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Preface 
In the past decade, concepts and methodologies initially 

developed for use by information theory and mathematical 

physics have found high applicability in the modelling and 

interpreting of neuroimaging data, which are characterized 

by complex dynamics and rich connectivity. Adopting a 

network perspective on the relationship between brain 

anatomy and function can provide fundamental insights into 

the means by which simple elements are organized into 

dynamic patterns. Recent studies on functional and 

structural brain connectivity have revealed that specific 

properties of complex brain networks support information 

segregation and integration during high cognitive processes. 

Alterations of these network properties, encountered during 

development, aging or neurological disease, have important 

clinical consequences. Furthermore, investigating the paths 

and directionality of information flow through the brain 

permits the inference of a hierarchical organization, such as 

top-down control and bottom-up modulation, at different 

scales in the brain. The last decade has witnessed a 

continuous rise in studies of complex networks and their 

associated paradigms. Although initial efforts focused on 

disentangling the intricate topological properties of complex 

networks, interest has now shifted towards the study of 

dynamic processes at different temporal and spatial scales, 

and the co-evolution of network structures with those 

processes.  

One of the biggest challenges to date has been the 

understanding the non-trivial topological organization of the 

brain at the structural/anatomical and functional levels. 

Aside from structural connectivity, which typically 

corresponds to white matter tracts, several methods have 

been employed to infer connectivity in the brain. Functional 
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connectivity is usually inferred on the basis of correlations 

among neural activity, and defined as statistical 

dependencies among remote neurophysiological events. 

Another important family of methods aims to reveal directed 

information transfer between brain regions (effective 

connectivity). In recent years, many approaches have been 

proposed, including structural equation modelling, dynamic 

causal models (DCMs), Granger Causality or Transfer 

Entropy. Of course, networks obtained from these measures 

are intrinsically different, both between themselves and with 

respect to the structural network. There is furthermore a 

strong variability between subjects, and the reproducibility 

of the network structure in time has not been extensively 

explored. In order to maximize the information regarding 

brain function that can be extracted from the data, it is 

important to study in detail both the differences between 

these networks and their common features. 

Taking into consideration all the above, the main focus of 

this thesis was to investigate the modulations of dynamic 

networks as a tool for understanding brain function. To this 

end, epilepsy, a chronic neurological disorder that is 

characterized by recurrent seizures and affects around 1% of 

the world population, was a convenient benchmark for this 

work for two main reasons: the network perspective we 

adopt to study the brain and the modifications to the 

dynamics of this network. During a seizure there is an 

abnormal manifestation of neuronal activity in the brain, 

involving dynamical changes that span across multiple 

spatiotemporal scales. Understanding these mechanisms will 

then imply considering a wide range dynamical repertoire. 

The body of this thesis is structured as follows:  
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In Chapter 1, the reader will be introduced to all the 

terminology, measures and methods that will be expounded 

upon in the following chapters. 

 We start by giving a brief description of human brain 

components spanning from the most basic (neurons and 

their physiology) to distinct large cortical regions. We then 

briefly summarise the most widely used techniques for 

studying brain activity, with emphasis on electrophysiology 

and electrophysiological data, which are the sole data 

collection methods used in the thesis. We continue with a 

brief description of networks and their attributes, and how 

these are applied when studying the human brain. Finally, 

we give a short introduction of the techniques we used in 

the thesis to infer and model dynamic connectivity in the 

brain, addressing separately the data driven or model free 

methods (e.g., directed transfer function) and a model 

method, namely DCM. 

Chapter 2 is divided in two main parts. In the first part, the 

reader can find a short review on the main functional 

connectivity methods used in the literature to study 

information flow on a diseased brain network (epileptic in 

our case). 

The second part comprises our application of both invasive 

and scalp electroencephalograph (EEG) recordings of a 

patient with epilepsy. We restrict ourselves to frequency 

domain measures (e.g., coherence, directed transfer 

function and partial directed coherence). Computing 

information transfer between brain regions allows us to 

explore their dynamic connections. With this in mind, we use 

the resulting dynamical networks to map the underlying 

brain activity and possibly to indicate a transition to the ictal 

phase. Chapter 2 is published as: 
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M. Papadopoulou, K. Vonck, P. Boon, D. Marinazzo., 2012, 

“Mapping the epileptic brain with EEG dynamical 

connectivity: established methods and novel approaches”, 

European Physics Journal Plus, 127. 

In Chapter 3 we are interested in investigating the 

modulations of a diseased brain network at the synaptic 

level, with phenomena varying on a scale of seconds. To 

achieve this, we have used a biologically informed method 

(DCM) the basic principles of which are discussed in the 

introductory Chapter 1. Our main goal is to identify key 

synaptic parameters or connections that cause observed 

signals using invasive recordings from three seizures in one 

patient with epilepsy. We consider a network of two sources 

covering two regions of interest. Chapter 3 is published as: 

M. Papadopoulou, M. Leite, P. Van Mierlo, K. Vonck, L. 

Lemieux, K.J. Friston, D. Marinazzo, 2015, “Tracking slow 

modulations in synaptic gain using Dynamic Causal 

Modelling: validation in epilepsy”, NeuroImage, 107. 

In Chapter 4 we expand the study presented in Chapter 3 by 

advancing the methodology used. Using DCM we now adopt 

a Bayesian update scheme, which allows for a clear 

understanding of how neuronal variables fluctuate over 

separable timescales. For this study we use local field 

potentials (LFPs) recorded from 3 rats with induced epileptic 

seizures. Our main focus is on characterising the 

pathophysiology of seizure onset (shortly after the lesion) in 

terms of physiologically plausible variables such as changes 

in synaptic efficacy and rate constants. Using Bayesian model 

comparison, we investigate whether the parametric changes 

were limited to intrinsic connectivity among the neuronal 

populations (and their time constants), the spectral form of 

endogenous (afferent) neuronal input, or both. 
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In Chapter 5, we compare directed transfer function (DTF) 

and effective connectivity measures (DCM) based on 

(invasive) electrocorticographic (ECoG) activity and 

reconstructed responses at the same locations based on 

simultaneous (non-invasive) scalp (EEG) data. These 

multimodal recordings were obtained from a macaque 

monkey under three different conditions: resting state, 

anaesthesia and recovery. Our interest is twofold; we first 

establish the connectivity architecture between two sources 

of interest (a frontal and parietal source) and investigate 

how their coupling changes over different conditions. We 

then evaluate the consistency of the connectivity results, 

when analyzing sources recorded from invasive data (128 

implanted ECoG sources) and source activity reconstructed 

from scalp recordings (19 EEG sensors). Chapter 5 is  

published as: 

Papadopoulou, M., Friston, K., Marinazzo, D., 2015, 

“Estimating directed connectivity from cortical recordings 

and reconstructed sources”, Brain Topograpy, In Press. First 

online 9 September 2015. 

Finally, in Chapter 6, we summarize our findings across 

chapters and discuss implications for future research. 





 
 
 
 

Chapter 1 
Introduction 

 

Brain activity: What it’s made of and how we 

measure it 
 

The neuron: General functioning 

The brain is one of the most complex and diversified organs 

of the human body, and is the central organ of the nervous 

system, located in the head and protected by the skull. The 

nervous system further includes the spinal cord, which 

together with the brain forms the central nervous system 

(CNS) and the ganglia of the peripheral nervous system. 

Neurons are the core components of the nervous system, its 

characteristic cells, and they transmit signals throughout the 

body. Signals are transmitted from a neuron to another via 

synapses. The human brain comprises an estimated number 

of 1011 neurons interconnected by approximately 1014 

synapses. The role of neurons spans from sensing 

external/internal stimuli and processing information to 

directing muscular action. The general structure of a neuron 

can be seen in Figure 1. In their general form, each neuron 

http://en.wikipedia.org/wiki/Spinal_cord
http://en.wikipedia.org/wiki/Ganglion
http://en.wikipedia.org/wiki/Peripheral_nervous_system
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possesses a soma (cell body), dendrites and an axon. 

Dendrites are extensions of neurons, short and highly 

branched and they receive signals and conduct them to the 

cell body. The soma is where the signals from the dendrites 

are joined and passed on. The soma does not really have an 

active role in the transmission of the neural signal but it 

maintains the cell and keeps the neuron functional. Finally, 

the axons extend from the cell body to the terminal endings 

of neurons and conduct signals away from the cell body to 

other cells. 

 

Figure 1. A typical neuron structure with branched dendrites, which 
receive signals at synapses with several hundred other neurons, and a 
single long axon that branches laterally and at its terminal. Typically, 
neurons have a single long axon extending from the cell body to the 
other end of the neuron. The message then moves through the axon to 
the other end of the neuron, then to the tips of the axon and then into 
the space between neurons. From there, the message can move to the 
next neuron. 

Communication between neurons depends upon the 

properties of neuronal membranes. Neuronal membranes 

have embedded proteins that form ion channels through 

which some ions, such as sodium (Na+), chloride (Cl-), 

potassium (K+) and calcium (Ca2+) can diffuse. In order to 

maintain the cell membrane potential, cells keep a low 

concentration of Na+ and high levels of K+. Consequently, 

neurons at rest show a greater concentration of K+ inside 

the cell than outside and greater concentration of Na+, Cl- 
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and Ca2+ outside the cell than inside. This results in a resting 

potential of approximately -70 mV across the cell 

membrane. Any transient change in the permeability of the 

membrane will cause an inflow/outflow of these ions as the 

system attempts to eliminate the concentration gradient and 

establish equilibrium. In other words, when a neuron 

receives a signal, Na+ channels in the membrane are open 

and allow an influx of positive ions into the cell, which cause 

a reduction of the difference in charge across the membrane 

(depolarisation). The localised depolarisation also triggers 

neighbouring sodium channels to open up and depolarise 

the membrane nearby. This process can be continued along 

the axon without weakening, as the signal is continuously 

reamplified across the way.  

At the synapse between two neurons, chemical or electrical 

conduction is used and synapses can be either excitatory or 

inhibitory, according to their effect on the afferent neurons. 

The chemical conduction between the presynaptic axon 

terminal and the postsynaptic dendrite is based on 

neurotransmitters such as dopamine, glutamate and 

gamma-aminobutyric acid (GABA). These neurotransmitters 

are contained in the axon terminals, and they are released 

into the synaptic cleft when the neuron has fired. For 

example, glutamate (the most common neurotrasmitter) 

opens postsynaptic Na+ channels. The influx of Na+ 

decreases the electrical potential at a channel’s location. 

This local depolarization is known as an excitatory 

postsynaptic potential. Alternatively, GABA interacts with 

receptors to open Cl- and K+ channels. The inflow of Cl- or 

outflow of K+ results in an increase in the resting potential at 

a channel’s location. This local hyperpolarization is referred 

to as an inhibitory postsynaptic potential.  
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Distinction of cortical neurons 

Having given a general description of a neuron, it should be 

noted that several different types of neurons exist, and these 

can be classified according to their shape, the channel 

proteins at their synaptic junctions or a characteristic firing 

pattern (e.g., regular and fast spiking, continuous bursting, 

etc.). The latter classification reveals three distinct neurons 

in the neocortex: pyramidal cells (PCs), spiny stellate cell 

(SSCs) and inhibitory interneurons. 

 

Figure 2. Typical spiking of pyramidal cells in (a) supragranular layers 
exhibiting regular spiking (b) infragranular layer exhibiting an intrinsic 
bursting type of signalling. 

Pyramidal Cells are projection neurons of the neocortex, 

sending signals out to other brain areas. They also comprise 

the largest part of the neocortex’s total number of neurons 

(about 65%). As we will see later, PCs can be found in both 
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supragranular and infragranular layers, with the difference 

between the two lying in the signalling type they exhibit 

under experimental conditions. The cells in supragranular 

layers exhibit a regular spiking type of behaviour, while cells 

in infragranular layers show an intrinsic bursting type of 

signalling (Figure 2). 

Spiny stellate cells comprise 20% of the total number of 

neurons in the neocortex. SSCs are local interneurons found 

only in layer IV. However their axons project vertically to 

layer II. 

Inhibitory neurons make up the last 15% of the total number 

of neurons in the neocortex. They are the main constituents 

of the family of so called interneurons, as their axons and 

dendrities are limited to a single brain area. This is in 

contrast to principal cells, which often have axonal 

projections outside the brain area where their cell bodies 

and dendrites are located. A general division of the 

interneurons in these layers is that between local and 

projection interneurons (Figure 3). The local interneurons 

differ from projection neurons and from the general model 

of a neuron described above in that they lack a conductile 

element, the axon, so that connections with other neurons 

are made directly by dendro-dendritic or dendro-somatic 

connections. However these neurons are still a minority of 

the neocortex, with the majority being neurons containing 

chemical synapses as described above. This 15% subdivides 

as follows: 

 7.5% is classified as Class I-GABAergic cells and they 

can be found in all six neocortex layers. They exhibit 

a fast spiking behaviour. 
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 2.55% is classified as Class II-GABAergic, which are 

found in layers II-IV. They exhibit a low threshold 

spiking behaviour. 

 2.55% is classified as Class III inhibitory interneurons 

and they exhibit an irregular spiking behaviour. 

 The remaining 2.4% of inhibitory interneurons do 

not have a specific classification; however their firing 

patterns would still possibly fall within one of the 

three classes mentioned above. 

 

 

Figure 3. Types of neurons typically found in the neocortex: (a) The 
structure of a local interneuron, which lacks the conductile element - the 
axon; (b) Projection interneuron. 

Cortical layers 

The cerebral cortex consists of convoluted grey and white 

matter. The grey matter consists mainly of neuron cell 

bodies and capillaries, whereas the white matter conveys 
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fibers between the different parts of the cortex and from 

other parts of the CNS. The evolved cortex in mammals is 

called neocortex, which is a six layered structured covering 

more than the 90% of our total cortical area. The remaining 

10% is covered by the so-called allocortex, which also 

includes the hippocampus structure. 

Experimental evidence suggests that the neocortex is 

organised in columns, six-layered laminar structures that 

provide a higher level of detail. The neurons of different 

layers are connected vertically to form microcircuits, and 

neurons in a given column are highly interconnected, both 

structurally and dynamically. Each column is thought to be 

responsible for specific signal processing tasks; however, 

rather than being 'fixed,' these columns tend to be dynamic, 

with the cortical circuits being able to rewire their lateral 

connections in response to modulatory signals. So instead of 

fixed columns we consider groups of cells that are able to 

dynamically modulate the strength of their interconnections 

in order to form functional cell assemblies. 

A brief description of the six neocortex layers, the type of 

neurons that each one comprises and their connectivity rules 

and hierarchies, is given below (see also Figure 4). 

 Layer I, the molecular layer, is the outermost layer, 

only contains a few neurons (all inhibitory) and 

projects mainly to dendrites of neurons from the 

deeper layers. 

 Layer II, the external granular cell layer, contains a 

mix of small pyramidal cells and some inhibitory 

neurons.  

 Layer III contains almost all cell types that can be 

found in the neocortex except the excitatory spiny 

stellate cells, and cells found exclusively in layer I. 
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 Layers I-III are called supragranular layers are the 

primary origin and termination of intracortical 

connections 

 Layer IV contains small excitatory cells called spiny 

stellate cells, found exclusively in this layer. It also 

contains a variety of inhibitory cells. It is suggested 

that layer IV is the main layer that receives input 

signals coming into the neocortex from the 

thalamus. Typically the neurons in layer IV are 

strongly intercoupled. Layer IV is also called granular 

layer. 

 Layer V comprises large pyramidal cells and a smaller 

population of inhibitory cells.  

 Layer VI is a multiform layer containing various 

neurons and blends gradually into the white matter. 

Layer VI comprises mainly large pyramidal cells that 

project their axons back to the thalamus and also a 

class of inhibitory neurons called Martinotti cells 

whose axonal outputs make long projections across 

all layers of the neocortex. The next second target of 

thalamic inputs to the neocortex (after layer IV) is 

layer VI. 

 Layers V & VI are called infragranular layers, also 

known to connect the cerebral cortex with 

subcortical regions. 
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Figure 4. The six distinct layers of the cerebral cortex (image modified 
from (Berne et al. 2008)). 

Macrostructure of the brain 

Overall, the structure of the human brain does not differ 

much from that of other mammals. It comprises many 

specialized areas which collaborate: the cortex is the 

outermost layer of brain cells, the brain stem is between the 

spinal cord and the rest of the brain, and the cerebellum is at 

the base and the back of the brain.  

The cerebral cortex is divided in macroregions known as 

lobes, each of them connected to different functions varying 

from reasoning to auditory perception (Figure 5). The frontal 

lobe is the most anterior, and some of the functions 

associated with it include conscious thought, reasoning and 

motor skills. The parietal lobe, located in the middle section 

of the brain, is associated mostly with integrating sensory 
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information from various senses. The temporal lobe, located 

at the bottom section of the brain, contains the primary 

auditory cortex and is associated with sound interpretation. 

This lobe is also associated with our memories as the 

hippocampus, a structure responsible for forming memories, 

is contained within. Finally, the occipital lobe is located at 

the back portion of the brain and it contains the brain's 

visual processing system, so it is mainly associated with 

interpreting visual stimuli and information. 

 

 

Figure 5. The 4 brain lobes (frontal, temporal, parietal and occipital). 

Functional specialisation, integration, hierarchical 

structure and connectivity 

Given the above, we conclude that the human brain seems 

to follow two principles of functional organisation, namely 

functional specialisation and functional integration (Friston, 

2002). Undoubtedly, the functional role of each brain 

component, ranging from single neurons to large cortical 

areas, is determined by its connections. If some patterns 

appear continuously in the brain, one might think that their 
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presence is not random and perhaps should account for 

rules of connectivity. Functional segregation refers to the 

existence of these specialised components (e.g., neurons 

that are grouped together to form distinct cortical areas, or 

specialized cortical areas interacting with each other in a 

wide repertoire of tasks and conditions). 

But what are the exact connectivity rules that apply to the 

neocortex layers? In other words, do we know the exact 

connections within and between the neurons of each layer? 

Strictly speaking the answer is no, as it is rather impossible 

to know the exact connections emerging from each neuron 

at any time. However, after numerous studies on the 

neocortex, it has been experimentally verified that there are 

indeed some rules to which cortical organisations adhere. 

Several circuit models have been proposed for the cortex of 

both humans and animals (from macaque monkeys 

downwards) (White 1989; Felleman & Van Essen 1991; 

Bastos et al. 2012; Douglas et al. 1989). Even though it’s 

impossible for them to capture the exact connections 

between any pair of neurons, there are good approximations 

of how the cortex is organised. We will briefly mention the 

anatomy and the physiology of these connections, as we will 

refer to them several times later on in this thesis. The first 

distinction is between extrinsic and intrinsic connections. 

Extrinsic connections couple different cortical areas, 

whereas intrinsic connections are restricted to a cortical 

column. The functional role of each of the cortico-cortical 

connections may differ, and it appears there is some 

hierarchical organisation that distinguishes forward and 

backward connections. This distinction primarily refers to 

which are the cortical layer of origin and termination for 

each connection. Forward connections originate from 

supragranular layers (I-III) and they mainly terminate in layer 
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IV. Backward connections originate from infragranular layers 

(V & VI) and terminate mainly in supragranular layers (I-III). 

Forward connections are thought to be driving, always 

eliciting a response, while backward connections are thought 

to modulate responsiveness of lower areas to inputs from 

higher or lower areas (Büchel & Friston 1997; (Friston 2002). 

In addition, forward connections mediate the postsynaptic 

effects with fast GABA and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors, and backward 

connections with the remarkably slower N-methyl-D-

aspartate (NMDA) receptor.  

The notion of hierarchical organisation is nicely described in 

Felleman & Van Essen (1991), where the authors study the 

visual cortex of a macaque monkey, adopting the 

organisation found there to establish more general rules 

which can be then applied to several levels of different 

cortical areas. 

What do we measure? 

Techniques to study the brain 

Neuroimaging techniques allow the investigation of where 

and when in the brain specific processes occur. We will 

briefly discuss the most widely used techniques, outlining 

the main advantages and disadvantages of each. 

Single and multi-unit recordings  

Information on the activity of individual neurons has been 

obtained over the past decades through in vivo single cell 

recordings on anesthetised or awake animals, or via in vitro 

recordings on extracted brain slices. This process allows a 

detailed observation of the electrical currents and potentials 

generated by the cells, offering at the same time a high 
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temporal and spatial resolution. Microelectrodes can be 

carefully placed within or close to the cell membrane, 

allowing an intracellular or extracellular recording. However, 

this is a highly invasive method not suitable for human 

studies. A representative paradigm of single cell recordings is 

that of (Hubel & Wiesel 1962), who studied the fundamental 

tuning properties of neurons in the visual cortex. As single-

unit recording only provides information at the single-

neuron level, an alternative would be a multi-unit recording 

which records electrophysiological activity from a cluster of 

cells at the same time. 

LFP recordings 

Local field potentials are signals recorded from extracellular 

electrodes that presumably reflect the integration of 

membrane currents in a local region of cortex. 

Positron emission tomography  

Positron emission tomography (PET) is based on the 

detection of positrons from radioactively labelled water 

injected into the body. Increased blood flow to active areas 

of the brain is indicated by increased positron detection. PET 

has a relatively good spatial resolution (5-100mm) but a very 

poor temporal resolution (30-60s).  

Magnetic resonance imaging 

In magnetic resonance imaging (MRI), radio waves are used 

to excite atoms in the brain, which produces magnetic 

changes that can be detected by a large magnet surrounding 

the body. MRI produces a very precise 3-D picture; however, 

it only gives us information on structure, not function.  
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Functional MRI (fMRI) measures the blood oxygen-level-

dependent (BOLD) contrast signal. This is a distortion in the 

local magnetic field when oxyhaemoglobin is converted to 

deoxyhaemoglobin when neurons consume oxygen. fMRI 

has a very good spatial resolution (1mm) but not so good 

temporal resolution. In addition, the scanning sessions are 

quite tiring for the participants, and there are of course 

constraints to the types of tasks that can be used in the 

scanner. 

Magneto-encephalography 

Magneto-encephalography (MEG) uses a super-conducting 

quantum interference device to measure magnetic fields 

produced by electrical brain activity. MEG has excellent 

temporal resolution and very good spatial resolution. 

However, it’s quite expensive, extremely sensitive to 

magnetic fields outside the brain, and requires accurate 

reconstruction of the activity at the source level. 

Electroencephalography 

We have already briefly discussed the way in which neuronal 

activity in the brain induces electric fields that extend to the 

surface of the head. These electric fields can be measured 

and give rise to characteristic spatial and temporal patterns 

that can be ascribed to different physiological and cognitive 

mechanisms. EEG is one of the most widely-used 

neuroimaging techniques, as it is able to capture human 

brain activity patterns noninvasively and with millisecond 

precision.  

The different temporal and spatial resolutions of all the 

neuroimaging techniques described above can be seen in 

Figure 6. 
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Figure 6. The spatial and temporal resolution of different functional 
neuroimaging methods. 

How do we record EEG signals? 
EEG brain activity is recorded using special sensors, called 

electrodes. Electrodes detect the movement of electrical 

charges that are a consequence of the activity of the brain 

cells. EEG can be recorded on the scalp (the common choice 

in human subjects), or from inside the skull (intracranial 

EEG). 

Scalp EEG 

 Electrodes are usually placed on the scalp using the 

international 10-20 system where 10-20 refers to the fact 

that the differences between adjacent electrodes are either 

10% or 20% of the total frontal back or right left distance of 

the scalp (Figure 7). Each electrode site has a letter to 

identify the lobe along with a number to identify the 

hemispheric location. The position of the electrodes is based 

on four anatomical landmarks, namely the nasion (point 
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between the forehead and the nose), the inion (lowest point 

of the skull from the back of the head), and the pre auricular 

points anterior to the ear. Other than the international 10-20 

system, many other electrode systems exist for recording 

electric potentials on the scalp (e.g., 10-10, 10-5 systems). 

 

Figure 7. Recording scalp EEG: 10/20 system electrode position and 
distances (Taken from 10/20 position manual: 

http://www.transcranial.com/local/manuals/10_20_pos_man_v1_0_pdf
.pdf). 

Brain rhythms 

Brain activity is recorded over time; we know that brain 

function arises from neurons firing at different frequencies 

and with different timing, resulting in oscillating local field 

potentials. If we want to resolve this rich behaviour in 

frequency, the signal defined in the time domain can be 
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transformed into one defined in the frequency domain. This 

is in general done via Wavelet transform or Fast Fourier 

Transform (FFT). FFT takes the complex EEG signal and 

decomposes it into a weighted sum of sine and cosine 

functions with different frequencies and amplitudes. After 

the signal is decomposed, one can construct a 

representation of the relative dominance of various 

frequencies called a power spectrum. Even though this 

representation does not account for the temporal variation 

of the EEG signal, it provides a quantitative answer regarding 

the power relationship between the frequencies that can be 

very informative (Michel 2009; Tong & Thakor 2009).  

Hans Berger, a German psychiatrist and inventor of the EEG, 

was the first to suggest that brain activity changes in a 

consistent and recognizable way when the general status of 

the subject changes (e.g., sleep, wakefulness, etc.) (Tudor et 

al. 2005). The power spectrum is defined between 0 Hz and 

half of the sampling frequency. Different pathophysiological 

and cognitive states result in modulation of the power in 

different frequency bands. The International Federation of 

Societies for Electroencephalography and Clinical 

Neurophysiology in 1974 was the first to make a functionally 

meaningful taxonomy of brain rhythms, categorising them in 

five basic groups labelled with Greek letters, as seen below 

(Buzsaki 2006) (see also Figure 8). 

