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Mining Biomarkers Of Epilepsy From Large-Scale Intracranial
Electroencephalography

Abstract
Epilepsy is a chronic neurological disorder characterized by seizures. Affecting over 50 million people
worldwide, the quality of life of a patient with uncontrolled epilepsy is degraded by medical, social, cognitive,
and psychological dysfunction. Fortunately, two-thirds of these patients can achieve adequate seizure control
through medications. Unfortunately, one-third cannot.

Improving treatment for this patient population depends upon improving our understanding of the
underlying epileptic network. Clinical therapies modulate this network to some degree of success, including
surgery to remove the seizure onset zone or neuromodulation to alter the brain's dynamics. High resolution
intracranial EEG (iEEG) is often employed to study the dynamics of cortical networks, from interictal
patterns to more complex quantitative features. These interictal patterns include epileptiform biomarkers
whose detection and mapping, along with seizures and neuroimaging, form the mainstay of data for clinical
decision making around drug therapy, surgery, and devices. They are also increasingly important to assess the
effects of epileptic physiology on brain functions like behavior and cognition, which are not well
characterized.

In this work, we investigate the significance and trends of epileptiform biomarkers in animal and human
models of epilepsy. We develop reliable methods to quantify interictal patterns, applying state of the art
techniques from machine learning, signal processing, and EEG analysis. We then validate these tools in three
major applications: 1. We study the effect of interictal spikes on human cognition, 2. We assess trends of
interictal epileptiform bursts and their relationship to seizures in prolonged recordings from canines and rats,
and 3. We assess the stability of long-term iEEG spanning several years. These findings have two main impacts:
(1) they inform the interpretation of interictal iEEG patterns and elucidate the timescale of post-implantation
changes. These findings have important implications for research and clinical care, particularly implantable
devices and evaluating patients for epilepsy surgery. (2) They provide an analytical framework to enable
others to mine large-scale iEEG datasets. In this way we hope to make a lasting contribution to accelerate
collaborative research not only in epilepsy, but also in the study of animal and human electrophysiology in
acute and chronic conditions.
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ABSTRACT

MINING BIOMARKERS OF EPILEPSY FROM LARGE-SCALE INTRACRANIAL
ELECTROENCEPHALOGRAPHY

Hoameng Ung

Brian Litt, M.D.

Epilepsy is a chronic neurological disorder characterized by seizures. Affecting over 65
million people worldwide, the quality of life of a patient with uncontrolled epilepsy is fur-
ther degraded by medical, social, cognitive, and psychological dysfunction. Fortunately,
two-thirds of these patients can achieve adequate seizure control through medications. Un-
fortunately, one-third cannot.

Improving treatment for this patient population depends upon improving our understanding
of the underlying epileptic network. Clinical therapies modulate this network to some degree
of success, including surgery to remove the seizure onset zone or neuromodulation to alter
the brain’s dynamics. High resolution intracranial EEG (iEEG) is often employed to study
the dynamics of cortical networks, from interictal patterns to more complex quantitative
features. These interictal patterns include epileptiform biomarkers whose detection and
mapping, along with seizures and neuroimaging, form the mainstay of data for clinical
decision making around drug therapy, surgery, and devices. They are also increasingly
important to assess the effects of epileptic physiology on brain functions like behavior and
cognition, which are not well characterized.

In this work, we investigate the significance and trends of epileptiform biomarkers in an-
imal and human models of epilepsy. We develop reliable methods to quantify interictal
patterns, applying state of the art techniques from machine learning, signal processing, and
EEG analysis. We then validate these tools in three major applications: 1. We study the
effect of interictal spikes on human cognition, 2. We assess trends of interictal epileptiform
bursts and their relationship to seizures in recordings from canines and rats, and 3. We
assess the stability of long-term iEEG spanning several years. These findings have two
main impacts: (1) they inform the interpretation of interictal iEEG patterns and elucidate
the timescale of post-implantation changes. These findings have important implications
for research and clinical care, particularly implantable devices and evaluating patients for
epilepsy surgery. (2) They provide an analytical framework to enable others to mine large-
scale iEEG datasets. In this way we hope to make a lasting contribution to accelerate
collaborative research not only in epilepsy, but also in the study of animal and human
electrophysiology in acute and chronic conditions.
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Chapter 1

Introduction

An estimated 50 million people in the world suffer from epilepsy, a condition characterized

by chronic seizures [83]. A majority of patients with epilepsy are able to obtain adequate

seizure control with anti-epileptic medications, allowing them to live relatively normal lives

[70]. However, 30-40% of epilepsy patients are not well-controlled [84]. For these patients,

the consequences of epilepsy are felt beyond seizures into the psychosocial, cognitive, and

medical spheres that compound into a poor quality of life. Those with epilepsy are also at

an increased risk of sudden unexplained death [143].

Therapies to treat this patient population are lacking. First line treatment usually involves

evaluation for resective surgery, where the lesion believed to be the seizure onset zone is

surgically removed. Candidacy for resective surgery considers both the localizability of the

seizure onset zone (SOZ) on electroencephalography (EEG) as well as other factors including

whether this region overrides functionally critical areas, known as eloquent cortex. For

this evaluation, clinicians may employ non-invasive techniques such as magnetic resonance

imaging (MRI) and positron emission tomography (PET) as well as invasive techniques such

as intracranial EEG (iEEG), the current gold standard for localization [109]. However, not

all patients are candidates and only one-fourth may find any benefit from resective surgery

[91]. Certain epilepsies such as mesial temporal sclerosis with a clear focal lesion are most

amenable to resection, yet even in these cases, five year seizure remission rates vary from

1
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41-79% [136]. The prognosis for multi-focal and neocortical epilepsy is worse [145].

For patients who are not candidates for surgery or otherwise opt out, there are few avail-

able alternatives. Vagus nerve stimulation (VNS), deep brain stimulation, and responsive

neurostimulation [102, 41, 58] are examples of attempts to modulate the underlying epilep-

tic network through electrical stimulation with the goal of preventing or aborting seizures.

VNS has been shown to reduce seizure frequency by approximately 20% compared to con-

trols [58]. Deep brain stimulation of the subthalamic nucleus has shown a two-year median

seizure reduction rate of 56% [41], though not currently approved in the United States. More

recently, the FDA approved NeuroPace Responsive NeuroStimulator (RNS R©) has reported

seizure reductions of roughly 40% compared to controls [102, 10]. Recent advancements in

the field have developed alternative therapies for medically refractory epilepsy, but there

remains a great need for more effective therapies for these individuals.

These cases demonstrate a unique aspect of epilepsy relative to many other diseases : it is

characterized by abnormal electrical signaling within the brain that can be quantitatively

recorded. This results in the use of tools that can interrogate the electrical signals on

the brain and digest a tremendous amount of neural activity in an attempt to localize,

control, abort, or otherwise modulate seizures. EEG is the most useful diagnostic tool in

an epileptologist’s arsenal, and can be used to diagnose an epilepsy syndrome, determine

management strategy, or localize the SOZ [110]. When patients undergo intracranial EEG

monitoring in the inpatient unit, a strip or grid of electrodes consisting of 4 and 64 electrodes,

respectively, may be implanted subdurally, with some centers using hundreds of electrodes.

Each electrode continuously monitors the brain’s neural activity, at a sampling rate often

greater than 500 Hz, generating a large amount of data after which is manually reviewed

by clinicians for seizures (ictal) and between seizure (inter-ictal) patterns. These patterns

include interictal spikes and bursts that are rarely seen in healthy subjects and are used
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by clinicians to aid in management, though the significance of spikes and bursts has yet

to be fully illuminated. The NeuroPace RNS is a closed loop device that records EEG,

algorithmically detects seizures, and electrically stimulates the brain in response. The

exact mechanism is action unknown, but the algorithm used requires constant tuning by

clinicians. The quantitative nature of EEG recordings from similar devices lends itself well

to the application of automated algorithms and machine learning. With these tools, we

can draw associations to inform the significance of the trends and patterns recorded in the

brain and in the hopes of improving patient management and treatment.

Quantitative analysis of EEG has existed for decades ever since the advent of digital EEG

in the 1950-60s. In fact, claims that EEG will be read automatically by computers emerged

as early as 1967 [129], yet it has since been clear that the complexity of the neural code is

not as easily deciphered as initially believed. This work is not intended to automate the

reading of EEG, but instead to take an incremental step in the automated analysis of specific

patterns in EEG and to help decipher the significance of said patterns. Due to relatively

recent uptrend in the availability of data and high throughput computational resources, we

believe the incorporation of machine learning combined with traditional analysis allows us

to answers importance questions and draw novel conclusions to aid in our understanding

and treatment of epilepsy.

Towards this end, this thesis is organized into eight chapters.

Chapter 2 provides relevant background into epilepsy, EEG, and quantitative EEG analysis.

We introduce the main concepts used in the various projects and defer to the respective

chapters for further details. We end the chapter with a general framework for biomarker

detection that is employed throughout our work.

Chapter 3 investigates the significance of interictal spikes, or epileptiform discharges, on hu-
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man cognition with a controlled memory task. In this chapter we automate spike detection

in 67 patients with a controlled memory task.

Chapter 4 begins to look at the less well-defined interictal burst, specifically in a rat model

of traumatic brain injury. In this chapter, we employ burst detection and machine learning

classification in an attempt to predict epileptogenesis.

Chapters 5, 6, 7, and 8 focuses on the analysis of year-long continuous iEEG that is unique

to the field. The work on bursts is extended into Chapters 5, 6 and 7 on a long-term canine

model, where we study the dynamics of bursts and their relationships to seizures and seizure

onset zones.

Chapter 8 begins the analysis of a long-term dataset of human epilepsy, specifically char-

acterizing the post-implantation changes in iEEG based on EEG features currently used in

neurodevices.

Lastly, Chapter 9 provides a summary of the thesis and future directions for research.

1.1 Major Contributions

The major contributions of this work are:

1. Building of a flexible framework for EEG Pattern recognition that incorporates both

supervised and unsupervised learning techniques. This framework will enable the

automated analysis of EEG, with the hopes of facilitating biomarker discovery to

advance clinical medicine.

2. This utility of this framework has been demonstrated in human and animal datasets

to inform several EEG biomarkers and trends:

(a) Interictal Spikes affect human cognition
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(b) Epileptiform bursts may predict epileptogenesis in rats

(c) Interictal bursts are similar to seizures

(d) Burst and seizure dynamics change over time in canines

(e) Intracranial EEG is unstable in the initial 100 days after implantation



Chapter 2

Background

Over 65 million people in the world and 3 million in the US suffer from epilepsy, a condition

characterized by chronic seizures [107]. In 2014 the International League Against Epilepsy

(ILAE) proposed a revised operational clinical definition of epilepsy as a disease of the brain

defined by any of the following conditions [40]:

1. At least two unprovoked (or reflex) seizures occurring >24 h apart

2. One unprovoked (or reflex) seizure and a probability of further seizures similar to the

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over

the next 10 years.

3. Diagnosis of an epilepsy syndrome

As a testament to the chronicity of epilepsy, the disease is only considered to be resolved for

individuals who remain seizure-free for at least 10 years, with no seizure medications for the

last 5 years [41]. Fortunately, patients with medically controlled epilepsy are able to live

relatively normal lives [70], with the exception of side effects from medications. However,

30-40% of epilepsy patients do not respond to two or more anti-epileptics and thus have drug-

resistant epilepsy [85, 84]. Uncontrolled epilepsy leads to significant medical, psychosocial,

and cognitive consequences that result in a poor quality of life for many of these patients,

as well as an increased risk of sudden death in epilepsy (SUDEP) [143].

6
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2.1 Role of EEG in Epilepsy

Electroencephalography (EEG) has many clinical and research applications in humans and

animals, including monitoring alertness, investigating sleep, and localizing cortical damage.

In the evaluation of epilepsy, EEG is a critical tool in an epileptologists arsenal. With

it, clinicians can diagnose epilepsy syndromes and determine treatment medications. A

classic example of EEG’s usefulness is in absence epilepsy, where a characteristic 3 Hz spike

and wave absence seizure seen on noninvasive scalp EEG (Figure 1) immediately informs

clinical management towards specific agents (ethosuximide, valproic acid) and away from

others (carbamazepine, phenobarbital, gabapentin, and others).

