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ABSTRACT 

The recommender systems are recently becoming more significant due to 

their ability in making decisions on appropriate choices. Collaborative Filtering (CF) 

is the most successful and most applied technique in the design of a recommender 

system where items to an active user will be recommended based on the past rating 

records from like-minded users. Unfortunately, CF may lead to poor 

recommendation when user ratings on items are very sparse (insufficient number of 

ratings) in comparison with the huge number of users and items in user-item matrix. 

In the case of a lack of user rating on items, implicit feedback is used to profile a 

user’s item preferences. Implicit feedback can indicate users’ preferences by 

providing more evidences and information through observations made on users’ 

behaviors. Data mining technique, which is the focus of this research, can predict a 

user’s future behavior without item evaluation and can too, analyze his preferences. 

In order to investigate the states of research in CF and implicit feedback, a systematic 

literature review has been conducted on the published studies related to topic areas in 

CF and implicit feedback. To investigate users’ activities that influence the 

recommender system developed based on the CF technique, a critical observation on 

the public recommendation datasets has been carried out. To overcome data sparsity 

problem, this research applies users’ implicit interaction records with items to 

efficiently process massive data by employing association rules mining (Apriori 

algorithm). It uses item repetition within a transaction as an input for association 

rules mining, in which can achieve high recommendation accuracy. To do this, a 

modified preprocessing has been employed to discover similar interest patterns 

among users. In addition, the clustering technique (Hierarchical clustering) has been 

used to reduce the size of data and dimensionality of the item space as the 

performance of association rules mining. Then, similarities between items based on 

their features have been computed to make recommendations. Experiments have 

been conducted and the results have been compared with basic CF and other 

extended version of CF techniques including K-Means Clustering, Hybrid 

Representation, and Probabilistic Learning by using public dataset, namely, Million 

Song dataset. The experimental results demonstrate that the proposed technique 

exhibits improvements of an average of 20% in terms of Precision, Recall and F-

measure metrics when compared to the basic CF technique. Our technique achieves 

even better performance (an average of 15% improvement in terms of Precision and 

Recall metrics) when compared to the other extended version of CF techniques, even 

when the data is very sparse. 
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ABSTRAK 

Recommender systems semakin penting kerana keupayaannya dalam 

membuat keputusan pemilihan yang tepat.  Collaborative Filtering (CF) adalah 

teknik yang paling berjaya dan berkesan dalam rekabentuk sebuah recommender 

systems di mana perkara-perkara yang berkaitan dengan pengguna aktif adalah 

disyorkan berdasarkan kepada rekod penilaian item di kalangan pengguna yang 

mempunyai kecenderungan yang sama. Malangnya, CF berkemungkinan membawa 

kepada pengesyoran yang tidak berkesan apabila penilaian item adalah sedikit 

(kekurangan bilangan penilaian item) berbanding dengan bilangan pengguna yang 

ramai dan item yang banyak dalam matriks pengguna-item. Dalam kes di mana 

kurangnya penilaian ke atas item, maklumbalas yang tersirat digunakan untuk 

memprofil pilihan barangan pengguna. Maklumbalas yang tersirat boleh memberikan 

gambaran tentang pilihan pengguna dengan memberikan bukti dan maklumat melalui 

pemerhatian yang dibuat ke atas tingkahlaku pengguna. Teknik data mining yang 

merupakan fokus kajian ini boleh mengandai tingkahlaku pengguna pada masa akan 

datang tanpa penilaian item dan mampu juga menganalisa pilihan pengguna. Untuk 

menyiasat tahap kajian ke atas CF dan maklumbalas implisit, sorotan literatur yang 

sistematik telah dibuat ke atas kajian-kajian yang telah dijalankan dalam bidang 

berkaitan CF dan maklumbalas implisit. Untuk mengenalpasti tinglahlaku pengguna 

yang mempengaruhi recommender system, dan berdasarkan pada teknik CF, 

pemerhatian kritikal telah dijalankan ke atas set data recommendation awam. Untuk 

mengatasi masalah data sparsity, kajian ini telah menggunakan rekod interaksi nyata 

pengguna beserta dengan item untuk memproses secara efektif data yang besar 

dengan menggunakan association mining rules (Apriori algorithm). Ianya 

menggunakan pengulangan item dalam satu-satu transaksi sebagai input, di mana ini 

akan dapat memberikan recommendation yang tepat. Untuk itu, satu modifikasi 

prapemprosesan telah dbuat untuk mencari pola minat yang sama dikalangan 

pengguna. Sebagai tambahan, teknik clustering (Hierarchical clustering) telah 

digunakan untuk mengurangkan saiz data dan dimensi ruang item sebagai hasil rule 

mining. Kemudian, persamaan antara item berasaskan ciri masing-masing 

dikomputerkan bagi membuat cadangan. Ujian-ujian telah dijalankan dan keputusan 

ujian telah dibandingkan dengan teknik CF yang asas dan juga yang dikembangkan 

seperti K-Means Clustering, Hybrid Representation, dan Probabilistic Learning 

dengan menggunakan set data awam yang dinamakan set data Million Song. 

