36 research outputs found

    Quantitative Multimodal Mapping Of Seizure Networks In Drug-Resistant Epilepsy

    Get PDF
    Over 15 million people worldwide suffer from localization-related drug-resistant epilepsy. These patients are candidates for targeted surgical therapies such as surgical resection, laser thermal ablation, and neurostimulation. While seizure localization is needed prior to surgical intervention, this process is challenging, invasive, and often inconclusive. In this work, I aim to exploit the power of multimodal high-resolution imaging and intracranial electroencephalography (iEEG) data to map seizure networks in drug-resistant epilepsy patients, with a focus on minimizing invasiveness. Given compelling evidence that epilepsy is a disease of distorted brain networks as opposed to well-defined focal lesions, I employ a graph-theoretical approach to map structural and functional brain networks and identify putative targets for removal. The first section focuses on mesial temporal lobe epilepsy (TLE), the most common type of localization-related epilepsy. Using high-resolution structural and functional 7T MRI, I demonstrate that noninvasive neuroimaging-based network properties within the medial temporal lobe can serve as useful biomarkers for TLE cases in which conventional imaging and volumetric analysis are insufficient. The second section expands to all forms of localization-related epilepsy. Using iEEG recordings, I provide a framework for the utility of interictal network synchrony in identifying candidate resection zones, with the goal of reducing the need for prolonged invasive implants. In the third section, I generate a pipeline for integrated analysis of iEEG and MRI networks, paving the way for future large-scale studies that can effectively harness synergy between different modalities. This multimodal approach has the potential to provide fundamental insights into the pathology of an epileptic brain, robustly identify areas of seizure onset and spread, and ultimately inform clinical decision making

    Dynamics and network structure in neuroimaging data

    Get PDF

    Mining Biomarkers Of Epilepsy From Large-Scale Intracranial Electroencephalography

    Get PDF
    Epilepsy is a chronic neurological disorder characterized by seizures. Affecting over 50 million people worldwide, the quality of life of a patient with uncontrolled epilepsy is degraded by medical, social, cognitive, and psychological dysfunction. Fortunately, two-thirds of these patients can achieve adequate seizure control through medications. Unfortunately, one-third cannot. Improving treatment for this patient population depends upon improving our understanding of the underlying epileptic network. Clinical therapies modulate this network to some degree of success, including surgery to remove the seizure onset zone or neuromodulation to alter the brain\u27s dynamics. High resolution intracranial EEG (iEEG) is often employed to study the dynamics of cortical networks, from interictal patterns to more complex quantitative features. These interictal patterns include epileptiform biomarkers whose detection and mapping, along with seizures and neuroimaging, form the mainstay of data for clinical decision making around drug therapy, surgery, and devices. They are also increasingly important to assess the effects of epileptic physiology on brain functions like behavior and cognition, which are not well characterized. In this work, we investigate the significance and trends of epileptiform biomarkers in animal and human models of epilepsy. We develop reliable methods to quantify interictal patterns, applying state of the art techniques from machine learning, signal processing, and EEG analysis. We then validate these tools in three major applications: 1. We study the effect of interictal spikes on human cognition, 2. We assess trends of interictal epileptiform bursts and their relationship to seizures in prolonged recordings from canines and rats, and 3. We assess the stability of long-term iEEG spanning several years. These findings have two main impacts: (1) they inform the interpretation of interictal iEEG patterns and elucidate the timescale of post-implantation changes. These findings have important implications for research and clinical care, particularly implantable devices and evaluating patients for epilepsy surgery. (2) They provide an analytical framework to enable others to mine large-scale iEEG datasets. In this way we hope to make a lasting contribution to accelerate collaborative research not only in epilepsy, but also in the study of animal and human electrophysiology in acute and chronic conditions