Delta band (0.5-4 Hz) 

Delta waves are high amplitude waves usually associated 

with sleep, also known as slow-wave sleep (SWS). 

Theta band (4-8 Hz) 

The theta waves are mainly associated with drowsiness and 

certain sleep stages. 

http://en.wikipedia.org/wiki/Slow-wave_sleep
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Alpha band (8-12 Hz) 

Alpha waves were the first brain waves ever detected by 

Hans Berger back in 20's (Tudor et al. 2005). They are 

prominently present in a wakeful relaxation state when eyes 

are kept closed.  

Beta band (12-30 Hz) 

Beta waves are associated with conscious alertness, or 

agitation. This is generally the mental state that most of us 

have during our waking life. 

Gamma band (>30 Hz) 

Gamma waves are the fastest brain waves associated with 

high levels of cognitive functioning.  

 

Figure 8. EEG rhythms: example of delta, theta, alpha, beta and gamma 
activity. 
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Event related potentials 

One of the most popular protocols in EEG research involves 

event related potentials (ERPs). ERPs are significant voltage 

fluctuations resulting from evoked neural activity which is 

initiated by an external or internal stimulus (Michel 2009). 

They have been widely used to investigate the brain 

organization of cognitive processes such as perception, 

memory and language (Hagoort et al. 2004). But how do we 

actually analyse event related EEG signals? Computationally, 

the ERP is computed by extracting EEG epochs time-locked 

to the stimulus presentation, and by calculating the average 

over the EEG epochs. ERPs in response to specific events 

(sensory or cognitive) usually consist of a number of peaks 

and deflections that can be characterised by their 

morphology, topography and latency (termed ERP 

components). Despite the fact that ERPs have limited spatial 

resolution, they have high temporal resolution, providing a 

continuous measure of the time course of the response.  

Pitfalls and obstacles when recording scalp EEG 

data 

Recorded EEG signals are susceptible to artifacts that can be 

exogenous and/or endogenous. Exogenous artifacts can for 

example be due to the stimulus presentation (e.g., electrical 

pain stimulation spikes, electrode/equipment related 

artifacts) whereas endogenous artifacts can be related to 

eye movement, sweat potentials, cardiogenic and muscle 

artifacts (Tong & Thakor 2009). In addition, the difference in 

conductivity between the tissues attenuates and causes 

spatial blurring at the scalp. This would not be a problem of 

course if electrodes could have been placed directly above 

sources of interest within the brain or in close proximity 

thereof. 
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Artifacts in brain signals can be individuated and eliminated 

using visual inspection or automated or semi-automated 

methods (Urigüen & Garcia-Zapirain 2015). A powerful 

approach to address this issue is Independent Component 

Analysis, according to which the several sources combined 

into any individual recorded signal can be separated and 

recognized as either artifact or meaningful brain activity (Bell 

& Sejnowski 1997; Chaumon et al. 2015). 

Invasive EEG recordings 

When not responding to drugs, patients with epilepsy 

undergo an operation in which electrodes are implanted 

deep into their brain or onto its surface. These are called 

intracranial EEG (iEEG) recordings and they are part of the 

presurgical evaluation for patients with intractable epilepsy 

where seizures fail to be controlled by treatment. Provided 

that the seizure origin in the brain can be localized to one 

region, the patient can potentially undergo a surgery for its 

removal.  

The electrodes used in iEEG recordings can vary in the shape 

and in the way are implanted. As we already mentioned, it is 

possible to implant electrodes into deep structures such as 

the amygdala and hippocampus. These are typically called 

depth electrodes.  

Alternatively or as a supplement, when a broader coverage 

of cortical regions is required, Electrocorticographic (ECoG) 

grids are placed below the dura mater, directly on the 

cortex. These may include strips containing a single row of 

electrodes, multiple electrode strips or grids covering the 

cortical region of interest. 

As with scalp EEG recordings, iEEG can be analysed from a 

variety of perspectives both by analysing their waveforms in 
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the time domain but also by looking more closely into their 

spectral properties after applying FFT. The main difference 

from the scalp data is of course their higher signal-to-noise 

ratio (SNR). 

Animal protocols can be used for fundamental research even 

without the main clinical application, after approval by an 

ethics committee. 

Montage 

In short, EEG measures the difference in voltage displayed 

over time between two or more electrodes placed on the 

scalp, and the representation of this difference between EEG 

channels is referred to as a montage. One can think of the 

montage as a way of reformatting the same EEG epoch of 

interest. One can find different representations of the 

recorded EEG signals with the most popular being the 

monopolar, average referential and bipolar montages. 

In monopolar montage, signals are collected at the active 

site and compared with a common reference electrode. The 

common electrode should be in a location where cerebral 

activity should not be prominently measurable, e.g. earlobes 

or mastoids. 

 In the average referential montage, the outputs of all 

recorded signals are summed and averaged, and this 

averaged signal is then derived from each channel. 

Bipolar montage is called the overlapping bipolar derivation 

of adjacent electrodes in straight lines either longitudinally 

(anterior to posterior) or transversely (left to right) across 

the scalp. Bipolar montage acts a spatial filter on the 

recorded EEG channels by removing potentials with similar 

amplitudes and phases. 
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Source reconstruction 

In the previous section we saw the superiority of iEEG 

recordings in comparison to scalp recordings in terms of SNR 

and activity localization. In the former case we do record in a 

good proximity from the sources of interest without having, 

for example, skull bone and cerebrospinal fluid interfere 

with the signal. However, apart from the high cost of the 

implantation procedure, iEEG recordings are not suitable for 

common practice.  

The closest we can get to computing the activity values of a 

source that generated a measured electric potential 

captured by an EEG electrode recorded on scalp is through 

EEG source modelling. EEG source modelling involves two 

specular procedures, called the forward and the inverse 

problem. The forward problem estimates the scalp 

potentials given an electrical source distribution, while the 

inverse problem estimates the source parameters out of the 

recorded scalp potentials based on the solution of the 

forward problem. 

A network perspective 
Networks are occupying our everyday life in different forms 

and flavours. Some exemplars include a group of friends and 

colleagues comprising our social network, a group of 

computers in our lab connected to each other, and a 

country’s road network, with the local roads connecting the 

little towns and villages and the motorways connecting 

bigger cities and the neighbouring countries to each other. 

Over the past decades there has been an increasing interest 

across different scientific fields, ranging from biology and 

physics to social sciences, in studying complex networks 
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(Sporns 2011). In order to better understand these networks 

one ought not only investigate the basic components that 

comprise each one of them but also investigate how these 

components interact and what are the consequences of 

these interactions. In fact these interactions result in specific 

patterns, which are the outcome of structured coupling 

between the elements of a network. This structured coupling 

is what we describe as connectivity of a network that 

(depending on the framework) can reflect synaptic 

connections, metabolic pathways, social networks, and so 

forth. 

In this thesis we will focus on the human brain, a great 

example of a complex network where its tiniest components, 

the neurons, are talking to each other through synapses. An 

increasing number of studies adopt a network perspective to 

study different functions of the human brain and 

interactions between neighbouring or remote regions. This is 

because nowadays there is a clear understanding that the 

brain's functioning depends on its network structure and the 

fact that there is a large amount of data available and 

powerful computers to analyze them. 

The human brain is structured into a large number of 

functionally specialized but widely distributed regions. As a 

result of the extensive anatomical studies of the brain's 

cellular circuits, cytoarchitecture and neural fibers, the 

brain's structural organization is quite well defined (Sporns 

2013). These structural organizations form in turn large scale 

dynamics of the interacting neurons which can be captured 

as patterns of functional or effective connectivity based 

measures (Friston 2011; Sporns 2013).  

The investigation of such complex systems from a network 

perspective, and the quantitative analysis of network's 
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connectivity, has its roots in the mathematical field of graph 

theory, and it can be adopted to look both at a macroscopic 

of connectivity between brain regions, as well as at the 

microscopic level of connectivity between neurons. By 

exploiting network approaches and tools to study brain 

dynamics we can better understand how several 

components become organised and obey functional and 

metabolic reasons (Sporns 2011). Furthermore, in order to 

understand thoroughly how the brain works, we need to 

investigate its functional and structural connections across 

all scales, ranging from how cells bind to form a neural 

ensemble and how these neural ensembles are integrated in 

functional brain regions to how these regions in turn form 

systems which link brain and body into a complete organism. 

Additionally, the architectural features of a network reflect 

the processes by which it was constructed or developed. 

The connections across the different neurons, brain regions 

or more general interconnected elements of the brain 

system can be visualized through a mathematical 

representation called a graph which simply comprises a set 

of nodes and a set of edges in its simpler form. 

A node in the brain network can represent a single neuron or 

a cortical region, and the edges can represent anatomical 

connections or dynamic interactions between the activity 

recorded at the nodes. Anatomical connections refer to 

different brain regions that are connected to each other via 

neural fibers, whereas functional connections refer to 

temporal correlations between regions that are not 

necessarily anatomically connected. The nodes in a network 

that are connected with an edge are called neighbours. 

Networks can be either undirected, where all the edges 

between the nodes are bidirectional, or directed, where 

edges are directed in one orientation (Figure 9). In addition, 
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edges and nodes can be binary or associated to a weight. 

Binary connections can only reveal the existence or 

nonexistence of a connection, while weighted connections 

can also reveal the strength of a connection. 

The criteria according to which we build the brain network 

we want to analyze, choosing the appropriate nodes and 

edges that of the network, are usually influenced by the 

problem that we want to address, and constrained by 

anatomical parcellation schemes (i.e. frontal, parietal, 

temporal and occipital lobes) and measures for determining 

connectivity. Weights can be described in different ways 

depending on whether they are used in a structural, 

functional or effective connectivity context (Kaiser 2011). In 

structural connectivity, weights can be used to describe the 

bundle of axons (fibers between brain regions), the degree 

of myelination or the amount of dye travelling to different 

regions in tract-tracing studies. In dynamic connectivity, 

weights usually indicate the degree of statistical dependence 

between the time series. By setting a threshold, where 

connections exist only if exceed a certain threshold, 

weighted networks can be converted to binary ones. 

Binarized networks are usually easier to interpret as the 

connections between the nodes taken into consideration are 

eliminated, however thresholds should be chosen with 

cautious to ensure that the phenomenon under investigation 

can be still captured.  
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Figure 9. (a) An undirected network where all nodes and edges have the 
same weight; (b) An un directed network where the edges and nodes 
have different weights, as indicated by their sizes; (c) same as (a) but 
now the network is directed; (d) same as (b) but now the network is 
directed. 

When we want to investigate some brain network instead of 

drawing nodes and edges, we define its topology by the so-

called adjacency or connection matrix. The entries of the 

adjacency matrix depend on whether the edges represent 

binary or weighted connections. In the former case the 

adjacency matrix is as (0,1) matrix with 1's reflecting the 

presence of an edge (connection) between two nodes and 

0's the absence of connection. In case of undirected graphs 

the adjacency matrix is symmetric as the edges of the 

network are bidirectional where the symmetry is not 

preserved in the case of directed graphs. An illustration of 

how a connection matrix can be inferred from a graph in 

undirected and directed cases can be seen in (Figure 10).  
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Figure 10. Examples of (a) an undirected network and its mapping on the 
adjacency matrix; (b) a directed weighted network and its respective 
mapping on a weight matrix. 

One very useful measure that can be derived from the 

adjacency matrix is the degree. For undirected graphs the 

degree of a node is the number of edges connected to the 

node. 

 In directed graphs we distinguish between in-degree and 

out-degree corresponding to the edges reaching and leaving 

the node respectively. A node that is receiving more 

information than sending (more edges arriving than leaving 

the node) is called integrator where one that sends out more 

information than receiving is called distributor. An integrator 

is influenced by many other nodes while on the contrary the 

distributor is the one influencing its targeting nodes. 

One can also define how 'central' a node is in the network by 

one more local measure called betweenness centrality. It 

reflects how frequently a node is part of shortest paths 

where the shortest path between two nodes is defined as 

the length of the path with the lowest possible number of 

connections (Figure 11). 
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Figure 11. Betweenness centrality: In this example, the node indicated as 
'High degrees' has the highest betweenness because it is between 
entities that are between other entities. These other entities (nodes) 
have a slightly lower betweenness because they are essentially only 
between their own cliques. Therefore, even though other neighbouring 
nodes seem to have a higher degree of centrality, the orange node has 
more importance within the network. 

We now zoom out from the local scale properties and we 

look at and the global properties of a network. Global 

properties are important when comparing networks of 

different brains regions, different layers or cortical columns 

or even when comparing networks of different species 

(humans, monkeys). One crucial measure of the global scale 

is the so called edge density also found in the literature as 

connectivity, which is simple the proportion of the actual 

(existing) connections (edges) in the network, relative to the 

maximum possible number of connections between the 

nodes. From each node of a N-node network, they can be N-

1 edges leaving from it so N(N-1) possible edges leaving from 

all nodes. If the number of existing edges in the network is E 

then the edge density (ED) will be ED=E/N(N-1) in case of a 

direct network and ED=E/2N(N-1) in the case of an 

undirected one. ED is thus a crucial measure to understand 

how well a network is connected.  
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In some case there are sets of nodes within a network with 

larger ED among them than with the rest of nodes within the 

network. These sets of nodes are called clusters or modules 

and nowadays there are numerous algorithms developed in 

different fields able to identify them within a network e.g 

(Friedman et al. 2015; Khan et al. 2014; Comellas & Miralles 

2010; Otte et al. 2015; Palla et al. 2005). These clusters are 

comprised by tens or hundreds of nodes and are usually 

linked to a specific function. These densely interconnected 

regions are responsible for some specialized processing also 

known as functional segregation. Measures of functional 

segregation aim to identify these subgroups (clusters) linked 

to specific brain functions. One of these measures, clustering 

coefficient is defined as the probability that two neighbours 

of a given node are also neighbours of each other (Figure 

12). 

 

Figure 12. Examples of clustering coefficient for a network of 4 nodes. 
Solid lines mark a connection between 2 nodes. Dashed lines mark 
removed links. 

Within a network some the clusters might occur in a 

recurrent fashion and significantly more often than one 

would expect for a random organization. These are called 

network motifs and can be really useful as they may underlie 

some particular functional properties of the network. 

So far we have introduced some fundamental network 

measures, but apart from being interested how these 

measures might differ within or between networks, we are 



Chapter 1 

 

36 
 

also interested in defining the different types of networks 

that might occur and how we classify them. Networks differ 

from each other having distinct topological and spatial 

organization.  

One of the main classes of networks, termed random 

networks, is constructed by connecting randomly pairs of 

initially disconnected nodes with a uniform probability 

(Jeong et al. 2000). In another class, called regular lattice 

graphs, the connections between the nodes are not random 

but rather follow an ordered pattern. However, both classed 

follow in a way a homogeneous pattern of connectivity 

between the nodes, which is not really the case in real world 

complex networks such as those of the human brain. In the 

latter case, the influence of each node in the network and its 

edge density greatly varies. Small worldness is an important 

phenomenon, rooted in social sciences back in the 50's, 

which can be seen in such network. The main idea which has 

been revised by Watts and Strogatz supports that even 

nodes with each other, the can be reached with a relative 

short number of steps (Watts & Strogatz 1998).  

Segregation and integration place opposite demands on 

networks: 

• Optimal clustering and modularity are inconsistent 

with high integration (little cross-talk among highly 

segregated communities) 

• Optimal efficiency or integration is only achieved in a 

fully connected network that lacks any 

differentiation in its local processing 

The bridge between these two opposite requirements is 

made by heterogeneous contributions by individual nodes 
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and edges. The small-world configuration optimizes at the 

same time communication cost and efficiency. 

Table 1. 

 

Taking into consideration all the above we can understand 

that each node of a network might play a different role with 

some nodes being more influential on the network's 

functionality. These nodes are usually more densely 

connected to the rest of a network and they can often be 

referred in the literature as 'hubs'. The same way some 

edges can be more important than others, carrying a heavier 

load of information and in case other network's edges 

damage, they can have a more compensatory role on the 

distributions of information across the network. 

Methods to infer and model dynamic 

connectivity 
From what we discussed in the previous section and from 

Table 1 one can think of functional segregation and 

functional integration as analytic approaches to functional 
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brain architecture;. Functional segregation refers to the 

anatomical segregation of functionally specialized brain 

regions, while functional integration refers to the functional 

interaction between these functionally segregated brain 

regions (Zeki & Shipp 1988). The functional integration can 

be studied by functional and effective connectivity. 

Functional connectivity is defined as the study of temporal 

correlations between spatially distinct neuro-physiological 

events (K J Friston et al. 1993). It investigates the statistical 

dependency between two or more time series by 

investigating whether the null hypothesis of independence 

can be rejected. Effective connectivity is defined as the 

influence one neural system exerts over another (Friston et 

al. 1993) and is based on different hidden neuronal states 

generating the measurements (Friston et al. 2013).  

Functional connectivity measures 

Functional connectivity measures are usually distinguished 

based roughly on three main characteristics. The first is if 

they reveal directionality of connections (e.g. a node A sends 

information to node B but not vice versa) or they just reveal 

the presence of connections (nodes A and B are connected). 

The second depends on whether the underlying connections 

are linear or non-linear and the third one on whether these 

connections are described in the time or frequency domain.  

However, it is beyond the scope of this introduction to give 

an extensive list of the methods falling in each category but 

rather to present the most widely established mathematical 

methods for calculating connectivity that are commonly 

applied to functional high resolution multichannel 

neurophysiological signals and more specifically 

electroencephalographic (EEG). 
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Correlation coefficient 

How can we possibly measure the degree of similarity 

between two signals?  

A traditional linear tool widely used to assess the 

interdependence between two neurophysiological time 

series in the time domain is correlation also known as 

Pearson correlation and is defined as follows: 
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where x and y will be in our case two EEG signals, N is the 

number of samples, ( )E x and ( )E y the expected values of 

signals x and y respectively, x and y their mean values 

and x , y their standard deviations. Correlation coefficients 

values lie in the interval [-1 1] and the sign of the values 

indicates the direction of the correlation. In case of a perfect 

increasing linear correlation the Pearson correlation is value 

is +1, where in case of a perfect decreasing linear 

relationship the it is equal to -1 (also known as 

anticorrelation). All the rest values in the interval (−1 1) 

indicate the degree of linear dependence between the 

variables with values with valued being closer to the 

absolute value of 1 indicating higher degree of correlation. 

If now our signals are shifted in time with respect to each 

other the correlation between them is defined as a function 

of their time lag  . This variant measure of correlation is 

known as cross-correlation, is defined as follows: 
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http://en.wikipedia.org/wiki/Linear_dependence
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This time lag can be of a great interest to us as it may reflect 

a causal relationship between the signals (Pereda et al. 

2005). 

Apart from investigating how two signals of interest are 

correlated in time, we might want to their linear association 

in the frequency domain. This transformation of our signals 

from the time to the frequency domain is possible through 

the fast Fourier transformation (FFT), which resolves a time 

waveform into its sinusoidal components. In other words, 

FFT takes a block of time-domain data and returns the 

frequency spectrum of the data. The counterpart of cross 

correlation in the frequency domain is called spectral 

coherence and it is obtained by the FFT of equation (2) 

resulting in the following equation: 

2
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      (3)  

where 
xyS  is the FFT of the cross-correlation of the two 

signals, called cross-spectral density and xxS , yyS are the FFT 

of the autocorrelation of signals x  and y  respectively 

(simply the cross correlation of the signal with itself) called 

autospectral or power density. The estimated coherence xyC  

values range between 0 and 1. For a given frequency 0f , 

0( ) 0xyC f   indicates that the activities of the signals in this 

frequency are linearly independent, whereas a value of 

0
( ) 1xyC f   gives the maximum linear correlation for this 

frequency. While correlation and coherence are measures 

that mainly focus on the mutual synchrony of the activity of 

two signals, they are not suited to indicate directed 

influences between the signals. 
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Effective connectivity measures 

When analysing neurophysiological data, one crucial 

question arising is whether a drive-response relationship 

exists between to brain regions. To this end, different 

measures able distinguish between indirect and direct 

interrelations between signals have been developed both in 

the time and in the frequency domain. One can find in the 

literature many comprehensive reviews summarising a fair 

number of these methods (Sakkalis 2011; van Mierlo et al. 

2014; Pereda et al. 2005). 

In this thesis we have been particularly interested to study 

direct interactions between neuronal signals and we have 

thoroughly investigated how neuronal systems exert over 

others. To  achieve this, we have used measures that can be 

divided in two main categories - the data driven and the 

model based ones. 

Data driven measures 

The concept of “causality” as directed dynamic influences 

was first introduced by Wiener (1956) and an early 

implementation on how causality is inferred from two time 

series was published by Granger (1969) in the field of 

econometrics.  

Granger stated that if we have two time series X and Y and 

the past values of X are useful in predicting the current 

values of Y in a sense that it significantly reduces its 

prediction error, then X Granger causes (G-causes) Y. In 

other words, if a signal x G-causes a signal y, then the past 

values of x should contain information that helps to predict y 

above and beyond the information contained in past values 

of y alone. From the above we understand that Granger 

causality is an asymmetric measure meaning that the G-
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causality from x to y is distinct from the one from x to y. This 

allows us to investigate directed dynamic influences 

between signals.  

Granger causality is defined in an autoregressive (AR) based 

framework. The reader can find more information on 

different implementations in chapter 2.  

DTF (Kaminski & Blinowska 1991) and partial directed 

coherence (PDC) (Baccalá & Sameshima 2001) are 

alternatives to GC causality in the frequency domain whose 

models have been derived by applying a Fourier 

transformation to the coefficients of the AR model. Again, 

one can find more information on how both methods have 

been derived in chapter 2. 

DTF and PDC are similar measures of directed dynamic 

interaction but they differ in the way they are normalised. 

DTF is normalised with respect to total outflow of 

information, PDC with respect to the total inflow. These 

different normalisations helped us to identify the nodes in 

our networks that acted as integrators of information and 

those who acted as distributors. 

It is worth noting that all these measures were originally 

defined for pairwise influences, but they can be easily 

extended to multivariate systems, in which conditioning to 

the presence of other variables is in order. 

Models of brain activity 

So far we have discussed measures that were based on data 

rather than on models, also known us model free measures. 

Undoubtedly, neurophysiological data are rich in information 

in a sense that they can give us -when analysed with any of 

the methods described- a great insight on how a network of 
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our interest is organised and how this organisation may 

change due to different factors.  

However, it is important to always keep in mind that human 

cortex is characterised by complex dynamics at different 

levels. Thus, the development and use of computational 

models which account for these dynamics can be very 

insightful as many times our questions relate to neuronal 

mechanisms and processes that are not directly observable 

(Deco et al. 2008). Several models have been developed over 

the past years modelling at the single neuron level, 

populations of neurons or even large cortical regions (Deco 

et al. 2008). Diverse information can emerge when using 

each one of them: modelling single neurons gives insight on 

how the basic components of the brain -the neurons- receive 

and send information; modelling populations of neurons, 

gives us insight on their interaction at a level of 

microcolumns and cortical columns, macroscopic models 

inform us on the whole brain dynamics and interactions 

between large-scale neural systems. 

It is beyond the scope of this thesis to extensively describe 

the computational models which have been built over the 

years to model brain dynamics at different levels, but we 

would rather describe the rationale behind them and 

introduce the ones which have been used later one in this 

thesis, the neural mass models. Many of them are nicely 

reviewed in (Deco et al. 2008). 

We discussed before that the functional specialisation of the 

brain is a consequence of a collective network dynamics. The 

computational elements of these circuits are neurons (Deco 

et al. 2008). These spiking neurons receive inputs from other 

neurons, where this input is then transformed into an output 

spike train, which comprises the output signal of the neuron. 
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So it is clear that the output spike patterns that are 

generated by these neural circuits convey information 

among neurons. This is the main idea behind the family of 

models that have been built to reflect dynamics on a 

microscopic level e.g. leaky integrate-and-fire model (LIF) 

models. 

Another family, the ensemble density models, aim to model 

the dynamics of large populations of neurons rather than a 

single neuron. Each neuron of these populations is usually 

accompanied by a set of attributes such as post-synaptic 

membrane depolarisation (V), capacitive current (I), the time 

since the last action potential. Each of these attributes 

introduces a dimension in the phase space of each neuron, 

which in this case will be 3-dimensional. Each neuron then is 

uniquely defined by a point in the phase space v={V,I,T} 
3R .The basis of these models rests on the probability 

density over ensembles of neurons described as ( , )p v t  

(also known as ensemble density) and returning the 

probability density at each point in the phase space. 

A special case of ensemble density models are the neural 

mass models, which we will encounter quite a lot in this 

thesis. The term neural mass models was first used by 

Freeman (Freeman 1975) to describe the dynamic behaviour 

of neural masses at the mesoscopic level (Ramirez 2013). 

The term neural mass refers to a neural system of about 104 

neurons and about 108 synapses. In neural mass models the 

ensemble density described before is summarised to a single 

number. In other words, the full ensemble density is 

replaced by a mass at a particular point and for this 

particular point the density dynamics are summarised by the 

location of this mass (Deco et al. 2008). 
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Dynamic causal modelling: an overview 

Dynamic causal modelling was first introduced for the 

analysis of fMRI data aiming to infer the causal architecture 

of coupled or distributed dynamical systems (Friston et al. 

2003). It was then extended to accommodate the analysis of 

M/EEG data using very detailed and realistic models 

describing the interactions between neural masses. For the 

scope of this thesis only DCM for EEG will be discussed. 

