place

can be represented by the set of aspects ordered by the popularity: pa =
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{a1, a2, .., an}. For every explanation, we took the aspects for which a place

was recommended. The aspects were ordered based on the order of cores

(primary, secondary, etc.). This gave us another set of aspects for every place.

The performance of explainability was then measured in terms of Levenshtein

distance between the lists. The average Levenshtein distance across all places

was observed to be 20%.

4.5.4 Impact of Explanation - A Case Study

We analyzed the role of ReEL-Core using top-5 bipartite cores (see Table 4.3)

extracted for users - “7iigQ2XM-V0ciwmCIdrIBA”, “7Mg6r6g7RUwQH Bllrd-

wQ”, and “9HDElil2309UajBgtYcD4w”, hereafter called as u1 and u2, and u3

respectively. We can see that the ordered preferences of user u1 are “Price”,

“Pet”, “Service”, “Food”, and “Amenities”. This implies the highest prefer-

ence of u1 on “Price”, regardless of the order of POIs recommended.

For user u1, the POI “NK3S3U6TQtysH -eqT3bBQ” was the second highly

recommended place by regular recommender. With the ReEL-Core, it is

categorized into “Others” bipartite core - the sixth core. If the user really

cares about other cores (i.e. related to other aspect categories) then having it

in sixth core is better than having it in front list. The least recommended POI

“p9Bl3BxPltz2WnIxJLnBvw” by simple recommender is now categorized as

the least popular item for the primary bipartite core (i.e. related to “Price”),

and three other secondary cores (i.e. related to “Service”, “Pet”, and “Food”).

Many POIs ranked in the later part of the list by the simple recommenders

are found within top-20 of the different bipartite cores. Have this user used

the simple recommendation, and considered only the top-20 recommendations,

then these items would have been missed. A sample explanation for user u1 is

the ordered set of places taken from the ordered bipartite cores:
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Recommendation: (1) Place 1, Place 2,...; Explanation: Popular for Price.

(2) Place 3, Place 4,...; Explanation: Popular for Service.

Similarly, the place “v4iA8kusUrB19y2QNOiUbw” that was most recom-

mended item for user u2 by the simple recommender is categorized to sixth

bipartite core (i.e. “Others”). The place “HxPpZSY6Q1eARuiahhra6A” that

did not fit in top-20 of simple recommender is found in the sixth position of

first three bipartite cores. The location “mh1le9QGMrZLohAjfheJJg” which

was the second least recommended by simple recommender is categorized as

the second least preferred item for the first five bipartite core (i.e. “Service”,

“Price”, “Pet”, “Food”, and “Amenities”). A similar analysis observed for 500

other users is skipped due to space constraint.

4.6 Conclusion and Future Work

We formulated user-aspect bipartite relation as a bipartite graph and exploited

bipartite-core, shingles, and ranking-based techniques to predict the ordered

aspect preferences of users for explainable recommendation. The proposed

models supplemented with explanations outperformed the ones without expla-

nation, and gained significant improvement (e.g., 5.8% to 29.5% from Deep-

Conn [ZNY17], and 11.1% to 27.4% from Guo et al. [GSZ+17]) on F-score over

relevant studies. In future, we would like to exploit different aspect extrac-

tion techniques, cluster the users based on their preference order on aspect

categories, and generate recommendations for a group.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

The role of contexts is inevitable for an efficient recommendation. This

dissertation developed machine learning models for multi-context Point-of-

Interest recommendation, inspired from personalized ranking, non-negative

matrix factorization, hierarchical clustering, and neural networks. It defined

three main research problems and presented machine learning models to solve

those problems. The core contributions of the research are as follows:

1. Analysis of roles of major contexts (categorical, temporal, spatial, and

social) in POI recommendation and incorporation of the major contexts

into a single recommendation model.

2. Formulation of user activity and location influence into the POI recom-

mendation problem and modeling user preference as hierarchical struc-

ture and aggregating the hierarchies to represent the aggregated locality

preferences.

3. Exploitation of user reviews to extract aspect-opinion correlation and to

generate aspect-aware explanation for POI recommendation.

The context-aware recommendation is an emerging research area. As a

follow up to the work presented in this dissertation, some potential directions

are identified:

1. We exploited the user preferences as a hierarchy and aggregated the hi-

erarchies to represent locality preferences. The hierarchies can also be

potentially adapted to many research directions, such as knowledge dis-

covery, question answering, and so forth.

2. The sequence recommendation problem can be another direction to ex-

plore. This is useful in many real-world problems, such as itinerary plan-

ning and tour recommendations. The check-in behavior of users can

131



be chronologically sorted and their sequential check-in trend can be ex-

ploited using sequence models, such as Recurrent Neural Network (RNN),

Long short-term memory (LSTM), and Gated Recurrent Unit (GRU) to

learn the sequence and generate sequence recommendation.

3. The fairness attribute can be another interesting direction to explore. It

can be interesting to know if all users are fairly recommended the relevant

items and if all items are fairly recommended to the relevant users. This

research direction can be further exploited on reciprocal recommendation

where both ends are homogeneous entities (e.g., user-user network in

dating partner recommendation system).
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Koray Kavukcuoglu, and Pavel Kuksa. Natural language process-
ing (almost) from scratch. Journal of Machine Learning Research,
12(Aug):2493–2537, 2011.

[CYKL12] Chen Cheng, Haiqin Yang, Irwin King, and Michael R Lyu. Fused
matrix factorization with geographical and social influence in
location-based social networks. In Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence, 2012.

[CYLK13] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. Where
you like to go next: Successive point-of-interest recommendation.
In IJCAI, volume 13, pages 2605–2611, 2013.

[CZZ+17] Jiajun Cheng, Shenglin Zhao, Jiani Zhang, Irwin King, Xin Zhang,
and Hui Wang. Aspect-level sentiment classification with heat
(hierarchical attention) network. In Proceedings of the 2017 ACM

135



on Conference on Information and Knowledge Management, pages
97–106. ACM, 2017.

[DHX+06] Chris Ding, Xiaofeng He, Hui Xiong, Hanchuan Peng, and
Stephen R Holbrook. Transitive closure and metric inequality
of weighted graphs: detecting protein interaction modules using
cliques. International journal of data mining and bioinformatics,
1(2):162–177, 2006.

[DJLS07] Chris Ding, Rong Jin, Tao Li, and Horst D. Simon. A learning
framework using green’s function and kernel regularization with
application to recommender system. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 260–269. ACM, 2007.

[DS17] Ruihai Dong and Barry Smyth. User-based opinion-based recom-
mendation. In Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, pages 4821–4825. AAAI Press,
2017.

[Fel98] Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

[FYL13] Gregory Ference, Mao Ye, and Wang-Chien Lee. Location recom-
mendation for out-of-town users in location-based social networks.
In Proceedings of the 22nd ACM international conference on In-
formation & Knowledge Management, pages 721–726. ACM, 2013.
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