    Spatio-temporal modelling and analysis of epileptiform EEG

    Get PDF
    In this thesis we investigate the mechanisms underlying the generation of abnormal EEG rhythms in epilepsy, which is a crucial step towards better treatment of this disorder in the future. To this end, macroscopic scale mathematical models of the interactions between neuronal populations are examined. In particular, the role of interactions between neural masses that are spatially distributed in cortical networks are explored. In addition, two other important aspects of the modelling process are addressed, namely the conversion of macroscopic model variables into EEG output and the comparison of multivariate, spatio-temporal data. For the latter, we adopt a vectorisation of the correlation matrix of windowed data and subsequent comparison of data by vector distance measures. Our modelling studies indicate that excitatory connectivity between neural masses facilitates self-organised dynamics. In particular, we report for the first time the production of complex rhythmic transients and the generation of intermittent periods of 'abnormal' rhythmic activity in two different models of epileptogenic tissue. These models therefore provide novel accounts of the spontaneous, intermittent transition between normal and pathological rhythms in primarily generalised epilepsies and the evocation of complex, self-terminating, spatio-temporal dynamics by brief stimulation in focal epilepsies. Two key properties of these models are excitability at the macroscopic level and the presence of spatial heterogeneities. The identification of neural mass excitability as an important processes in spatially extended brain networks is a step towards uncovering the multi-scale nature of the pathological mechanisms of epilepsy. A direct consequence of this work is therefore that novel experimental investigations are proposed, which in itself is a validation of our modelling approach. In addition, new considerations regarding the nature of dynamical systems as applied to problems of transitions between rhythmic states are proposed and will prompt future investigations of complex transients in spatio-temporal excitable systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards Accurate Forecasting of Epileptic Seizures: Artificial Intelligence and Effective Connectivity Findings