So what does dynamic causal modelling refer to? The five 

key characteristics of DCM as stated in (Stephan et al. 2010) 

are the following: 

 i. DCMs are dynamic in the sense that they use linear or 

non-linear differential equations to describe hidden 

neuronal dynamics  

 ii. DCMs are causal in a sense that they describe how 

dynamics in one neuronal population affect/cause dynamics 

in another population and how these interactions are being 

modulated by either endogenous brain activity or external 

manipulations 

iii. DCMs strive for neurophysiological interpretability 

iv. DCMs use a biophysiologically inspired and parametrised 

forward model able to link the modelled neuronal dynamics 

to specific features of measured data 

v. DCMs are Bayesian in all aspects 

DCM for EEG designed to investigate the architecture of 

underlying neuronal dynamics and to make inferences about 

key neuronal parameters. One can think of a dynamic 

input/output system where EEG data are modelled as the 

response of the system to experimental perturbations (David 
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et al. 2006; Kiebel et al. 2009). Each input of the system is 

assumed to be processed by a network of interacting 

neuronal sources where the dynamics of these neuronal 

sources are modelled in the DCM framework using a neural 

convolution and conductance-based models. These sources 

and their interactions are fully described by a set of first-

order differential equations.  

This distinction simply refers to the consideration of cortical 

mesocolumns for the convolution models (Freeman 1975) 

and the consideration of a single cell’s electrophysiological 

properties for the conductance models (Hodgkin & Huxley 

1952). Different flavours of these models have been 

implemented in DCM, e.g., LFP, ERP (event related 

potential), MFM (mean-field model), CMC (canonical 

microcircuit model). The choice of the appropriate neuronal 

model depends of course on the research questions one 

wants to ask and on the nature of the data. A detailed 

review on the neural models implemented within DCM 

framework, can be found in (Moran et al. 2013).  

The neural mass model 

The neural mass model used in this thesis belongs to the 

family of convolution-based models, namely the canonical 

microcircuit model (CMC). Τhe CMC model is a refinement of 

the macro- column model introduced by (Jansen & Rit 1995). 

Each source of the CMC is described in terms of the average 

post-membrane potentials and mean firing rates of four 

neuronal subpopulations, deployed in a three-layer structure 

(granular, infragranular, and supragranular layer). 

Interestingly, in comparison to Jansen & Rit model which 

comprises three neuronal subpopulations; spiny stellates in 

the granular layers, inhibitory interneurons and pyramidal 

cells in infragranular and supragranular layers, the pyramidal 
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cell population in the CMC model split into two 

subpopulations the superficial and the deep pyramidal cells 

occupying the supragranular and the infragranular layers 

respectively (Figure 13). These distinct subpopulations of 

pyramidal cells allow a separation of the neuronal 

populations that elaborate forward and backward 

connections in cortical hierarchies and crucially, they may 

exhibit different spectral outputs. The CMC model is based 

on the work of (Douglas & Martin 1991) who recorded 

intracellular potentials from cells in a cat's primary visual 

cortex during electrical stimulation of its thalamic afferents it 

so accommodates the neuronal sources of forward and 

backward connections in cortical hierarchies (Bastos et al. 

2012; Moran et al. 2013). Each subpopulation has its own 

intrinsic dynamics but it also has intrinsic (i.e., within-source) 

connections with the other subpopulations. In addition each 

source receives extrinsic inputs that can be either some 

direct sensory input or input from other sources.  

To summarise, in the CMC utilises different types of 

subpopulations to distinguish between forward and 

backward connections. For the forward connections 

superficial pyramidal cells excite stellate cells and deep 

pyramidal neurons, while the backward connections inhibit 

superficial pyramidal cells and inhibitory interneurons. 

It is the depolarization of pyramidal cell populations we 

assume it gives rise to observed M/EEG data where these 

depolarizations are expressed in the sensors through a 

conventional lead-field where each source corresponds to an 

equivalent current dipole (ECD) (Kiebel et al. 2009; Kiebel et 

al. 2008).  

The model we just described consists of a temporal and 

spatial part with the temporal part expressed by the 
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connectivity between two sources and the spatial part by the 

spatial parameters such as the lead-field parameters. The 

complete spatiotemporal model takes then the form of a 

nonlinear state-space model with hidden (unobserved) 

neuronal states. 

 

Figure 13. CMC neural mass model of a single source. This model 
contains four populations occupying different cortical layers: the 
pyramidal cell population of the Jansen and Rit model is effectively split 
into two subpopulations allowing a separation of the neuronal 
populations that elaborate forward and backward connections in cortical 
hierarchies (Figure adapted from Moran et al., 2013). 

 If we now invert this model we will be able to estimate 

conditional densities on the model parameters, which allows 

us to answer fundamental questions about the underlying 

system. These parameters can be the biophysical parameters 

of the neural mass model, synaptic gain parameters etc. As 

the model inversion is implemented using a Bayesian 

framework, it provides an approximation to the log model 

evidence, which is then used to compare alternative DCMs 

of the same data and compute Bayesian model evidences. 
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This procedure is called Bayesian model selection (BMS) and 

allows us to disambiguate between competing models. 

DCM applications 

One can find in the literature many different applications of 

DCM such as DCM for mismatch responses, which involves 

the analysis of multi-channel EEG data acquired under a 

mismatch negativity paradigm (Garrido et al. 2007; Garrido 

et al. 2008), DCM for induced responses (Chen et al. 2008), 

DCM for steady state responses where under stationary 

assumptions one can analyse the frequency profile e.g. 

cross-spectral density of data measured over hundreds of 

milliseconds to minutes (Moran et al. 2009). 

In this thesis we will use an extension of DCM for steady 

state responses, the DCM for cross spectral densities (CSD), 

which is a generalisation of the former in the complex 

domain. The CSD is the Fourier transform of the cross-

correlation function summarising the activity and statistical 

dependencies among channels in frequency domain, 

presenting this way the important information of long time 

series compactly. 

Modulation of brain activity and connectivity 

Brain function implies that both activity and connectivity in 

the brain constantly evolve, reorganize themselves and 

fluctuate to respond to internal needs or to external stimuli, 

or as a consequence of an intervention. Intrinsic modulations 

are due, for example, to mind-wandering, changes of 

metabolic needs, fluctuations in physiological parameters 

and aging. They happen over a wide range of temporal and 

spatial scales. Cognitive modulations involve response to a 

stimulus, or learning. Pathological modulations are due to 

dynamic or neurodegenerative diseases, such as epilepsy, 

http://www.sciencedirect.com/science/article/pii/S1053811914009999#NEU4711
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schizophrenia or Alzheimer’s disease. Modulations to brain 

activity and connectivity can also be induced by lesions or 

reversible interventions, such as Transcranial Magnetic or 

Direct Current Stimulation. 

Epilepsy as a convenient benchmark 
Epilepsy is one of the most common neurological disorders, 

affecting roughly 1% of the population worldwide. It is 

characterized by recurrent, unprovoked seizures (Fisher et 

al. 2005) defined as the manifestations of epileptic 

hypersynchronous activity of neurons in the brain (Blume et 

al. 2001). During a seizure, a sudden burst of uncontrolled 

electrical activity occurs within a group of neurons in the 

cerebral cortex (Valentinuzzi 2007). 

We have extensively used data recorded from patients with 

epilepsy and animals with induced seizures, due in large part 

to the interesting dynamics occurring at the network level. 

These dynamics span across multiple spatiotemporal scales; 

understanding the mechanisms underlying them requires 

identification of the relations between seizure components 

within and across these scales, together with the analysis of 

their dynamic repertoire (Naze et al. 2015).  

From our previous discussion of network properties, it is 

clear that in such an interconnected network as the human 

brain any dysfunction can easily spread across the linked 

elements (Fornito et al. 2015). Axonal and synaptic contacts 

act as conduits leading to pathological cascades that can 

rapidly affect a large part or even the whole system. A great 

example is how focal seizures evolve to generalised ones, 

affecting the whole brain network. 

But how exactly does the brain network react to the 

maladaptive behaviour of some of its elements (e.g., 
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subnetworks), and how easily can this behaviour spread, 

potentially extending to the whole network? In addition one 

could ask if such a complex and densely interconnected 

network is able to compensate when one of its subsystems 

fails to function, and if so how might other subsystems 

accomplish this? Fornito et al. (2015) nicely summarise the 

two main classes of neural responses (maladaptive and 

adaptive) in a diseased network. 

By investigating maladaptive responses one can not only 

localise the pathology but also investigate how it spreads 

and potentially predict which are the putative areas to be 

affected next. The main subclasses of maladaptive neural 

responses are diaschisis, transneuronal degeneration and 

dedifferentiation, outlined below (see also Figure 14). 

Diaschisis occurs when a focal lesion suppresses the function 

of other remote regions. 

Transneuronal degeneration occurs when over time one 

observes structural deterioration of areas connected to the 

affected site. As an example, in chapter four of this thesis we 

have analysed depth recordings of seizures induced in rats. 

The rats were injected with kainic acid in the right 

hippocampus, which was lesioned almost immediately after 

the injection. Although the left hippocampus was initially 

intact, within a range of days to weeks it was also lesioned. 

Dedifferentiation refers to the interaction of the affected 

regions with the unaffected ones. What is usually observed is 

a reduced response/function of the neural system 

comprising the affected region and a diffuse increase of 

activity to the other unaffected systems connected with the 

affected one. 
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Figure 14. 3 main subclasses of maladaptive neural response. (a) 
Diaschisis: the lesion node (black) suppresses the function of its 
connected sites (red nodes); (b) Transneuronal degeneration: Over time 
the lesioned black node degenerates its connected sites which also 
become lesioned (black); (c) Dedifferentiation: reduced function of the 
neural system comprising the affected region and a diffuse increase of 
activity to the other unaffected systems connected with the affected one 
(Figure adapted from Fornito et al., 2015). 

However, it is also possible that the human brain responds 

to a neural insult in a more adaptive, compensatory way, 

trying to preserve its equilibrium state and its performance 

wherever possible. The three main subclasses of adaptive 

neural response are compensation, neural reserve and 

degeneracy (see Figure 15). 

Compensation occurs when either the undamaged nodes of 

the affected network or nodes of other systems increase 

their activity to compensate for the reduced and 

maladaptive response of the affected region. 

Neural reserve occurs when both the activity and the 

behavioural performance of the unaffected nodes within the 

affected system remains the same. 

Degeneracy occurs when a second system can take over 

when the affected one fails to support the function that it 

was responsible for, without the former having to make any 

substantial change in its activity. This term reflects neural 

plasticity. 
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Figure 15. 3 main subclasses of maladaptive neural response (Figure 
adapted from Fornito et al.2015). 

The second chapter of this thesis will put in practice how 
graph theory and signal processing techniques can be 
applied to a benchmark example of a dynamical network: 
the epileptic brain. 
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Chapter 2 
Mapping the epileptic brain with EEG 

dynamical connectivity: Established 
methods and novel approaches 

 

Abstract 
Several algorithms rooted in statistical physics, mathematics 

and machine learning are used to analyze neuroimaging data 

from patients affected by epilepsy, with the main goals of 

localizing the brain region where seizure originates from and 

of detecting upcoming seizure activity in order to trigger 

therapeutic neurostimulation devices. Some of these 

methods explore the dynamical connections between brain 

regions, exploiting the high temporal resolution of the 

electroencephalographic signals recorded at the scalp or 

directly from the cortical surface or in deeper brain areas. In 

this paper we describe this specific class of algorithms and 

their clinical application, by reviewing the state of the art 

and reporting their application on EEG data from an epileptic 

patient. 
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Introduction 
Epilepsy is a common brain disorder with various etiologies, 

affecting roughly 50 million people worldwide. In many cases 

epileptic seizures can be controlled by antiepileptic drugs, 

which are nonetheless ineffective in about one third of the 

patients (Mormann et al. 2007). For these patients more 

invasive treatments are available: surgical removal of the 

epileptogenic region or implantation with a 

neurostimulation device (Jobst et al. 2010). Advanced 

techniques for data analysis can be of great help to optimize 

the success rate of both therapies, by improving 

epileptologists’ interpretation of complex 

electroencephalogram (EEG) signals and by maximizing the 

correct and timely detection of an upcoming seizure. 

Epilepsy involves recurrent seizures which are characterized 

by an increase in accumulated energy in specific frequency 

bands and brain regions. The rapid seizure propagation and 

its unpredictable nature render the localization of the 

epileptic focus and the study of its propagation a challenging 

task. In order to gather information about a physiological 

system one can measure the temporal evolution of one or 

more signals which are reflecting its activity. Concerning 

epilepsy, this has historically been accomplished by the 

analysis of the EEG recorded from the scalp or from 

implanted intracranial electrodes (iEEG). The need to 

quantify the interactions between different brain regions at 

the same time, when for example large areas of cortex are in 

synchronous activity, has led to an extensive development 

and use of multivariate time series techniques. These 

techniques can be used to detect patterns of interactions 

between different brain areas and to improve the 

understanding of the neural information transfer. 
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Epileptic seizures evolve dynamically thereby modulating 

local and distributed neuronal networks. Thus, theories and 

algorithms developed, validated and optimized in the 

framework of the analysis of dynamic connectivity may 

provide valuable tools to elucidate the mechanisms 

underlying epileptic seizures. Therefore, a crucial question to 

answer is how the epileptiform activity is related to the 

connectivity of a network of brain regions and how this 

network topology changes in function of different states 

(inter-ictal, pre-ictal, ictal) that occur in the epileptic brain.  

In this manuscript we describe how the existent connectivity 

measures are being applied to EEG recordings for epileptic 

focus localization and seizure detection. 

After a review of the state of the art, we will analyze a 

benchmark dataset with functional and effective 

connectivity techniques, introducing some novelties that can 

be useful to shed light on the spatiotemporal dynamic 

pattern of seizure origination, spreading and fade out. 

It is worthy to note that recently connectivity in epilepsy is 

being studied with both functional magnetic resonance 

imaging (fMRI) alone (Zhang et al. 2011; Negishi et al. 2011; 

Pittau et al. 2012; Zhang et al. 2012) or coupled to EEG 

(Murta et al. 2012). 

State of the art 
It has always been clear to the eyes of physicists and 

mathematicians that the key to understanding epilepsy 

could be found in the analysis of complex systems and their 

interactions, and that the various states in which we can 

observe and record the epileptic brain can leave signatures 

in the chaotic nature of the data (Iasemidis et al. 1990; Pijn 
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et al. 1991; Lopes da Silva et al. 1994; Lehnertz & Elger 1995) 

or in their phase space (Martinerie et al. 1998). 

Given the fact that brain functioning is a result of the 

interaction of many complex systems at different scales, it 

also became clear that insights in the spatiotemporal 

dynamics of a brain disorder could result from the 

investigation of how brain regions, near or even distant, are 

dynamically connected, and that the paths of information 

transfer throughout the brain can shed light on its 

functionality and on its breakdown in disease. Indeed, to 

gain better understanding of which neurophysiological 

processes are linked to which brain mechanisms, structural 

connectivity in the brain can be complemented by the 

investigation of statistical dependencies between brain 

regions (functional connectivity) or of models aimed to 

elucidate drive-response relationships (effective 

connectivity) (Friston 2011)]. As opposed to structural 

connectivity, where the links between brain regions are 

established by the presence of anatomical fibers, for 

dynamical (functional and effective) connectivity we 

consider every site where brain activity is recorded as a node 

in a graph, connecting the nodes when information is 

transferred between them. 

Even before these definitions and distinctions became so 

clear (and fashionable), novel methodologies to evaluate 

directed and symmetric connections were applied to the 

epileptic brain with two main purposes: localization of the 

epileptogenic region in order to maximize the probability of 

success of a surgical intervention, and early and automated 

seizure detection both for diagnostic purposes and in order 

to optimize the efficiency of neural stimulation techniques. 

Approaches for directed connectivity are mostly employed 
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for focus localization, whereas symmetrical measures are 

more used for seizure detection and prediction. 

Focus localization 

From the point of view of information theory, the 

epileptogenic region is considered to act as a synchronizing 

source, namely that part of the brain that initiates a transfer 

of information to other parts of the brain. Considering the 

recording sites as nodes of a graph, its localization is thus 

associated to the individuation of those nodes that, in 

particular around the onset of the seizure, start to behave 

abnormally as hubs capable to influence the other nodes. 

The information content is generally confined to specific 

frequency bands and that is why methods operating in the 

frequency domain methods are most commonly used. 

In order to detect this behavior, directed connectivity is 

more informative than its undirected counterpart. As we will 

discuss more in detail later, directed (effective) connectivity 

is inferred by looking at how the performance of a predictive 

model changes when information about the different 

components of a dynamical system is added or removed 

from it. Concerning model-based approaches, the Directed 

Transfer Function (DTF), introduced in (Kamiński & Blinowska 

1991) as an extension to the frequency domain of Granger 

causality (Granger 1969), was used to infer the source and 

the direction of propagation of mesial and lateral temporal 

lobe seizures (Franaszczuk & Bergey 1998). 

This method has been flanked by other algorithms in view of 

improving its performance: In (Swiderski et al. 2009) the 

interpretation of DTF results in order to localize the epileptic 

focus was improved by single class support vector machine, 

whereas in (Wilke et al. 2010) the optimal frequency to be 

investigated by DTF was obtained using wavelets. In order to 
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track the evolution of connectivity over time, adaptive 

methods have been developed. An extension of DTF, ADTF, 

and an investigation of different variations of it, is applied in 

(van Mierlo et al. 2011). Another time-varying adaptive 

method, short-time direct DTF (Korzeniewska et al. 2008) is 

used in (Mullen et al. 2011). This last study proposes a very 

promising approach that consists of evaluating connectivity 

between partially-dependent component subspaces of an 

infomax independent component analysis (ICA) (Bell & 

Sejnowski 1995) model trained on data from different brain 

states. The cortical regions are selected using a Bayesian 

algorithm and then projected back to the cortical surface for 

visualization. The reason to do this is to eliminate volume-

conduction effects and to reduce dimensionality. It would be 

especially interesting to apply this approach also to scalp 

data. 

Another measure to detect directed connections in the 

frequency domain, Partial Directed Coherence (PDC), was 

introduced in (Baccalá & Sameshima 2001). It has been used 

to identify epileptogenic regions in (Takahashi et al. 2007) 

and (Varotto et al. 2012). In Methods section we will present 

the two methods and the differences between them. 

Apart from the studies that focus on frequency domain, 

some studies have explored connectivity in the time domain. 

A method based on the analysis of the residual covariance 

matrix of a multichannel autoregressive model was proposed 

in (Franaszczuk & Bergey 1999). In (Cadotte 2010) Granger 

causality has been used in an animal model to study 

information transfer between distant regions of interest, in 

order to assess abnormal brain activity during a spontaneous 

seizure onset. 
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A modification of Granger causality, involving canonical 

correlation analysis, was applied to both scalp and 

intracranial recordings, filtered in a specific band of interest, 

in (Wu et al. 2011). In this case an asymmetry in the 

connectivity structure was reported, which could reveal the 

existence of an epileptic focus even in the absence of 

ongoing seizure activity. 

In all the previous studies based on an autoregressive model, 

the model order has to be chosen according to some criteria. 

The most popular are Akaike Information Criterion (Akaike 

1974) and Bayesian Information Criterion (Schwarz 1978). 

Other possible choices are the Hannan-Quinn Criterion 

(Quinn 1980), or a strategy based on machine learning, 

namely cross-validation (Kohavi 1995). 

Together with focus localization, the connectivity approach 

has been used to validate specific hypotheses on the 

existence of networks that underlie seizures, following the 

original idea proposed in (Spencer 2002). In (Ponten et al. 

2007) specific graph signatures were associated with 

different brain states, including epilepsy. In (Kramer et al. 

2008) the connectivity matrices obtained by coherence 

underwent graph theoretical analysis to detect the network 

architecture associated with seizures. 

In (Wendling et al. 2010) the authors hypothesized that the 

region assumed to generate seizures was a network with 

variable excitability. Then they considered a simple 

computational model on two populations in order to 

quantify functional and effective connectivity measures on 

them. They first stated that rapid discharges and hyper-

excitability between the two populations could be obtained 

by different model structures such as unidirectional or 

bidirectional coupling. They also agreed that only nodes with 
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high levels of excitability were worthwhile to be considered 

as elements of the fast onset activity. So, when one of the 

two populations presented hyper-excitability then it was 

believed to be able to generate a fast activity itself. With an 

example the authors drew the attention to how connectivity 

(effective in this case) can be interpreted and how the 

notion of rapid discharges and propagation should be 

clarified. So an epileptic network can include nodes that are 

able to generate a rapid discharge and other ones that are 

driven from the former one to an altered excitability and to 

the capability of generating discharges themselves. 

In (Terry et al. 2012) the generation of an epileptic seizure 

out of a network structure was investigated. It was 

hypothesized that whenever an EEG discharge was present, 

it was driven by a pattern of brain networks. To support this, 

a brain network of four regions of interest with some 

established connections of the same strength were 

generated. The authors then investigated the differences of 

varying these connections between the regions of the 

network versus an introduction of a new brain region in the 

network, which is characterized by an abnormal activity. In 

the case of introduction of a region with an abnormal 

activity, and depending on the connections that they set 

between each of the regions, there was a rise of focal, 

primary or secondary generalized seizures. When the 

connectivity was weakened, an increase in the frequency 

typical of seizure activity was observed. 

Seizure prediction and detection 

A connectivity based approach has also proven useful in 

improving the early detection or prediction of seizures, with 

respect to considering the complexity of a signal at a certain 

time. The general motivation behind the first studies in this 
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sense was that the information gathered studying the 

complexity of an electroencephalographic time series could 

be augmented by considering how this complexity is 

modulated by the interactions with other time series. 

In (Lehnertz & Elger 1998) nonlinear time series analysis was 

used for early prediction of an impending seizure. The basic 

idea was the timely identification of transitions of the system 

from lower to higher complexity and from asynchronous to 

synchronous activity on longer time scales. The EEG 

recordings from the epileptogenic region of the brain 

indicated significant changes in nonlinear dynamics up to 

several minutes prior to the clinical seizure onset as 

compared to other recording sites. 

Sometimes the volume conduction effects could lead to 

misleading results in several connectivity measures, in 

particular those relying mostly on the amplitude of the 

signal; for this reason phase coherence, a method 

quantifying the symmetrical dependencies between 

oscillating signals, was successfully applied in (Mormann et 

al. 2000). In this case this bivariate measure was reported to 

be more efficient compared to univariate measures in 

predicting an upcoming seizure. This result is also described 

and expanded in (Litt & Echauz 2002), and thoroughly 

validated in (Mormann et al. 2003). In this last study a 

validation of 30 univariate and bivariate prediction 

algorithms found in the literature was conducted, starting 

from the idea that many prediction algorithms lacked in 

statistical validation as they did not test the specificity of 

seizure precursors. Bivariate measures showed high 

statistical performance with a constant baseline, highlighting 

pre-ictal states even 240 seconds before the seizure onset. 

Univariate methods were statistically significant on a seizure 

wise basis, with an adaptive baseline, identifying pre-ictal 
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changes from 5 to 30 seconds before the seizure. The 

authors concluded that a combination of univariate and 

bivariate methods comprising both linear and non-linear 

approaches provides a promising solution for seizure 

prediction. 

Phase coherence, joint with another synchronization 

measure, lag synchronization, was also discussed in 

(Winterhalder et al. 2006), where the issue of the variability 

between patients was raised. Phase synchronization 

methods remain among the most successfully applied 

(Osorio & Lai 2011). 

A wavelet-based and frequency specific non-linear similarity 

index (WNSI) has been applied in (Ouyang et al. 2007) on 

intracranial recordings to predict epileptic seizures. The fact 

that the EEG data pattern is not modified by the application 

of a wavelet transform is considered an advantage of this 

measure. This characteristic allows investigating the 

nonlinear dynamics of EEG patterns. 

In the same direction as (Mormann et al. 2003), in 

(Andrzejak et al. 2009) the predictive power of prediction 

algorithms was tested against well established null 

hypotheses. They concluded that the time surrogates 

approach outperforms analytic performance estimates 

under controlled conditions. This is due to the initial 

construction of seizure prediction surrogates which is not 

restricted by specificity, sensitivity or performance 

definitions while analytic performance estimates are 

constructed as functions of false positive rates. 

In (Kerr et al. 2011) we find another example of exploiting 

network structure to improve the research on early seizure 

detection. This method combines spectral techniques with 

matrix theory. From multi-site stereo-eeg (SEEG) recordings 
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in epileptic patients, time windows of the same length were 

considered and connectivity matrices were built for every 

second window, in order to describe the time dependent 

correlation between channels. For each one of those 

matrices, the Singular Value Decomposition is computed in 

order to track the dominant structure of each matrix over 

time. The main target was to detect changes of those 

matrices in pre-ictal and ictal cases. The first singular vector, 

which represents the dominant effect of each matrix, was 

sought in both pre-ictal and ictal cases. Then the inner 

product of the calculated mean ictal singular vector and the 

first singular vector were calculated for each time window. 

The results showed significant differences with higher inner 

products of the singular vectors throughout the seizure time 

and the average ictal vector compared to one calculated 

throughout the pre-ictal period. 

 This idea was exploited and optimized in (Santaniello et al. 

2011), in which the time course of the maximum singular 

value of the connectivity matrix obtained by spectral 

coherence underwent a fast detection procedure which 

minimized the false positives. This approach introduced one 

of the key ideas applied in the present study. 

It is worthy to note that the measure described in (Mormann 

et al. 2000), and applied with more detail in (Mormann et al. 