Keputusan-keputusan ujian telah menunjukkan bahawa teknik yang dicadangkan 

telah menunjukkan penambahbaikan pada purata 20% dari segi metriks Precision, 

Recall dan F-measure apabila dibandingkan dengan teknik CF yang asas. Teknik 

yang kami gunakan telah menunjukkan prestasi yang lebih baik (purata 15% 

penambahbaikan dari segi metriks Precision dan Recall) apabila dibandingkan 

dengan teknik-teknik CF yang telah dikembangkan, walaupun pada ketika data 

adalah sparse.  
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1. CHAPTER 1 

CHAPTER 1 

INTRODUCTION   

1.1    Research Background   

The World Wide Web is changing radically on an unprecedented amount of 

information. The enormous amount of information in the world is growing with the 

increasing popularity of web. The web is a wide environment and dynamic that 

different users can publish their documents in it. On the other hand, the web is an 

important source of information available to the public (Xie et al., 2014; Huang et 

al., 2015).  

De Campos et al. (2010) stated that much information is available online with 

the fast development of the Internet. Rapid growth of information (such as online 

news, books, articles, music, movies, etc.) on the web has caused users to face 

difficulty in accessing the right information.  Nowadays, music information retrieval 

technology and music recommendation technique have gained greater attention 

among the commercially renowned music recommender system operators such as 

like Last.fm1, Pandora.com2, etc (Park et al., 2012). Park et al. (2012) stated few 

researches have been done in the music recommendation field. The e-commerce and 

entertainment websites (such as Amazon, CDNow, Yahoo, etc.) offer same 

                                                 

1 http://www.last.fm. 
2 http://www.pandora.com. 
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appearance to every user considered of the browsing history. These websites 

provides suggestions to their potential users without navigation guides tailored to 

user’s preferences and needs. As a result, users are overloaded with information 

produced by the search engine and they spend more time and more search effort to 

locate the right information at the right time. For solving this problem, recommender 

systems have been the considerable subject for researchers to help internet users in 

easily finding needed information (De Campos et al., 2010 and Xie et al., 2014). In 

other words, Due to the increased overloading problem of information, the 

recommender systems are becoming more significant in the age of rapid 

development of the Internet technology. Recommender systems have become an 

essential mechanism which provides users with useful selected information; in which 

this could be effective in making a decision for example in purchasing a product, 

selecting a movie to watch or doing any other online activity that requires making a 

choice or a decision (Xie et al., 2014; Huang et al., 2015).  

According to Kaleli (2014) recommender systems analyze the behavior of 

internet user to offer the best items (data, information, goods, etc.) which is 

considered of interest to user. On the other hand, recommender systems are the 

intelligent tools to deal with the problem of overloaded information in the search 

results and help the internet user to access to right information across wide range of 

information on the web.  According to Bae and Kim (2010), recommender systems 

can apply data mining techniques at predicting the user’s future behavior and users’ 

preferences to increase the chance of repurchasing. In general, data mining 

techniques explore and analyze the large quantities of data (such as users, items) to 

discover meaningful patterns and rules. Applying these techniques to recommender 

systems can lead decision making and to predict the effect of decisions (Nakatsuji et 

al., 2016, Kaleli, 2014, Hung, 2005). In general, data mining techniques are defined 

as extracting or mining knowledge from data. These techniques are used for the 

exploration and analysis of large quantities of data in order to discover meaningful 

patterns and rules to improve the recommendation quality and the scalability 

problems (Nakatsuji et al., 2016, Kaleli, 2014).  
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Recommendation system predicts the particular requirements of user base on 

its analysis of the previous buying behavior of user and its understanding of the user 

in order to recommend products that contain user needed requirements. The 

entertainment and shopping websites where the wealth of information is growing so 

quickly adapt themselves to each user with using recommendation system. In a 

sense, personalization of search engine results based on user intent is the goal of a 

recommendation system in order to deliver a high variety of user needs (Zhou et al., 

2015, Cao and Li, 2007; Hung, 2005).  