    Get PDF
    L’épilepsie est une des maladies neurologiques les plus fréquentes, touchant près d’un pourcent de la population mondiale. De nos jours, bien qu’environ deux tiers des patients épileptiques répondent adéquatement aux traitements pharmacologiques, il reste qu’un tiers des patients doivent vivre avec des crises invalidantes et imprévisibles. Quoique la chirurgie d’épilepsie puisse être une autre option thérapeutique envisageable, le recours à la chirurgie de résection demeure très faible en partie pour des raisons diverses (taux de réussite modeste, peur des complications, perceptions négatives). D’autres avenues de traitement sont donc souhaitables. Une piste actuellement explorée par des groupes de chercheurs est de tenter de prédire les crises à partir d’enregistrements de l’activité cérébrale des patients. La capacité de prédire la survenue de crises permettrait notamment aux patients, aidants naturels ou personnels médical de prendre des mesures de précaution pour éviter les désagréments reliés aux crises voire même instaurer un traitement pour les faire avorter. Au cours des dernières années, d’importants efforts ont été déployés pour développer des algorithmes de prédiction de crises et d’en améliorer les performances. Toutefois, le manque d’enregistrements électroencéphalographiques intracrâniens (iEEG) de longue durée de qualité, la quantité limitée de crises, ainsi que la courte durée des périodes interictales constituaient des obstacles majeurs à une évaluation adéquate de la performance des algorithmes de prédiction de crises. Récemment, la disponibilité en ligne d’enregistrements iEEG continus avec échantillonnage bilatéral (des deux hémisphères) acquis chez des chiens atteints d’épilepsie focale à l’aide du dispositif de surveillance ambulatoire implantable NeuroVista a partiellement facilité cette tâche. Cependant, une des limitations associées à l’utilisation de ces données durant la conception d’un algorithme de prédiction de crises était l’absence d’information concernant la zone exacte de début des crises (information non fournie par les gestionnaires de cette base de données en ligne). Le premier objectif de cette thèse était la mise en oeuvre d’un algorithme précis de prédiction de crises basé sur des enregistrements iEEG canins de longue durée. Les principales contributions à cet égard incluent une localisation quantitative de la zone d’apparition des crises (basée sur la fonction de transfert dirigé –DTF), l’utilisation d’une nouvelle fonction de coût via l’algorithme génétique proposé, ainsi qu’une évaluation quasi-prospective des performances de prédiction (données de test d’un total de 893 jours). Les résultats ont montré une amélioration des performances de prédiction par rapport aux études antérieures, atteignant une sensibilité moyenne de 84.82 % et un temps en avertissement de 10 %. La DTF, utilisée précédemment comme mesure de connectivité pour déterminer le réseau épileptique (objectif 1), a été préalablement validée pour quantifier les relations causales entre les canaux lorsque les exigences de quasi-stationnarité sont satisfaites. Ceci est possible dans le cas des enregistrements canins en raison du nombre relativement faible de canaux. Pour faire face aux exigences de non-stationnarité, la fonction de transfert adaptatif pondérée par le spectre (Spectrum weighted adaptive directed transfer function - swADTF) a été introduit en tant qu’une version variant dans le temps de la DTF. Le second objectif de cette thèse était de valider la possibilité d’identifier les endroits émetteurs (ou sources) et récepteurs d’activité épileptiques en appliquant la swADTF sur des enregistrements iEEG de haute densité provenant de patients admis pour évaluation pré-chirurgicale au CHUM. Les générateurs d’activité épileptique étaient dans le volume réséqué pour les patients ayant des bons résultats post-chirurgicaux alors que différents foyers ont été identifiés chez les patients ayant eu de mauvais résultats postchirurgicaux. Ces résultats démontrent la possibilité d’une identification précise des sources et récepteurs d’activités épileptiques au moyen de la swADTF ouvrant la porte à la possibilité d’une meilleure sélection d’électrodes de manière quantitative dans un contexte de développement d’algorithme de prédiction de crises chez l’humain. Dans le but d’explorer de nouvelles avenues pour la prédiction de crises épileptiques, un nouveau précurseur a aussi été étudié combinant l’analyse des spectres d’ordre supérieur et les réseaux de neurones artificiels (objectif 3). Les résultats ont montré des différences statistiquement significatives (p<0.05) entre l’état préictal et l’état interictal en utilisant chacune des caractéristiques extraites du bi-spectre. Utilisées comme entrées à un perceptron multicouche, l’entropie bispectrale normalisée, l’entropie carré normalisée, et la moyenne ont atteint des précisions respectives de 78.11 %, 72.64% et 73.26%. Les résultats de cette thèse confirment la faisabilité de prédiction de crises à partir d’enregistrements d’électroencéphalographie intracrâniens. Cependant, des efforts supplémentaires en termes de sélection d’électrodes, d’extraction de caractéristiques, d’utilisation des techniques d’apprentissage profond et d’implémentation Hardware, sont nécessaires avant l’intégration de ces approches dans les dispositifs implantables commerciaux.----------ABSTRACT Epilepsy is a chronic condition characterized by recurrent “unpredictable” seizures. While the first line of treatment consists of long-term drug therapy about one-third of patients are said to be pharmacoresistant. In addition, recourse to epilepsy surgery remains low in part due to persisting negative attitudes towards resective surgery, fear of complications and only moderate success rates. An important direction of research is to investigate the possibility of predicting seizures which, if achieved, can lead to novel interventional avenues. The paucity of intracranial electroencephalography (iEEG) recordings, the limited number of ictal events, and the short duration of interictal periods have been important obstacles for an adequate assessment of seizure forecasting. More recently, long-term continuous bilateral iEEG recordings acquired from dogs with naturally occurring focal epilepsy, using the implantable NeuroVista ambulatory monitoring device have been made available on line for the benefit of researchers. Still, an important limitation of these recordings for seizure-prediction studies was that the seizure onset zone was not disclosed/available. The first objective of this thesis was to develop an accurate seizure forecasting algorithm based on these canine ambulatory iEEG recordings. Main contributions include a quantitative, directed transfer function (DTF)-based, localization of the seizure onset zone (electrode selection), a new fitness function for the proposed genetic algorithm (feature selection), and a quasi-prospective assessment of seizure forecasting on long-term continuous iEEG recordings (total of 893 testing days). Results showed performance improvement compared to previous studies, achieving an average sensitivity of 84.82% and a time in warning of 10 %. The DTF has been previously validated for quantifying causal relations when quasistationarity requirements are met. Although such requirements can be fulfilled in the case of canine recordings due to the relatively low number of channels (objective 1), the identification of stationary segments would be more challenging in the case of high density iEEG recordings. To cope with non-stationarity issues, the spectrum weighted adaptive directed transfer function (swADTF) was recently introduced as a time-varying version of the DTF. The second objective of this thesis was to validate the feasibility of identifying sources and sinks of seizure activity based on the swADTF using high-density iEEG recordings of patients admitted for pre-surgical monitoring at the CHUM. Generators of seizure activity were within the resected volume for patients with good post-surgical outcomes, whereas different or additional seizure foci were identified in patients with poor post-surgical outcomes. Results confirmed the possibility of accurate identification of seizure origin and propagation by means of swADTF paving the way for its use in seizure prediction algorithms by allowing a more tailored electrode selection. Finally, in an attempt to explore new avenues for seizure forecasting, we proposed a new precursor of seizure activity by combining higher order spectral analysis and artificial neural networks (objective 3). Results showed statistically significant differences (p<0.05) between preictal and interictal states using all the bispectrum-extracted features. Normalized bispectral entropy, normalized squared entropy and mean of magnitude, when employed as inputs to a multi-layer perceptron classifier, achieved held-out test accuracies of 78.11%, 72.64%, and 73.26%, respectively. Results of this thesis confirm the feasibility of seizure forecasting based on iEEG recordings; the transition into the ictal state is not random and consists of a “build-up”, leading to seizures. However, additional efforts in terms of electrode selection, feature extraction, hardware and deep learning implementation, are required before the translation of current approaches into commercial devices