2003) described a decrease of the connection strength 

during the seizure, while for example in (Iasemidis et al. 

2004) and (Varotto et al. 2012) epilepsy is described as a 

more organized state with increased coupling strength. This 

could indeed be related to the difference between coupling 

measures based on phase and amplitude. A critical 

discussion of amplitude versus phase coupling in epilepsy is 

contained in (Chávez et al. 2003).  



Chapter 2 

 

72 
 

Information theory 

An issue that we find particularly relevant is that all these 

measures could be interpreted in terms of information 

transfer, allowing an improved mathematical tractability and 

a generalized framework. This choice is further justified by 

the fact that Granger causality and its equivalents in the 

frequency domain do not measure coupling strength but 

predictive information transfer. 

Palus et al. (Palus et al. 2001) interpreted synchronization as 

an adjustment in information rate, associating different 

amounts of exchanged information to the ictal and interictal 

phase. 

The discussion about formulation of DTF in terms of 

information transfer has been started by Eichler (Eichler 

2006), and extended and generalized to PDC in (Takahashi et 

al. 2010). Barnett et al. (Barnett et al. 2009) have shown that 

under the assumption of Gaussian distribution of the 

variables Granger causality is equivalent to Transfer Entropy 

(TE), a model-free measure of directed connectivity 

(Schreiber 2000). This result has been used to optimize 

Granger causality analysis to infer connectivity in high 

dimensional datasets, as those encountered in epilepsy 

analysis, in (Marinazzo et al. 2012). Connectivity patterns in 

the epileptic brain obtained by TE are reported in (Sabesan 

et al. 2009; Stamoulis & Chang 2011; Stamoulis et al. 2012). 

It is important at this point to note that there is ample 

evidence that neural data are not Gaussian distributed (see 

for example the discussion of this topic in (Lindner et al. 

2011)). Even if for neural data the equivalence does not 

exactly hold (preventing for example to measure GC or PDC 

in bits), we believe that this unified framework can be 

beneficial both for the computational/methodological part, 
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and for the interpretation of the results, keeping in mind 

that model free methods such as the entropy based ones 

ensure indeed more general validity. 

An illustrative example 
In this section we apply coherence, DTF and PDC to a 

benchmark dataset, starting from the approach employed in 

(Santaniello et al. 2011) for seizure detection, but also trying 

to incorporate information on the focus localization, tracking 

the maximum singular value also on individual rows and 

columns of the directed connectivity matrices. 

We recapitulate the main methods and then present some 

results. 

Methods 

Coherence 

Coherence is a measure indicating the degree of linear 

association between two time series in the frequency 

domain. Given two time series X and Y, coherence is given 

by: 

22 | ( ) |( ( , ))
= =

( ) ( ) ( ) ( )

xy

f

xx yy

S fcross power spectrum X Y
C

power spectrum X power spectrum Y S f S f
 (1) 

Coherence has been extensively used to detect and quantify 

the interaction of two time series in the frequency band. 

However, coherence does not allow inferring directionality 

of the information transfer and is largely influenced by 

amplitude effects. 
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Granger causality 

The introduction of directed connectivity measures such as 

Granger Causality (GC) (Granger 1969) in the time domain 

and its analogues in the frequency domain, Directed Transfer 

Function (DTF) (Kamiński & Blinowska 1991) and Partial 

Directed Coherence (PDC) (Baccalá & Sameshima 2001) 

represented a great improvement in defining the direction of 

the influences among time series, and are increasingly being 

applied to neuroscience. 

GC was initially introduced in the field of econometrics. Its 

key idea lies in the improvement of the performance of a 

predictive model of a time series given some of its past 

values when information from the past of another time 

series is incorporated in it. The original model was a bivariate 

autoregressive model given by: 
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       (2) 
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       (3) 

with Aik being the model parameters and ei the white noise 

where i,k = 1,2. 

Granger causality quickly became a standard tool for 

inferring directed relationships between time series. 

However, in its original formulation as a bivariate measure it 

can lead to erroneous results and false positives especially 

when the channels are fed from common signal sources. The 

first approach in the literature for applying Granger causality 

in a multivariate case was, proposed by Geweke (Geweke 

1982). 
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Moreover, the increasing need in analysis of biomedical 

series, which display evident signatures in rhythms at a given 

frequency, together with the fact that the use of GC on 

filtered signals is questionable (Florin et al. 2010; Barnett & 

Seth 2011) renders the use of equivalent measures in the 

frequency domain indispensable. 

Directed transfer function 

The Directed transfer function was formulated in the 

framework of an autoregressive model (AR) in the frequency 

domain. It is developed as a measure able to study the 

interrelation between two signals in relation to all other 

signals. The AR model is characterized by: 

0

ˆ
p

j t j t

j

A x e



       (4) 

where xt = (x1,t, x2,t, . . . xk,t) is a vector of a k channel process, 

et = (e1,t, e2,t, . . . , ek,t) is a vector of multivariate uncorrelated 

white noise process, and 1Â , 2Â , ... , ˆ pA  are the k x k 

matrices of model coefficients. Multiplying both sides of (4) 

by T

t sx 
 and taking expectation values, gives the coefficients

ˆ
iA . This leads to the following equation: 

1
ˆ ˆˆ ˆ ˆ( ) (1 ) ... ( ) 0pR s A R s A R p s         (5) 

where ˆ( ) , T

t t sR s E x x 
    is the covariance matrix for a lag 

s. 

In order to investigate the spectral properties between the 

signals, Fourier transformation is applied to equation (4) 

where the transform functions are of the form: 
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DTF is usually normalized with respect to incoming influence 

so after normalization it takes the form: 
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Consequently, the element Hij(f) of the matrix H(f) describes 

the connection between the j-th input and the i-th output of 

the system (transmission from channel j → i). When 

normalization is applied DTF takes values in the interval [0, 

1] where a high value indicates a consistent information 

transfer in the direction j → i and a low value indicates little 

or no transfer. In the literature different strategies for 

normalization of DTF (or no normalization at all) are 

proposed depending on whether the main interest is in the 

direction rather than in the ratio of influences (Korzeniewska 

et al. 2003; Kamiński 2005; Eichler 2006). 

Even though DTF was initially introduced in (Kamiński & 

Blinowska 1991) as a bivariate measure, there are studies 

applying it to multivariate systems. In the latter cases the 

use of DTF can reveal cascade transfers e.g for channels a, b, 

c if a → b → c and in this case DTF also detects propagation 

from a → c. (Korzeniewska et al. 2003) and (Faes & Nollo 

2011) propose a modified version of DTF, the directed DTF 

(dDTF) which was able to detect whether a connection 

between two nodes is mediated by a third one. The dDTF is a 
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combination of the partial coherence function and of the 

original definition of DTF, emphasizing only direct 

connections. 

Partial directed coherence 

When we have K simultaneously recorded signals, the 

information transfer can also be computed directly by the 

Fourier transform of model coefficients of (4). This leads to 

the Partial directed coherence (PDC) which is defined within 

the framework of Granger causality in the frequency domain 

and is a measure of the interaction of two time series when 

the effect of the remaining K - 2 time series is removed. It is 

designed to describe the relationship of multivariate time 

series based on the decomposition of multivariate 

coherences computed from multivariate AR models. 

PDC from channel j to channel i is given by: 
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where the superscript H stands for Hermitian transpose and 

ˆ
ijA is calculated as: 
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The PDC is normalized with respect to the outgoing 

influences resulting in: 
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The PDC is able to rank the strength of the direct interactions 

of a channel j to the other channels which are receiving 

information from j, a fact that renders it a useful tool for the 

detection of putative information sinks (Blinowska 2011). 

Reporting what is clearly explained in (Faes & Nollo 2011), an 

important difference between DTF and PDC lies in the 

normalization: DTF is normalized with respect to the 

structure that receives the signal, while PDC is normalized 

with respect to the structure that sends out the signal. 

Summarizing, we can state that DTF measures influence as 

the amount of information being transferred between two 

time series through all (direct and indirect) transfer 

pathways, relative to the total influence on the target; the 

PDC measures directed predictive information transfer from 

source to target through the direct transfer pathway only, 

relative to the total information leaving the source. We note 

that this dual interpretation highlights advantages and 

disadvantages of both measures. DTF has a meaningful 

physical interpretation as it measures predictive information 

transfer as the amount of signal power transferred from one 

process to another, but cannot distinguish between direct 

and indirect influences measured in the frequency domain. 

Conversely, PDC clearly reflects the underlying interaction 

structure as it provides a one-to-one representation of direct 

causality, but is hardly useful as a quantitative measure 

because its magnitude quantifies the information flow 

through the inverse spectral matrix elements (which are not 

easily interpreted in terms of power spectral density). 

Connectivity matrix and Singular value decomposition 

A connectivity matrix was built from each data segment and 

for all different measures. From these connectivity matrices 

the incoming, outgoing and total information from each 
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node was then extracted. Of course the distinction between 

incoming and outgoing information is applicable only to 

directed measures, thus not to coherence. 

The computation of inflow and outflow of information from 

each channel can provide information on which channels can 

be potential sinks (receiving information from other 

channels) or sources (sending out information to the other 

channels) of information. 

The rank of the connectivity matrix indicates the number of 

the linearly independent rows or columns. So, in cases that 

connections between the channels are strengthened the 

rank of the matrix drops. In contrast, when connections are 

weak the rank increases. Thus, tracking the rank of the 

connectivity matrices helps to detect the transition to a 

more organized state in brain activity and thus, gathering 

relevant information on the dynamics of the seizure onset. 

Singular Value Decomposition (SVD) is used to define an m x 

n matrix A as follows: A = USV*, where U is a m x m unitary 

matrix whose columns are the eigenvectors of the matrix 

AA*, S is a m x n matrix with non-zero r diagonal entries, 

with r representing the rank of A and V a n x n unitary matrix 

whose columns represent the eigenvectors of the matrix 

A*A. (*) in all cases stands for the conjugate transpose. 

We can characterize the connectivity structure by looking at 

the maximum of the singular values contained in the matrix 

S (MSV) as described in (Santaniello et al. 2011). Here we 

apply this analysis to the coherence, but we extend it also to 

directed measures (DTF and PDC) with the aim of efficiently 

mapping functional and effective connectivity both in space 

and time. 
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Data 

We consider a dataset consisting of scalp and intracranial 

EEG recordings from a patient with refractory epilepsy 

containing 5 seizures from Ghent University Hospital. The 

intracranial electroencephalographic seizures onsets were 

marked by experienced epileptologists. The dataset 

contained 27 scalp electrodes, 48 cortical subdural 

electrodes, divided into a 4 x 8 array (TG 1 − 32) and a 2 x 8 

array (SG 1 − 16), and a depth electrode with 12 contacts (RD 

1 − 12). Based on the invasive video EEG monitoring the 

epileptogenic zone was localized within a dyplastic insular 

lesion on the right side. Following resective surgery the 

patients is now seizure free for more than 6 months. A 

scheme with the position of the intracranial electrode is 

shown in Figure 1. The sampling frequency of the recorded 

EEG signals is 256Hz. We extracted from the EEG series a 

segment that starts 120 s before the 

electroencephalographic seizure onset (pre-ictal) and ends 

120 s after the end of the seizure (post-ictal). 

Since epileptiform focus activity is concentrated in frequency 

bands which are patient-specific, we first identified this band 

in order to concentrate our analysis on it. We did this by 

applying a general linear model to ictal and interictal data 

filtered in the different bands to find out where the maximal 

differences were. For the analyzed dataset the chosen band 

was the Beta-Gamma band ([12 45]Hz). In order to track the 

modulation of the connectivity in time we computed the 

connectivity matrix in time windows of 5 seconds sliding 

with a step of 1.5 seconds. The connectivity matrices were 

computed using spectral coherence as well as two directed 

measures (DTF and PDC, optimized for evaluating outgoing 

and incoming information respectively). For each matrix we 

evaluated the maximum singular value. As an innovation 
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with respect to (Santaniello et al. 2011), we obtained this 

measure not only for the global matrix, but also for the 

single rows and columns, representing for each channel the 

outgoing and incoming information respectively. This allows 

gather additional information on the spatiotemporal pattern 

of the seizure. 

 

Figure 1. Scheme with the location of the intracranial electrodes. On the 
left: the depth electrode (RD1 − 12) in the right insular region. On the 
right upper part: a 32-contact right temporal grid (TG1 − 32), below a 16-
contact right frontoparietal grid (SG − 16). 

Results 

We tracked the maximum singular value described above by 

observing its evolution over time. In order to evaluate the 

performance of each one of the measures previously 

introduced, we computed both the total flow for all the 

nodes and the inflow and outflow for each one of them. 

For the 27 scalp electrodes, coherence captured a drop in 

the maximum singular value before the time marked as 

intracranial electroencephalographic onset, followed by a 

sharp increase. The MSV remained high also after the end of 

the seizure (Figure 2 top). High values of the maximum 
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singular value indicate less diversity but stronger 

components which is in agreement with the concept that 

during the seizure the brain enters a more organized state. 

The interpretation of the momentary increase in 

independence of the nodes resulting in the initial drop in 

MSV, which could be possibly used for early seizure 

detection, will require further validation and discussion. For 

the 60 cortical contacts there is a similar trend compared to 

the one in the scalp electrodes, with an increased maximum 

singular value during the electroencephalographic onset. 

However coherence in case of cortical electrodes proved a 

bit slower to detect the seizure onset compared to the scalp 

electrodes, and the MSV returned earlier to baseline values 

(see Figure 2 bottom for an example). 

 
Figure 2. Evolution of the maximum singular value σ over time(s). (A): 
Coherence measured over the 27 scalp electrodes. An increase of σ is 
captured around the intracranial electroencephalographic onset 
indicating less diversity and more dominant components. (B): Coherence 
measured over the 60 cortical electrodes. A similar pattern with an 
earlier increase is observed in the scalp electrodes. 
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For the outgoing information in the scalp electrodes we 

observed a decrease in the maximum singular value around 

the onset and immediate increase after the end of it. The 

drop in the MSV indicates that the nodes are more 

independent during the onset while they become more 

correlated immediately after the end of the seizure. 

We observed more variation in the source activity measured 

by DTF for each cortical node. Indicatively, for some contacts 

there is a clear drop of the MSV at the 

electroencephalographic onset (Figure 3, top left), for others 

a clear drop after the seizure (Figure 3, top right) while for 

others an increase of the MSV after the end of the seizure 

(Figure 3, bottom). 

 

Figure 3. Examples of outgoing information captured by DTF in some 
cortical contacts for a single seizure (red lines indicate 
electroencephalographic onset and termination). Some contacts present 
a clear drop of σ at the electroencephalographic onset, indicating that 
the components become more random during the seizure (top right), 
where others present this drop straight after the 
electroencephalographic onset (top left). In other cases DTF captures a 
significant rise of σ straight after the end of the electroencephalographic 
onset (bottom). 
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As an illustrative example, in Figure 4 we report the scalp 

map of the percentage variation of MSV for DTF during 

seizures with respect to baseline. 

 

Figure 4. Percentage variation of the MSV for DTF in scalp electrodes, 
averaged over 5 seizures. 

The normalized partial directed coherence is described by 

the ratio of the outgoing information from a node j to a node 

i and the total outgoing information from node j. For both 

scalp and cortical electrodes, PDC calculated sink activity 

within the interval of the electroencephalographic borders 

set by the epileptologists. The total incoming information 

quantified by PDC, shows variability among the 60 cortical 

contacts. The general trend in the 12 depth contacts is in 

agreement with results of the total flow, as an increase in 

the MSV is observed for each one of them (Figure 5, top 

left). A decrease during the seizure and a raise after it is 

detected for some of the subdural contacts (Figure 5, top 

right) while a clear peak and then a drop after the end of the 

electrographic seizure is indicated in others (Figure 5 

bottom). 
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Figure 5. Examples of outgoing information captured by PDC in some 
cortical contacts for a single seizure (red lines indicate 
electroencephalographic onset and termination). Some contacts display 
an increase of σ at the electroencephalographic onset indicating more 
dominant components (top left), where others present lower values 
during the seizure and a raise immediately after it (top right). For some, 
high incoming activity is captured at the electroencephalographic onset 
(bottom). 

 

Figure 6. Percentage variation of the MSV for PDC in intracranial 
electrodes, at the onset of the seizure and 10 seconds after the onset, 
averaged over 5 seizures. The position of the electrodes reflects the 
scheme reported in Figure 1. 
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In Figure 6 we report the map of the percentage variation of 

MSV for PDC at the onset of the seizure and 10 seconds after 

with respect to baseline across the intracranial contacts. The 

maximum percentage variation is reported at one extremity 

of the depth electrode (RD), confirming the presence of the 

seizure onset in the deep structures. After 10 seconds we 

observed an increase also in the cortical electrodes, 

indicating spreading seizure activity. A similar pattern is 

observed for the outgoing connections as measured by PDC 

(Figure 7), but in this case the pattern is more stable during 

the seizure. We can interpret this difference in view of a 

recent result (Marinazzo et al. 2012) showing that in a 

hierarchical network the information going out from each 

node increases with the number of neighbors while the 

incoming information stays more or less constant. 

 

Figure 7. Percentage variation of the MSV for PDC in intracranial 
electrodes, at the onset of the seizure and 10 seconds after the onset, 
averaged over 5 seizures. The position of the electrodes reflects the 
scheme reported in Figure 1. 

Moreover, and surprisingly, scalp electrodes are those for 

which the variation in the connectivity occurs the earliest. 

Previous studies (Tao et al. 2007) have reported that the 
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predominance of global synchronization and overall volume 

conduction induce a great variability of these scalp patterns, 

but this early modification of the dynamical connectivity 

could open interesting perspectives for the development of 

therapeutic measures that may not require invasive 

recordings and give hints also on the location in space and 

time of the seizure termination. 

Conclusions 
We have provided an overview of the methods that explore 

dynamical connectivity in human EEG recordings to 

understand the physiological mechanisms underlying 

epilepsy, and also their application in the detection of the 

epileptogenic region and prediction of seizure activity. We 

have shown that, for the analyzed case, some measures that 

have been previously employed for seizure detection can be 

also useful for focus localization. Furthermore, the employed 

algorithms are fast enough to allow for real-time application, 

thus making them amenable to clinical use. This paper 

presents preliminary results and its purposes do not reach as 

far as evaluating their diagnostic value. The point we wish to 

make is that an integrated spatiotemporal approach, as well 

as a unified framework such as information theory, may 

represent an optimal strategy for the future of the analysis 

of epilepsy from a dynamical network perspective. 
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Chapter 3 
Tracking slow modulations in synaptic gain 

using dynamic causal modelling: 
Validation in epilepsy 

 

Abstract 
In this work we propose a proof of principle that dynamic 

causal modelling can identify plausible mechanisms at the 

synaptic level underlying brain state changes over a 

timescale of seconds. As a benchmark example for validation 

we used intracranial electroencephalographic signals in a 

human subject. These data were used to infer the (effective 

connectivity) architecture of synaptic connections among 

neural populations assumed to generate seizure activity. 

Dynamic causal modelling allowed us to quantify empirical 

changes in spectral activity in terms of a trajectory in 

parameter space – identifying key synaptic parameters or 

connections that cause observed signals. Using recordings 

from three seizures in one patient, we considered a network 

of two sources (within and just outside the putative ictal 

zone). Bayesian model selection was used to identify the 

intrinsic (within-source) and extrinsic (between-source) 

connectivity. Having established the underlying architecture, 
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we were able to track the evolution of key connectivity 

parameters (e.g., inhibitory connections to superficial 

pyramidal cells) and test specific hypotheses about the 

synaptic mechanisms involved in ictogenesis. Our key finding 

was that intrinsic synaptic changes were sufficient to explain 

seizure onset, where these changes showed dissociable time 

courses over several seconds. Crucially, these changes spoke 

to an increase in the sensitivity of principal cells to intrinsic 

inhibitory afferents and a transient loss of excitatory-

inhibitory balance. 

Introduction 
In this paper we test the hypothesis that systematic changes 

in observed cross spectral density of 

electroencephalographic signals can be explained in terms of 

fluctuations in key model parameters (such as the strength 

of recurrent inhibitory connections to specific neuronal 

populations) – and that slow fluctuations in one or more of 

these parameters can explain changes in brain activity. The 

methodological advance included here is the use of dynamic 

causal modelling (DCM) to provide biophysically informed 

characterisations of electrophysiological responses in terms 

of slow changes in synaptic efficacy.  DCM is a Bayesian 

framework for comparing different hypotheses or network 

models of observed (neurophysiological) time series. 

Although DCM has been validated in the context of event 

related responses (Garrido et al., 2009) and steady-state or 

induced responses (Moran et al., 2011a), it has not been 

used to track short-term fluctuations in synaptic efficacy. 

Our focus is therefore on the validity of DCM in recovering 

slow (pathophysiological) changes in synaptic connectivity 

from electrophysiological time series. We first establish face 

validity using physiologically realistic simulations (using the 
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same model used to characterise our empirical data) and 

then apply the same procedure to real data, intracranial 

electroencephalography signals from an epileptic subject. 

This shows that DCM provides veridical estimates of how the 

data were generated and establishes the identifiability of the 

model used for subsequent empirical analyses. The empirical 

application provides a proof of principle that changes in 

synaptic efficacy can be measured at single subject level – 

and shows that pathophysiological changes beyond the 

seizure onset zone is necessary to explain seizure activity.  

We chose epileptic seizure onset as a validation of this 

framework given the nature of the brain dynamics in this 

pathological condition. In patients affected by drug-resistant 

epilepsy and for which surgical treatment is thus sought, 

intracranial EEG is considered the gold standard for 

delineating the seizure onset zone (SOZ). Intracranial 

recordings allow one to characterise seizure activity with a 

high temporal resolution and track its temporal evolution. It 

should be noted that the onset of seizure activity may not be 

limited to the seizure onset zone but may be modulated – or 

be mediated by – distributed dynamics in brain networks.  

The need to accurately track and quantify seizure dynamics 

has led to the development of multivariate time series 

analyses of signals recorded simultaneously (Pereda et al., 

n.d.; Lehnertz, 1999). The fact that brain function involves 

distributed neuronal activity – and that this functional 

integration is modulated by cognitive or pathophysiological 

factors – motivates a focus on dynamical interactions not 

limited to the seizure onset zone but involving distal regions. 

Consequently, methods grounded in information theory and 

dynamical systems represent promising candidates, given 

their potential to describe the intricate pattern of 

dependencies in multivariate time series.  
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Materials and Methods 
This report introduces the concepts and procedures that 

allow one to estimate slow changes in synaptic parameters 

that may underlie changes of brain states. Its focus is on 

describing the approach and providing some face validation 

(showing it does what it says it does). This validation uses 

data from a single patient to provide plausible model 

architectures and parameters – that were used to create 

synthetic data. We then invert models of those data – to 

ensure we can recover the (known) parameters. In 

subsequent publications we will apply this analysis to 

examine its reproducibility and predictive validity in patient 

cohorts. 

We used data recorded from a patient (female, 50 years old) 

with refractory epilepsy who had a total of three epileptic 

seizures during video-EEG monitoring. The patient was 

implanted at Ghent’s University Hospital with 52 intracranial 

contacts monitoring eight regions of interest according to 

the following configuration: bilateral occipito-hippocampal 

depth electrodes with 12 contacts each (Left: LH1-LH12, 

Right: RH1-RH12); four subdural strips with four contacts 

each, monitoring the anterior temporo-basal and the 

posterior temporo-basal region (Left:  anterior LTA 1-LTA4  

and posterior  LTM1-LTM4, Right: anterior RTA1-RTA4  and 

posterior RTM1-RTM4) and two subdural strips of six 

contacts each, monitoring the temporo-lateral region (Left: 

LTP1-LTP6,  Right: RTP1-RTP6). Based on the invasive video-

EEG monitoring the ictal onset zone was localized to the left 

hippocampus, primarily involving LH2-4. The patient 

underwent a selective amygdalo-hippocampectomy in 2007 

and has been seizure free since that time. 

The data were epoched to a segment starting 20 seconds 

before electroencephalographic seizure onset (pre-ictal). The 
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segment included the whole duration of seizure activity, 

which varied over the three seizures from 229 to 262 

seconds. The beginning and the end of the seizure were 

marked by epileptologists. The sampling frequency of the 

EEG recordings was 256 Hz and a band pass filter was 

applied to the data (0.5Hz - 48Hz). The intracranial data were 

re-referenced by applying a bipolar montage corresponding 

to a series of overlapping bipolar derivations (acting as 

spatial filter). 

Our analysis focused on two sources of activity: a primary 

source within the subsequently resected area, whose activity 

was confirmed to be part of the seizure onset zone after 

postsurgical follow-up (LH4-LH5) and a second source (LH6-

LH7) lying just outside the area of resection (Figure 1). 10 

seconds of activity before and after seizure onset were 

modelled, where each segment was partitioned into nine 

contiguous windows with 50% (1 second) overlap, for a total 

of 18 time windows. 

 

Figure 1. Location of the two intracranial electrodes and sources 
considered in the dynamic causal modelling. The stereotactic trajectories 
of the electrodes are superimposed upon the individual structural MRI 
scan. The leftmost circle (LH4-LH5) corresponds to the first source – 
considered the onset zone, while the one on the right (LH6-LH7) 
indicates our second source. 
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Dynamic causal modelling   

Dynamic causal modelling (DCM) is an established procedure 

in the analysis of functional magnetic resonance imaging in 

brain mapping (Daunizeau et al., 2011; Friston et al., 2012) 

and is now being used increasingly for the characterisation 

of electrophysiological time series. DCM is used to identify 

the connectivity architectures and connection strengths in 

distributed networks using (observable) measurements of 

(hidden) neuronal activity. It is essentially a Bayesian model 

comparison scheme that allows one to evaluate competing 

hypotheses (or architectures) in terms of their Bayesian 

model evidence or marginal likelihood. Having established 

the best model architecture, Bayesian estimates of the 

model parameters provide a quantitative characterisation of 

effective connectivity and other (synaptic) parameters. 