Figure 1: Absence Seizure on EEG. 3 Hz spike and wave is shown on scalp EEG, which
has indications for specific medications. Ethosuximide, a T-type calcium channel blocker
is known to be particularly effective against absence seizures, whereas carbamazepine, a
GABA receptor agonist, is contraindicated. Figure from Amor et al.[5]
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2.1.1 Invasive EEG

The majority of epilepsy patients that are referred to an epilepsy center only require non-

invasive methods for surgical evaluation, particularly if there is congruency in findings

between scalp EEG and imaging (MRI,PET) [110]). However, scalp electrodes may suffer

in signal quality due to attenuation by the skull and are often contaminated by artifact

from movement or improper electrode contact [129]. In cases where higher quality record-

ings are required, invasive electrodes are an option. The signal-to-noise ratio of invasive

electrodes is relatively greater, allowing the detection of subtle patterns that would not oth-

erwise manifest on surface or scalp EEG. Due to closer proximity to the brain, the spatial

resolution is also finer and allows for increased specificity in defining an epileptogenic focus.

For instance, one study reports that 77% of temporal lobe epilepsy patients with unclear

lateralization by noninvasive methods were found to have a unilateral origination through

invasive monitoring [135]. In addition to investigating uni- vs. bi-temporal onset, invasive

electrodes are also useful in determining unitemporal vs. extratemporal, or extratempo-

ral vs. bifocal/multifocal onset. However, sampling is limited to electrode placement and

there is a risk of inadequate coverage. Nonetheless, due to the higher quality recordings of

invasive electrodes, the analytical work presented in this thesis is based on these data.

Invasive Electrodes

It is important to consider different types of electrodes when conducting analyses, as record-

ing characteristics (amplitudes), target tissue, and tissue reaction may vary [134]. Different

types of invasive electrodes are shown in Figure 3.

1. Depth electrodes are stereotactically implanted through a small hole in the skull and

guided by 3D imaging (MRI). The trajectory of implantation is intended to avoid
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damaging blood vessels or important brain structures, and the final placement is

usually accurate to a few millimeters. These electrodes are most commonly used in

the temporal lobe to interrogate mesial structures. Onset in mesial versus lateral

temporal structures has implications for spread patterns [110].

2. Subdural electrodes are implanted as strips or grids on the cortical surface (Figure

2). For this reason, EEG recorded from subdural electrodes is often referred to as

electrocorticography (ECoG). Strip electrodes can be implanted through bore holes

in the skull, whereas grid electrodes require a craniotomy. Grid electrodes cover a

wide area of the cortex (eg. 8x8 with 1 cm spacing) and allows for accurate functional

cortical mapping and seizure onset localization.

Figure 2: 64 grid subdural electrode on a patient’s brain

3. Epidural electrodes are of intermediate invasiveness, and are placed on the dura
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through bore holes. Their use has steadily declined due to relatively poor signal-

to-noise ratio compared to subdural electrodes as well as improvements in functional

and structural imaging [9].

4. Foramen ovale electrodes are essentially depth electrodes inserted inferiorly and receive

their signal from the parahippocampal gyrus and surrounding areas. The trajectory

avoids the brain parenchyma while still allowing the interrogation of mesial temporal

structures. Similar to epidural electrodes, their use has declined due to improvements

in imaging [72].

The selection of electrode type depends on the region and the question that needs to be

answered by clinicians. As subdural electrodes only cover the surface of the brain, they

are often combined with depth electrodes to interrogate subcortical structures. Subdural

electrodes are more commonly used in the United States, and depth electrodes (stereoEEG,

or SEEG) are predominant in Europe. However, more centers in the US are incorporating

stereoEEG due to its ability to target subcortical structures less invasively.
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Figure 3: Schematic of different invasive electrodes and typical placement in the brain.
Figure from Noachtar et al.[110]

Complications of Invasive EEG

However, invasive EEG is not without its disadvantages. The implantation of electrodes

leads to acute infarction and hemorrhage in the majority of patients as soon as one day post-

implantation [42]. Hallmarks of chronic inflammation and foreign body response are also

seen (Figure 4). In the hospital, iEEG monitoring is collected in an artificial environment

of medication withdrawal to induce observed seizures. In addition, the invasive nature

of inpatient monitoring presents an infection risk that limits the monitoring period from

several days to a maximum of 1-2 weeks, which offers a narrow window of time to investigate

a chronic disorder. It is unclear how representative these recordings are of the baseline

epileptic network, yet critical surgical and treatment decisions, such as seizure localization,

are made on these recordings. In fact, repeated and extended observation periods and

subsequent resection following a failed surgery have been shown to improve seizure remission
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rates [51, 75]. Yet even in chronic recordings, changes in impedance as gliosis and the

surrounding tissue react to the foreign body are reported [116, 134], yet it is unknown how

this impacts the recorded signals.

Figure 4: Perivascular leptomeningeal chronic inflammation following inpatient invasive
iEEG monitoring. Hematoxylin and eosin (H & E) stain, x200, figure from Fong et al. [42]

2.1.2 Seizure localization

The primary goal of invasive monitoring for resective surgery is identification of the seizure

onset zone. Surgical resection often removes a larger section of the brain than that simply

outlined by clinical monitoring to ensure coverage of pathologic tissue not captured on EEG

(Figure 5) [97]. Much research is focused on improving the delineation of the seizure onset

zone, including the use of multimodal imaging combined with EEG. Chapter 6 is an example

of work we’ve done investigating the utility of interictal bursts on improving localization in

a canine model of epilepsy.
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Table 1: Descriptions and zones of cortical lesions (adapted from Rosenow et al. [122])

Epileptogenic zone Region of cortex that can generate epileptic seizures. By def-
inition, total removal or disconnection of the epileptogenic
zone is necessary and sufficient for seizure-freedom

Irritative zone Region of cortex that generates interictal epileptiform dis-
charges

Seizure onset zone Region where the clinical seizures originate
Epileptogenic lesion Structural lesion that is causally related to the epilepsy
Ictal symptomatogenic zone Region of cortex that generates the initial seizure symptoms
Functional deficit zone Region of cortex that in the interictal period is function-

ally abnormal, as indicated by neurological examination,
neuropsychological testing, and functional imaging or non-
epileptiform EEG or MEG abnormalities

Eloquent cortex Region of cortex that is indispensable for defined cortical
functions

Figure 5: Seizure free resection. Ideally the resection will remove epileptogenic zone through
the seizure onset zone recorded on EEG. Figure adapted from Luders et al.[97]

2.1.3 EEG Patterns

The signals recorded by ECoG and EEG is a summation of local field potentials (LFPs),

which are again a summation of the unit activity of a population of inhibitory and excitatory
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neurons (Figures 6 and 7). Local field potentials are commonly collected with the Utah

array, whereas macro subdural and depth electrodes are reflective of neurons in the order

of millions. Thus, the patterns seen on ECoG are best interpreted as a summation of

underlying neuronal action potentials.

Figure 6: Representation of unit recordings on local field potentials. Figure adapted from
Buzsaki et al [18].
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Figure 7: Representation of local field potentials on EEG. Figure adapted from Peyrache
et al. [114]

Rhythms

Interestingly, neuronal firing tends to form brain rhythms that were noticed by early elec-

trophysiologists to fall into several frequency bands. These bands have since been associated

with various cortical states [129] that are used by researchers and clinicians alike to gain

insight into normal and pathological states, such as the delta/alpha ratio [39]. For example,

closing of eyes reliably elicits an alpha wave predominantly in the occipital lobe. For these

reasons, it is often useful to characterize the power of a signal in these frequency bands.

We briefly review these bands (also called Berger bands) and a few normal/abnormal states
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that each fall in.

1. Delta: 0 - 4 Hz, associated with sleep, though found in lesions pathologically

2. Theta: 4 - 7 Hz, drowsiness, idling, found pathologically in focal lesions, metabolic

encephalopathy, and others

3. Alpha: 8 -13 Hz, relaxed, reflexing, closing of eyes, found pathologically in comatose

patients

4. Beta: 14 - 30 Hz, active thinking, alert, anxious, seen in patients on benzodiazepines

5. Gamma: 30+ Hz, cross-modal sensory processing, short-term memory, decreased

gamma may indicate cognitive decline

6. Mu: 8 - 13 Hz, suppressed during motor action, found over motor cortex

Epileptiform patterns

Beyond rhythms, there are a variety of interictal epileptiform patterns seen on EEG, includ-

ing spikes, sharp waves, spike-wave complexes, polyspikes, periodic lateralized epileptiform

discharges (PLEDs), and bursts, to name a few. In this thesis, we choose to focus on spikes

as well as bursts, which are patterns commonly seen in epilepsy patients but the significance

of which remains unclear.

Interictal Spikes

Interictal spikes are brief (<200 ms) epileptiform discharges that are believed to be a result

of abnormal synchronous firing of a population of neurons. Also known as interictal epilep-

tiform discharges (IEDs)1, they are widely accepted as a sign of epilepsy and are rarely seen

1We use spike and IEDs interchangeably in this thesis
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in healthy volunteers. In a study of over 13,000 people, IEDs were observed in 0.5% [68].

In contrast, IEDs occur in up to 98% of patients with epilepsy [110]. An example of a spike

recorded on intracranial electrode is shown in Figure 8 on the IEEG portal (ieeg.org).

Figure 8: Example of spike spanning three bipolar channels on ECoG

The significance of IEDs is not well understood. Though they are believed to be epileptiform,

interictal spikes are not limited to the epileptogenic zone and often occur in other cortical

areas. The region with the most spiking does not always correlate with the lesion location.

In some cases, spikes can inform prognosis: increased spiking in cases of temporal lobe

epilepsy with hippocampal sclerosis leads to poor outcomes post-resection. Studies have

also suggested that spikes may precede seizures, as GABA-mediated synaptic inhibition can

illicit spikes experimentally [139]. Along the same lines, evidence also exists for spikes as a
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sign of abnormal axonal sprouting that leads to epilepsy, a process known as epileptogenesis

[139]. For these reasons, while interictal spiking is taken into account when determining

resection region, it forms only an auxiliary data point [129, 98].

Quantitative marking is necessary to accurately measure IED occurrence and improve our

understanding of the significance of these patterns. Automatic spike detection will allow us

to generate quantitative, objective descriptions of spike density that would not be possible

to do manually by human epileptologists. Being able to quantify spikes on a large scale will

lead to better interpretations of the phenomena occurring in a spike and may lead to better

patient diagnosis and treatment outcome.

Unfortunately, automatic spike detection is a difficult problem. The reason for this is not

likely due to the lack of technical algorithms, but rather due to the lack of shared datasets,

open source algorithms, and relatively poor inter-rater reliability [157]. For instance, over 80

papers have been published about a spike detection algorithm, many of which are reviewed

by Moraes et al. and Wilson et al. [101, 157]. More than 22 report accuracies >90%.

However, there does not exist an algorithm that performs and generalizes well to multiple

datasets, and current commercial algorithms perform poorly enough that they are not used

by clinicians. Many authors do not release their raw code, leaving readers to reprogram

their pipeline. Yet when it fails to perform as reported, readers are unable to determine if

there was a mistake in the reproduction due to small unpublished nuances, to variability

in datasets, or a poorly generalizable algorithm. In the few cases where the algorithm is

packaged for public use, variability between EEG recordings hinders the performance. In

addition, the definition of a spike is relatively obscure, leading to disagreements between

expert EEG markers. To give an example, one study investigated inter-rater reliability

between five EEG readers for hand-marking 50 records of epilepsy patients. They found

that the sensitivity of markings ranged from 57% to 87% [156].
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Despite its shortcomings, automated spike detection is beneficial in that it remains objective

and consistent. An algorithm will always return the same result given the same set of input

data. Furthermore, it is necessary to uncover the significance of spikes as manual marking

is unfeasible. In our experience, the parameters of each algorithm must be tuned on a

patient-specific level until we have enough data to form a generalizable model. With this

approach, we use machine learning to model complex variability in spike patterns guided by

user provided examples. This paradigm allows for improvement in the algorithms as more

data is provided. For this reason, data sharing is also a critical piece towards an automatic,

generalized spike detector.

There are many different types of algorithms that have been developed, from mimetic

algorithms that model each part of a spike-wave complex, to wavelet methods that model

the morphology [101]. It is beyond the scope to review them all, as it is difficult to determine

which is the best performing. However, the algorithms generally fall into several categories,

which we can learn from to design our own spike detector and more generally a detector of

any interictal pattern.

1. Mimetic - identify spikes based on duration of spike, expected amplitude, length of

after-going slow wave. This may also include feature extraction and the use of classi-

fication algorithms.

2. Template based - use cross-correlation to identify spikes with high correlation with

a set of template spikes. Some approaches also use the raw signal as features for a

classifier.

3. Background perturbation - calculate a single feature that captures short-term pertur-

bations due to spiking, and set a threshold based on a set of template spikes.

For the purposes of this thesis, we develop and validate our own spike detector, described
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in 2, that incorporates several previous approaches as well as the use of machine learning

techniques.

Bursts Furthermore, abnormal activity, such as interictal bursts (9), may provide lo-

calization or prognostic information. Interictal bursts, also referred to as brief interictal

rhythmic discharges, brief rhythmic discharges, and other terms have been observed to re-

late to cerebral injury and epilepsy [164]. As they are observed much more frequently than

seizures, any information gained from the analysis of bursts would aid in expediting inpa-

tient monitoring. However, it is unknown whether they correlate with or localize seizures.