The recommender systems endeavor on discovering the users’ preferences, 

learn about these preferences and eventually based on this, anticipate the users’ 

needs. A recommender system works within a given domain which actually concerns 

the interest of the users (De Campos et al., 2010). So, based on how recommender 

systems are made, there are three main categories of recommendation techniques, 

including: Content-based Filtering (CBF), Collaborative Filtering (CF), and 

Knowledge based as shown in Figure 1.1(Pin-Yu et al., 2010; Bellogín et al., 2013). 

Some systems use hybrid recommender systems which make use of more than one 

recommendation technique in order to enhance the performance of available 

recommendation techniques for example, Wu et al., (2014)  combined CBF and CF 

to build a hybrid recommender system. Fernández et al. (2011) proposed a 

combination of a CBF with a knowledge-based technique to produce the 

recommendations. Figure 1.1 shows recommendation techniques that have been 

proposed to implement recommender systems (Montenegro et al., 2012; Pin-Yu et 

al., 2010; Bellogín et al., 2013):  
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Figure 1.1 Recommendation techniques (Pin-Yu et al., 2010; Bellogín et al., 2013) 

 

The CBF recommends items that are similar to the ones that users preferred 

in the past. Recommendations are made by automatically matching a customer’s 

interests with items’ contents (Pin-Yu et al., 2010; Wu et al., 2014). CBF does not 

take advantage of shared features or attributes among users’ preferences in offering 

important recommendations to other comparable users. This is because it 

recommends items that are similar to those which users already know (Bellogín et 

al., 2013; Horsburgh et al., 2015). On the contrary, CF recommends items based on 

compatible users’ ratings on items rather than the contents or attribute of items. Thus, 

an analysis of users’ ratings on items provide recommendations for users according 

to what user with similar preferences and tastes have liked in the past (Pin-Yu et al., 

2010). According to Choi and Suh (2013), CF-based recommender systems automate 

the word-of-mouth recommendation process, in which people share their opinions on 

same items. CF is then seemed as being contrastive to the knowledge-based 

technique. This is because knowledge-based technique suggests products based on 

deduction about users’ needs and preferences. This technique does not depend on 

users’ profile and rating. Nor does it based on the word-of-mouth, like the CF 

technique.  Knowledge-based filtering usually generates a recommendation based on 

the matched users’ needs and preferences as well as the available items (Bellogín et 

al., 2013; Boratto et al., 2015). 

Recommendation Techniques 

Knowledge based Hybrid recommender 

systems 

Collaborative Filtering 

(CF) 
Content-based Filtering 

(CBF) 

Memory-based technique 

User-based CF 

Model-based technique 

Hybrid systems 

(User-based+ Item-based) 
Item-based CF 
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The CF is one of the most successful recommender techniques among 

techniques used in recommender systems to overcome the information overload 

because it provides the best results and accurate recommendations even though it has 

simplistic algorithm (Nakatsuji et al., 2016, Kaleli, 2014; Kim et al., 2011). CF is 

easy to implement and is effective. CF technology has the means to recommend 

unanticipated items by identifying similar users who rated the items without any 

content attribute compared to other recommender techniques (e.g., content based 

technique (Liu et al., 2014)). Moreover, CF does not need any domain knowledge 

about the items and users unlike knowledge-based techniques (Ghazanfar and 

Prügel-Bennett, 2014). Because of its simplicity in both theory and implementation, 

CF can be applied to virtually any kind of items viz. movies, books, papers, jokes, 

news, locations of holidays, songs, web sites, stocks etc. In other words, CF 

techniques are more often implemented than knowledge-based and content filtering 

in recommendation systems, since they often result in better predictive performance 

and recommendations accuracy. The main reason is that, CF techniques are 

independent of data used by knowledge-based techniques and content filtering, 

which are invasive and time consuming to collect (Nakatsuji et al., 2016; Ranjbar et 

al., 2015). CF technique generates recommendations via the ratings of a set of similar 

users or items known as neighbors (Ranjbar et al., 2015; Berkovsky et al., 2012). 

User information stored in users profile in the recommender systems are 

collected by the feedback techniques. Recommender systems use users profile in 

order to reflect user interests and make recommendation. The feedback techniques to 

obtain information about user preferences are grouped into two types: Explicit and 

Implicit feedback (Núñez-Valdéz et al., 2012).  In the explicit feedback, users 

evaluate the products by assigning a score to them. In this feedback, users 

unequivocally express their interests in products (Jawaheer, 2010). The most 

common explicit feedback system for evaluating the products by users on the web 

are consists of explicit rating “5 stars” (ratings of user are stated in a 1~5 scale) and 

explicit rating “Like”. 