There is an extensive literature on the validation of DCM 

ranging from face validation studies (David et al., 2006) to 

validation in terms of multimodal measurements (David et 

al., 2008a), pharmacological manipulations (Moran et al., 

2011a, 2011b) and psychophysical constructs (Brown and 

Friston, 2012). Its predictive validity has been established in 

a number of studies in terms of pathophysiology (Boly et al., 

2011). 

Quantifying the effective connectivity between coupled 

neuronal sources corresponds to inferring the causal 

relationships among them, in relation to a model of those 

dependencies (Stephan et al. 2007). The nodes of dynamic 

causal models can reflect different regions in the brain that 

are connected by (extrinsic) forward and backward 

connections according to the laminar specificity established 

by Felleman and Van Essen (Felleman and Van Essen, 1991). 

Different models can be used within DCM depending on the 
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question of interest and the most informative data features 

at hand (Moran et al., 2013).  

The analysis described in this section uses standard 

procedures developed in DCM for cross spectral density 

(CSD) (Friston et al., 2012), which is a generalisation of DCM 

for steady state responses. The CSD is the Fourier transform 

of the cross-correlation function, which summarizes the 

activity and statistical dependencies among channels in 

frequency space. It can be thought of as reporting the 

correlations at each frequency. Usually, DCM for CSD is 

applied to a single cross spectrum (for a given timeseries). 

However here, we model successive time windows; 

effectively summarizing the timeseries with its time-

frequency decomposition. The reason that we choose these 

(cross spectral) data features is that they contain 

information about the underlying connectivity that can be 

accessed through estimating the spectral density (second-

order statistics) of endogenous activity. This contrasts with 

modelling of the timeseries per se, which would require the 

time-dependent  (first-order statistics) endogenous input 

(e.g., the input associated with a stimulus in the event 

related potential studies). 

This DCM has been applied in several contexts previously. 

Technical details can be found in  (Moran et al., 2007, 2009) 

and its applications to in vivo synaptic assays are described 

in (Moran et al., 2011a, 2011b). In brief, parameter 

estimation uses standard (variational) Bayesian model 

inversion, where the forward or generative model predicts 

cross spectral responses from models of coupled neuronal 

masses. These models are specified in terms of equations of 

motion (i.e., state space models in continuous time). The 

equations are based upon standard neural mass models and 

define transfer functions linking endogenous activity at each 
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source to spectral responses measured over channels. This 

allows one to predict observed cross spectra for any given 

model architecture and parameters; thereby providing an 

observation or forward model of spectral responses. 

Inversion of this model provides the model evidence (for 

model comparison) and posterior densities over model 

parameters in the usual way. Usually, one tries to explain 

differences in spectral responses among conditions, in terms 

of changes in a small number of synaptic parameters, where 

these changes define the model. 

The novel aspect of the current analysis is the application of 

a standard DCM to test for slow changes in model 

parameters (e.g., the strength of inhibitory recurrent 

connections). We do this by exploiting the differences in 

timescales between the fast neuronal activities and slow 

changes in synaptic efficacy. This allows one to make local 

stationarity assumptions and treat successive epochs of data 

as different conditions – where these conditions or epochs 

induce fluctuations in specified parameters. Again, using the 

usual Bayesian model comparison procedures, we can then 

identify changes in parameters during seizure onset that 

best explain the sequence of (cross spectral) responses. 
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Figure 2. Left panels: Response characteristics of a single source within a 
dynamic causal model of the sort used in subsequent analyses (a 
canonical microcircuit neural mass model). The upper panels show the 
first and second order impulse response functions of time in terms of 
their impulse responses (Volterra kernels). These reflect the impact of 
inputs on observed responses and are a function of the model’s 
parameters. The equivalent formulation of the impulse response in 
frequency space is shown in the lower panels graphically (on the lower 
left) and in image format for different values of the inhibitory connection 
(on the lower right). These are called (modulation) transfer functions and 
represent the frequencies in the inputs that are expressed in the output. 
In this example, we have shown the responses as a function of (the log 
scaling of) recurrent inhibitory connectivity to one of four neuronal 
populations comprising the source (see Figure 3). These response 
functions can be used to compute the expected cross spectral density for 
any values of the parameters. Right panels: these illustrate changes in 
neuronal activity when increasing recurrent inhibition. The top panel 
shows strength of recurrent inhibition as a function of time in seconds, 
while the second panel shows a simulated response obtained by 
integrating the neural mass model with random fluctuating inputs, with 
the value of inhibitory connection set to 1.5. The simulated time 
frequency response is shown below in terms of the spectral power over 
4 to 96 Hz. The lowest panel shows the predicted power based upon the 
transfer functions shown on the left. 

For this study, we employ a DCM for cross spectral densities 

(CSD) (Friston et al., 2012), which is a generalisation of DCM 

for steady state responses (Moran et al., 2007, 2009) to the 
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complex domain. In brief, this form of DCM is used to explain 

complex cross spectral responses from multiple channels 

(here two channels) in terms of coupled sources, each 

comprising several neuronal populations or neural masses 

(here four neuronal populations). Given the parameters of a 

neural mass model, it is easy to compute the transfer 

functions that map from endogenous neuronal fluctuations 

within each source to the observed responses in channel 

space. These transfer functions specify the cross spectral 

densities one would expect to observe empirically. 

Effectively, the dynamic causal model is a forward model 

that includes the neuronal process generating neuronal 

states and the (electromagnetic) mapping from neuronal 

states to measured data. Bayesian model inversion is then 

used to estimate the parameters that best explain empirical 

spectra and provide the Bayesian model evidence for the 

particular model used (e.g., with or without changes in 

particular connections).  

In summary, DCM solves the inverse problem of recovering 

plausible parameters (of both neuronal dynamics and noise) 

that explain observed cross spectra. It uses standard 

variational Bayesian procedures (Friston et al., 2007) to fit 

time-series or cross spectra – under model complexity 

constraints – to provide maximum a posteriori estimates of 

the underlying model parameters and the evidence for any 

particular model; see (Friston et al., 2012) for more details in 

this particular setting. Figure 2 illustrates the basic idea 

behind the application of dynamic causal modelling to cross 

spectral responses. The key point made by this figure is that 

changes in connectivity can have profound effects on 

spectral behaviour responses to endogenous input. It is 

these effects that are used to estimate (changes in) the 

underlying connectivity (Friston, 2014).  If we take the 

modifications in the amplitude and frequencies produced by 
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changes in model parameters as a simple model of seizure 

onset, one can use the predicted spectral responses as a 

likelihood model of empirical responses and thereby 

estimate the time-dependent changes in parameters. The 

simulations reported in Figure 2 can be reproduced using the 

seizure onset demonstration in the neuronal modelling 

toolbox of the academic SPM freeware ( 

http://www.fil.ion.ucl.ac.uk/spm). These simulation results 

use standard parameter values (prior expectations: see Table 

1). 

In the analyses reported below, we modelled frequencies 

between 8 and 48 Hz, thereby removing fluctuations in 

the theta range and allowing the model to explain activity at 

higher frequencies before and after seizure onset. The 

choice of frequencies to model is partly dictated by the 

phenomenology of observed seizure activity and the level of 

modelling supported by the data. Clearly, seizure activity 

encompasses both low (e.g., theta) and high (gamma) 

frequencies – so why did we restrict the range? This choice 

was partly motivated by the level of detail in the models (i.e., 

complexity) supported by the data. In other words, to 

maximize model evidence, models should provide an 

accurate account of spectral responses but in a parsimonious 

way (see below). This places constraints on the range of 

frequencies that can be modeled (given a limited number of 

parameters that entail synaptic time constants that shape 

spectral responses). The neural mass model used in this 

paper was chosen to explain frequencies between alpha and 

(high and low) gamma. In this case, the most prominent 

seizure related changes were observed largely in the beta 

band.  
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The neural mass model  

Neural mass models comprise ordinary differential equations 

that (using a mean field approach) model the dynamical 

behaviour of neuronal populations. These models have been 

developed to accommodate interacting cell types and their 

connectivity (Moran et al., 2013). In this work we use the 

canonical microcircuit neural mass model (CMC) based on 

the extrinsic and intrinsic connectivity described in Bastos et 

al. (Bastos et al., 2012). This particular model has been used 

previously to characterise phenomena like intrinsic gain 

control mechanisms in hierarchical visual processing (Brown 

and Friston, 2012)  to impaired top-down connectivity in 

minimally conscious states (Boly et al., 2011). 

Table 1. Model parameters used for subsequent dynamic causal 
modelling. The left column lists the parameters (corresponding to the 
equations in Figure 3). The final two columns provide the prior mean and 
variance for dynamic causal modelling. Note that the variance is not the 
prior variance of the value per se but on its log scaling. 

 

The CMC model distinguishes between forward and 

backward connections that arise from different types of 

principal cells (e.g., superficial and deep pyramidal cells in 

the cortex). In addition, this model includes excitatory and 

inhibitory populations that send intrinsic connections to 
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other populations (e.g., of excitatory spiny stellate and 

inhibitory interneurons in the cortex). Figure 3 shows the 

architecture of the two source CMC model we used, with 

four populations per source and extrinsic connections 

between the sources. The boxes detail the equations of 

motion that constitute the neural mass model of a single 

source. These are delay differential equations because the 

sigmoid function of presynaptic input operates on the mean 

depolarisation of the presynaptic source in the recent past – 

to accommodate axonal conduction delays. Intrinsic 

conduction delays are about 1 ms while extrinsic delays are 

about 8 ms. This figure shows the four populations in 

relation to their laminar relationships in the cortex. Note 

that the equations of motion in the figure appear to violate 

Dale’s principle of one transmitter per cell type; for example, 

they include inhibitory connections from excitatory 

populations. This reflects the complexity of neural mass 

models that can be supported by the data at hand. In short, 

for any given data there will be an optimal model evidence 

(or marginal likelihood) that can be decomposed into 

accuracy and complexity. This means that models have to 

have the optimal level of complexity (i.e., number of 

parameters) to maximize model evidence. In the context of 

the neural mass model used in this work, several inhibitory 

interneurons populations have been absorbed into a 

negative effective connectivity. For example, recurrent 

connections among superficial pyramidal cells are assumed 

to be mediated bi-synaptically by intervening inhibitory 

interneurons (that are not modeled). This reproduces the 

same dynamics but avoids using too many model 

parameters. 

One might ask whether using a (cortical) canonical 

microcircuit model is appropriate for sub cortical structures 

such as the hippocampus modeled in this paper. Strictly 
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speaking, this is an issue that would be best addressed using 

Bayesian model comparison, for example comparing the 

canonical microcircuit with the bespoke model of 

hippocampal circuitry described in (Moran et al., 2014). 

However, for our current purposes having four 

subpopulations appears to be sufficient. Our previous 

experience with these models suggests that the canonical 

microcircuit model is sufficient to model hippocampal 

responses; perhaps because the basic connectional 

architecture is conserved over cortex and structures like the 

hippocampus (i.e., a circuit with excitatory input and output 

cells and an inhibitory and excitatory pair). 

Bayesian Model Comparison  

DCM was used to compare alternative hypotheses about 

which synaptic parameters were responsible for changes in 

cross spectral density during seizure onset – after 

establishing the basic architecture of extrinsic connections 

between the two sources. Our analyses were therefore 

based upon a two-step Bayesian model comparison 

procedure. In the first step, we identified the best model 

architecture – distinguishing between extrinsic forward and 

backward connections between the primary ictal source 

(LH4-LH5) to the secondary source (LH6-LH7) and the reverse 

architecture with backward connections from the primary to 

secondary source (Figure 4a). To disambiguate these two 

architectures we inverted all 18 time windows, allowing only 

a number of connections to change over time (see below). 

The most likely architecture was identified using Bayesian 

model comparison by pooling the evidence for the two 

alternative models over windows from all three seizures. 

This allowed us to establish whether the extrinsic 

connections from the first to the second source were of a 

forward or backward type (and vice versa). 



 

 

111 
 

The second stage of the analysis focused on the changes in 

intrinsic and extrinsic connectivity over time windows – and 

implicitly between pre-ictal and ictal states. Using the most 

likely model from the first step, we allowed various 

combinations of intrinsic and extrinsic connections to change 

over time (using third order polynomial functions of time, for 

the pre-and post-ictal windows). This allowed us to estimate 

the trajectory of coupling parameters within and between 

pre-ictal and ictal time windows – while holding all other 

parameters at the same values (e.g., conduction delays that 

should not change over time). The parameters we allowed to 

vary corresponded to extrinsic connection strengths 

between the two sources and their intrinsic connectivity. 

Following Wendling et al. (Wendling et al., 2005) we 

associated changes in intrinsic connectivity with the 

influence of inhibitory interneurons on (superficial) principal 

cells. The possible combinations are described by 16 models, 

with and without changes in: intrinsic connectivity in the 

primary source, intrinsic connectivity in the secondary 

source, forward connectivity and backward connectivity. A 

schematic of the 16 models tested is provided in Figure 4b. It 

is changes in these connections that we hoped would explain 

both variability within the pre-and ictal states and the slow 

changes that underlie seizure onset. 
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.

 

Figure 3. This schematic illustrates the state-space or dynamic causal 
model that we used for the dynamic causal modelling reported 
subsequent figures. Left panel: this shows the differential equations 
governing the evolution of depolarisation in four populations 
constituting a single electromagnetic source (of EEG, MEG or local field 
potential measurements). These populations are divided into input cells, 
inhibitory interneurons and (e.g., superficial and deep) principal cell 
populations that constitute the output populations. The equations of 
motion are based upon standard convolution models for synaptic 
transformations, while coupling among populations is mediated by a 
sigmoid function of (delayed) mean depolarisation. The slope of the 
sigmoid function corresponds to the intrinsic gain of each population. 
Intrinsic (within source) connections couple the different populations, 
while extrinsic connections couple populations from different sources. 
See Table 1 for a list of key parameters and a brief description. Right 
panel: this shows the simple two source architecture used in the current 
paper. The intrinsic connectivity (dotted lines) and extrinsic connectivity 
(solid lines) conform to the connectivity of the canonical microcircuit and 
the known laminar specificity of extrinsic connections (Bastos et al. 
2012). Excitatory connections are in red and inhibitory connections are in 
black. Endogenous fluctuations drive the input cells and measurements 
are based on the depolarisation of superficial pyramidal cells. 

Face validation studies 

To establish the face validity of this application of DCM, we 

analysed both simulated and real data. Crucially, the 
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parameters used to simulate the (cross spectral) data were 

based upon biologically plausible estimates from the 

empirical data. However, because the simulated data were 

generated under known model parameters (connectivity and 

time-dependent changes) we knew the ground truth and we 

could establish that the true values fall within the 90% 

posterior confidence intervals. For the simulation studies, we 

generated 18 time windows of cross spectral data using the 

prior expectations for intrinsic and extrinsic connectivity for 

the first (nine pre-ictal) windows and mono exponentially 

decaying connection strengths during the (nine) ictal 

windows. We used forward connections from the primary to 

the secondary source and restricted seizure-related changes 

in connectivity to the forward connectivity and intrinsic 

inhibitory connections to superficial principal cells in both 

sources. These changes modelled a transient increase in the 

excitability of principal cells mediated by both intrinsic and 

extrinsic connectivity. The time constant of extrinsic decay 

(back to the prior expectation) was two seconds and the 

time constant of intrinsic decay was eight seconds. The 

values of all other parameters were set at the posterior 

estimates from the empirical analysis of the first seizure 

described below.  

To create realistic simulated data, residuals from the 

empirical analyses (randomly permuted over windows) were 

added to the simulated cross spectra to ensure that the 

sampling noise and its correlation structure had the same 

amplitude and form that would be encountered empirically. 

We used a signal to noise ratio of four, over all channels and 

time windows. 
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Analysis of real data 

We performed model comparison and repeated the above 

analysis to estimate the trajectory of model parameters for 

the three successive seizures. These analyses used Bayesian 

updating, where the posteriors from the first seizure were 

used as priors for the second seizure and similarly for the 

second and third seizures. This enabled us to accumulate 

evidence for different models, while allowing for changes in 

parameters that could change from seizure to seizure (for 

example electrode gain). We then pooled the evidence over 

seizures to identify the best model. Finally, we identified the 

parameter estimates of the best model to quantify 

trajectories in the parameter space for each seizure. 

Results 

Face validation 

The results of the face validation (simulation) study are 

shown in Figure 5a: this shows the time-dependent changes 

in (log scaling of) the intrinsic and extrinsic connections as a 

function of window number. The posterior expectations 

correspond to the coloured lines (blue and cyan correspond 

to intrinsic connectivity, while green and red lines report the 

forward and backward connectivity respectively). The true 

values are shown as broken lines and the posterior estimates 

as full lines. In this example, we precluded changes in the 

backward connections from first to the second source. There 

is a pleasing correspondence between the posterior 

estimates and the true values. Indeed, for the intrinsic 

changes (blue and cyan) they are virtually indistinguishable. 

Note the characteristic overconfidence of these estimators 

(due to the mean field approximation in the variational 

scheme). This means that in some cases the true value lies 
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just outside the 90% confidence intervals (grey areas). This is 

particularly evident for the forward connectivity (green) 

shortly after seizure onset. These results suggest that the 

trajectory of parameters can be recovered even under fairly 

realistic levels of sampling noise and biologically plausible 

values for the neuronal dynamics. 

 

Figure 4. a) Alternative model architectures for the extrinsic coupling 
between the primary and secondary sources. FW: forward connectivity; 
BW: backward connectivity. b) Schematic showing the 16 models we 
tested. These models correspond to alternative hypotheses about 
changes in synaptic coupling that can explain changes in spectral activity 
before and after seizure onset. The 16 models correspond to all 
combinations of changes in intrinsic connectivity (in the primary and 
secondary sources) and changes in forward and backward extrinsic 
connections. The changes in intrinsic connectivity were modeled as 
changes in the inhibitory recurrent or self connections among superficial 
pyramidal cells. 
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Figure 5. a). This panel shows the time-dependent changes in (log scaling 
of) the intrinsic and extrinsic connections as a function of window 
number. The posterior expectations correspond to the coloured lines 
(blue and cyan correspond to intrinsic connectivity, while green and red 
lines report the forward and backward connectivity respectively). The 
true values are shown as broken lines, the posterior estimates as full 
lines and the 90% confidence intervals as grey areas. b) Predicted (solid 
lines) and observed (dotted lines) cross spectra for pre-ictal (blue) and 
ictal (red) periods. This example uses average spectra from the first 
seizure to illustrate the quality of the model fit and the spectral data 
features that inform the posterior estimates of the model parameters. 
The absolute values of the (complex) cross spectra are shown in the 
upper right panel. 

Empirical analyses 

A typical model fit to the observed (empirical) cross spectra 

is provided in Figure 5b – showing the characteristic changes 

in complex cross spectra from a pre (blue) to post (red) ictal 

window. This example shows the typical excess of power 

(and coherence) in the beta band following seizure onset. 

Bayesian model comparison of competing models with 

different extrinsic (forward and backward) connections 

suggested that we can be almost certain that the forward 

connection originates in the primary source, with a log 
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evidence difference of over 100 (Penny et al.2004). 

Differences in log evidence are the same as log Bayes 

factors, where the Bayes factor is an odds ratio comparing 

the evidence or marginal likelihood of two models.  

 

Figure 6. a) Upper panel: these are the variational free energy 
approximations to log model evidence for the 15 models covering 
changes in one or more synaptic parameters before and after seizure 
onset. Lower panel: this shows the corresponding posterior probability 
over models and identifies a single model with almost 100% posterior 
confidence. b) Changes (across consecutive windows, for each of the 
three seizures) in the synaptic parameters that were allowed to change 
in the winning model. Changes are shown in terms of log scaling to 
clarify the profile of changes over time. Each window corresponds to one 
second. The blue and the green lines report the intrinsic inhibition of the 
primary and secondary sources respectively and the grey areas represent 
the 90% confidence intervals. 

Having established the most probable model architecture, 

we then compared the 16 models of time-dependent 

changes in intrinsic and extrinsic connectivity. One model 

(model 11) failed to converge during model inversion and 
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was excluded from subsequent analysis. The pooled 

evidences of the remaining 15 models are shown in Figure 

6a. 

The winning model (model 12) allowed changes in intrinsic 

connectivity in both the primary and the secondary sources. 

This model had greater evidence than any competing model. 

Typically, a difference in log evidence of three is considered 

strong evidence in favour of one model over another (this 

corresponds to a log marginal likelihood ratio of about 20 to 

1). The difference between the best and next best models 

was much greater than three. Note that the model with the 

highest evidence was not the model with the greatest 

number of parameters (model 1). This reflects the 

complexity penalty inherent in Bayesian model comparison. 

In other words, changes in forward and backward 

connectivity did not improve accuracy sufficiently to justify 

their inclusion. 

Finally we examined the posterior estimates (expectations) 

to quantify fluctuations in the parameters around seizure 

onset. The results are shown in Figure 6b. Intrinsic 

connectivity increases markedly in both sources with seizure 

onset and then decreases within the first 20 seconds of 

seizure activity (the observed change in log scaling of about 

two corresponds to an eightfold increase in intrinsic 

connectivity). The trajectories are qualitatively consistent, 

given that they were estimated from independent data. The 

intrinsic connectivity modelled here is a sensitivity of 

(superficial) principal cells to presynaptic inputs from 

inhibitory interneurons. This fits comfortably with the 

conclusions of Wendling et al.(Wendling et al., 2005) who 

model seizure onset in terms of slow ensemble dynamics 

involving pyramidal cells and local interneurons, highlighting 

the increases in excitability that peak at seizure onset.  
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In summary, these results show that seizure onset appears 

to be mediated by an inhibition of superficial pyramidal cells 

in both sources. The key observation here is that the 

synaptic changes necessary to explain observed seizure 

activity (in terms of cross spectral density) are distributed, 

i.e. not restricted to the sole SOZ, and show slow dissociable 

time courses over several seconds. Furthermore, these 

changes are restricted to local or intrinsic fluctuations in 

synaptic parameters that are (presumably) a response to 

interactions among distal sources. Notice that the 

(reciprocal) extrinsic connections play a crucial role in the 

ensemble dynamics, in the sense that they mediate 

distributed interactions both before and after seizure onset. 

In short, the changes we have identified speak to a change in 

the recurrent interactions between excitatory principal cells 

(that originate forward type connections) and local inhibitory 

interneurons, reflecting a transient loss excitatory-inhibitory 

balance or gain control within a distributed epileptogenic 

network. 

The reason that we can make definitive statements about 

directed connections among specific populations is that the 

(winning) DCM entails these specific changes. This illustrates 

the utility of having a biophysically explicit and plausible 

model of how data are caused – and the importance of 

Bayesian model comparison in adjudicating among different 

hypotheses. 

Discussion 
Neuronal models are being increasingly used to characterize 

brain activity in different states, and the transition between 

these states. These transitions are most evident and crucial 

when the phenomenon to be modelled is the onset of an 

epileptic seizure. 
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A neuronal model of activity during different stages 

preceding and following seizure onset was proposed 

(Wendling et al., 2005), highlighting that the transition from 

the pre-ictal to the ictal state may not only be due to an 

increase of excitation (and a decrease of an inhibition) but 

rather to slow ensemble dynamics involving pyramidal cells 

and local interneurons,  highlighting their increases in 

excitability that peak at seizure onset. A recent study 

(Nevado-Holgado et al., 2012) characterized the evolution of 

an absence seizure as a path through the parameter space of 

a neural mass model. In another approach (Hocepied et al., 

2013) a similar scheme was proposed for early seizure 

detection. In both cases, the authors suggest that tracking a 

set of parameters over time can disclose the nature of 

ictogenesis. Characterising the trajectory of biophysical 

neural model parameters during seizure onset may provide 

insights into the underlying slow metabolic mechanisms. 

The common theme in studies modelling seizure generation 

is a departure from the normal regime of functioning in 

populations of cells. This departure appears to be based on 

the interactions among excitatory pyramidal cells (Thomson 

and Radpour, 1991; Whittington et al., 1997) and their 

inhibitory interneurons (Miles et al., 1996; Banks et al., 1998; 

White et al., 2000). Several studies have investigated and 

reviewed the intracellular and extracellular mechanisms 

underlying slow changes in synaptic parameters during 

seizure activity (Jefferys et al., n.d.; McNamara, 1994, 1995; 

Isomura et al., 2008). McCormick and Contreras (McCormick 

and Contreras, 2001) reported how periods of excitation, 

followed by synaptic inhibition and/or activation of intrinsic 

hyperpolarizing conductances can give rise to inter-ictal 

spikes, which can then be sustained during seizure activity.  
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Both David et al. (David et al., 2008b) and Krishnan et al. 

(Krishnan et al., 2013) addressed the causes of pathological 

synchronization, pointing out that changes in the 

extracellular ionic concentrations or modifications to 

excitation and inhibition can contribute to synchronized 

epileptiform firing. Increase in extracellular K+ concentration 

and decrease in Ca2+ are the most likely candidates for 

mediating these slow changes in excitability (and 

disinhibition). Other variables related to energy metabolism 

(levels of extracellular K+, oxygen, ATP consumption) have 

been modelled as a slow permittivity variable in a dynamical 

model of seizure generation (Jirsa et al., 2014). This model 

highlights the separation of temporal scales in the genesis of 

seizure activity and highlights the role of slow fluctuations in 

excitability that our results appear to be consistent with. 