Much of our work is focused on investigating these bursts of activity.

Figure 9: Example of burst in human EEG. As you can see this burst occurs in most
electrodes and in some channels.

As interictal bursts are less well defined, the framework described below is meant to be

flexible enough to capture well defined spikes of a fixed duration as well as bursts of variable

duration and complicated morphology.
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2.2 Neurodevices

For those patients who are not candidates for surgery, an alternative is an implantable

device. Electrical stimulation is believed to decrease the excitability of the brain, leading

to reduced occurrence of seizures. Four established therapies are listed below, though only

two are currently approved for use in the United States [112].

1. Medtronic Deep Brain Stimulation - this open loop device stimulates the anterior

nucleus of the thalamus. It is approved for partial onset seizures in Europe and

Canada but not in the US. Studies have shown a median seizure reduction of 41% at

1 year and 69% at 5 years after implantation. [123]

2. Trigeminal Nerve Stimulation - This is an open loop noninvasive device that uses

transdermal electrodes to stimulate branches of the trigeminal nerve. It is currently

approved in Europe but not yet in the US. A reduction in seizure frequency of 27.4%

at 6 months and 34.8% at 12 months has been observed.

3. Vagal Nerve Stimulation (VNS) - VNS is approved for use in partial onset epilepsy

in the US, but also used off-label for generalized epilepsy. The device is open loop,

and is set for intermittent stimulation of the left vagus nerve. VNS has been shown

to result in a median seizure reduction of 35% at 1 year and 44% at 3 years [103]

4. NeuroPace Responsive NeuroStimulator (RNS R©) - The RNS is the first closed loop

device for epilepsy, recently FDA approved in 2013. A stimulator is implanted within

the skull and connected to a combination of up to two depth or subdural electrodes

implanted over the presumed seizure focus (10). Median seizure reduction rate is 44%

at 1 year and 65.7% at 6 years after implantation [10], although compared to controls

the additional reduction rate is roughly 41%.
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Figure 10: NeuroPace RNS R©device

2.2.1 Algorithms in closed loop neurodevices

NeuroPace

The NeuroPace algorithm uses three features for seizure detection: area, line-length, and

half-wave. These parameters are used in a proprietary algorithm for seizure detection.

These parameters are manually set by physicians after implantation to optimize seizure

detection.

NeuroVista

NeuroVista was a start-up company that developed a 16-electrode implantable device for

continuous monitoring. First tested in dogs and subsequently in humans, analysis of data

from this device forms a large part of this thesis, as it is the only existing long-term (years)

continuously recorded EEG dataset in existence [27, 23]. In the human trial, 15 patients
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with refractory epilepsy were recorded for an average of 18 months. During this trial,

a seizure advisory system was in place that predicted the likelihood of seizures given the

intracranial recordings. Line length, energy, and Teager-Kaiser energy were used as features

into a proprietary classifier consisting of a k-nearest neighbor and decision tree hybrid.

Understanding Long Term EEG

The two devices above are the first long-term recordings in human patients with epilepsy.

Thus, studying their recordings can be of much utility, particularly in the NeuroVista

recordings as it is 1. continuous and 2. has a wider spatial resolution than the NeuroPace

RNS. Furthermore, both devices experienced increasingly poor performance over time that

requires retuning and retraining, yet the dynamics and timescale of this effect is unknown

and investigated in Chapter 8.

Studying long term EEG will improve our knowledge of epilepsy dynamics and potentially

improve clinical care. Recent evidence suggests that longer or repeated observation periods

may improve treatment outcomes [31, 51, 75] by more accurately mapping the epilepto-

genic zone. Cases have been published where an initially poor surgical resection candidate

achieved localization from the RNS device and subsequent seizure freedom from surgery

[75]. This provides evidence that long-term EEG may provide important information in

studying the underlying network of an epileptic patient.

In addition, interictal epileptiform patterns such as IEDs and bursts are routinely noted on

inpatient monitoring, but the significance of these patterns is unknown. Long-term record-

ings will allow us to more accurately describe novel electrographic patterns by increasing

our sample size. At the same time, studying the quantitative features used in neurode-

vices allows us to explain transient changes seen during algorithm deployment to improve

performance, impacting future device development.
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2.3 Animal Models

Animal models provide a useful proxy for hypothesis-driven research, and over the years

range from primates, pig, and sheep to rabbits, mice and drosophila. In this thesis, we

analyzed two different animal models of epilepsy: rodents and canines. Rodents have re-

cently grown in popularity as an animal model in epilepsy due to their rapid breeding,

docility, and ease of upkeep [55]. We have learned much about the dynamics of seizure

generation, epileptogenesis, and kindling from rodents with chemically- or trauma- induced

seizures. In Chapter 4 we analyze data from a traumatic brain injury (TBI) rat model in

the hopes of identifying electrographic biomarkers of epileptogenesis, or the transition from

a normal to a spontaneously epileptogenic state. Canines represent a large animal model

with characteristics that are similar to humans. Anatomically they have a gyrated brain

of a larger size apt for device testing. Compared to induced seizures, canines have spon-

taneously occurring, genetic epilepsies at a rate similar to humans with similar medication

responses [150]. The seizures on iEEG show electrographic properties that are similar to

human iEEG [28]. Furthermore, they are observed to have similar seizure types with a

focal origin with or without secondary generalization. Interestingly, VNS was first shown to

abort chemically induced seizures in canines [167], which spurred development of VNS as a

neuromodulatory therapy. In Chapters 5, 6, 7, we analyze a canine dataset with long-term

implanted electrodes.

2.4 Generalized Linear Mixed Models

One of the statistical models we often employ in this thesis is the Generalized Linear Mixed

Model (GLMM). A brief introduction is given here and readers are referred to other sources

for a more detailed description.
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The motivation for this stems from the limitations of an ordinary linear model. Consider

a basic linear model Y = Xβ + ε, where ε ∼ N (0, σ2). In other words, Y ∼ N(Xβ, σ2).

However, this model is not optimal if the assumptions are not met, such as if the error

does not follow a normal distribution, observations are independent, or if the relationship

between the response variable Y and the fixed effects Xβ is not linear. The general linear

model allows a link function g to ”link” the predictors Xβ to Y . Such a link function

is often of the exponential family, such as binomial, Poisson, and other distributions, to

avoid a strictly linear relationship between the variables X and the response Y . Another

extension, the linear mixed model, is also widely used. This model incorporates random

effects, which allows to the user to model dependencies or correlated observations, such as

with repeated measurements within subjects. The GLMM incorporates both by allowing

modeling of non-normal data through a link function and adding random effects to account

for correlated observations. The general equation is as follows:

Y = h(Xβ + Zγ) + ε

γ ∼ N (0, G)

where Y is our response (N×1), X is our fixed effects (N×P ), β are our coefficients (P×1),

Z are our random effects (N×Q), and γ are our random effect assignments (Q×1). Finally,

h(·) is our link function.
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2.5 Machine Learning

Throughout this thesis we incorporate various machine learning tools to achieve prediction

and automatic separation of electrographic patterns. We will cover the basics of machine

learning in the context of EEG signal processing, particularly of models and concepts we

often employ. Note that machine learning is a vast field and beyond the scope of this

background section. We only describe concepts relevant to work in this thesis.

2.5.1 Overview

The ultimate goal in machine learning is to model Y = f(X, θ) and obtain estimates of

the parameters θ 2 that allows us to accurately predict the label yi for a new example xi.

Regression or classification models are used if Y is continuous or categorical, respectively.

X corresponds to the input dataset, an N × P matrix with N examples and P features

describing each example. f is a function which takes as input the dataset X and a set of

parameters θ. Training a model involves estimating θ, often by minimizing the error Y − Ŷ ,

where Ŷ are the estimated labels 3.

There is not always a clear delineation between statistics and machine learning, also known

as statistical pattern recognition. However, generally, classical statistics is based upon

modeling the data generating process and evaluating model fit by using goodness-of-fit

tests and residual examination. Machine learning is not as concerned about modeling the

data generating process, but rather is focused on finding a function or algorithm f based on

the data that has high predictive accuracy [15]. For this reason, machine learning algorithms

often require larger datasets and more powerful computation resources in order to capture

the variability in a dataset and achieve generalizability. Many of the algorithms involve

2Note, we use β and θ interchangeably as the parameters of a model
3The ,̂ or ”hat”, indicates that the variable of estimated. In this case, the estimates of the true labels y.
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ensembles, or collections of algorithms, which each individually weigh into a prediction,

which has been shown to perform better than any single algorithm. We use both classical

statistical methods as well as machine learning methods depending on the goals of the

experiment.

Generalization

Consider the data used to optimize a model as the training dataset, and the data used to

test a model the test dataset. The best measure of how well a given model is capturing

the important features in a particular problem is to test your model on out-of-sample test

dataset to obtain a test error. Thus, one is able to determine whether their model is

overfitting (high variance, poor generalizability) by comparing the training error with the

test error. A low training error with high test error indicates overfitting. In the ideal case,

one would have enough data to do a hold-out validation (removing a percentage of your

dataset as the final measurement of performance). Often, cross-validation is used in cases

with limited examples. In this scheme, examples are held out while a model is trained on

the remaining dataset, and this process is repeated until all examples are held out. The

cross-validation performance is then the average error for all examples, and has been shown

to be a good proxy for generalization error [79].

2.5.2 Features

Features are also known as predictors or to statisticians as covariates. While it is possible to

feed a raw signal into a model such as a neural network, the high sampling rate of EEG often

makes it computationally less attractive. Instead, average features are often calculated over

moving windows.

Features provide an accurate representation of a signal of interest, ideally in a reduced di-
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mensional space. In the above examples for NeuroPace and NeuroVista, line length, energy,

area, half-wave, and Teager-Kaiser energy are hypothesized to accurately characterize a

transient and increasingly epileptic background EEG signal. The features chosen in any

machine learning problem is critical, as improper representation leads to poor performance

regardless of the power of a selected classifier. Often times there are many more features

than examples, described as the ”Curse of Dimensionality”, which with certain algorithms

can lead to poor generalizability. This is because as more features are included, it becomes

easier to model the training dataset, yet difficult to find the subset of features that are

most important. For this reason, feature selection methods are often employed prior to

evaluation with an algorithm. Algorithms can also be modified, or regularized, to reduce

overfitting. However, the advent of ensemble methods in machine learning, and techniques

such as bootstrap aggregation (bagging), may in fact thrive on large feature sets [15].

These features are then used in an algorithm tailored with the goal in mind. In supervised

learning, the true classes (labels) are known. In unsupervised learning, the algorithm is

intended to separate datapoints based on natural separation in the feature matrix

2.5.3 Supervised learning

Supervised learning algorithms model a given feature matrix X according to labels y. When

given a new data example xi, the algorithm outputs a corresponding label ŷi. Supervised

learning can be broken down into classification and regression, where the labels y are cat-

egorical or continuous, respectively. To motivate several algorithms used in this thesis, we

briefly review regression and classification.
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Regression - Elastic net

We start with linear regression, a familiar case.

y = Xβ + ε (2.1)

where y represents the true (known) labels, X is the feature matrix, and w is the estimated

weights, our model. In this simple case, there is a closed form solution to optimize the

weights w

β = (X ′X)−1X ′Y (2.2)

This optimization minimizes the sum of squares to find the optimal w, the objective function

being:

 L(β) = ||Y − Ŷ ||22 = ||Y −Xβ||22 (2.3)

β = argmin(L(β)) (2.4)

Because this is a greedy optimization, efforts have been made to regularize this objective

function, resulting in modifications called the least absolute shrinkage and selection operator

(LASSO) [147], ridge regression [62], and more recently the elastic net [169]. In our work we

make the most use of the elastic net regression (equation 2.5), where a L1 and L2 penalty

is added to the objective function

argminβ ||Y −Xβ||22 + λ1||β||1 + λ2||β||22 (2.5)

The additional penalties regularize the objective function and helps alleviate overfitting
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and high variance in a given model. The L1 penalty (||w||1) minimizes the sum of absolute

values (equivalent to having a Laplace prior on β) and upon minimization zeroes out many

features. The L1 penalty is integral to the LASSO. The L2 penalty minimizes the sum of

squares (equivalent to a Gaussian prior on β) is used in ridge regression, which ”shrinks”

the betas towards zero and helps to alleviate problems of co-linearity by preventing one

feature from dominating. The resulting model fit from regularized elastic net is often more

generalizable than other models.

Classification

In cases where the labels y are categorical, the problem theoretically becomes a ”classifi-

cation” problem. However, it is important to note that many algorithms (Support Vector

Machines, Random Forests, etc.) can also give continuous predictions, making the delin-

eation more of semantics.