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Apport de nouvelles techniques dans l’évaluation de patients candidats à une chirurgie d’épilepsie : résonance magnétique à haut champ, spectroscopie proche infrarouge et magnétoencéphalographie

    Full text link
    L'épilepsie constitue le désordre neurologique le plus fréquent après les maladies cérébrovasculaires. Bien que le contrôle des crises se fasse généralement au moyen d'anticonvulsivants, environ 30 % des patients y sont réfractaires. Pour ceux-ci, la chirurgie de l'épilepsie s'avère une option intéressante, surtout si l’imagerie par résonance magnétique (IRM) cérébrale révèle une lésion épileptogène bien délimitée. Malheureusement, près du quart des épilepsies partielles réfractaires sont dites « non lésionnelles ». Chez ces patients avec une IRM négative, la délimitation de la zone épileptogène doit alors reposer sur la mise en commun des données cliniques, électrophysiologiques (EEG de surface ou intracrânien) et fonctionnelles (tomographie à émission monophotonique ou de positrons). La faible résolution spatiale et/ou temporelle de ces outils de localisation se traduit par un taux de succès chirurgical décevant. Dans le cadre de cette thèse, nous avons exploré le potentiel de trois nouvelles techniques pouvant améliorer la localisation du foyer épileptique chez les patients avec épilepsie focale réfractaire considérés candidats potentiels à une chirurgie d’épilepsie : l’IRM à haut champ, la spectroscopie proche infrarouge (SPIR) et la magnétoencéphalographie (MEG). Dans une première étude, nous avons évalué si l’IRM de haut champ à 3 Tesla (T), présentant théoriquement un rapport signal sur bruit plus élevé que l’IRM conventionnelle à 1,5 T, pouvait permettre la détection des lésions épileptogènes subtiles qui auraient été manquées par cette dernière. Malheureusement, l’IRM 3 T n’a permis de détecter qu’un faible nombre de lésions épileptogènes supplémentaires (5,6 %) d’où la nécessité d’explorer d’autres techniques. Dans les seconde et troisième études, nous avons examiné le potentiel de la SPIR pour localiser le foyer épileptique en analysant le comportement hémodynamique au cours de crises temporales et frontales. Ces études ont montré que les crises sont associées à une augmentation significative de l’hémoglobine oxygénée (HbO) et l’hémoglobine totale au niveau de la région épileptique. Bien qu’une activation contralatérale en image miroir puisse être observée sur la majorité des crises, la latéralisation du foyer était possible dans la plupart des cas. Une augmentation surprenante de l’hémoglobine désoxygénée a parfois pu être observée suggérant qu’une hypoxie puisse survenir même lors de courtes crises focales. Dans la quatrième et dernière étude, nous avons évalué l’apport de la MEG dans l’évaluation des patients avec épilepsie focale réfractaire considérés candidats potentiels à une chirurgie. Il s’est avéré que les localisations de sources des pointes épileptiques interictales par la MEG ont eu un impact majeur sur le plan de traitement chez plus des deux tiers des sujets ainsi que sur le devenir postchirurgical au niveau du contrôle des crises.Epilepsy is the most common chronic neurological disorder after stroke. The major form of treatment is long-term drug therapy to which approximately 30% of patients are unfortunately refractory to. Brain surgery is recommended when medication fails, especially if magnetic resonance imaging (MRI) can identify a well-defined epileptogenic lesion. Unfortunately, close to a quarter of patients have nonlesional refractory focal epilepsy. For these MRI-negative cases, identification of the epileptogenic zone rely heavily on remaining tools: clinical history, video-electroencephalography (EEG) monitoring, ictal single-photon emission computed tomography (SPECT), and a positron emission tomography (PET). Unfortunately, the limited spatial and/or temporal resolution of these localization techniques translates into poor surgical outcome rates. In this thesis, we explore three relatively novel techniques to improve the localization of the epileptic focus for patients with drug-resistant focal epilepsy who are potential candidates for epilepsy surgery: high-field 3 Tesla (T) MRI, near-infrared spectroscopy (NIRS) and magnetoencephalography (MEG). In the first study, we evaluated if high-field 3T MRI, providing a higher signal to noise ratio, could help detect subtle epileptogenic lesions missed by conventional 1.5T MRIs. Unfortunately, we show that the former was able to detect an epileptogenic lesion in only 5.6% of cases of 1.5T MRI-negative epileptic patients, emphasizing the need for additional techniques. In the second and third studies, we evaluated the potential of NIRS in localizing the epileptic focus by analyzing the hemodynamic behavior of temporal and frontal lobe seizures respectively. We show that focal seizures are associated with significant increases in oxygenated haemoglobin (HbO) and total haemoglobin (HbT) over the epileptic area. While a contralateral mirror-like activation was seen in the majority of seizures, lateralization of the epileptic focus was possible most of the time. In addition, an unexpected increase in deoxygenated haemoglobin (HbR) was noted in some seizures, suggesting possible hypoxia even during relatively brief focal seizures. In the fourth and last study, the utility of MEG in the evaluation of nonlesional drug-refractory focal epileptic patients was studied. It was found that MEG source localization of interictal epileptic spikes had an impact both on patient management for over two thirds of patients and their surgical outcome