Dynamic causal modelling was applied to intracranial EEG 

data recorded during 1 Hz electrical stimulation in patients 

with drug-resistant focal epilepsy (David et al., 2008b). DCM 

was used to model short term plasticity – as modulations of 

synaptic efficacies in either intrinsic or extrinsic connections.  

The observed fast transition from the pre-ictal to the ictal 

state may be due to changes in intrinsic connectivity. DCM 

revealed variations of the postsynaptic efficacies at the ictal 

zone. Their results suggested that electrically induced 

seizures in the temporal lobe could depend in part on a pre-

ictal increase in sensitivity to hippocampal afferents from the 

temporal pole. Again, this is consistent with the notion that 

seizure activity results from distributed ensemble dynamics 

engaging both intrinsic and extrinsic connections. 

It is clear that (slow) drifts in synaptic efficacy or coupling 

provide a sufficient account for the (fast) neuronal dynamics 

characteristic of seizure activity – and that these drifts 

involve involving regions distributed beyond the seizure 
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onset zone. This perspective has been recently exploited. A 

bifurcation analysis of a physiological model of large-scale 

brain activity was used to obtain a parsimonious and unifying 

explanation of the defining features of seizure onset and 

spreading in (Breakspear et al. 2006).  Goodfellow at al. 

(Goodfellow et al., 2011) associated the emergency of 

epileptiform rhythms to two different scales of inhibition in a 

cortical neural mass model; in the work mentioned above: 

Jirsa et al. (Jirsa et al., 2014) propose a minimal canonical 

model of epileptogenesis based upon a careful bifurcation 

analysis. This model exhibits spontaneous transitions 

between multi-stable states – resting on both slow and fast 

state variables. The dynamics emerging from both studies 

may provide a formal framework to study the 

neurophysiological mechanisms considered above.  

In this paper we adopt a similar if complementary approach.  

We start from a canonical microcircuit model of neuronal 

sources and infer the evolution of its synaptic parameters 

around seizure onset. However, dynamic causal modelling 

takes its constraints from the known anatomy and 

physiology of neuronal circuits – as opposed to the formal 

(phenomenological) constraints offered by bifurcation 

analyses and dynamical systems theory. This means that the 

agenda is to parameterise seizure activity in terms of 

underlying synaptic mechanisms as opposed to their 

mathematical architecture. Crucially, we do not model a 

single epileptogenic region, but consider the distributed 

interactions with another population. This allowed us to use 

Bayesian model comparison to ask whether seizure activity 

was sufficiently explained by changes in one (epileptogenic) 

source – or required distributed changes throughout a 

simple network. Our results clearly point to a distributed 

explanation that rests upon coupled dynamics over both 

space and time. Nonetheless, given that the pathophysiology 
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of epilepsy may be local (and mediated by non-specific 

extracellular factors), intrinsic plasticity may play a 

predominant role in seizure onset. In principle, it should be 

possible to extend this dynamic causal modelling approach 

to identify the causal architecture of these changes by 

explicitly modelling a slow (hidden) permittivity variable 

(such as extracellular potassium concentration) and testing 

different models. An important aspect of the current results 

is the dissociation in the temporal evolution of extrinsic 

(negligible) and intrinsic (marked) synaptic parameters. The 

nature of this dissociation may be important for 

understanding the intracellular and extracellular 

pathophysiology (what causes what) and clearly motivates 

further study in this area. 

As with all dynamic causal modelling, the qualities of the 

models (model evidence) are only defined in relation to each 

other – and there is no supposition that the selected model 

represents some true or veridical architecture generating the 

data. In this sense, model comparison – and the 

interpretation of posterior estimates – is better thought of 

as testing specific hypotheses. In this instance, we wanted to 

test the hypothesis that a small number of (intrinsic) 

coupling strengths were sufficient to explain fluctuations in 

cross spectral density associated with seizure onset. To test 

more detailed hypotheses, one would have to specify a 

greater range of competing models and evaluate their 

evidence. A key point here is (as noted above) that at some 

point, the data at hand will not be able to disambiguate 

between models that are too complex (because their 

evidence will fall). It is at this point that one might turn to 

alternative sources of data – such as laminar-specific 

intracranial recordings. 
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In this paper we have focused on modelling spectral 

responses over epochs or windows around seizure onset 

using dynamic causal modelling for cross spectral density. It 

is interesting to consider alternative approaches. The first 

choice that one has to make in this context is whether to 

model the first-order responses in time or the second-order 

(spectral) responses in frequency space. In modelling 

endogenous activity, of the sort presented by seizure 

activity, modelling the timeseries can be difficult. This is 

because the time varying neuronal states generating data 

are unknown and have to be estimated. Although this is 

possible, it can be inefficient because one has to estimate 

both hidden neuronal states and unknown (connectivity) 

parameters. There are generalized (variational) Bayesian 

filtering techniques – that generalize the Kalman filter – 

which have been applied to fMRI timeseries (Li et al., 2011); 

however, they are relatively less common in 

electrophysiological timeseries analysis, see (Freestone et 

al., 2011) for an application in the framework of neural field 

modelling. This is because the number of time bins and 

hidden neuronal states can be prohibitively large. In short, 

the more efficient way to model seizure activity is to focus 

on the time-frequency responses that reflect second-order 

statistics of neuronal activity. This means that hidden 

neuronal states do not have to be estimated and the data 

can be used to estimate unknown parameters (e.g., transfer 

functions and cross spectral predictions). In principle, it 

should be possible to model time varying parameters 

causing time-dependent changes in cross spectral 

measurements; however, we have chosen the simpler 

approach of using a piecewise linear approximation to these 

slow parameter changes. This allows us to use established 

model procedures for modelling complex cross spectra. We 

hope to compare this approach to explicit models of time 
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frequency responses and, possibly, stochastic DCMs that 

estimate hidden neuronal states in the future. 

This study is not meant to be a comprehensive illustration of 

dynamic causal modelling of seizure activity – rather a 

demonstration of the issues that are entailed and the nature 

of the questions that can be asked. The particular Bayesian 

updating scheme introduced here could be applied to 

measure synaptic modification on the scale of seconds to 

minutes. This may be useful for both epilepsy research and 

also studies of synaptic plasticity in studies of short or long-

term potentiation or associative learning. 
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Chapter 4 
The pathophysiology of epilepsy: 

A dynamic causal modelling study of 
seizure activity in a rat model 

 

Introduction 
In the previous chapter we presented a framework of 

analysis aimed to shed light on the synaptic mechanisms 

underlying epileptic seizure onset and their modulation. 

This chapter will present an extension and an improvement 

of the aforementioned approach. The object of our study will 

be an animal model of epilepsy, in which the same 

experimental protocol was used to trigger spontaneously 

emerging epileptogenic behaviour, even though the 

pathological behaviour assumed different characteristics 

across animals. 

A dynamic causal modelling (DCM) of seizure activity and a 

Bayesian model selection procedure is used to test a number 

of key hypotheses about the genesis of seizure activity and 

longitudinal changes in the underlying pathophysiology over 

the weeks following seizure induction. The data we 
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examined was obtained from a series of rats who received 

kainic acid injections in the right hippocampus, in order to 

artificially create an epileptogenic zone. All the rats were 

implanted with depth electrodes in the right (lesioned) and 

left (perilesional) hippocampus. 

It is worth to note that the lesion is in a first moment 

localized in the right hippocampus, but eventually spreads to 

the left one (hippocampi are tightly connected in rats). After 

some weeks seizures can originate even from the left 

hippocampus . This experimental model and its data afford 

the opportunity to ask a number of important questions 

about epigenesis; for example, what are the differences 

between the lesioned and perilesional hippocampi? are 

there systematic changes in pathophysiology over the weeks 

following lesion? and is the pathophysiology restricted to the 

primary lesion site or is it more distributed?  

We focus on the last question and characterise the 

pathophysiology of seizure onset – shortly after the lesion – 

in terms of physiologically plausible variables such as 

changes in synaptic efficacy and rate constants. Specifically, 

we ask whether seizure onset can be explained by 

fluctuations in intrinsic connectivity and synaptic rate 

parameters, changes in the endogenous afferent activity 

from other areas, or both.  

To characterise the physiological basis of seizure activity, we 

used biophysically informed modelling with neural mass 

models in the setting of dynamic causal modelling . Dynamic 

causal models allow one to predict observed 

electrophysiological activity (in our case spectral density) in 

terms of electromagnetic sources that comprise coupled 

neuronal populations, driven by endogenous neuronal 

activity. These models involve parameters encoding intrinsic 
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connection strengths, synaptic rate constants and 

endogenous input. Using successive epochs of data, we 

aimed to effectively track the trajectory of model 

parameters that best explained epoch by epoch changes in 

spectral density during seizure onset.  

Crucially, we advance the methodology presented in 

(Papadopoulou et al. 2015). DCM inversion is now 

implemented by using a Bayesian belief-updating scheme of 

seizure activity (Cooray 2015, submitted). Conversely with 

respect to the standard Bayesian inversion techniques used 

before, according to the proposed scheme the optimal 

parameters of the model of each window (the posteriors) 

are used as initial guess for the model of the following one 

(the priors). Several models are tested, each one allowing 

different parameters to change over epochs or to stay 

constant. Bayesian model comparison then indicates which 

parameters are most likely responsible for the onset of 

seizure. The collection of parameter trajectories that best 

explain the peri-ictal activity will indicate whether the 

parametric changes involved the intrinsic connectivity 

among the neuronal populations (and their time constants), 

the spectral form of endogenous (afferent) neuronal input, 

or both. 

This paper comprises three sections. In the first we describe 

the data available to us and the selection criteria for the 

three rats studied. This section includes a description of the 

preprocessing and the computation of spectral density over 

consecutive epochs of data surrounding seizure onset. The 

second section provides a brief description of dynamic causal 

modelling in this context (DCM for cross spectral density), 

with a special focus on the Bayesian belief updating used to 

track parameter trajectories. The final section presents the 

results of Bayesian model comparison and a discussion of 
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the physiological implications of our results. We discuss how 

these will be used to constrain subsequent studies of the 

differences between lesioned and non-lesioned hippocampi 

and the evolution and differentiation of seizure activity over 

a period of weeks. 

Materials and Methods 

Data 

Wistar rats of approximately the same age and weight were 

injected with kainic acid (KA) in the right hippocampus. 

Before the injection, the same surgical protocol for 

implantation has been used for all rats; two depth electrodes 

in the right hippocampus (RH) (dr1 &dr2) separated by 

0.5mm, one depth electrode dl in the left hippocampus (LH) 

and finally an epidural electrode over the right frontal cortex 

(Figure 1). A detailed description of the data can be found in 

(Raedt et al. 2009).  

 

Figure 1. Illustration of the position of the hippocampal depth 
electrodes. There are two depth electrodes in the RH (dr1 & dr2) and one 
in the LH (dl).  
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Starting from a week after the injection with KA, 

spontaneous seizures have been monitored for 21 weeks. 

The video-EEG monitoring was performed under 

environmentally controlled conditions (12 h normal light ⁄ 

dark cycles) in an isolated room.  

For this work we have used data recorded from 3 animals 

(A,B,C). We restrict our analysis to the 10 and 11th week 

after the injection. The animals can be classified in terms of 

their seizure frequency; Rat B developed more than one 

seizures per day and rats A & C had more sparse seizures 

(less than one per day). The reason for this variation in 

seizure frequency lies in different aspects of epileptogenesis. 

Since the intervention aimed to trigger epileptogenesis, was 

the same for all rats, the added value for the approach 

presented here would be a mapping between the model 

parameters and the clinical characteristics of the seizures.  

We have modelled the activity of the second depth electrode 

of the RH (dr2 in Figure 1), and of the one of the LH (dl in 

Figure 1). For simplicity in what follows we will refer to them 

as RH and LH electrodes. For each seizure, data consisted of 

a continuous peri-ictal segment of 30 seconds, starting 10 

seconds before seizure onset as noted by the epileptologists.  

Data were acquired with a sampling frequency of 200 Hz. 

The time series for each rat were divided into consecutive 

windows of 2000 ms with a constant overlap (250ms). This 

choice corresponded to the maximum length over which the 

spectrum remained approximately constant, guaranteeing 

the best possible frequency resolution. A Bayesian 

multivariate autoregressive model was used to estimate the 

spectral density of the data for each window. The resulting 

spectrum was averaged over the available recorded seizures 

during the weeks of interest (locked to the time of seizure 
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onset). We modelled fluctuations in spectral power between 

3Hz and 70Hz. To improve the fits and the transitions 

between adjacent windows, the time-frequency 

representation of the whole peri-ictal period was smoothed 

with a moving Gaussian kernel.  

Before averaging the seizures for each rat, we first looked at 

the time-frequency (TF) plots to ensure that the seizures 

were qualitatively similar and that the spectral modulations 

were correctly aligned around the seizure onset time 

indicated by the epileptologists. These plots are reported 

below for each rat.  

Rat A 

Three seizures were available for this rat during the period of 

interest. After having ensured that the alignment is the 

correct one, we concluded that the full 30 seconds segment 

length (10 seconds pre-ictal, 20 seconds ictal) could be used 

for this rat. 

The TF plots of the seizure for both hippocampi (Figures 2, 3) 

showed that seizures had similar spectral features which 

allowed us to proceed with averaging. 
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Figure 2. TF plots of the three 30 seconds peri-ictal segments used from 
data recorded at the RH electrode from Rat A. Time 0 indicates the 
seizure onset. 

 

 

Figure 3. TF plots of the three 30 seconds peri-ictal segments used from 
data recorded at the LH electrode from Rat A. Time 0 indicates the 
seizure onset. 
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Rat B 

Seven seizures were recorded for this rat during the period 

of interest. In this case some realignment of the onset time 

was necessary, resulting in peri-ictal segments of 27 seconds 

(13 seconds pre-ictal and 14 seconds ictal). 

The TF plots of the seizure for both hippocampi can be seen 

below (Figures 4,5). 

 

Figure 4. TF plots of the seven 27 seconds peri-ictal segments used from 
data recorded at the RH electrode from Rat B. Time 0 indicates the 
seizure onset. 
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Figure 5. TF plots of the seven 27 seconds peri-ictal segments used from 
data recorded at the LH electrode from Rat B. Time 0 indicates the 
seizure onset. 

Rat C 

Three seizures were recorded for this rat during the period 

of interest. The realignment procedure resulted in a 22 

seconds segment peri-ictal segment (9 seconds pre-ictal and 

13 seconds ictal). The TF plots of the seizure for both 

hippocampi can be seen below (Figures 6,7). 
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Figure 6. TF plots of the three 22 seconds peri-ictal segments used from 
data recorded at the RH electrode from Rat C. Time 0 indicates the 
seizure onset. 

 

 

Figure 7. TF plots of the three 22 seconds peri-ictal segments used from 
data recorded at the LH electrode from Rat C. Time 0 indicates the 
seizure onset. 
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Dynamic causal Modelling  

The neural mass model 

The neural mass model used to predict peri-ictal activity is 

the canonical microcircuit model (CMC) based on the model 

by Jansen and Rit (Jansen & Rit 1995). Jansen and Rit's model 

comprises three cell subpopulations; spiny stellate cells in 

granular layer IV, pyramidal cells and inhibitory interneurons 

in extra granular layers (II and III; V and VI). The main 

difference with respect to the original model is that the CMC 

considers four subpopulations by splitting the pyramidal cell 

population into two subpopulations , so it eventually 

contains distinct superficial and deep pyramidal cell 

populations occupying the supragranular and the 

infragranular layers respectively. In addition excitatory spiny 

stellate cells occupy the granular layers and inhibitory cell 

the supragranular ones (Figure 3 in Chapter 3).  

The EEG measurements were modelled as a weighted 

average of the postsynaptic potential of the pyramidal cells. 

A more detailed description of the CMC model can be found 

in (Moran et al. 2013; Bastos et al. 2012). In this work we use 

the CMC to explain the evolution of complex cross spectra 

produced by seizure activity as seen in (Papadopoulou et al. 

2015; Cooray et al. 2015).  

DCM for cross spectral densities 
 
The analysis described in this section employs a dynamic 

causal model for cross spectral densities (CSD) , a 

generalisation of DCM for steady state responses in the 

complex domain (Friston et al. 2012). In DCM for CSD 

neuronal activity is summarised in terms of its spectral 

density when we model a single source or cross spectral 

density when we model multiple sources. In this work, we 
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model each single source separately (dr2 in the RH & dl in 

the LH). 

In our previous work (Papadopoulou et al. 2015) a different 

policy was adopted, where successive time windows were 

modelled, effectively summarizing the time series with its 

time–frequency decomposition. This means that we had to 

invert a model of multiple epochs, which in some cases was 

computationally very expensive. In order to tackle this 

problem, in this work we use an alternative scheme, the 

Bayesian belief updating presented in, where certain 

parameters were allowed to change between epochs and 

others are held at the same value.  

Bayesian belief updating 

Our application of dynamic causal modelling calls upon 

Bayesian belief updating to track the trajectories of 

parameters over successive epochs of data that are 

summarised in terms of their spectral density. This 

procedure is a simple form of Bayesian filtering – at the 

between epoch level – based upon a random walk. In brief, 

Bayesian updating corresponds to using the posterior 

estimate (expectation) from the preceding epoch as the 

prior expectation for the current epoch. Similarly, the prior 

covariance is replaced by the posterior covariance. Because 

the posterior covariance is always less than the prior 

covariance, the posterior covariance shrinks over successive 

epochs and clamps the posterior expectations to a relatively 

stable value. However, for some connections interest e.g. 

intrinsic excitatory and inhibitory connections we allow 

epoch to epoch fluctuations by supplementing the posterior 

covariance with the initial prior covariance. This allows some 

parameters to pursue a random walk through parameter 

space that best accounts for the spectral data. In this 



 

 

143 
 

instance, the initial prior covariance corresponds to our 

beliefs, not about the possible dispersion of parameters but 

about their epoch to epoch changes. Note that this 

procedure allows all the parameters to change to a certain 

extent from epoch to epoch. The key difference between 

parameters that are and are not expected to change is that 

the former have a lower bound on their covariance; namely, 

the initial prior covariance. This procedure provides a time 

series of posterior parameter expectations.  

Bayesian model comparison 

DCM was used to compare alternative hypotheses about 

which sets of parameters were responsible for changes in 

cross spectral density during seizure onset. Two sets of 

parameters were allowed to vary between epochs. The first 

set comprises intrinsic connectivity among the neuronal 

populations (inhibitory and excitatory) and their time 

constants; the second set refers to the endogenous afferent 

activity from other areas (spectral input). We inverted 

eventually three models for each source in the two 

hippocampi; the first one allows both set of parameters to 

vary across time (epochs), the second one allows only the 

intrinsic connectivity among the neuronal populations and 

their time constant to vary while the endogenous afferent 

activity of other regions was kept constant and finally the 

third one allows the endogenous afferent activity of other 

regions to vary while intrinsic connectivity among the 

neuronal populations and their time constant were kept 

constant. Model comparison was performed among the 3 

models for each source in both hippocampi. This procedure 

was repeated for the three rats. 



Chapter 4 

 

144 
 

Results 

Model inversion 

In the following we will describe the results of the model for 

both hippocampi in the three rats. We will report the time-

frequency representation of observed and predicted data as 

well as the spectral changes over time of the individual 

subpopulations. Please note that we are interested in 

visualizing the relative changes in the period of interest, and 

not the absolute spectral power nor the perturbations with 

respect to the baseline level. 

RH electrode 

(Right Hippocampus, site of the primary lesion) 

For the rats A and B the model with the highest evidence 

was the one allowing for variations of endogenous afferent 

activity from other areas while the intrinsic inhibitory and 

excitatory connections were kept constant. For rat C the 

model with the highest evidence was the one allowing 

variation of both inhibitory and excitatory connectivity and 

spectral input. In (Figure 8) we depict the observed and the 

predicted seizure activity for the RH electrode for the three 

rats. Even though the winning model for rat C differs from 

the one of rats A and B, they all involve variation in the 

endogenous afferent activity from other areas. This suggests 

that afferent activity from other areas to the seizure onset 

zone (located in the kainic acid treated RH) is implicated in 

seizure activity (Cooray et al. 2015; Terry et al. 2012). 
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Figure 8. TF representation of observed and predicted seizure activity for 
the winning models as depicted from the RH electrode, for each of the 
three rats. The electrographic seizure onset is marked at 0 seconds. 

The effect of these changes on the four subpopulations of 

the CMC model used here for each rat can be seen in the TF 

plots below (Figures 9-11). Some more variability is seen 

here across the animals. However, for all the three rats A,B 

and C an overall increase of the spectral activity is observed 

for all four subpopulations at the onset (0 seconds).  
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Figure 9. TF representation of the four subpopulations comprising the 
CMC model of the RH electrode.  

 

 

Figure 10 TF representation of the four subpopulations comprising the 
CMC model as depicted from RH electrode. There is a transient increase 
of the activity after the seizure onset. 
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Figure 11. TF representation of the four subpopulations comprising the 
CMC model as depicted from the RH electrode. There is an overall 
increase in the activity at the seizure onset. 

LH electrode 

(Left Hippocampus) 

The model with the highest evidence for the for the activity 

recorded from the LH electrode was different for each rat. 

For rat A it was the one allowing for variations of intrinsic 

inhibitory and excitatory connections while endogenous 

afferent activity from other areas was kept constant. For rat 

B it was the one allowing for variations of endogenous 

afferent activity from other areas while the intrinsic 

connections were kept constant. Finally, for rat C it was the 

one allowing for variations of both set of parameters. In 

(Figure 12) one can see the observed and the predicted 

seizure activity recorded at LH electrode for the three rats. 

The different winning models- each one revealing distinct 

underlying mechanisms- may reflect the different timing of 

the spreading of the lesion from the KA-treated right 

hippocampus to the left hippocampus for each rat. 
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Figure 12. TF representation of observed and predicted seizure activity 
for the winning models as depicted from the LH electrode, for each of 
the 3 rats. 

Discussion 
In this work we have used dynamic causal modelling on a rat 

model of epilepsy to further investigate the pathophysiology 

of epilepsy by looking at changes in synaptic efficacy that 

may underlie the transient change from pre-ictal to ictal 

states. It has been discussed before that complex 

phenomena as epileptic seizures span different time scales 
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varying from milliseconds to days (Bernard et al. 2014). In 

our previous work we focused in tracking slow modulations 

to explain seizure onset (Papadopoulou et al. 2015). The 

methodological advance of this work was the incorporation 

of Bayesian upgrade scheme as seen in (Cooray 2015) which 

allowed for faster inversions of otherwise really 

computationally expensive models. 

Our approach was always able to efficiently reproduce peri-

ictal activity, albeit the winning model indicated by BMS was 

not always the same across the three rats. 

The interpretation of these results will involve investigating 

whether these changes of parameters over time can be 

explained by different combinations of a few recurrent 

components, characteristic of the dynamic changes 

underlying seizure onset. 

The second issue involves the possible interpretation of the 

differences in the pathophysiology and manifestations of 

epilepsy across animals in terms of these parameters. Such 

differentiation, stemming from the exact same protocol 

applied to all animals, is still unexplained. A working 

hypothesis in this sense can be that a clustering in the 

parameter space can separate the rats who developed more 

seizures from the rats that developed less seizures, or the 

rats which displayed more convulsive seizures and the rats 

that displayed more subclinical seizures.  

If successful, this approach could easily be extended to the 

study of other pathophysiological and cognitive modulations 

of brain activity. 
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Chapter 5 
Estimating directed connectivity from 

cortical recordings and  
reconstructed sources 

 

Abstract 
In cognitive neuroscience, electrical brain activity is most 

commonly recorded at the scalp. In order to infer the 

contributions and connectivity of underlying neuronal 

sources within the brain, it is necessary to reconstruct sensor 

data at the source level. Several approaches to this 

reconstruction have been developed, thereby solving the so-

called implicit inverse problem (Michel et al. 2004). 

However, a unifying premise against which to validate these 

source reconstructions is seldom available. The dataset 

provided in this work, in which brain activity is 

simultaneously recorded on the scalp (non-invasively) by 

electroencephalography (EEG) and on the cortex (invasively) 

by electrocorticography (ECoG), can be of a great help in this 

direction. These multimodal recordings were obtained from 

a macaque monkey under wakefulness and sedation. Our 

primary goal was to establish the connectivity architecture 

between two sources of interest (frontal and parietal), and 
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to assess how their coupling changes over the conditions. 

We chose these sources because previous studies have 

shown that the connections between them are modified by 

anaesthesia (Boly et al. 2012). Our secondary goal was to 

evaluate the consistency of the connectivity results when 

analyzing sources recorded from invasive data (128 

implanted ECoG sources) and source activity reconstructed 

from scalp recordings (19 EEG sensors) at the same locations 

as the ECoG sources. We conclude that the directed 

connectivity in the frequency domain between cortical 

sources reconstructed from scalp EEG is qualitatively similar 

to the connectivity inferred directly from cortical recordings, 

using both data-driven (directed transfer function; DTF) and 

biologically grounded (dynamic causal modelling; DCM) 

methods. Furthermore, the connectivity changes identified 

were consistent with previous findings (Boly et al. 2012). Our 

findings suggest that inferences about directed connectivity 

based upon non-invasive electrophysiological data have 

construct validity in relation to invasive recordings. 