Logistic Regression

Logistic regression adds a logit link function to linear regression, allowing a mapping from

a line to a sigmoid between 0 and 1. This thus represents a continuous probability of a

particular class outcome. Though it is a regression algorithm as it predicts a probability,

the model is fit to a binary Y label. Essentially, the equation models:

y =
1

1 + e−Xβ
,where y ∈ [0, 1] (2.6)

argminβ

n∑
i

yi log(Xiβ) + (1− yi) log(1−Xiβ) + λ1||β||1 + λ2||β||22 (2.7)

This model fits the log odds of the outcome y in a linear space, while increasing bias and
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selecting features. One of the advantages of logistic regression, and one of the reasons why

it is popular in the medical sciences, is that the β weights are easily interpretable. An

increase in 1 unit of β corresponds to an increase in 1 log odds of the outcome y. For this

reason, we use logistic regression in a generalized linear mixed model (GLMM) in Chapter

3 for easier interpretation of the resulting β’s. We use the elastic net penalty for multi-

class feature selection before input into another classifier, as other classifiers commonly

outperform logistic regression as the decision boundary is still linear in log-odds space.

Random Forest

The random forest is an ensemble classifier that takes advantage of random sampling and

weak-learning decision trees to achieve high predictive accuracy [14] (Figure 11). Each

random forest consists of T decision trees, where each tree is given a random sample of

training datapoints and a random sample of features, or otherwise known as ”bagging” on

samples and on features. Given the sample of features and of data points, each tree then

optimizes a split corresponding to some metric of information or entropy. This is done

by iterating through a group of possible splits and selecting the split that gives the best

outcome. The split we use is Gini’s Diversity Index. This index is a measure of node

impurity and is computed as sum of the fraction of classes at a given node.

GDI = 1−
∑
i

p2(i) (i = class i at node)

The T decision trees then form an ”ensemble” which is used to product one output, either

an average for regression or a majority vote for classification.

An interesting characteristic of random forests is that as the number of trees grows (T →∞),

the performance converges to the generalization error [14]. It has been shown to produce

promising results in many settings. For example, in 1992 a random forest classifier achieved
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only 0.7% error when recognizing handwritten digits (MNIST dataset).

In the context of interictal pattern detection, we use random forests to separate interesting

patterns from noise. The important variables in a given random forest classifier can be

examined by randomly permuting each feature and calculating the difference in performance

[14], as seen in the discussion on spike detection below.

Figure 11: Random Forest Schematic. At each tree, a randomly sampled subset of features
and examples are used.

2.5.4 Unsupervised learning

In unsupervised learning, we allow the algorithm to automatically determine interesting

structure in the data. For the purposes of the experiments in this thesis, this entails

separating EEG patterns into various groups, called clustering.
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Clustering

K-means

K-means is a classic clustering algorithm that originated in the 1950-60s. Given a set of

observations (x1, x2, ...xn) and cluster assignments (C1, C2, ...Ck), the goal of kmeans is to

find

argmins

k∑
i

∑
x∈Si

||x− µi||2, where µi is the center of points in cluster Si (2.8)

Gaussian Mixture Models

Mixture models allow separation of a dataset into distinct clusters that follow a particular

distribution. Gaussian Mixture Models (GMM) is one type that is similar to K-means but is

probabilistic instead of deterministic. Since K-means uses Euclidean distance as its distance

metric, the covariance structure of each centroid is diagonal and shared between clusters.

The GMM allows for each centroid to take a full covariance matrix, with or without sharing

between clusters.

GMM can be optimized by expectation-maximation (EM) algorithm.



CHAPTER 2. BACKGROUND 34

Likelihood

L(X, θ) =
n∏
i

(
∑
c

P (Ii = c)N(yi;µc, σ
2
c )) (Likelihood of observations)

logL(X, θ) =
n∑
i

log(
∑
c

P (Ii = c)N(yi;µc, σ
2
c )) (log likelihood)

∂logL

∂µ1
=

n∑
i

P (Ii = 1)N(yi;µ1, σ
2
c )∑

c P (Ii = c)N(yi;µc, σ2c )

yi − µ1
σ21

= 0

(e.g. diff w.r.t. µ1)

Expectation

Let Ci = cluster assignment for example i

Ii(c) = 1 if obs i is in group c

p(Ci|yi) = P (Îi(c) == 1) =

∏
c P (Ci|y, θ)N(yi, µc, σ

2
c ))

1(c=Ci)∑
c P (Ci = c|y, θ)N(yi, µc, σ2c )

Maximation

(Plug in above into likelihood, solve for missing variables)

n∑
i=1

Îi(c)
yi − µc
σ2c

= 0 (subbing into likelihood)

µc =

∑n
i Îi(c)yi∑n
i Îi(c)

σ̂2c =

∑n
i (yi − µi)2∑n
i Îi(c)

(Repeat steps until convergence)

Gap Statistic

With both K-means and Gaussian mixture models, the choice of the number of clusters

(K) must be specified. There are numerous ways for selecting this metric, though we use in
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our work the gap statistic. The gap statistic essentially compares intra-cluster dispersion of

the data relative to a null distribution (E∗nlog(Wk)) [146]. This is determined by randomly

sampling within the feature space.

Dr

∑
i,i′∈Cr

di,i′ (Distance metric between point i and centroid ii’)

Wk =

k∑
r=1

1

2rn
Dr (sum of all distances in cluster r to centroid)

k = argmaxkGapn(k) = argmaxk E
∗
nlog(Wk)− log(Wk) (finding k)

Note that the clusters should be validated regardless of the statistic used for selection.

2.6 EEG Pattern Recognition

The tools developed to expedite the processing and detection of EEG patterns have been

aggregated into a toolbox . Currently, it is integrated with the ieeg.org portal and requires

Matlab. In theory, this toolbox is able to take marked examples of specific patterns and

detect all like patterns in a given dataset, although for the purposes of this thesis it has

been developed for spike, burst, and seizure detection.

The main challenges encountered during pattern detection are as follows:

1. Lack of true labels due to time required to manually mark EEG

2. Poor inter-rater reliability

3. Varying quality of datasets

ieeg.org
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4. Varying electrode placement for iEEG

5. Poorly generalizable algorithms

To overcome these shortcomings, we develop an intelligent supervised detection system that

generalizes the approaches seen in literature (Figure 18). More specifically, we first adopt

a hypersensitive detector based on a set of user marked true positives. This involves opti-

mizing the distance between markings and surrounding background, selecting for the single

feature as well as the threshold. Following this, all hypersensitive detections are made.

These detections are expected to have many false positives. We then extract comprehensive

features from all hypersensitive detections, reduce them with principal component analy-

sis (PCA), and cluster them into an automatically selected number of clusters. Random

examples are uniformly sampled from each cluster and presented to the user for marking,

which maximizes the gain from marking a variety of examples. These marked examples are

again, after feature extraction, placed into a classifier. Once classification is optimized and

accepted by the user, all hypersensitive classifications are made.

2.6.1 Spike Detection

For spike detection, we initially segment the data to detect peaks for further classification.

This can be done with various metrics, such as signal envelope [71], line length or sim-

ply amplitude post-filtering. Essentially, we attempt to detect transient perturbations in

the background signal which suggests the presence of a spike, and maximize the distance

between background and spikes to determine the threshold (Figure 12, Algorithm 2)4.

4In Chapter 3 we use signal envelope as its performance had been characterized [71]. Following initial
detections, we apply a spatial filter that aggregates and includes only spikes that occur in more than one
channel, which increases the positive predictive value of each detected spike.
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Figure 12: Selection of hypersensitive feature. Distribution of background (BCK) and signal
of interest (SOI) for two features are shown. In this particular example, signal envelope
better separates the two

After initial segmentation, users are prompted to mark examples of each class intelligently

as detailed above. Specifically, we extract features (50 ms before and 150 ms after the peak,

selected as spikes are generally <200-250 ms in total duration) from all hypersensitive

detections and cluster using the GAP statistic. From this, we sample uniformly from each

cluster to ensure that labels are given to samples that will provide a best representation of

the class distributions. Using these layers, features are then extracted from each spike into

a random forest classifier. For spike detection, we have found the normalized continuous

wavelet transform (CWT) coefficients to be informative features.
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Wavelet Transform

The wavelet transform is one form of time-frequency decomposition, similar to the Fourier

transform, except it allows adaptive resolution in time. This means that for higher frequency

signals, the time duration of a window shortens thereby allowing higher resolution. This

is in contrast to the short-time Fourier transform , which has a fixed resolution due to the

time-frequency duality. This advantage allows us to capture more transient signal changes

as seen in spikes. In CWT, a mother wavelet is convoluted with the signal at various

scales and times. Figure 13 shows the Mexican Hat wavelet at various scales, and the

corresponding wavelet transform coefficients of several spikes and background are shown in

Figure 14. The CWT of a function x(t) for at a scale a and translation b.

Xw(a, b) =
1

|a|1/2

∫ ∞
−∞

x(t)φ̄(
t− b
a

)dt (2.9)

Further postprocessing includes serialization of coefficients for each spike before applying

principal component analysis (PCA) to capture the direction of highest variance (Figure

15). This pipeline has been shown to have 99% sensitivity and specificity and 88% positive

predictive value during out of bag prediction for marked spikes in ECoG of two patients

(Table 2).
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Figure 13: Mexican Hat Mother Wavelet at multiple scales
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Predicted False Spike Predicted True Spike

False Spike 1733 22
True Spike 1 101

Table 2: Confusion matrix for CWT spike detection with random forest. Model with 2000
trees, optimizing for sensitivity by penalizing false negatives 50x more than false positives.
Results of out-of-bag predictions are given. Note that this performance is on par with
inter-rater reliability in spike identification [48]

(a) Continuous Wavelet Transform of two spikes

(b) Continuous Wavelet Transform of Background EEG

Figure 14: Continuous wavelet transform and corresponding EEG. (a) CWT of two identi-
fied spikes, centered. Notice the evolving high → low frequency evolution capturing a spike
and subsequent slow wave. (b) Randomly selected interictal segments of a similar length,
where the observed spike-like pattern is not seen. In each subplot, the analytical signal
(top) and wavelet coefficients (bottom) are plotted. X axis is time, y axis is centered volt-
age (mV) for the analytical signal, scale for CWT. Higher scale indicates lower frequency
components.
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Figure 15: Variable importance. The variable importance metric for the model given in
Table 2 for spike detection. Feature inputs here correspond to the principal components of
the CWT coefficients. Variable importance value is calculated as the increase in prediction
error if that variable’s values are permuted across the out-of-bag observations. This measure
is computed for every tree, averaged over the entire ensemble, and divided by the standard
deviation over the entire ensemble.

In this particular case, further validation can be performed by mapping the variable impor-

tance back into the original wavelet space by multiplying the weight vector by the principal

components 16.
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Figure 16: Variable importance In Wavelet Space. The corresponding weights are trans-
formed back into the original space using the principal components. The colorbar indicates
regions of high importance (yellow) versus low importance (blue). Notably, a sequence of
importance regions at timepoint 200 indicate the high frequency component of a spike.

2.6.2 Burst Detection

Burst detection is done with the same pipeline. A hypersensitive detector is optimized

based on marked patterns (Figure 15).
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Figure 17: Example of hypersensitive detection optimization on burst. Raw signal (top)
with line length feature (bottom). Red indicates pattern feature values, black indicates
background. Recommended threshold is given as mean(background)+M ∗sd(background),
where M is the multiple (4 by default).

After initial segmentation, users are again prompted to mark examples of each class from

the hypersensitive group or random segments will be sampled to form the negative class.

The latter works well for rare events, such as seizures, where oversampling of the data will

be more representative of interictal segments. Comprehensive features are extracted that

include spectral characteristics (Fourier and Wavelet transforms), time domain features such

as line length, as well as other features designed to pull out a particular pattern. At this

stage, feature selection/reduction is performed (e.g. PCA) before clustering. Clustering

allows separation of natural groups, which is useful to intelligently serve different clusters

for manual marking. After manual marking, supervised algorithms can then be used.

2.6.3 Spatial Integration

One of the defining features of a real neurophysiological patterns is a field effect, meaning

the activity is seen across multiple electrodes. We take advantage of this by modeling the
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spatial distribution of the field and incorporating that into our feature set. This is done

in two ways: 1) For the hypersensitive detections, we use channel specific thresholds and

conduct a spatial integration step, which combines detections across all channels within a

given window length. 2) During the classification step, the distribution of min, max, and

mean voltage across all channels are included as features.
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2.6.4 Algorithms

Figure 18: Pipeline overview for detection of discrete patterns in EEG. Hypersensitive de-
tections are optimized based on an initial set of training data. After segmentation, users can
choose to cluster or to mark more patterns for unsupervised detection. Marking of clusters
is also available to feed as training data into a supervised classifier. Feature extraction,
reduction, and classifier testing is then run for those who choose the supervised process. If
it is decided more training data is necessary, additional data can be obtained from marking
of initial detections.
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Algorithm 1: Hypersensitive Pattern Detection Pipeline

Data: IEEGDataset from ieeg.org with examples of marked annotations
Result: All similar annotations uploaded onto ieeg.org

1 read all annotations from specified layer
2 minChan← min number of channels in training layer // Is there a field?