For instance, social networks such as YouTube and Facebook provide user 

with using the like rating system to rate the contents. On the other hand, Movilens 
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Film affinity and Amazon online store provide users with using the star ratings 

system to identify which products are of user interest. Another explicit feedback 

system is Google+1 that Google added to its search engine and allows users to 

evaluate explicitly the websites which is more interesting for them. Serious limitation 

in explicit feedback is the reluctance of users to spend time providing the ratings on 

items (Yang et al, 2012). 

The implicit feedback provides the evaluation of products without 

intervention of users. This evaluation is performed by capturing of information 

obtained from the activities done by the users in the application without the user 

being aware (Jawaheer, 2010). According to Kardan and Ebrahimi (2013) the 

implicit feedback can be obtained by observing user behavior and their actions in 

order to infer the user interests. For example, when the user reads an article online, 

regarding to the time that user spend to read the article, the system could 

automatically infer whether the article is on interest of user or an internet radio is 

able to track which songs a user has listened to. Implicit feedback is used to filter and 

recommend a variety of items (such as articles, books, movies, television programs, 

web documents, etc) by understanding user preferences and interests based on user 

behavior and actions made by the user in the system. Types of implicit feedback 

include search patterns, mouse movement, browsing history, purchase history, etc. 

For example, when a user purchases many books with the same author, the system 

could understand that user likes that author (Kaleli, 2014; Zhao and Ordóñez de 

Pablos, 2011; Hu et al., 2008).  

1.2    Background of Problem 

While the number of products on the web is increase, ability of internet users 

in getting appropriate product recommendations is decreased so finding the right 

information that best meet requirements and preferences of user become difficult due 

to information overload and diversity of data for example users may access the 

incorrect or irrelevant information.  
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The CF technique infers commonalities between the active user and his 

neighbors (users who have similar preferences with active user) on the basis of their 

ratings and then makes recommendations based on inter-user comparisons (Zhou et 

al., 2015; Pinho Lucas et al., 2012). In this technique, make recommendations are 

based on evaluation of the profile of the active user and his/her neighbors. CF uses 

the rating system that allows users to explicitly input preference ratings about 

products in order to detect which products are of user interest and identifying similar 

users (neighbors). Rating on products based CF technique can be showed as the flow 

of predicting how a user rates a given product from other user ratings. The following 

four steps describe the trend of CF technique (Bauer and Nanopoulos, 2014; Xie et 

al., 2014):  

i. Collect user’s ratings of available items (e.g. movies, CDs or books) in user 

profile (user rating database) in order to show the preferences of user in the 

corresponding domain.  

ii. Identify a set of users (known as neighbors) that are similar to the active user. 

CF evaluates the likings similarity between users based on their ratings on 

common items in the user profile. For example, either they have given similar 

rating on available items or they have used similar items.     

iii. Predict the rating on products that active user would give by observing the 

ratings of neighbors of active user. Notice that, when trying to predict the 

rating on a specific item, there will be many vacant ratings of the product in 

neighborhood of active user. In the other words, a significant number of 

neighbors have not rated the product therefore mechanisms should be 

developed that enable to predict ratings on products based on minimum 

number of ratings. 

iv. Find products that the active user is interests in to be recommended based on 

interests of like-minded users. 

Drawbacks inherited by CF in recommender systems are reflected in 

incorrect recommendation. False positive or false negative is error in a 

recommendation that may be happened. In false positive, products are recommended 

that the customer does not like them.  False negative consists of products that were 
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not recommended, in spite of the customer would have liked them (Xie et al., 2014; 

Pinho Lucas et al., 2012). In order to reduce these errors in a recommendation, 

techniques applied in recommender systems should be improved to alleviate 

drawbacks in recommender systems. However, CF suffers from four basis drawbacks 

to be described as follow: 

 Data Sparsity problem refers to the lack of number of ratings on products for 

generating accurate predictions and identifying similar users (neighbors). CF 

is not able to find nearest-neighbors for users and produce the correct 

recommendations when the number of ratings obtained is very less compared 

to the number of ratings that are needed for prediction (Kardan and Ebrahimi 

(2013; Shi et al., 2014). The most eminent shortcoming of the CF technique 

is the sparsity problem since, it makes recommendation results unreliable.  