Introduction 
Oscillatory synchronous activity of local or distributed 

neuronal populations is an ubiquitous phenomenon in neural 

systems and may represent a key neuronal mechanism 

underlying cognitive or perceptual processing (Buzsáki 2006). 

Neuronal oscillations are traditionally measured by EEG, 

recordings of local field potentials (LFP), or multi-unit 

recordings. Beyond the depiction of this neuronal 

synchronization, identifying driver-response relationships 

between interconnected brain sources and understanding 

their directed interactions and dynamics can also inform the 

functional architecture of sensory and cognitive processing, 

in both healthy and diseased brains (Bressler 1995). There 

are various measures that have been developed to identify 
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driven and driving interactions between brain sources. These 

measures vary from linear to nonlinear, bivariate to 

multivariate, and many rely on the Granger causality 

principle (Granger 1969). This approach quantifies 

improvement in the predictions of a time series, given its 

past, when information from the past of another time series 

is considered (Baccalá & Sameshima 2001; Kamiński & 

Blinowska 1991). These measures, which are based upon 

statistical dependencies in data over time, are thought to 

provide measures of directed functional connectivity. 

Another approach, DCM (David and Friston 2003), is used to 

infer (directed) effective connectivity, that is, how one 

source or neural system influences another. The main 

distinction between DCM (model-based) and Granger-based 

(data-based) methods is that DCM is based on biologically 

plausible neural mass models that are inherently causal in 

nature. In other words, the question is not whether there is 

(Granger) causality – but which (causal) models best 

accounts for data. This enables one to identify how a system 

of pre-specified neuronal populations generates the 

measured signal (Schoffelen and Gross 2009), and to 

compare different hypotheses or architectures in terms of 

their model evidence. 

Measuring connectivity at the scalp level can be informative 

but one has to be careful about its interpretation in terms of 

brain dynamics. This is because scalp data sees neuronal 

sources through a specific 'lens' which distorts, mixes and 

loses information about the exact location of the underlying 

sources. A fundamental problem with scalp recordings is 

electrical conduction through the head volume. This means 

that instead of recording brain activity from one specific 

brain source, each sensor measures a linear superposition of 

signals from all over the brain. This mixing introduces 

instantaneous correlations in sensor data, so that the 
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interpretation of directed connectivity has to proceed with 

caution because spurious connectivity patterns can arise. In 

short, scalp recordings provide an indirect measure of source 

activity (with rather low signal to noise ratio), which is not 

easily interpretable. A critical assessment of directed 

connectivity measures based on EEG recordings can been 

found in Haufe et al. (2013). The authors report a series of 

simulations to assess the sensitivity of sensor-based 

functional connectivity when inferring source interactions 

from synthetic EEG recordings. 

To make inferences about directed connectivity among brain 

sources one can either apply source reconstruction 

techniques to estimate source activity or use intracranial 

EEG (iEEG) data from electrodes implanted in human 

subjects (e.g., patients with brain tumours and epilepsy). 

Invasive iEEG recordings are difficult to obtain but they have 

been of great help, not only as a part of pre-surgical 

evaluation for patients, but also in the study of responses 

induced by cognitive tasks. These responses would be almost 

impossible to study with high precision on the scalp level. 

Finally, invasive (but rare) electrophysiological recordings 

can be used to validate the reconstruction and modelling of 

(readily available) sensor level data. This is one of the aims of 

our paper. 

There are two prevalent approaches to measuring directed 

connectivity in the spectral domain. These are exemplified 

by (data-based) DTF (Kamiński and Blinowska 1991) and 

(model-based) biologically informed DCM (Friston et al. 

2003). The first approach generalizes the concept of Granger 

causality to the spectral domain. It has been applied to iEEG 

recorded from patients with epilepsy: i) around the seizure 

onset, to identify the putative epileptogenic zone (van 

Mierlo et al. 2011; Papadopoulou et al. 2012) or ii) during 
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the performance of cognitive tasks, to investigate distributed 

neuronal processing (Brázdil et al. 2009; Flinker et al. 2015). 

DTF has also been used to infer directed functional 

connectivity between reconstructed sources (RS) in humans 

(Dai et al. 2012) and from intracranial recordings of monkeys 

(Liang et al. 2000). Similar approaches have addressed 

connectivity at the source level using Independent 

Component Analysis (Haufe et al. 2010), where DTFs have 

also been computed (Gómez-Herrero et al. 2008; Cantero et 

al. 2009). 

In contrast to these data-based measures, DCM uses 

neurobiologically plausible models that are fitted to 

empirical observations, which are then subjected to Bayesian 

model comparison or selection (BMS). BMS allows one to 

evaluate competing hypotheses (or architectures) in terms 

of their Bayesian model evidence or marginal likelihood. In 

brief, DCM treats the brain as a nonlinear dynamical system 

that receives inputs and generates outputs. In this setting, an 

experiment is regarded as a perturbation (induced by the 

inputs) of coupled electromagnetic sources, which produces 

source-specific responses (Kiebel et al. 2009). The basic idea 

behind the method is to model the influence of each source 

on others – and identify the mechanisms that underlie 

distributed network responses. Dynamic causal modelling 

has been applied to both functional magnetic resonance 

imaging (fMRI) and magnetoencephalography (MEG)/EEG 

data.  

DCM for MEG/EEG is based on a spatiotemporal generative 

model of electromagnetic brain activity, where the temporal 

dynamics are described by neural mass models of equivalent 

current dipole (ECD) sources, and their spatial expression at 

the sensor level is modelled by parameterized lead-field 

functions. Generally a DCM comprises a model of interacting 
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cortical sources, where each source corresponds to a 

canonical circuit of neural populations, and its 

electromagnetic output is generated by the modeled 

average depolarization of pyramidal cell populations. These 

electromagnetic outputs are then passed through an 

electromagnetic model of the head, accounting for volume 

conduction effects, to finally generate predictions at the 

M/EEG sensor level (Fastenrath et al. 2009). This process is 

called the forward problem, as opposite to the inverse 

problem which infers the activity in the brain starting from 

scalp recordings. Equipping neuronal models with a lead field 

effectively subsumes the source reconstruction problem into 

model inversion or fitting. In other words, DCM can estimate 

directed effective connectivity among sources using sensor 

data directly. DCM has been extensively applied to sensor 

space data to infer directed effective connectivity in healthy 

and diseased subjects (e.g., Garrido et al. 2008; Garrido et al. 

2009; Herz et al. 2012; Herz et al. 2013; Herz et al. 2014). It 

has also been applied to LFP recordings in rodents (Moran et 

al. 2009; Moran et al. 2011; Moran et al. 2015) and 

intracranial electroencephalographic (iEEG) in humans 

(Papadopoulou et al. 2015). In some applications, DCM is 

applied to source reconstructed data in source space, as 

opposed to modelling responses in sensor space. This allows 

one to make inferences about connectivity among a 

predefined set of sources, without having to consider all the 

sources generating sensor data (e.g. Boly et al. 2012). This is 

the approach we adopt in the current paper, as we wanted 

to focus on a subset of sources for which we had invasive or 

direct recordings. 

In this work we analyzed ECoG and source reconstructed 

data from one monkey during wakefulness and propofol 

anaesthesia. Our aims were twofold; first, we wanted to see 

whether directed connectivity in the frequency domain 
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between cortical sources reconstructed from scalp EEG is 

qualitatively similar to estimates based on ECoG recordings, 

using both DTF and DCM. Our second focus was on how the 

information flow between two pre-specified sources (frontal 

and parietal) was modulated in wakefulness and sedation.  

It is worth mentioning that our aim is to compare the 

connectivity results obtained by reconstructed sources on 

one hand and the corresponding intracranial recordings on 

the other; a comparison of data-driven (DTF) and biophysical 

(DCM) models for directed dynamical connectivity is not the 

scope of the present work. 

Methods 

Data 

These data are part of a dataset collected at a workshop 

titled “Controversies in EEG source imaging”, held in August 

2014 at the University of Electronic Science and Technology 

in Chengdu, China, with the aim of discussing the major 

issues at stake when brain activity is recorded or modelled as 

electrical potentials. All the simulations and data are 

available from the following website 

http://neuroinformation.incf.org/ and will be described in 

detail in a technical report. Specifically for this study we used 

publicly available data (http://neurotycho.org/) that were 

originally analyzed and published in Yanagawa et al. (2013). 

ECoG and EEG signals were simultaneously recorded from 

the same monkey (Macaca Mulatta). The monkey was 

implanted with a 128 channel ECoG array that covered the 

lateral cortical surface of the left hemisphere with 5 

millimeter spacing. EEG signals were recorded from 19 

channels. The EEG electrodes locations conformed to the 10-

20 system without Cz (to avoid interference with an ECoG 
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connector). ECoG and EEG data were sampled at 1000Hz. 

The monkey was seated in a primate chair with eyes closed 

and both arms constrained – and injected with an 

anaesthetic drug (propofol) during the recording to induce 

loss of consciousness. 

In the following we report the steps for the leadfield 

reconstruction. Using BrainSuite2, a T1 MRI was corrected 

for intensity bias and segmented into tissues (i.e. grey and 

white matter) and cerebrospinal fluid. The white/grey 

matter interface was chosen as the source space model for 

EEG/ECoG, i.e., each node of the mesh was a potential 

source. The head was then divided into brain (enclosed by 

the pial surface), brain plus surrounding cerebrospinal fluid, 

skull and skin. This segmentation was checked and adjusted 

manually by an expert. The volume conductor model was 

based on the above segmentation, assuming constant 

electrical conductivities within each compartment. The skull-

to-other conductivity ratio was set to 1/25. 1mm-thick 

silicone strips (housing the ECoG electrodes) were also 

included in the model because silicone has very low 

conductivity and can influence EEG signals. An X-ray 2D 

image was spatially registered to the pial surface. The 

transformed electrode positions were then projected onto 

the 3D pial surface. The silicone stripes were modelled 

according to Figure 1 in Nagasaka et al. (2011). These were 

modelled as a grid of 1-mm thick silicone rings of 3.5 mm 

radius, each surrounding an electrode of 2.0 mm radius. The 

conductivity of the silicone was set to a negligible value 

relative to the other compartments. The EEG electrodes 

were manually located on the monkey’s scalp using IMAGIC 

(www.neuronicsa.com) and projected onto their 

corresponding mesh faces. 
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Figure 1. Layout of the ECoG contact locations. The frontal (F) and 
parietal (P) channels used in this study are indicated by white circles. 

Tetrahedral meshes were created from the surfaces of the 

head model using Tetgen 2.0 (open source). Both EEG and 

ECoG lead fields were calculated using NeuroFEM, a program 

for computing lead fields using the Finite Element Method, 

which is part of the SimBio software package (SimBio 

Development Group. "SimBio: A generic environment for bio-

numericalsimulations",https://www.mrt.uni-jena.de/simbio). 

Source reconstruction in the time domain (for the EEG data) 

was performed by LORETA (free academic software for 

source localization of EEG data: 

http://www.uzh.ch/keyinst/loreta)(Pascual-Marqui et al. 

1994). The estimated current sources were constrained to be 

perpendicular to the cortical surface. No absolute value or 

norm was taken for the dipole or the resulting data, so no 

period doubling effects are to be expected. EEG sources 

were reconstructed in both hemispheres. For this study we 

only retained the RS nearest to the ECoG channels 

considered in the connectivity analyses. The correspondence 

between cortical and reconstructed activity was assessed by 
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means of canonical correlation analysis to provide a 

goodness of fit measure (results not shown here).  

The pre-processing steps for both ECoG and RS included 

average reference removal, notch filtering at 50Hz, artefact 

removal by visual inspection and local detrending with the L1 

norm technique (Kim et al. 2009). In the current validation 

study we restrict our analysis to a single pair of sources, a 

frontal source (F) and a parietal source (P), as indicated in 

Figure 1. This choice was motivated by a previous study 

using RS from scalp EEG recordings in humans that measured 

directed connectivity between cortical sources in these areas 

(Boly et al. 2012), and functional connectivity in anesthetized 

macaque monkeys (Moeller et al. 2009; Barttfeld et al. 

2015). 30 seconds of brain activity were used for each 

condition (wakefulness and anaesthesia). 

 

Figure 2. Power spectral densities of real data (full line) and data 
simulated with the coefficient of an autoregressive model of order 7 of 
the real data (dashed line) for ECoG (blue) and reconstructed sources 
(red). Left column: frontal source (F). Right column: parietal source (P). 
Top panels: wakefulness (W). Bottom panels: anaesthesia (A). 
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The spectra of the two channels in the two conditions are 

reported in Figure 2, together with the spectra of the data 

modelled with an autoregressive model of the composite 

system of the two sources, of order 7, as the one used for 

DTF. 

Asshown in http://wiki.neurotycho.org/EEG-ECoG_recording 

EEG signals don’t include high frequency (> 60Hz) 

components of the ECoG signal.  

Directed Transfer Function 

The DTF is a multivariate directed functional connectivity 

measure, usually based on an autoregressive model (AR) in 

the frequency domain (Kamiński and Blinowska 1991). The 

AR model is of the form  

0

ˆ
p

j t j t

j

A x e



       (1) 

where 
1, 2, ,( , ,...., )t t t k tx x x x  is a vector of k -channel 

multivariate processes, 
1, 2, ,( , ,....., )t t t k te e e e  is a vector of 

multivariate uncorrelated white innovations or noise 

processes and 
1 2
ˆ ˆ ˆ, ,.... pA A A  are the k k matrices of model 

coefficients. Multiplying both sides of (1) by 
T

t sx   and taking 

the expectation returns the coefficients ˆiA , as follows  

1
ˆ ˆˆ ˆ ˆ( ) (1 ) ... ( ) 0pR s A R s A R p s         (2) 

where ˆ( ) [ , ]T

t t sR s E x x  is the covariance matrix for time 

lag s . To characterize Granger causal coupling between 

signals in the spectral domain, the Fourier transformation of 
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equation (1) is calculated, where the transform functions are 

of the form ˆ ˆ ˆ( ) ( ) ( )X z H z E z  where 

 2 1

0

ˆˆ ( ) ( )
p

f t

j

j

H z A e   



  . 

The DTF then is derived from the transfer matrix and can be 

expressed as 

 
2
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Usually, the DTF is normalized with respect to the incoming 

to the incoming information flow so that it takes the form  
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Consequently, the element ( )ijH f  of the matrix describes 

the connection between the j-th input and the i-th output at 

each frequency. The values of the normalized DTF are 

located in the range [0, 1] where a high value indicates a 

greater information transfer in the direction j → i and a low 

value indicates little or no transfer. For the present study we 

used 7 as the autoregressive model order, as determined by 

the Bayesian Information Criterion. 

In a recent Opinion paper, Kaminski and Blinowska (2014), 

the inventors of DTF, postulated that this measure is not 

sensitive to volume conduction, since it is insensitive to 

phase shifts. However, while it is true that a phase shift in 

sensor data indicates information transfer, no inference can 

be made about where the implicit sources are located, 

except in special cases in which the experimental protocol or 
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the anatomy ensure that the activity of a single source is 

expressed at a single sensor (Plomp et al. 2014). 

As mentioned above, DTF is applied to two sources, a frontal 

and a posterior one, for each level of consciousness, using 15 

non-overlapping segments of 2 seconds.  

Dynamic Causal Modelling 

For this study we used DCM for cross-spectral density (CSD), 

which is a generalization of DCM for steady state responses. 

All our analyses used the standard procedures described in 

(Friston et al. 2012). CSD is the Fourier transform of the 

cross-correlation function and can be thought of as reporting 

the correlations at each frequency. CSD therefore describes 

the similarity between two signals, that is, how much power 

is shared for each frequency. 

The neural mass model used here was the LFP variant. This 

particular neural mass model has been used previously in 

modelling intracortical local field potentials from rats, to 

assess changes in directed effective connectivity under 

pharmacological manipulations (Moran et al. 2009; Moran et 

al. 2015). It has also been used as a generative model for 

non-invasive EEG studies, in source-reconstructed data from 

frontal and parietal cortices during normal wakefulness, 

propofol-induced mild sedation and loss of consciousness in 

humans (Boly et al. 2012).  

One can regard each neural mass as a cortical source, where 

each source comprises three subpopulations that contribute 

to the ongoing dynamics. These subpopulations include 

spiny stellate cells in the granular layer and pyramidal cells 

and inhibitory interneurons in supragranular layers. 
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Each of the subpopulations is modelled with pairs of first 

order differential equations of the following form : 

1

2

1 1( ( ) ( )) 2

x x

x H E x C u x x



  



   
   (5) 

The column vectors x  and 1x , correspond to the mean 

voltages and currents where ( )E x  and ( )C u correspond to 

endogenous and exogenous inputs respectively  that the 

presynaptic input to each subpopulation comprises (see 

Moran et al., 2009). 

 The nodes (sources) of DCM model sources in the brain are 

connected by (extrinsic) forward and backward connections 

according to anatomical connectivity rules established in 

(Felleman and Van Essen 1991). Feedforward connections 

target the granular layer, while feedback connections target 

the superficial and deep layers (Bastos et al. 2012). More 

details about the different models that can be used within 

the DCM framework can be found in (Moran et al. 2013). 

 

Figure 3. The two architectures for connections between the sources of 
interest tested with DCM. 
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Here, we first use DCM to test hypotheses about the 

connectivity architecture between the two sources of 

interest in frontal and parietal regions. We tested two 

physiologically plausible models. Our first model connects 

the parietal to the frontal source by forward connections 

and frontal to parietal with backward connections, while the 

second model constitutes the reverse architecture (Figure 3).  

The designation of fronto-parietal and parieto-frontal 

connections as backward and forward is based on the 

functional asymmetries in the anatomy and physiology of 

projections – extrapolating from the visual system. A brief 

review of this evidence, from the point of view of the 

extended motor system can be found in (Shipp et al. 2013). 

 

Figure 4. The sixteen possible models tested by DCM to explain changes 
in connectivity from wakefulness to anaesthesia. 
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We inverted the two models using both sets of empirical 

data and then performed (fixed effects) Bayesian model 

selection (BMS) to identify the most likely model. We then 

modelled the condition-specific effects under the best 

model, corresponding to wakefulness and  anaesthesia. 

These effects were modelled in terms of changes in intrinsic 

and extrinsic connections relative to the first condition 

(wakefulness) (Figure 4). 

Results 
In this study we evaluated directed connectivity in the 

frequency domain between two sources located in frontal 

and posterior brain regions, and determined how the 

information flow between the two sources is modulated by 

anaesthesia. This evaluation used both ECoG and 

reconstructed source activity, enabling us to assess the 

validity of connectivity estimates based upon non-invasive 

EEG signals. 

 

Figure 5. DTF plotted against frequency in the two directions in 
Wakefulness (W) and Anaesthesia (A) for ECoG and RS. Shaded areas 
indicate standard errors. 
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DTF quantifies information flow across brain areas for each 

frequency bin. The curves for each condition and modality 

are reported in (Figure 5). We have assessed the significance 

of the modulations corresponding to the spectral interval [3 

40] Hz with a nonparametric Wilcoxon Rank Sum test. 

Significant decrease during loss of consciousness is reported 

in the connectivity from the parietal to the frontal source,  

for both the ECoG and reconstructed EEG source activity 

(P<0.02, FDR corrected). The other modulations, tested 

across consciousness state and across imaging modalities, 

were not significant. 

DCM and BMS of the directed effective connectivity between 

the same sources identified model 1 as the most plausible, 

with a forward connection from the parietal to frontal region 

and backward connections from the frontal to the parietal 

region (Figure 3). The difference between the best and next 

best model was much greater than three reflecting strong 

evidence in favour of the first model over competing 

hypotheses. The same winning model was identified for 

ECoG and reconstructed EEG source activity. 

For the second part of our DCM analysis, we modelled 

condition-specific effects in terms of all the possible 

combinations of condition-specific changes in the forward 

connections, the backward connections, neither or both. 

BMS identified model 1 as the winning model (Figure 4). This 

model allows for changes all the connections. As before, the 

same winning model was identified for both ECoG and 

reconstructed EEG sources. The differences in log evidence 

among the four models were comparable for the invasive 

data and to the reconstructed EEG data. This suggests that 

there is roughly the same amount of information in both 

modalities when it comes to disambiguate the models or 

hypotheses. This is reflected also the posterior probabilities 
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(left panel of Figure 6) over models, which are also 

comparable.  

 

Figure 6. Log evidences and posterior probabilities (left) and changes in 
connectivity in the winning model (model 1, right) for ECoG sources (top) 
and reconstructed sources (bottom) across the two conditions: 
Wakefulness (W) and Anaesthesia (A), as estimated by DCM. 

Looking at the condition-specific effects on the extrinsic 

connectivity (Figure 6, right panel), the parameter estimates 

based upon the ECoG data concur with the changes in DTF; 

namely, a decrease is seen in both forward connectivity from 

the parietal to the frontal source, and in backward 
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connectivity from the frontal to the parietal source. At the 

same time a strong increase in self connections in 

anaesthesia is reported in both sources for ECoG; a slight 

decrease in the frontal source and a moderate increase in 

the parietal source for reconstructed activity. These changes 

are relative to the 100% connectivity strength in the 

wakefulness condition.  

 

Figure 7. Directed Transfer functions obtained from DCM under the 
winning model in the two conditions: Wakefulness (W) and Anaesthesia 
(A) for ECoG and RS. 

One interesting aspect of DCM is that we can estimate the 

DTF implicitly from the condition-specific effects on the 

parameters. In other words, given the model parameters, we 

can compute the associated directed transfer functions 

between the sources, as shown in Figure 7. This figure uses 

the same format as Figure 5. The fact that directed transfer 
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functions (and Granger causality) can be derived from the 

DCM results speaks to the fact that Granger causality and 

directed transfer functions are essentially data features 

(hence data-led measures), and not the model attributes 

responsible for directed information flow. It is pleasing to 

note that, qualitatively, the data-based DTFs and those 

based upon DCM parameter estimates show the same 

dependency on experimental condition. Higher DTF values at 

frequencies higher than the main peak are observed in from 

the frontal to the parietal source for electrocorticogram but 

not for the reconstructed sources. The forms of the DTFs are 

more constrained under DCM, because they have to be 

produced by a biologically plausible mechanism. 

Furthermore, the DCM transfer functions have been 

modulated by the spectral power of the innovations (which 

is also estimated). Note that the autoregressive evaluations 

of DTFs do not estimate the spectral density of the 

innovations, which are assumed to be white (see equation 

1). 

Discussion 
In a previous study that analyzed these data with directed 

functional connectivity, all possible pairs of ECoG sources 

(with a bipolar montage) were considered (Yanagawa et al. 

2013). Functional connectivity differed significantly between 

conscious and unconscious states in all combinations of 

cortical sources, with the most dramatic change occurring 

for the transfer functions that fell into a specific spectral 

domain across conditions. This motivated the authors to look 

for large-scale inter-region interactions over the entire 

cortex by grouping the bipolar channels in 8 cortical regions, 

after which spectral Granger causality was computed for 

each pairwise combination. The changes in connectivity 

patterns after this grouping confirmed that the spectral 
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changes due to modulations of consciousness affected large-

scale communications across the entire cortex. 

Here we focused on a pair of sources since in many 

experiments, in particular event-related ones, only a few 

sources are considered, and in order to apply DCM between 

two regions known to play a distinct joint role in wakefulness 

versus anaesthesia. 

In this study, we have shown that the directed connectivity 

in the frequency domain between cortical sources 

reconstructed from scalp EEG is qualitatively similar to, and 

statistically undistinguishable from, the connectivity inferred 

directly from cortical recordings. The modulations of DTFs 

across frequency are qualitatively the same (although in a 

few cases the peaks differ slightly in position or width). 

Concerning the effects of the anaesthesia, the same pattern 

emerged from electrocorticographic and reconstructed 

sources, with a decrease in the information flow from the 

parietal to the frontal source. This modulation is in general 

agreement with previous literature (Lee et al. 2009; Ku et al. 

2011; Boly et al. 2012). This comparison must stay 

qualitative since the studies mentioned above consider 

human subjects and scalp EEG. 

Dynamic causal modelling produced Bayesian model 

comparisons that were consistent between 

electrocorticograms and reconstructed sources. These 

models explained the decrease in coupling from parietal to 

frontal sources in terms of condition-specific changes in 

extrinsic (forward and backward) connectivity with the 

frontal source as well to changes in intrinsic connectivity at 

both sources. In these analyses, Bayesian model selection 

based on the invasive and non-invasive data was again 

consistent; however, quantitative connectivity changes 
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following inversion of the EEG and ECoG data showed 

opposite changes in extrinsic and intrinsic connectivity but 

similar directed transfer functions. We mention this 

discrepancy to illustrate that the quantitative estimates of 

effective connectivity can, in some instances, depend upon 

the nature of the data, especially when there is a conditional 

dependency among parameter estimates. In principle, one 

would base their inferences on all the data at hand and 

model both the ECoG and EEG data together. In this setting, 

the most precise or informative data would supervene in 

terms of model comparison and parameter estimates (the 

model comparison results in Figure 5 would suggest that the 

ECoG data were more precise). In more realistic DCM 

analyses, one generally includes several sources to 

disambiguate between explanations based upon reciprocal 

changes in intrinsic and extrinsic connectivity. One of the 

characteristics of DCM is that it can also model hidden 

sources; for example the thalamic sources in Boly et al. 

(2012). The inclusion of hidden sources is sometimes 

required to adjudicate among different hypothetical 

architectures, using Bayesian model selection in the usual 

way. Crucially, this is not an option with data-led measures 

of directed functional connectivity. Further discussion of the 

relationship between data-driven functional connectivity in 

the spectral domain and DCM based measures of effective 

connectivity can be found in Friston et al. (2014).  