3 for each annotation i do
4 obtain raw EEG with padding pad on each side // default pad: 2*length of

min burst window

5 for each hypersensitive feature f do
6 compute hypersensitive feature on raw EEG
7 extract mean surrounding background feature values Bif // surround = same

length as window for burst on each side

8 extract mean pattern feature values Pif
9 extract duration

10 f ← argmaxf
∑n

i ||Pif −Bif ||2 // f = feature (e.g. LL, signal envelope,

amplitude, etc. Can also use max Z from Wilcoxon Rank Sum test)

11 winLen ← min(duration)/2
12 thres ← min feature value above mean(background) +mult ∗ sd(background)

// default: mult=4

13 for each EEG block until end of dataset (parallelize here) do
14 get data from ieeg.org
15 determine times where feature is above thres
16 retain times where duration > 2 ∗ winLen
17 while annotations remain do
18 combine annotations within a specific search window // Spatial Integration

19 retain annotations that span > minChan channels.

20 upload annotations to IEEGDataset
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Algorithm 2: Spike Detection Pipeline

Data: IEEGDataset from ieeg.org with examples of marked spikes
Result: All similar annotations uploaded onto ieeg.org

1 read all annotations from specified layer
2 minChan← min number of channels in training layer // Is there a field?

3 for each hypersensitive feature f do
4 for each annotation do
5 align peak to maximum absolute value within .5 s
6 obtain raw EEG with padding pad on each side // default pad: [0.5 s

before and 0.15 s after

7 extract mean pattern feature values Pif

8 compute hypersensitive feature Bf on entire raw EEG in .2 s window length
// Process by hr blocks if too large

9 f ← argmaxf
1
n

∑n
i ||Pif − B̄f ||2 // f = feature (e.g. LL, signal envelope,

amplitude, etc), can also use Wilcoxon Rank Sum Z values for feature

selection

10 mult ← ( 1
n

∑n
i Pif − B̄f )/σBf

11 thres = B̄f +mult ∗ σBf
// default: mult=3.5

12 for each EEG block until end of dataset do
13 get data from ieeg.org
14 calculate feature f across block using .200s windows determine times where feature is

above thres

// This block is done in parallel for speed

15 while annotations remain do
16 combine annotations within a specific search window // Spatial Integration

17 retain annotations that span > minChan channels.

18 upload annotations to IEEGDataset
19 for each spike n of N do
20 extract each spike .05 s to 0.150 s around each peak
21 extract continuous wavelet transform coefficients with scales 1:60 and Mexican Hat

wavelet
22 vectorize each set of coefficients to create data matrix N × p
23 Obtain first 60 principal components
24 Optimize random forest with first 60 principal components using cross validation
25 To see top principal components, calculate variable importance and map to wavelet space
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Algorithm 3: General Classification Pipeline

Data: IEEGDataset from ieeg.org with training and test annotations
Result: Annotated hypersensitive detections on ieeg.org

1 mark X true positives, true negatives obtain signal fingerprint from true training layer
// features given in appendix and dependent on signal of interest

2 obtain signal fingerprint from false training layer
3 Feature selection // default: Logistic Elastic Net, optional

4 Optimize classifier (default: Random Forest) with CV to obtain performance
5 obtain signal fingerprint from hypersensitive detections
6 Classify all hypersensitive detections
7 upload results to ieeg.org



Chapter 3

Effect of Interictal Spikes on Cognition

3.1 Abstract

Cognitive deficits are common among epilepsy patients. In these patients, interictal epilepti-

form discharges, also termed spikes, are seen routinely on EEG and believed to be associated

with transient cognitive impairments. In this chapter, we investigate the effect of spikes on

memory encoding, taking into account the spatial distribution of spikes in relation to the

seizure onset zone as well as anatomical regions of the brain. Sixty-seven patients with med-

ication refractory epilepsy undergoing intracranial EEG monitoring engaged in a delayed

free recall task to test short-term memory. In this task, subjects were asked to memorize

and recall lists of common nouns while intracranial electrodes recorded electrophysiological

activity. We quantify the effect of each spike on the probability of successful recall using

a generalized logistic mixed model. We found that in patients with left lateralized seizure

onset zones, spikes outside the seizure onset zone impacted verbal word encoding, whereas

those within the seizure onset zone did not. In addition, spikes in the left inferior temporal

gyrus, middle temporal gyrus, and fusiform gyrus during memory encoding reduced odds

of recall by as much as 19% per spike. These results suggest that interictal spikes disrupt

cognitive processes in the underlying tissue, and that seizure onset regions are dysfunctional

at baseline.

49
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3.2 Background

In many epilepsy patients, cognitive and memory deficits are common complaints, some

of which are not captured by traditional neuropsychological tests [13, 153]. Characteristic

epileptiform patterns recorded on the electroencephalogram such as interictal spikes, rhyth-

mic bursts, wave discharges, and focal slowing are not always accompanied by overt clinical

symptoms but can still be detrimental to the patients psychosocial functioning and quality

of life [64, 65]. These electrographic patterns have been associated with transitive cognitive

impairment [1, 64, 76, 77], and elucidating the relationship between these electrophysiolog-

ical patterns and their functional consequences is a crucial step in improving treatment and

quality of life for epilepsy patients.

Parameters for functional assessment of patients with epilepsy involve neuro-psychological

tests that explore cognitive, behavioral, linguistic or motor impairment. These tests provide

information on a global level such as whether a person can safely live by himself, return back

to work or school, or drive. Qualitative measures of patient well-being are important for

treatment, but a more quantitative measure of cognitive function is required to understand

the mechanism underlying the prominent memory and cognitive complaints that plague a

significant portion of patients with epilepsy. Therefore, insight into the electrophysiological

basis of memory encoding and decoding and its disruption due to electrographic epileptiform

activity is important both clinically and neurophysiologically.

Intracranial EEG (iEEG) recordings provide higher temporal and spatial resolution of brain

activity than non-invasive EEG. These data provide an opportunity to study the electro-

physiological correlates of a wide range of cognitive processes with greater detail [86]. For

example, IEEG has been used to study the neural basis of human cognition, using non-

epileptic regions of the brain as models for normal healthy brain and as controls. Typical
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electrophysiological patterns are consistently seen across various performance tasks. In

studies of memory, there is evidence that electrophysiological and hemodynamic changes

occur during encoding, termed the subsequent memory effect (SME) [113, 131]. High fre-

quency oscillatory activity of neurons has been associated with specific cortical network

states and has been used to quantify the electrophysiological mechanisms of memory for-

mation and recall. Gamma oscillatory activity, for example, exhibits anatomical, temporal

and functional specificity [69]. Early studies showed that increases in gamma activity in

the hippocampus and the left temporal and frontal cortices is associated with successful

memory formation, consistent with previous functional magnetic resonance imaging (fMRI)

studies [130]. Therefore the magnitude of these oscillations during encoding indicates that

synchrony in widespread networks of cortical regions can serve as a predictor for successful

memory recall [131].

In this study, we focus on interictal epileptiform discharges, also termed spikes, recorded

on iEEG. Interictal spikes are highly correlated with the presence of epilepsy, though their

representation with respect to regions of structural and functional abnormalities, influence

on patient behavior and physiology, and relationship to ictal activity has not yet been well

defined [136]. EEG-fMRI studies have confirmed that interictal spikes may be separated into

different populations with some resulting in modifications of metabolism well beyond the

clinically identified epileptic focus [78]. This suggests that spiking activity in the epileptic

foci may be deleterious for a larger section of the brain (beyond the foci) and may interrupt

normal electrophysiology and functioning. Several studies have suggested that hippocampal

spikes disrupt cognition [49, 76, 77], though the effect across a wider spatial distribution

remains unknown. In our recent study including an independent group of 80 epilepsy pa-

tients with iEEG performed by the Restoring Active Memory collaborative research group,

middle temporal inferior temporal and fusiform gyri spikes were shown to negatively impact
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memory encoding [66]. We aim to validate these findings on an independent dataset and

to better quantify the effect of spikes both regionally and with respect to the seizure onset

zone (SOZ).

Improper memory encoding and recall in correlation with interictal spiking places emphasis

on targeted therapy for cognitive dysfunction and potential improvement in the localization

of epileptic foci [13]. As spikes are helpful in localization of the SOZ only in some patients

[50, 98], understanding the differences between populations of spikes may better aid onset

localization. We hypothesize that regional interictal spiking will have a detrimental impact

on cognition by disrupting the SME, suggesting that altering epileptic networks to reduce

spiking in normal brain may positively impact cognition.

The overarching hypotheses that were tested during this study are 1) interictal spikes disrupt

memory encoding, 2) There is an observable functional anatomy in which these spikes lie,

3) Epileptiform activity outside of the seizure onset zone disrupt memory encoding whereas

spikes within the seizure onset zone are not deleterious to verbal memory encoding . We

address these hypotheses using automated spike detection in iEEG during a delayed free

recall task and identify the brain regions implicated in incorrect recall.

3.3 Methods

3.3.1 Subjects

Sixty-seven patients with drug resistant epilepsy at the Hospital of the University of Penn-

sylvania (N=16) and Thomas Jefferson University Hospital (N=51) were included in this

study. This included 45 males and 22 females, with an average age of 35.55 (Range=[15 57],

SD = 12.17). Additional subject information is given in Table 7. A total of 6144 intracra-

nial electrodes were implanted across all patients during clinical management and included
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both depth and subdural electrodes. All participants provided informed consent with pro-

cedures approved by the Institutional Review Board from the University of Pennsylvania

and Thomas Jefferson University Hospital.

3.3.2 Delayed Free Recall task

A delayed free recall episodic memory task was used to investigate memory encoding and

recall. For each encoding period of task, subjects were asked to memorize a list of words

composed of 15 common nouns, chosen at random and without replacement from a pool of

high-frequency English nouns [131]. The subsequent recall period involved subjects recol-

lecting the words presented during the encoding period in any order. Each subject received

12-60 such word lists to encode and recall in each session, the number of trials per subject as

well as the number of sessions depended on the subjects interest and availability for testing.

Figure 19: Delayed Free Recall Task. Blue indicates correctly recalled words and orange
indicates incorrectly recalled words. Subjects were presented 15 words during the encoding
period, followed by a distractor task that consisted of simple arithmetic problems. After
a tone, subjects engaged in free recall, vocalizing presented words in any order. Subjects
were presented 12-60 word lists in each session.

A computer program presented stimuli and recorded subject responses. Each trial began

with a plus sign to alert the subject to an upcoming presentation of words. The plus sign

appeared for 1600 ms followed by an 800-1200 ms blank interval. Each word was then

presented for 1600 ms followed by an 800-1200 ms blank interstimulus interval. Subjects

were asked to read each word aloud or to themselves to ensure attentiveness. Following

the presentation of a list of words, a short distracter period was introduced between the
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encoding and recall periods to reduce the recency effect often observed for free recall tasks

[104]. During this distracter period subjects were asked to solve a series of simple arithmetic

problems composed of A + B + C, where A, B, and C consisted of randomly selected one-

digit positive integers. Participants responded by typing their answer onto the keyboard,

with feedback provided through a high-pitched tone for correct answers and a low-pitched

tone for incorrect answers. Each distracter period lasted for 1600-2000 ms and was followed

by a 300 ms tone concurrent with a row of asterisks that signaled the start of the recall

period. The recall period lasted for approximately 4500 ms during which subjects were asked

to recall words in any order presented during the encoding period and their vocal responses

were recorded. Words that were presented during the encoding period and retrieved during

the recall period were considered correctly encoded and correctly recalled while those that

were not retrieved were considered incorrectly encoded. Furthermore, words from prior

encoding periods that were retrieved during a recall period were considered incorrectly

recalled.

The computer sent a pulse to an unused recording channel in order to synchronize the be-

havioral events during the memory task with the electrophysiological recordings. The time

stamps associated with these pulses were used to annotate the iEEG recordings. Annota-

tions and the iEEG recordings were converted to the Multiscale Electrophysiology Format

[16] and uploaded to IEEG.org in bipolar reference montage for analysis.