 Cold_start problem occurs when an item is newly added in the system or new 

user has just started to use the system. CF is unable to make good 

recommendation for the new user because the system has insufficient 

information on the user (insufficient previous ratings or purchases) to 

generate recommendation for them. Similarity, in the case of new items, it is 

unlikely that CF recommend these new items to users because no purchased 

or ratings expressed by users on these items (Lam et al., 2008; Pinho Lucas et 

al., 2012).   

 Scalability problem refers to declining performance of the recommender 

systems because of large numbers of items or users.  Computational time for 

searching the nearest neighbors for active user or generating 

recommendations increases significantly due to an increased number of items 

and users (Pinho Lucas et al., 2012; Acilar and Arslan, 2009).  

 Gray sheep problem leading to poor recommendation for the users whose 

opinions are not similar with the ones of any group of users. In fact, a user 

may be taken in the situation of gray sheep, when spend long time in the 

condition of cold-start problem, because such user has not shown interest on 

products of system (Pinho Lucas et al., 2012). 
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1.3    Problem Statement 

The success of CF technique strongly depends on the interaction of users with 

the system; it requires ratings on the available items so that correct recommendations 

can be made. However, it is impossible for a system to have a complete database 

with the evaluations on available items due to huge amount of items. The number of 

ratings obtained is relatively small compared to number of ratings needed for 

prediction of the vacant ratings; therefore, sparsity problem occurs. Sparsity problem 

refers to the lack of user ratings needed for prediction of users’ preferences in 

comparison with the large number of users and items in a user/item matrix. 

Recommender systems are not able to find interests of user correctly and hence, 

computing prediction becomes incorrect when a user rates few products. This is a 

significant challenge because it is difficult and costly to obtain sufficient information 

of evaluation from users about products of system while the number of products 

increases.  

In short, the problem that is addressed in this research is data sparsity 

(insufficient number of ratings) in which it causes the CF not able to make correct 

recommendations.  

1.4    Research Questions 

The following research questions are defined for this research: 

1) How does the CF technique work when sparsity is an issue (The number of 

ratings on items is insufficient for prediction and recommendation)?  

- What implicit data and data mining techniques can be used to extract 

knowledge about users’ preferences? 

- Which available recommendation datasets about users’ preferences for a 

set of items are more effectively employed as a benchmark of implicit 

data? 
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2) How can we utilize implicit feedback and data mining techniques to 

overcome the sparsity problem in the CF technique?  

- How does the analysis of implicit data be effectively integrated into CF 

recommender system? 

- Can implicit feedback and data mining techniques help to improve the 

performance of CF technique in sparse data? (be addressed by 

considering experimental methodology) 

- Do data mining techniques in CF effectively exploit the implicit data and 

analyze users’ preferences in improving accuracy of recommendations? 

1.5    Research Objectives 

The research seeks to address the following objectives: 

1) To investigate the state of research in CF technique and implicit feedback.  

2) To investigate user activities that can influence recommender system 

developed based on CF technique.  

3) To improve the CF technique by considering implicit feedback and data 

mining techniques in which dealing with sparsity problem.   

4) To evaluate the improved CF technique by conducting experiments on public 

dataset.    

1.6    Research Scope 

Firstly, in order to investigate the CF technique and implicit feedback, we 

will conduct a systematic review on the relevant published related articles. This study 

needs a more in-depth knowledge on how to improve the CF by identifying the user 

preferences from their implicit behavior; and the sparsity problem which puts a limit 

to this technique, has to be given consideration. 
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To achieve the second objective which is to investigate users’ activities that 

influence the recommender system developed based on the CF technique, the 

analysis and description of the public recommendation datasets (such as Jester, 

MovieLens, Million Song datasets, etc) will be done. Then, we will conduct a critical 

observation on research articles to explore and present the users’ activities which are 

explored from the public datasets. The critical observation conducted will help in 

discussing several issues related to datasets: (1) the ways to enhance users’ feedback 

and present an overview of state-of-the-art techniques in a recommender systems, (2) 

to investigate the historical record of users' activities that can influence the 

recommender system developed based on CF technique, (3) to identify implicit 

feedback datasets and which attributes in public datasets (social tagging, social 

relations, categorical data) hold more significant information to provide accurate 

recommendations. 

In achieving the third objective which is to propose the improved CF 

technique, the implicit feedback and data mining techniques (for example: 

association rules, clustering, classification) will be given ample consideration. 