    Imaging brain networks in focal epilepsy: a prospective study of the clinical application of simultaneous EEG-fMRI in pre-surgical evaluation

    Get PDF
    Epilepsy is a common disorder with significant associated morbidity and mortality. Despite advances in treatment, there remain a minority of people with pharmacoresistant focal epilepsy for whom surgery may be beneficial. It has been suggested that not enough people are offered surgical treatment, partly owing to the fact that current non-invasive techniques do not always adequately identify the seizure onset zone so that invasive EEG is required. EEG-fMRI is an imaging technique, developed in the 1990s (Ives, Warach et al. 1993) which identifies regions of interictal epileptiform discharge associated haemodynamic changes, that are concordant with the seizure onset zone in some patients (Salek-Haddadi, Diehl et al. 2006). To date there has been no large scale prospective comparison with icEEG and postoperative outcome. This thesis presents a series of experiments, carried out in a cohort of patients scanned using EEG-fMRI as part of a multi-centre programme, designed to investigate the relationship between EEG-fMRI and intracranial EEG and to assess its potential role in pre-surgical evaluation of patients with focal epilepsy. The results suggested that positive, localised IED-related BOLD signal changes were sensitive for the seizure onset zone, as determined on icEEG, both in patients neocortical epilepsies, but were not predictive of outcome. Widespread regions of positive IEDrelated BOLD signal change were associated with widespread or multifocal abnormalities on icEEG and poor outcome. Patterns of haemodynamic change, identified using both data driven and EEG derived modeling approaches, correspond to regions of seizure onset on icEEG, but improvements for modeling seizures are required. A study of a single seizure in a patient who underwent simultaneous icEEGfMRI, showed similar findings.. An exploratory investigation of fMRI-DCM in EEG-fMRI, suggested it can provide information about seizure propagation and this opens new avenues for the non-invasive study of the epileptic network and interactions with function
    corecore