3.3.3 Preprocessing and removal of artifact channels

Sampling rates varied from 400 to 2000 Hz. Artifact channels were identified by calculating

the line length feature across each channel and those that differ by more than four times

the mean across all channels were removed [38]. This process is intended to remove grossly

artifactual channels.
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3.3.4 Spike Detection

Despite complex methods in literature, automatic spike detection has proved to be a difficult

task to perfect. Many detectors suffer from a high false positive rate, as some artifacts have

spike-like morphology [157]. Another reason for this difficulty is reflected in the poor inter-

rater reliability even among experts. Inter-rater reliability in spike marking may range

from 41% to 80% [48]. However, automatic spike detection is a reasonable solution for our

analysis because 1) we adopt a highly sensitive algorithm, and 2) our statistical analysis

compares two groups that will be equally affected by false positives. Thus, false positive

detections should be equally distributed within each individual any differences in means

will be investigated.

A detector based off of an algorithm published by Janca et al. was used to automatically

detect spikes for all patients [71]. This algorithm applies the signal envelope to identify

spikes by modeling background activity and determining transient outliers. Briefly, signals

were downsampled to 200 Hz before 10-60 Hz bandpass and 60 Hz notch filters were applied.

For each channel, the signal envelope was calculated with the absolute value of the Hilbert

transform. Moving windows of 5 s with 4 s overlap were used to model a log-normal

statistical distribution of the signal envelope. A threshold of κ1 * [Mode + Median] was

used for the initial detection of spikes, where κ1 = 3.65, determined empirically through

cross-validation by the original authors [71]. Following initial detections and to improve our

positive predictive rate, we added a spatial filter to identify spikes across multiple channels.

Any spikes within 200 ms on more than one channel were combined and treated as one spike.

A subset of candidate spikes was randomly selected across all patients and validated by a

board certified epileptologist (KD) to ensure adequate performance, specifically positive

predictive value.
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The encoding phase was defined to be the period after a word stimulus prior to the subse-

quent word stimulus. The number of spikes during this period was extracted for all words.

Any spike that involved one or more channels in the clinically determined SOZ was cat-

egorized as a seizure onset spike. Spikes were also categorized into anatomical locations

determined by the Talairach coordinates of the electrodes following co-registration of post-

implant CT to pre-implant T1-weighted MRI.

3.3.5 Statistical analysis

A linear model was used to test the effect of subject level variables (age and sex) versus

mean recall rate and mean spike rate across all patients. Welchs t-test was used to determine

differences in mean recall rates and spikes per electrode between left and right lateralized

patients. To model the effect of spikes on correct versus incorrect recall on a word-by-word

basis, we use a generalized linear mixed model (GLMM) with a logit link function. The

GLMM was fit to predict successful recall with the serial order of word presentation, age, and

the number of spikes as fixed effects (equation (3.1)). We varied the spike count according to

the region of interest. In addition, we add a random effect for each subject nested by session.

This allows us to model variability among subjects (with different baseline recall rates) as

well as variability among different sessions within a subject. A logit link function permits

us to model a binary outcome (recalled vs not recalled) and to interpret the estimated

coefficients probabilistically. The fixed effects represent the mean effect across all subjects

after removal of intersubject and intersession variability. To confirm the need for a mixed,

nested model, a likelihood ratio test was used to test model fit before and after sequential

addition of random effects and covariates (Table 3). Effect sizes (odds ratios) and confidence

intervals are reported with significance by Wald statistics when testing multiple parameters.

Likelihood ratios are reported when testing single parameters (regional analysis).
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3.3.6 Logistic GLMM

We model recall success as a binomial distribution represented by parameter πij that rep-

resents the probability of successful recall on word i for subject j given our parameters

β.

y|πij ∼ Binomial(1, πij)

πij = P (yij = 1|β)

Using maximum likelihood, we estimate β to maximize P (yij = 1|β) with a logistic gen-

eralized linear mixed model of the form below. With a logit link function, we predict the

log odds as a linear function of our fixed effects (age, word order, and spike count) as well

as our random effects. We use a nested random effects model to account for variability in

baseline recall rates for each person and, within each person, variability between sessions.

This is because we expect there to be correlation between trials within each session within

each subject. Below, b codes for variation in mean recall rate for subject j and ak(j) codes

for variation in recall rates for each session k within subject j.

log(
πijk

1− πijk
) = β1agej + β2word orderi + β3spike countijk + bj + ak(j)

bj ∼ N (0, σ2), ak(j) ∼ N (0, τ2j )

(3.1)

MLE was performed using the Laplace approximation within the lme4 package in R. For bet-

ter interpretation, odds (eβ) are reported with 95% confidence intervals calculated with the

profile likelihood method, which makes fewer assumptions regarding the estimates. For re-

gional analysis, spike count was replaced with that from each region and the model refitted.

Corresponding eβ3 ’s are reported. P values are determined using the likelihood ratio test,

which compares the difference between likelihood of a null model (without the corresponding
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region) to an alternative model with the region, which follows a Chi-squared distribution.

P values for regional analysis were corrected with the Holm-Bonferonni method.

3.3.7 Seizure onset zone

We sought to determine the effect of spikes on identified SOZs. For this analysis, 57 patients

with clinically localized SOZ were included. The clinical localization process varied for each

patient and was directed towards identification of the seizure etiology and onset region(s),

which may include clinical semiology, imaging, electrophysiological recordings, and expert

consensus. To determine the effect of spikes relative to the SOZ, channels were first divided

into seizure onset and non-seizure onset channels. Since spikes may occur across multiple

channels, if any channel within the SOZ was involved, the spike was categorized as a seizure

onset spike. Similarly, spikes completely outside the SOZ were classified as non-seizure

onset spikes. The GLMM was refitted with the addition of these two covariates as well as

an interaction term for clinical SOZ lateralization.

3.3.8 Regional analysis

All 67 subjects were included for the regional analysis. Each electrode was grouped into

regions corresponding to level 5 of the Talairach atlas, which includes Brodmann areas

(BA) and the hippocampus [87]. Due to variability in electrode positioning across patients,

independent GLMMs were fit on regions containing electrodes from 20 or more patients. For

each region, a null model containing serial word position and age was fit, and an alternative

model with the addition of regional spikes was fit. Significance was determined by the

likelihood ratio test and adjusted for familywise error with the Holm-Bonferroni method

[63].
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3.4 Results

A total of 244/6144 channels were identified as artifact and removed from the analysis.

Over 900 detected spikes were randomly selected from all patients and validated by a board

certified epileptologist (KD). Positive predictive rate was 72.2%. False positive rate was

15.5%. Of all detected spikes, 12.3% were deemed indeterminate. An example of detected

spike shown in Figure 20.

Figure 20: Example of spike spanning three bipolar channels on ECoG

Subjects on average recalled at a rate of 24% (Range : [4 − 48%], SD = 9%). Older

age was significantly associated with a decrease in mean recall rates (t(54) = −2.9, p =

0.005, R2
adj = 0.1), but not average spike rates (Figure 21A). There was no significant

difference in mean recall rates or mean spike rates by sex (Figure 21B). Initial words were

recalled with greater accuracy (Figure 21C). Patients with left lateralized onset regions

(N=23) had lower mean recall rates than patients with right lateralized onsets (N=26)
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(t(47) = 3.1, p = 0.003, d = 0.9) (Figure 22). In addition, a greater percentage of spikes

per electrode occurred ipsilateral to the seizure onset region (Left onset : t(36.3) = 4.2, p <

0.001, d = 1.33; Right onset : t(38.1) = 4.5, p < 0.001, d = 1.34) (Figure 22). Spike and

seizure onset zone co-localization is given in 26.

Figure 21: Mean recall percentage by (A) age, (B) sex, and (C) serial word position. Vertical
axes represent the mean recall percentage across all plots. (A) Each point represents a
patient with sex indicated by color. The horizontal axis indicates age. A best fit line is
plotted with a standard error ribbon. (B) Mean recall by sex; boxplots indicate median,
25th, and 75th percentiles. (C) The horizontal axis indicates the serial word position, where
position one is the first word presented in a given trial.
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Figure 22: Mean recall (A) and spike lateralization (B) grouped by seizure onset lateral-
ization. Boxplots indicate median, 25th, and 75th percentiles. * indicates significance at
p < 0.01, *** indicates significance at p < 0.001.
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Table 3: GLMM Model construction

Fixed Random Testing p

1 Patient Word order 378.73 ¡0.001
2 Word order Patient Age 9.93 0.0016
3 Word order + age Patient Sex ¡0.001 0.99
4 Word order + age Patient Session (Nest) 109.55 ¡0.001
5 Model: recalled word order + age + 1—patient/session

In each iteration, a null model is compared to an alternative model
to test one additional variable through the likelihood ratio test.
If the alternative model fits the data better, it is retained. Spike
counts are added to the final model (5) and tested in subsequent
analyses.
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During the encoding phase, an increased number of spikes across all electrodes was associ-

ated with decreased recall (χ2(1) = 8.64, p = 0.003). In patients with left lateralized SOZ,

spikes within the SOZ did not have a significant effect on recall. However, spikes outside of

the SOZ had a significant effect on recall. In patients with right lateralized onset regions,

spikes were not significantly associated with recall performance, whether within or outside

the SOZ (Table 4).
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Table 4: Estimated odds ratios of effect of spikes relative to the seizure onset zone

OR [95% CI] Z p

Right Lateralized SOZ (N=26)

Spikes within SOZ 0.994 [0.958 1.027] -0.331 0.7405

Spikes outside SOZ 0.991 [0.962 1.018] -0.56 0.5752#

Left Lateralized SOZ (N=23)

Spikes within SOZ 0.981 [0.928 1.036] -0.679 0.497

Spikes outside SOZ 0.934 [0.900 0.969] -3.593 0.000327*#

Estimated odds ratios of effect of spikes relative to the seizure
onset zone. A logistic GLMM model was fit to a binary re-
sponse variable indicating recall success (1) or failure (0). Co-
variates included spikes within the SOZ, outside the SOZ, and
interaction of each with clinical SOZ lateralization. ORs are
adjusted for age and serial word position. Patients with bi-
lateral onsets were not included. OR = odds ratio, CI =
confidence interval, significance determined by Wald statis-
tics. ∗significance at p < 0.05; # significant difference be-
tween left and right lateralized SOZ patients (increased odds
of recall for spikes outsize the SOZ if right lateralized: odds
= 1.062[1.0131.112], z = 2.513, p = 0.01).
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The top 10 regions from the regional analysis are given in Table 5. The odds ratios for

all regions are shown in Figure 23. Left temporal lobe structures such as the fusiform

gyrus (BA 37) and inferior temporal gyrus (BA 20) were most significant after multiple

comparisons correction. The middle temporal gyrus, specifically BA 21, was also significant

after correction. A plot of the percent change in epileptiform discharges during failed recall

are shown in Figure 24, separated by SOZ lateralization and the significant regions from

the above regional analysis. These three regions are shown along with electrode locations

across all subjects in Figure 25.
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Table 5: Regional effect of spikes

N L/R Region Odds [95% CI] P (adjusted)

22 L Fusiform Gyrus BA 37 0.810 [.753 .871] 33.7 <0.001***
45 L Inferior Tempo-

ral Gyrus
BA 20 0.919 [.888 .951] 23.9 <0.001***

43 L Middle Tempo-
ral Gyrus

BA 21 0.937 [.901 .974] 10.7 0.028*

21 L Fusiform Gyrus BA 36 0.917 [.867 .970] 9.47 0.053

24 L Peristriate cor-
tex

BA 19 0.848 [.755 .952] 8.1 0.106

22 L Superior Tem-
poral Gyrus

BA 22 0.931 [.876 .989] 5.37 0.472

28 R Superior Tem-
poral Gyrus

BA 22 0.955 [.911 1.000] 3.76 1

28 R Hippocampus Hippocampus 0.962 [.919, 1.007] 2.84 1
35 L Sup/Mid Tem-

poral Gyrus
BA 38 0.965 [.922 1.009] 2.47 1

47 R Inferior Tempo-
ral Gyrus

BA 20 0.976 [.947 1.006] 2.41 1

Number of patients with electrodes in corresponding regions are also shown, along with laterality. Each
region is derived from the Talairach atlas, level 5, shown with associated gyri or lobes. The effect of
each spike on the odds of recall are also given. Effect size and adjusted p values from the likelihood
ratio test are given after controlling for family-wise error with the Holm-Bonferroni method. BA =
Brodmann area *significant at p = 0.05, ***significant at p = 0.001, CI = confidence interval



CHAPTER 3. EFFECT OF INTERICTAL SPIKES ON COGNITION 67

Figure 23: Estimated odds of successful recall for each region. Mean odds of successful recall
per spike are shown along with 95% confidence intervals. Odds ¡1 indicate a decrease in
the odds of successful recall per spike. Red indicates significant after multiple comparisons
correction. BA = Brodmann Area. L/R = Left/Right hemisphere.
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Figure 24: Percent change in spike count during failed recall for each patient. Vertical
axis represents the percent change in spike count. The horizontal axis represents the left
temporal lobe as well as the significant left temporal regions from our regional analysis.
Boxplots represent the percent change of spikes across all patients with the given seizure
onset zone lateralization. Only the recall of words in serial position greater than 5 were
included to account for the primacy effect.
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Figure 25: Electrode coverage and significant regions. 6144 electrodes (blue dots) across
all patients are shown in a 3D view of the left hemisphere (A) and an axial slice (B) on a
template brain in Montreal Neurological Institute (MNI) space. BA = Brodmann Area
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Figure 26: Percentage of spikes in the seizure onset zone. This is calculated by dividing the
total number of spikes containing the seizure onset zone with the total number of spikes.
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3.5 Discussion

We showed that in patients with epilepsy, interictal epileptiform spikes that occur after word

presentation lead to greater likelihood of failed recall, which suggests that spikes disrupt

short term verbal memory encoding. This effect is primarily seen with left lateralized spikes,

which were more present in patients with left lateralized seizure onset zones. In addition,

spikes outside the seizure onset zone in left lateralized patients significantly reduced recall,

a finding not present in right lateralized patients. Finally, we observed that spikes in

specific temporal lobe structures functionally implicated in verbal word processing and

verbal memory were most impactful. Our observations support the importance of the

temporal neocortex in memory encoding and extend it by elucidating the spatial distribution

of spikes relative to the seizure onset zone, the lateralization of spikes, and the quantification

of the effect of spikes in the verbal word recall task.