Implicit feedback shows how and how often a user operates in the system. This will 

provide us with sufficient information about the user's interests, which will 

eventually help in decreasing the dependency of the CF technique on the user’s 

rating and hence, improve the prediction quality and recommendation accuracy. In 

our proposed technique, in order to overcome sparsity problem in CF, we plan to 

acquire the users’ interests by analyzing implicit interaction of a user with items. For 

data mining techniques, we will consider data mining techniques to be sensitive to 

sparsity problem so that accurate recommendations can be made. The data mining 

techniques have been effective in improving the accuracy of recommendations by 

analyzing users’ preferences and exploring and mining knowledge from web data. 

Moreover, data mining techniques are induced off- line, before the user logs onto the 

system, and therefore, the time spent on modeling user interests has no effect on the 

users’ response time. 

Finally, an experimental evaluation on the public dataset as benchmark data 

will be conducted in order to evaluate the proposed technique. This experiment will 
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be conducted to evaluate the accuracy of the generated recommendation by 

improving the CF technique. The improvement is made by comparing the proposed 

technique with the basic CF, based on the defined evaluation metrics under sparse 

data conditions.  

1.7    Research Contributions and Significance 

The major contributions of this study can be summarized as in the following 

paragraphs:  

1) Systematic Literature Review (SLR) report on state of research and practice 

of CF technique and implicit feedback  

Based on the extensive review done on the research articles and studies 

conducted on the trend of CF and implicit feedback, this research has provided SLR 

in the area of study. SLR is a method of Evidence-based Software Engineering 

(EBSE) which applies an evidence-based approach for software engineering research 

and practice. This study provides some valuable insights on identifying the elements 

in CF that can be improved and also identifying the potential users’ activities that can 

be integrated with CF in order to overcome the sparsity problem. SLR report 

provides insights to practitioners and researchers to determine a useful starting point 

for further research in the area of CF and implicit feedback. One of the first research 

studies to investigate the CF technique and implicit feedback with conducting SLR.  

2) Implicit feedback based on users’ activities 

CF technique is realistic because it takes implicit feedback into consideration 

to improve the user recommendations in the case of absence of a sufficient amount of 

available ratings on items. User activities enrich the user profiles by exploiting the 

existing information sources beyond the user/item matrix (such as interests of users 

on properties of items: a user watches a movie of a specific genre), hence providing a 

huge opportunity to improve the recommendation accuracy. Conducting a critical 

observation on research papers will be done in order to present the users’ activities 
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explored from public datasets. The report of the critical observation supports and 

motivates practitioners and researchers by providing the state-of-the-art knowledge 

on public datasets and providing guidelines on how to implement and validate 

recommender systems under different domains to support users in various decision 

activities. One of first research studies to describe and analyze public 

recommendation datasets systematically.  

3) Improved CF based on data mining techniques and implicit feedback  

CF is the most popular and successful technique used in recommender 

systems and is also the center of this research. Extensive work on CF has been done 

in the past decade, and many recommendation techniques have been developed. 

However, there are still major research issues that remain unsolved or overlooked. 

This research applies implicit feedback and data mining techniques to improve the 

current CF for achieving further improvement in recommendation accuracy. A new 

recommendation technique will be proposed to address sparsity problem by using 

data mining techniques and implicit data in forming recommendations.   

Experimental results from evaluating the improved CF will be conducted to 

show the improvements of improved CF technique against basic CF and show how 

accurate the recommendation can be made.  

1.8    Organization of Thesis  

A brief introduction to recommender systems and CF technique were given in 

the Chapter 1. The remainder of this thesis is organized as follows:   

Chapter 2: presents the literature reviews where it discusses previous research 

studies and the gap that exists in the studied area.  

Chapter 3: outlines the research methodology of this thesis. The research 

methodology and instruments applied in this research is described in this Chapter 3.  
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Chapter 4: presents a report on the investigation of the state of research and 

practice of CF technique and implicit feedback by examining the published articles.  

Chapter 5: describes a number of publicly recommendation datasets and 

presents an overview of state-of-the-art techniques in recommender systems and the 

historical record of users' activities.  

Chapter 6: proposes a new technique for recommendations based on user 

profiles created from implicit user feedback and employing the data mining 

techniques as solution to the sparsity problem.   

Chapter 7: provides a description of experimental methodology used in this 

thesis. The experiments for evaluating the proposed method in addressing the 

research problem will be given in this Chapter.  

Chapter 8: summarizes the research results and achievements of this thesis 

and draws the direction for future works. 
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