The adequacy or quality of any model is generally 

established through Bayesian model comparison. Good 

models have a high evidence and entail a level of complexity 

that is suitable for the data at hand. The DCM of source 

activity has been refined over many years and provides the 

appropriate level of detail – in terms of the number of 

sources and parameters. These parameters include not just 

aspects of the underlying neuronal (connectivity and 
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synaptic) architecture but how neuronal activity is 

measured. For example, the contribution of different 

neuronal populations to different sorts of sensors is 

accommodated through free parameters, that scale the 

relative contributions (with a prior bias towards superficial 

populations). 

Being aware of the limitations of single-subject studies, we 

do not infer any pathophysiological explanations from our 

results. Also, a task protocol with more localized sources 

would definitely provide additional insight. Nonetheless this 

unprecedented recording setup provides a valid support for 

the exploratory analysis that we performed with the sole 

protocol available at the moment, which allowed us to 

explore modulations in steady-state activity. It is worth to 

recall that whenever activity has to be estimated or 

disambiguated with a fine spatial resolution, a large number 

of scalp electrodes is recommended. 

Our provisional results suggest that directed connectivity in 

the frequency domain between cortical sources 

reconstructed from scalp EEG is qualitatively similar to the 

connectivity inferred directly from cortical recordings, using 

both functional and effective connectivity measures. These 

findings advocate that inferences about directed 

connectivity based upon non-invasive electrophysiological 

data can have construct validity in relation to invasive 

constructs.  
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Chapter 6 
General Discussion 

 

In this thesis we have investigated the modulations of 

various dynamical networks as a tool to understand brain 

function. We achieved that by using various data driven 

(autoregressive) and biologically inspired (DCM) models and 

by investigating both healthy and diseased brain networks in 

humans or animals (rats, monkeys). 

In Chapter 2 we have analysed scalp and invasive iEEG data 

recorded from a patient with epilepsy. The fact that epileptic 

seizures are characterized by an increase in accumulated 

energy in specific frequency bands motivated us to use 

methods operating in the frequency domain able to reveal 

the direction of information flow (e.g. DTF, PDC) or not (e.g. 

coherence). We showed how by tracking the rank of the 

connectivity matrices, helps us to detect the transition to a 

more organized state and how such a spatiotemporal 

approach can be valuable for seizure detection and 

localisation. 

In Chapters 3 and 4 we zoomed into the brain network and 

we focused on investigating which are the slow modulations 

in synaptic gain that they adequately explain the transition 
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from one state of the a network to another (e.g. pre-ictal to 

ictal). We have achieved this by using a biologically informed 

method, the dynamic causal modelling (DCM) and as 

convenient benchmark for our analysis we used again data 

recorded either from patients with epilepsy or from animals 

with induced seizures (rats). More specifically, in Chapter 3 

we showed that changes in intrinsic (within-source) 

connectivity were sufficient to explain seizure onset and that 

these slow changes mediated a transient loss of excitatory-

inhibitory balance. In Chapter 4 we adopted a similar policy 

but now applied on a rat model. Our main focus was again to 

investigate the pathophysiology of epilepsy shortly after 

lesion, in terms of physiologically plausible variables such as 

changes in synaptic efficacy. The methodological advance 

was involving a Bayesian update scheme in the inversions 

DCMs which allowed for updating schemes which were 

computationally less expensive in comparison to the 

standard inversion scheme used in Chapter 3. This work 

reflects only a small part on the questions one could ask 

when using DCM in this framework. One may be interested 

for example, what are the differences between the lesioned 

and perilesional hippocampi, are there systematic changes in 

pathophysiology over the weeks following lesion and is the 

pathophysiology restricted to the lesion site or is it more 

distributed? We aim to answer some of these questions in 

subsequent studies. 

Furthermore, in both chapters (3 and 4) we stretched the 

importance of identifying plausible mechanisms at the 

synaptic level underlying brain state changes over a 

timescale of seconds (slow changes in synaptic efficacy). 

Extending this idea we think that it is important not only to 

pinpoint the mechanisms responsible for the brain state 

change, but also to know the exact number of latent 

variables which are necessary to explain seizure activity in a 
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physiologically plausible way. This allows us to build 

hierarchical dynamic causal models that are explicitly 

parameterised in terms of a small number of latent 

variables. In this direction our ongoing work involves the use 

of Bayesian model comparison (BMS) to compare models in 

which one or more mixtures of parameters are sufficient to 

explain the data. 

This framework can be used beyond the epilepsy research, in 

studies of synaptic plasticity, in studies of short or long-term 

potentiation or associative learning etc. 

In Chapter 5 our focus changed from what we discussed in 

Chapters 3 and 4. In this chapter we wanted to present a 

detailed comparison of two different methods to estimate 

effective connectivity from invasive and non-invasive 

electrophysiological data. The multimodal recordings used in 

this chapter were obtained from a macaque monkey under 

three different levels of consciousness – wakefulness, 

anesthesia and recovery. Our work addressed the 

assumption that effective connectivity between cortical 

areas as obtained from scalp EEG recordings corresponds to 

the 'true' connectivity between them. We test this by 

comparing the results obtained by scalp EEG data to the 

'ground truth' as depicted from the reconstructed sources. 

We are confident that our results will help to further anchor 

connectivity measures in physiology.  

Overall, we hope that our findings will not only provide 

relevant implications on how one can investigate the 

modulations of dynamical networks as a tool to understand 

brain function but that they will also lay the ground for 

future research.  





 
 
 
 

Chapter 7 
Nederlandstalige samenvatting 

 

In de laatste tien jaar zijn concepten en methodieken die 

oorspronkelijk ontwikkeld werden binnen de 

informatietechnologie en wiskundige fysica in sterke mate 

toepasbaar geworden voor het modelleren en interpreteren 

van data afkomstig van neuro-imaging die gekenmerkt 

worden door complexe dynamieken en een hoge mate van 

connectiviteit. Wanneer men de relatie tussen de 

hersenanatomie en -functie bestudeert vanuit een 

netwerkperspectief, kan dit leiden tot fundamentele 

inzichten over de manier waarop eenvoudige elementen 

georganiseerd worden in dynamische patronen. Recente 

studies met betrekking tot functionele en structurele 

hersenconnectiviteit tonen aan dat specifieke 

eigenschappen van complexe hersennetwerken 

informatiesegregatie en –integratie tijdens intensieve 

cognitieve processen ondersteunen. Wijzigingen in deze 

netwerkeigenschappen die optreden tijdens de ontwikkeling, 

het verouderingsproces of ten gevolge van neurologische 

ziekten, hebben belangrijke klinische gevolgen. Daarnaast 

maakt het onderzoek van de paden en richting van 

informatiedoorstroming het mogelijk om een hiërarchische 
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organisatie af te leiden, zoals een top-down controle en een 

bottom-up aanpassing en dit op verschillende schalen in de 

hersenen. De laatste tien jaar zien we een systematische 

groei in het aantal studies rond complexe netwerken. We 

stellen vast dat de studie van complexe systemen vandaag 

een gevestigd paradigma geworden is. Waar vroeger de 

focus lag op het ontrafelen van de ingewikkelde topologische 

eigenschappen van complexe netwerken, concentreert men 

zich vandaag op de studie van de dynamische processen op 

temporele en ruimtelijke schalen en op de co-evolutie van 

netwerkstructuren en dynamische processen. Eén van de 

grote uitdagingen van vandaag bestaat erin de niet-triviale 

topologische organisatie van de hersenen op het 

structureel/anatomische en het functionele niveau te 

begrijpen. Naast de structurele connectiviteit, die 

kenmerkend is voor de witte stof-banen, gebruikt men 

verschillende andere methoden om hersenconnectiviteit op 

te sporen. Functionele connectiviteit infereert men meestal 

op basis van correlaties tussen neurale activiteit en 

definieert men als statistische afhankelijkheden tussen 

externe neurofysiologische gebeurtenissen. Een tweede 

familie van onderzoeksmethodieken focust op het 

blootleggen van de gerichte informatietransfer tussen de 

verschillende hersengebieden (effectieve connectiviteit). De 

laatste jaren zijn verschillende benaderingen voorgesteld, 

waaronder structurele vergelijkingsmodellen, dynamisch 

causale modellen, de Granger Causality of entropie-transfer. 

Uiteraard verschillen de netwerken die bekomen worden op 

basis van deze benaderingen intrinsiek van elkaar, zowel 

onderling als ten aanzien van de structurele netwerken. 

Daarnaast is er sprake van een sterke variabiliteit onder de 

proefpersonen en is de reproduceerbaarheid van de 

netwerkstructuur niet uitgebreid onderzocht. Om de 

informatie die we uit de beschikbare data kunnen halen met 
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betrekking tot de hersenfuncties te maximaliseren, is het 

belangrijk om zowel de verschillen tussen deze netwerken 

als de gemeenschappelijke kenmerken in detail te 

bestuderen. Dit alles in aanmerking genomen, is de 

belangrijkste doelstelling van deze thesis te onderzoeken 

hoe de aanpassing van dynamische netwerken een 

instrument kan zijn om tot een beter begrip te komen van de 

hersenfuncties. Binnen deze opzet is epilepsie, een 

chronische neurologische stoornis waarbij men 

geconfronteerd wordt met terugkerende aanvallen en 

waaraan 1% van de wereldbevolking lijdt, een geschikte 

benchmark en dit om twee redenen: het netwerkperspectief 

dat we hanteren om de hersenen te bestuderen en de 

wijzigingen binnen de dynamiek van dit netwerk. Tijdens een 

aanval zien we een abnormaal hoge neuronale activiteit in 

de hersenen. Dit abnormaal verschijnsel geeft aanleiding tot 

dynamieken die een invloed hebben op verschillende 

temporele en ruimtelijke schalen. Om de mechanismes te 

begrijpen die aan de basis liggen van deze dynamieken 

dienen we enerzijds de relaties tussen de elementen van de 

aanvallen te identificeren en dit binnen en over de 

verschillende schalen heen en anderzijds hun dynamisch 

repertoire te analyseren. 

De thesis is als volgt opgebouwd: 

In Hoofdstuk 1 maakt de lezer kennis met de terminologie, 

de metingen en methoden die we doorheen de verschillende 

hoofdstukken gebruiken. 

We beginnen met een korte beschrijving van de 

verschillende componenten van het menselijk brein, gaande 

van de kleinste deelcomponenten, met name de neuronen 

en hun fysiologie tot de verschillende grote corticale regio's. 

Vervolgens geven we een korte samenvatting van de meest 
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gebruikte technieken voor het bestuderen van 

hersenactiviteit en leggen daarbij de nadruk op 

elektrofysiologie en elektrofysiologische data (EEG). Deze 

thesis focust uitsluitend op deze twee technieken. We geven 

eveneens een beknopte beschrijving van de netwerken en 

hun eigenschappen en beschrijven hoe deze worden 

toegepast in de studie van het menselijk brein. Tot slot 

geven we een korte inleiding over de methoden die we in 

deze thesis hanteren om de dynamische connectiviteit in de 

hersenen op te sporen en te modelleren. Deze methoden 

brengen we onder in 2 groepen; de data-gestuurde of 

model-vrije methoden (voorbeeld: de 'directed transfer 

function' - DTF) en de model-gestuurde methoden 

(voorbeeld: dynamisch causale modellen – DCM). 

Hoofdstuk 2 is opgedeeld in twee stukken. In het eerste deel 

vindt de lezer een beknopt overzicht van de belangrijkste 

methoden met betrekking tot functionele connectiviteit die 

in de literatuur gebruikt worden om de 

informatiedoorstroming in een aangetast hersennetwerk te 

bestuderen (zoals in het geval bij epilepsie).  

Het tweede deel bevat onze toepassing  van onze theorie op 

zowel invasieve als schedelhuid EEG-registraties van een 

patiënt met epilepsie. We beperken ons tot 

frequentiedomeinmetingen, zoals coherentie, directed 

transfer function, partial directed coherence. Onze 

belangrijkste doelstelling is deze instrumenten te gebruiken 

om de dynamische verbindingen tussen de hersenregio's te 

verkennen en een waardevolle vergelijking te maken tussen 

de verschillende gehanteerde instrumenten. Uiteindelijk 

willen we onderzoeken of deze instrumenten geschikt zijn 

om veranderingen op te sporen in de dynamieken en de 

informatiedoorstroming tijdens de overgang van de pre-

ictale fase naar het begin van een epileptische aanval.  
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In Hoofdstuk 3 willen we op synaptisch niveau de 

aanpassingen in een aangetast hersennetwerk onderzoeken 

en dit voor fenomenen die variëren op een schaal in 

seconden. Voor dit onderzoek gebruiken we een op biologie 

gebaseerde methode, met name de methode van het 

dynamisch-causaal modelleren (DCM). De basisprincipes van 

deze methode zijn uitgelegd in het inleidende Hoofdstuk 1. 

Onze belangrijkste doelstelling is het identificeren van 

synaptische sleutelparameters of verbindingen die 

aanleiding geven tot geobserveerde signalen. Hiervoor 

gebruiken we invasieve metingen van drie aanvallen van één 

epilepsiepatiënt. We focussen op een netwerk van twee 

oorzaken die twee regio's beslaan die van belang zijn. 

In Hoofdstuk 4 breiden we de studie die we in Hoofdstuk 3 

voorstellen uit door de gebruikte methodieken verder te 

ontwikkelen. Door gebruik te maken van dynamisch causale 

modellen (DCM) kunnen we nu het Bayesiaans update-

model toepassen. Dit laat ons toe een goed begrip te krijgen 

van hoe een neuronale variabele fluctueert binnen 

verschillende tijdsschalen. Voor deze studie gebruiken we 

'local field potentials' (LFPs) die opgetekend zijn bij drie 

ratten waarbij epileptische aanvallen zijn uitgelokt. Het doel 

is om de pathofysiologie van het begin van een aanval - kort 

na de laesie - te beschrijven en dit in termen van fysiologisch 

plausibele variabelen, zoals wijzigingen in de synaptische 

doeltreffendheid en de snelheidsconstante. Door gebruik te 

maken van het Bayesiaans vergelijkingsmodel onderzoeken 

we of de parametrische wijzigingen beperkt blijven tot de 

intrinsieke connectiviteit tussen de neuronale populaties (en 

hun tijdsconstante), de spectrale vorm van de endogene 

(afferente) neuronale input, of een weerslag hebben op 

beide.  
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In Hoofdstuk 5 vergelijken we DTF-metingen en metingen 

van de effectieve connectiviteit (DCM-metingen) die 

gebaseerd zijn op (invasieve) elektrocortiografische (ECoG) 

activiteit met gereconstrueerde reacties op dezelfde locaties 

die gebaseerd zijn op gelijktijdige (niet-invasieve) 

schedelhuid-data (EEG). Deze multimodale data zijn het 

resultaat van testen die in drie verschillende 

omstandigheden uitgevoerd werden op een makaak, met 

name in rust, onder verdoving en tijdens het herstelproces. 

Onze doelstelling is tweeledig. In eerste instantie leggen we 

de connectiviteitsstructuur vast tussen twee oorzaken die 

van belang zijn – een frontale en pariëtale oorzaak – en 

onderzoeken hoe de combinatie van beiden wijzigt onder 

veranderende omstandigheden. In tweede instantie 

evalueren we de consistentie van de 

connectiviteitsresultaten en dit op basis van een analyse van 

bronnen afgeleid uit invasieve data (128 geïmplanteerde 

ECoG-bronnen) en van bronactiviteit zoals gereconstrueerd 

op basis van schedelhuid-registraties (19 EEG-sensoren).  

Tot slot vatten we in Hoofdstuk 6 de bevindingen uit de 

verschillende hoofdstukken samen en bespreken we de 

implicaties ervan voor toekomstig onderzoek.



 
 

193 
 

% Data Storage Fact Sheet  

 

% Name/identifier study Brain mapping of an epileptic brain using 

EEG functional and effective connectivity 

% Author: Margarita Papadopoulou, Marco Leite, Alfred Meurs, 

Evelien Carrette, Robrecht Raedt, Kristl Vonck, Paul Boon and 

Daniele Marinazzo  

% Date: 2012 

 

 

1. Contact details 

=========================================================== 

 

1a. Main researcher 

----------------------------------------------------------- 

- name: Margarita Papadopoulou 

- address: Department of Data Analysis, 1 Henri Dunantlaan. B 

9000 Gent 

- e-mail: margarita.papadopoulou@ugent.be 

 

1b. Responsible Staff Member (ZAP)  

----------------------------------------------------------- 

- name: Daniele Marinazzo 

- address: Department of Data Analysis, 1, Henri Dunantlaan. B 

9000 Gent 

- e-mail: daniele.marinazzo@ugent.be 

 

If a response is not received when using the above contact 

details, please send an email to data.pp@ugent.be or contact Data 

Management, Faculty of Psychology and Educational Sciences, Henri 

Dunantlaan 2, 9000 Ghent, Belgium. 

 

 

2. Information about the datasets to which this sheet applies  

=========================================================== 

* Reference of the publication in which the datasets are 

reported: 

 

* Which datasets in that publication does this sheet apply to?: 

 

 

 

3. Information about the files that have been stored 

=========================================================== 

 

 

3a. Raw data 

----------------------------------------------------------- 

 

* Have the raw data been stored by the main researcher? [X] YES / 

[ ] NO 

If NO, please justify: 

 

* On which platform are the raw data stored? 

  - [X] researcher PC 

  - [ ] research group file server 

  - [ ] other (specify): ... 

 

* Who has direct access to the raw data (i.e., without 

intervention of another person)? 

  - [X] main researcher 

  - [X] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [X] other (specify): Owners of the data: laboratory of 

clinical and experimental neurophysiology 

http://www.ugent.be/ge/inwgen/en/research/neurology/lcen.htm 



 

194 
 

    

 

3b. Other files 

----------------------------------------------------------- 

 

* Which other files have been stored? 

  - [X] file(s) describing the transition from raw data to 

reported results. Specify: ... 

  - [X] file(s) containing processed data. Data after cleaning, 

bipolar montage and divided in the relevant segments used for the 

analyses. 

  - [X] file(s) containing analyses. Specify: in-house software 

and public toolboxes 

  - [X] files(s) containing information about informed consent 

(at LCEN) 

  - [X] a file specifying legal and ethical provisions (at LCEN) 

  - [ ] file(s) that describe the content of the stored files and 

how this content should be interpreted. Specify: ...  

  - [ ] other files. Specify: ... 

 

     

* On which platform are these other files stored?  

  - [X] individual PC 

  - [ ] research group file server 

  - [X] other: PCs and archives of LCEN members (data owners)     

 

* Who has direct access to these other files (i.e., without 

intervention of another person)?  

  - [X] main researcher 

  - [X] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ...     

 

 

4. Reproduction  

=========================================================== 

* Have the results been reproduced independently?: [ ] YES / [X] 

NO 

 

* If yes, by whom (add if multiple): 

   - name:  

   - address:  

   - affiliation:  

   - e-mail:  

 

    

v0.2 
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% Data Storage Fact Sheet  
 
% Name/identifier study Mapping the epileptic brain with EEG dynamical connectivity: 
established methods and novel approaches 
% Author:Margarita Papadopoulou, Kristl Vonck, Paul Boon and Daniele Marinazzo 
% Date: 2012 
 
 
1. Contact details 
=========================================================== 
 
1a. Main researcher 
----------------------------------------------------------- 
- name: Margarita Papadopoulou 
- address: Department of Data Analysis, 1 Henri Dunantlaan. B 9000 Gent 
- e-mail: margarita.papadopoulou@ugent.be 
 
1b. Responsible Staff Member (ZAP)  
----------------------------------------------------------- 
- name: Daniele Marinazzo 
- address: Department of Data Analysis, 1, Henri Dunantlaan. B 9000 Gent 
- e-mail: daniele.marinazzo@ugent.be 
 
If a response is not received when using the above contact details, please send an email to 
data.pp@ugent.be or contact Data Management, Faculty of Psychology and Educational 
Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 
 
 
2. Information about the datasets to which this sheet applies  
=========================================================== 
* Reference of the publication in which the datasets are reported: 
 
* Which datasets in that publication does this sheet apply to?: 
 
 
 
3. Information about the files that have been stored 
=========================================================== 
 
 
3a. Raw data 
----------------------------------------------------------- 
 
* Have the raw data been stored by the main researcher? [X] YES / [ ] NO 
If NO, please justify: 
 
* On which platform are the raw data stored? 
  - [X] researcher PC 
  - [ ] research group file server 
  - [ ] other (specify): ... 
 
* Who has direct access to the raw data (i.e., without intervention of another person)? 
  - [X] main researcher 
  - [X] responsible ZAP 
  - [ ] all members of the research group 
  - [ ] all members of UGent 
  - [X] other (specify): Owners of the data: laboratory of clinical and experimental 
neurophysiology http://www.ugent.be/ge/inwgen/en/research/neurology/lcen.htm 
    
 
3b. Other files 
----------------------------------------------------------- 
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* Which other files have been stored? 
  - [X] file(s) describing the transition from raw data to reported results. Specify: ... 
  - [X] file(s) containing processed data. Data after cleaning, bipolar montage and divided in the 
relevant segments used for the analyses. 
  - [X] file(s) containing analyses. Specify: in-house software and public toolboxes 
  - [X] files(s) containing information about informed consent (at LCEN) 
  - [X] a file specifying legal and ethical provisions (at LCEN) 
  - [ ] file(s) that describe the content of the stored files and how this content should be 
interpreted. Specify: ...  
  - [ ] other files. Specify: ... 
 
     
* On which platform are these other files stored?  
  - [X] individual PC 
  - [ ] research group file server 
  - [X] other: PCs and archives of LCEN members (data owners)     
 
* Who has direct access to these other files (i.e., without intervention of another person)?  
  - [X] main researcher 
  - [X] responsible ZAP 
  - [ ] all members of the research group 
  - [ ] all members of UGent 
  - [ ] other (specify): ...     
 
 
4. Reproduction  
=========================================================== 
* Have the results been reproduced independently?: [ ] YES / [X] NO 
 
* If yes, by whom (add if multiple): 
   - name:  
   - address:  
   - affiliation:  
   - e-mail:  
 
    
v0.2 
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% Data Storage Fact Sheet  
 
% Name/identifier study Tracking slow modulations in synaptic gain using Dynamic Causal 
Modelling: Validation in epilepsy 
% Author: Margarita Papadopoulou, Marco Leite, Pieter van Mierlo, Kristl Vonck, Louis Lemieux, 
Karl Friston and Daniele Marinazzo  
% Date: 2015 
 
 
1. Contact details 
=========================================================== 
 
1a. Main researcher 
----------------------------------------------------------- 
- name: Margarita Papadopoulou 
- address: Department of Data Analysis, 1 Henri Dunantlaan. B 9000 Gent 
- e-mail: margarita.papadopoulou@ugent.be 
 
1b. Responsible Staff Member (ZAP)  
----------------------------------------------------------- 
- name: Daniele Marinazzo 
- address: Department of Data Analysis, 1, Henri Dunantlaan. B 9000 Gent 
- e-mail: daniele.marinazzo@ugent.be 
 
If a response is not received when using the above contact details, please send an email to 
data.pp@ugent.be or contact Data Management, Faculty of Psychology and Educational 
Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 
 
 
2. Information about the datasets to which this sheet applies  
=========================================================== 
* Reference of the publication in which the datasets are reported: 
 
* Which datasets in that publication does this sheet apply to?: 
 
 
 
3. Information about the files that have been stored 
=========================================================== 
 
 
3a. Raw data 
----------------------------------------------------------- 
 
* Have the raw data been stored by the main researcher? [X] YES / [ ] NO 
If NO, please justify: 
 
* On which platform are the raw data stored? 
  - [X] researcher PC 
  - [ ] research group file server 
  - [ ] other (specify): ... 
 
* Who has direct access to the raw data (i.e., without intervention of another person)? 
  - [X] main researcher 
  - [X] responsible ZAP 
  - [ ] all members of the research group 
  - [ ] all members of UGent 
  - [X] other (specify): Owners of the data: laboratory of clinical and experimental 
neurophysiology http://www.ugent.be/ge/inwgen/en/research/neurology/lcen.htm 
    
 
3b. Other files 
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----------------------------------------------------------- 
 
* Which other files have been stored? 
  - [X] file(s) describing the transition from raw data to reported results. Specify: ... 
  - [X] file(s) containing processed data. Data after cleaning, bipolar montage and divided in the 
relevant segments used for the analyses. 
  - [X] file(s) containing analyses. Specify: in-house software and public toolboxes 
  - [X] files(s) containing information about informed consent (at LCEN) 
  - [X] a file specifying legal and ethical provisions (at LCEN) 
  - [ ] file(s) that describe the content of the stored files and how this content should be 
interpreted. Specify: ...  
  - [ ] other files. Specify: ... 
 
     
* On which platform are these other files stored?  
  - [X] individual PC 
  - [ ] research group file server 
  - [X] other: PCs and archives of LCEN members (data owners)     
 
* Who has direct access to these other files (i.e., without intervention of another person)?  
  - [X] main researcher 
  - [X] responsible ZAP 
  - [ ] all members of the research group 
  - [ ] all members of UGent 
  - [ ] other (specify): ...     
 
 
4. Reproduction  
=========================================================== 
* Have the results been reproduced independently?: [ ] YES / [X] NO 
 
* If yes, by whom (add if multiple): 
   - name:  
   - address:  
   - affiliation:  
   - e-mail:  
 
    
v0.2 