As our findings rest on the accuracy of our spike detections, we vetted a random subset of

our spikes equally represented across all patients. In this group, our detections performed

with a positive predictive value of 72%. Furthermore, we observed an expected association

between spike and seizure onset lateralization (Figure 22).

The observation that spikes outside the SOZ affect recall greater than spikes within the SOZ

suggests that epileptic regions may have some degree of dysfunction at baseline that, in a

verbal word memory task, manifests most prominently in left lateralized patients (Table 4).

This is supported by previous neuropathological studies showing neuronal loss in more than

90% of temporal lobe epilepsies as detailed in a review by Sutula et al. [144]. In addition,

electrophysiological network studies have also shown dynamic uncoupling of the seizure

onset region [17, 154]. This finding has potential implications in the clinical realm. Clinical

tests are routinely used in an attempt to identify regions of eloquent cortex in order to weigh



CHAPTER 3. EFFECT OF INTERICTAL SPIKES ON COGNITION 71

the functional consequences versus the potential benefits of surgical resection. As new more

focal surgical techniques such as laser ablation have led to improved cognitive outcomes

by limiting damage to collateral structures [32], limiting the extent of resection may lead

to improved cognitive outcome. Spikes have previously been shown to provide adjunctive

information in the clinical mapping of the seizure onset region in certain populations [98],

and our results suggest that identifying spike populations, namely those that do not impact

cognition, may improve SOZ localization, surgical planning, and cognitive outcomes from

surgical resection.

The regional localization of spikes may also elucidate the function of underlying tissue.

Our regional analysis suggests that spikes in primarily left sided structures lead to poor

recall, which agree with previous studies on cognitive impairment that lateralize functional

disruption based on cortical interictal epileptiform discharges. Specifically, that the left

sided and right sided spikes produce verbal and spatial task impairments, respectively [1].

Spikes in the left inferior temporal gyrus (BA 20) and nearby fusiform gyrus (BA 37) most

significantly disrupted memory encoding. These regions form the ventral spatial pathway

of visual memory and are involved in visual processing of words. Numerous studies have

associated inferior temporal lobe function with working memory tasks in both humans and

primates [80, 111, 152]. Wagner et al. demonstrated through fMRI that the ability to

remember a verbal experience is predicted by the activation of regions in the left prefrontal

and temporal cortices [152]. Hamame et al. recently observed increased gamma activity

in the inferior temporal gyrus corresponding to increased visuo-spatial working memory

load, suggesting that this region acts as a visual sketchpad during memory maintenance

[57]. This, however, was a trial of only one patient, and we showed here in 67 patients that

spikes in this region likely interfere with memory encoding by interrupting mental imagery

of presented words.
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The fusiform gyrus (BA 37) specifically has been functionally implicated in word recogni-

tion and is referred to as the Visual Word Form Area (VWFA) in a thorough review by

McCandliss et al. in 2003 [99]. Literature in cognition implicates that a critical process in

visual word recognition groups the letters of a word together to an integrated perceptual

unit (a visual word form), a function the fusiform gyrus participates in. The VWFA within

the left inferior temporal cortex has been shown to have increased activity through fMRI

during visual word recognition as well as an Event Related Potential (ERP) roughly 250

ms after word presentation [22, 117]. Wagner et al. and Hamame et al., similarly found

correlated activity in the fusiform gyrus during verbal memory tasks [57, 152]. Our findings

support this body of literature and extend it by suggesting that spikes in the fusiform gyrus

may impede successful visual recognition of a word-form and maintenance of verbal mem-

ory. We showed in Figure 23 that in words that were not recalled, there was an increased in

spike rate in BA37 during the corresponding encoding period. Though we were not able to

determine a causal relationship between spikes and word recall, these differences begin to

appear as more words were shown in a given word list, indicating that the effect of spikes

may manifest as a patient finds greater difficulty in memorizing words.

There is extensive work covering the middle temporal lobes involvement in memory pro-

cessing, specifically regarding the medial structures such as the hippocampus and parahip-

pocampal gyrus [8, 34, 121, 137, 138]. Surprisingly, we did not find these structures to

be significantly affected by spikes, with the exception of Brodmann area 21. This region

lies laterally in the middle temporal lobe and its relationship to memory is unclear. Sev-

eral imaging studies showed that BA21 was involved with processing of auditory word-form

as well as sentence generation [4, 100, 168]. In this case, it may play a role similar to

the fusiform gyrus for auditory stimuli as subjects were ask to read each word aloud, but

additional work is necessary to further parse out this regions function in relation to memory.
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Of note, a recent study of ten patients with temporal lobe epilepsy showed that right-sided

hippocampal discharges significantly reduced performance in a memory retrieval task in

both humans and rats, but not encoding [77, 76]. Though we were unable to directly test

retrieval, our findings agree in that there was no effect of hippocampal spikes on encoding.

While the hippocampus is believed to play a role in the encoding and retrieval of uncon-

solidated memory [120], these results suggest that hippocampal spikes do not impede the

encoding process.

Furthermore, we found that spikes did not impede recall in patients with right lateralized

SOZs (Table 4). Taken into context with our previous findings showing that left sided

spikes are involved in memory encoding (Table 5), this can be explained by the lack of

spikes in the left hemisphere in right lateralized patients (Figure 22). However, even in

right lateralized patients there is increased spiking during the encoding of words that were

not recalled (Figure 24), which provides further evidence that the effect of spikes is regionally

dependent. Interestingly, Kleen et al. showed that the effect of spikes is lateralized to the

right hemisphere, suggesting it may be due to the laterality of epileptic foci in their cohort

of patients [76]. In an attempt to shed light on this, we conducted a separate regional

analysis only on right-lateralized patients, but no regions (on either hemisphere) reached

significance (Table 6).
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Table 6: Regional analysis of patients with right lateralized seizure onset zones.

N L/R Region Odds [95% CI] P (unadj)

21 R Hippocampus Hippocampus 0.943 [.879 1.011] 7.49 0.187
25 R Superior Temporal Gyrus BA 38 0.988 [.943 1.034] 3.67 0.596
21 R Superior Temporal Gyrus BA 22 0.971 [.910 1.035] 3.11 0.683
24 R Inferior Temporal Gyrus BA 20 0.970 [.934 1.007] 3.09 0.686
22 R Fusiform Gyrus BA 37 1.046 [.989 1.106] 2.68 0.748
28 R Peristriate cortex BA 19 0.967 [.904 1.035] 2.32 0.803
28 R Middle Temporal Gyrus BA 21 0.982 [.939, 1.028] 1.99 0.851

Regional analysis was performed separately for each region for only right lateralized patients.
P values are unadjusted.
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The question of whether spikes localize to the seizure onset zone is a topic of much debate.

Marsh et al [98] showed that in some patients, spikes localized to the seizure onset zone. We

find a similar result, where in 4 patients greater than 70% of spikes occurred in the SOZ.

However, the majority of our patients’ spikes did not localize to the SOZ (t66 = −7.8, p <

0.001) and in fact resided outside 26.

Inferior temporal lobe involvement in memory encoding is also supported in a recent finding

by the Restoring Active Memory collaborative research group [66]. Interestingly, they re-

ported an impact of spikes in parietal lobe structures and in the SOZ, which we did not find.

In fact, our analysis suggests that spikes impair recall only if outside the SOZ, and in these

cases, only in left lateralized patients. Furthermore, our analysis investigated sub-lobar

regions with greater specificity at the level of Brodmann areas. For example, our strongest

effect was found in the left fusiform gyrus, part of the inferior temporal lobe, which has

associations with verbal word formation instead of with regions traditionally thought to be

involved in memory. While some of the differences between the two studies are difficult

to reconcile, we believe the main complementary findings support the reproducibility of

our study and are an important step to understanding the impact of spikes on cognition.

Furthermore, by incorporating the ieeg.org platform into our basic laboratory organization

in Penns Center for Neuroengineering and Therapeutics, data sharing and reproducibility

become turnkey, and do not require any additional effort. This eliminates a huge barrier to

experimental validation, where post-hoc porting of annotations, experimental details, code

etc. can sometimes take longer than original experiments.

Interpretation of the model estimates show that each spike in BA37 reduces the odds of

recall by 19%, where in BA20 the odds of recall are reduced by roughly 8% per spike.

Figure S3 show the corresponding predicted recall percentages per spike estimated from our

model. This implies that increased spiking increases the probability of failed recall and is



CHAPTER 3. EFFECT OF INTERICTAL SPIKES ON COGNITION 76

not necessarily an all-or-nothing mechanism. These findings show that spikes focally and

additively impact function in a spatially dependent manner within a given region. Finally, it

is important to note that spike occurrence across BA20, 21, and 37 are correlated (r > 0.45),

which is expected as these regions may play similar functional roles, though further work is

necessary to determine whether this contribution is additive.

3.5.1 Limitations

Although automated spike detection is a difficult challenge to perfect and validate in the

field, we believe an automated algorithm that performs with acceptable true positive rate

allows us to still make comparisons between groups. Furthermore, an automated algo-

rithm allows objective detection of spikes that does not suffer from differences in inter-rater

reliability.

We have shown that epileptiform discharges in various regions of the temporal lobe affect

verbal word processing and memory encoding. Our ability to discern influence in other

structures is limited by electrode coverage (Figure 25). Notably, our electrodes are primarily

cortical, with the exception of medial temporal subcortical structures interrogated by depth

electrodes.

There is rich literature supporting the notion that interictal epileptiform discharges are

associated with cognitive impairments, described by Aarts et al. as transitory cognitive

impairment (TCI) [1]. Though spikes may influence memory and other cognitive processes,

it remains unclear whether spikes should be treated in clinical management of otherwise

well controlled epilepsy [11]. In addition, while we have shown that memory encoding is

affected by spikes in a spatially distributed manner, the magnitude of the effect is fairly

small depending on the region (roughly a 5% decline in probability for spikes outside the

seizure onset zone (Figure 27). Coupled with the observation that recall percentage is
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limited to begin with, the consequence of spikes on overall patient cognition and quality of

life needs to be further studied.

Figure 27: Posterior Predictive Probability. The vertical axis indicates the probability of
recall for a given word presentation. The horizontal axis indicates the spike count in a
given region for a given word presentation. The predicted probabilities and 95% confidence
interval are plotted, which are derived from a predictions from 100 bootstrapped samples
of 1000 word presentations.
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3.5.2 Conclusion

In this study we have shown the interictal epileptiform spikes impede memory encoding

when present outside the seizure onset zone and within the left temporal lobe, specifically

in the inferior temporal and fusiform gyri. These results suggest that spikes are not benign

and can disrupt visual word recognition as well as verbal memory processes. In addition,

our findings support the use of surgical interventions that spare cortex outside of the seizure

onset zone. Further study is warranted to determine the magnitude of this effect relative

to known cognitive deficits in epilepsy patients.
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Table 7: Cognitive Spike Patient Table

IEEGID Patient Hospital Age Sex Lateralization Onset Sessions Mean Recall Percentage
I022 P001 1 HUP 38 M RIGHT R Temporal 5 0.23
I022 P002 2 HUP 20 M BILATERAL B Temporal 2 0.18
I022 P004 3 HUP 36 M LEFT L Temporal 6 0.12
I022 P005 4 HUP 25 M RIGHT R Limbic 4 0.23
I022 P006 5 HUP 18 F BILATERAL B Limbic, R Temporal 3 0.23
I022 P007 6 HUP 27 F RIGHT R Limbic, R Temporal 2 0.23
I022 P008 7 HUP 55 F BILATERAL B Limbic 2 0.17
I022 P009 8 HUP 18 M UNLOCALIZED 3 0.35
I022 P010 9 HUP 38 F UNLOCALIZED 1 0.2
I022 P011 10 HUP 40 M LEFT L Temporal, L Occipital 4 0.3
I022 P012 11 HUP 27 M BILATERAL B Temporal 2 0.28
I022 P013 12 HUP 20 M LEFT L Frontal 4 0.22
I022 P014 13 HUP 37 M RIGHT R Temporal 3 0.25
I022 P015 14 HUP 42 M RIGHT R Occipital 2 0.35
I022 P016 15 HUP 30 F LEFT L Frontal 3 0.21
I022 P017 16 HUP 40 M RIGHT R Frontal 1 0.13
I027 P001 17 TJUH 25 M UNLOCALIZED 3 0.32
I027 P002 18 TJUH 40 F RIGHT R Temporal, R Limbic 4 0.17
I027 P003 19 TJUH 39 M LEFT L Limbic 1 0.22
I027 P004 20 TJUH 34 F RIGHT R Temporal 10 0.22
I027 P006 21 TJUH 44 M LEFT L Temporal 1 0.16
I027 P007 22 TJUH 29 M LEFT L Central 1 0.04
I027 P008 23 TJUH 43 M BILATERAL B Temporal 4 0.24
I027 P009 24 TJUH 21 M LEFT L Frontal 3 0.2
I027 P010 25 TJUH 56 M LEFT L Temporal 3 0.17
I027 P011 26 TJUH 57 F LEFT L Temporal, L Limbic 3 0.1
I027 P012 27 TJUH 20 M LEFT L Frontal 3 0.27
I027 P013 28 TJUH 41 M RIGHT R Temporal 2 0.21
I027 P014 29 TJUH 34 F LEFT L Temporal 4 0.27
I027 P015 30 TJUH 52 F RIGHT R Temporal 1 0.37
I027 P016 31 TJUH 44 M UNLOCALIZED 3 0.45
I027 P017 32 TJUH 44 F BILATERAL B Temporal 4 0.14
I027 P018 33 TJUH 33 M RIGHT R Frontal 4 0.32
I027 P019 34 TJUH 23 F RIGHT R Temporal 5 0.29
I027 P020 35 TJUH 50 F UNLOCALIZED 2 0.35
I027 P021 36 TJUH 33 M LEFT L Temporal 3 0.38
I027 P022 37 TJUH 44 M LEFT L Temporal 4 0.23
I027 P023 38 TJUH 15 M RIGHT R Occipital, R Temporal 4 0.46
I027 P024 39 TJUH 23 M RIGHT R Temporal, R Frontal 4 0.37
I027 P025 40 TJUH 53 M RIGHT R Temporal, R Limbic 2 0.12
I027 P026 41 TJUH 53 M LEFT L Temporal 2 0.18
I027 P028 42 TJUH 29 M BILATERAL B Temporal 2 0.48
I027 P029 43 TJUH 35 M BILATERAL B Temporal 3 0.23
I027 P030 44 TJUH 48 F RIGHT R Frontal, R Temporal 8 0.18
I027 P031 45 TJUH 20 F UNLOCALIZED 15 0.44
I027 P032 46 TJUH 35 M LEFT L Temporal, L Frontal 3 0.15
I027 P033 47 TJUH 20 M BILATERAL L frontal, R Temporal 9 0.31
I027 P034 48 TJUH 52 F RIGHT R Temporal 3 0.26
I027 P035 49 TJUH 26 F LEFT L Frontal 3 0.25
I027 P036 50 TJUH 20 F RIGHT R Temporal, R Frontal 2 0.3
I027 P037 51 TJUH 31 M RIGHT R Temporal, R Frontal 2 0.17
I027 P038 52 TJUH 50 M UNLOCALIZED 3 0.21
I027 P039 53 TJUH 18 M RIGHT R Temporal 3 0.26
I027 P040 54 TJUH 44 F LEFT L Temporal 2 0.14
I027 P041 55 TJUH 28 M RIGHT R Temporal 3 0.35
I027 P042 56 TJUH 51 M BILATERAL B Temporal 5 0.16
I027 P043 57 TJUH 38 M LEFT L Temporal 1 0.19
I027 P044 58 TJUH 26 F LEFT L Frontal 3 0.12
I027 P045 59 TJUH 56 M LEFT L Temporal 2 0.17
I027 P046 60 TJUH 47 M RIGHT R Temporal 1 0.28
I027 P047 61 TJUH 26 M RIGHT R Frontal 3 0.26
I027 P048 62 TJUH 25 M RIGHT R Frontal 1 0.21
I027 P049 63 TJUH 27 M RIGHT R Frontal 1 0.23
I027 P050 64 TJUH 20 F UNLOCALIZED 3 0.42
I027 P051 65 TJUH 55 M LEFT L Frontal 1 0.18
I027 P053 66 TJUH 37 F RIGHT R Frontal 3 0.34
I027 P054 67 TJUH 57 M LEFT L Temporal 2 0.2

Patient demographics and experimental information. Pt = Patient, Hosp = Hospital, Ons = onset lateralization, Sess = total
number of sessions.



Chapter 4

Bursts as a biomarker of epileptogenesis

4.1 Abstract

Up to 53% of patients with severe traumatic brain injury (TBI) develop spontaneous recur-

rent epileptic seizures. The ability to predict epileptogenesis in these patients may reduce

the burden of post-traumatic epilepsy by enabling earlier interventions in the disease process

as well as personalized therapy according to the likelihood of developing epilepsy. Here, we

use a two-stage machine learning detection algorithm and analyze the utility of postulated

epileptiform spikes and bursts as potential electrographic biomarkers of epileptogenesis in

a rat model of TBI.

Hippocampal depth recordings from 23 rats monitored continuously for a one-week pe-

riod three months following a fluid-percussion-induced traumatic brain injury (17) or sham

surgery (6) were analyzed. All recordings were obtained prior to first seizure. Eight of the

17 rats with injury developed spontaneous seizures after the initial recording period. Can-

didate bursts were detected and automatically classified into rhythmic bursts, epileptiform

bursts, and artifact. Permutation tests across rats were used to assess statistical significance

in burst rate and duration across three groups (sham, no-seizure, and seizure).

Epileptiform bursts were detected in all groups that received surgery and electrode implan-

tation. Three subtypes of bursts were detected and subsequently classified into rhythmic

80



CHAPTER 4. BURSTS AS A BIOMARKER OF EPILEPTOGENESIS 81

bursts, epileptiform bursts, and electrode artifact. Among the 17 rats that received injury, a

subgroup of those that developed seizures displayed significantly greater epileptiform burst

rate than controls.

Our results show that in this sample of 17 rats, there is a trend that epileptiform bursts

are more prevalent in rats that develop seizures versus rats that do not. There was no dif-

ference in interictal spikes between groups. However, there was a significant effect between

a week 8 and a week 10 recording, thus limiting the impact of our findings. Furthermore,

the observation of bursts in sham animals suggests that these patterns may represent hip-

pocampal theta bursts seen in previous studies, although the spectral characteristics do not

match exactly. This work encourages further investigation of bursts as a potential biomarker

of epileptogenesis, but requiring simultaneous EMG and video recording to determine the

cause of the observed bursts.

4.2 Background

In patients with severe traumatic brain injury, 17-53% will develop spontaneous seizures and

subsequently post-traumatic epilepsy (PTE) [6, 46]. These patients constitute up to 20% of

all symptomatic epilepsies, and often suffer from significant disability [3]. The time to first

unprovoked seizure is variable among patients who develop PTE and the risk is present more

than 10 years after injury, which enables possibilities for intervention [20]. Identification of

biomarkers of epileptogenesis would facilitate the development of interventions necessary to

reduce the burden of disease by identifying pathogenic regions, tracking disease progression,

providing markers of drug efficacy for animal trials, and enriching clinical trials [35, 37].

In this study, we use a validated rodent model of PTE induced by fluid percussion to

evaluate electrographic epileptiform bursts as biomarkers of epileptogenesis [73]. Lateral

fluid percussion injury (LFPI), a widely used preclinical model for closed head injury, results
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in approximately 50% development of PTE. As each injury is applied in a controlled fashion,

the EEG recording post-injury but before seizure development may reflect a pathogenic

process towards spontaneous seizures that can be differentiated between rats that do not

develop PTE and rats that do.

We focus our analysis around epileptiform bursts captured on EEG. Epileptiform bursts of

activity have been previously described in literature but have not been well characterized

[47, 105, 126, 132, 164]. Though bursts have previously been shown to be associated with

cerebral injury and neonatal epilepsy [132, 164], their exact significance is still unknown. In

fact, it is uncertain whether these patterns represent ictal or interictal events, reflective of a

term recently used to describe them - brief potentially ictal rhythmic discharges (B(I)RDs)

[164]. Electrographically they have characteristics similar to seizures, and in particular to

seizure onsets [28], but are shorter in duration. In this study, we define bursts as less than 10

seconds after historic clinical conventions for subclinical seizures [165]. Epileptiform bursts

in the rodent theta band (7 Hz) have also been noted previously in a rat model of FPI at

the site of injury and associated with increased glial activity on histological examination

[25], though these bursts were recorded from epidural electrodes around the lesion versus

the hippocampal depth electrodes in our dataset. Further quantitative analysis would be

worthwhile to determine significance and trends in the context of epileptogenesis.

Continuous datasets of this length would require quantitative analyses to determine signif-

icant patterns in relevant EEG waveforms. In this domain, automated machine learning

algorithms are suitable due to the vast quantities of data that need to be analyzed as well as

the quantitative nature of EEG. Interfacing with the International Epilepsy Electrophysiol-

ogy Portal (ieeg.org), algorithms can be quickly and transparently executed on the relevant

datasets. For burst detections, we employ a supervised two stage algorithm, where the

first stage focuses on a hypersensitive detection screen and the second stage is focused on



CHAPTER 4. BURSTS AS A BIOMARKER OF EPILEPTOGENESIS 83

(a) Picture of fluid percussion injury (FPI) appa-
ratus

(b) Image of fluid percussion injury (FPI) appara-
tus

Figure 28: Picture and schematic of fluid percussion setup. A pendulum induced roughly 2.6
- 3.3 atm of pressure through the saline transducer to inflict severe lateral fluid percussion
brain injury

classification aided by expert markings by a board certified epileptologist (DM).

4.3 Methods

4.3.1 Dataset

The data collection is described in detail by Kharatishvilli in 2006 and are briefly sum-

marized [73]. Twenty-three Harlan Sprague-Dawley rats received severe TBI induced by

lateral fluid percussion based injury (LFPI) (N=17) or sham surgery without LFPI (N=6).

The fluid percussion aparatus (28a) and schematic (28b) are shown in Figure 28 .

One to two weeks post-injury, a depth electrode (� 0.127 mm) was implanted ipsilaterally

to the trauma (6 mm caudal to the bregma, 4.6 mm lateral from the midline, and 7.0 mm

ventral to the surface of the skull according). Activity was monitored using the Nervus

EEG Recording system with a Nervus magnus 32/8 amplified and filtered (high-pass with

0.3 Hz cutoff, low-pass with 100 Hz cutoff). Analyses are based on one week of continuous

recordings 8 and 10 weeks post-injury 29.
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Figure 29: Experimental overview. Fluid percussion injury (FPI) administetered on day 0,
followed by implant and two recording periods.

After this recording period, eight rats developed spontaneous seizures and were categorized

into the seizure (SZ) group. Nine rats did not develop spontaneous seizures and were

categorized into the non-seizure (Non-SZ) group. None of the six rats that underwent sham

surgery developed seizures. Readers are referred to the original publication by Karastishvili

for further experimental details [73].

4.3.2 IEEG Portal

The datasets were uploaded to the International Epilepsy Electrophysiology Portal (www.ieeg.org).

Analysis was conducted using in-house Matlab algorithms described below interfacing with

the IEEG Matlab toolbox (v1.13).

4.3.3 Burst detection

The burst detection and classification scheme is given in Figure 30. A hypersensitive burst

detector was developed based on the line-length feature [38]. Line-length is a calculated

feature that provides a measure of amplitude as well as frequency and has been shown to be

effective in detecting seizures and other transient changes in the baseline EEG. Continuous

line-length passing a threshold 2 times the standard deviation of a surrounding background

window was selected as burst candidates 31. Detections with durations greater than 0.5

seconds were retained. These parameters were optimized to capture a group of manually
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marked patterns and is intended to be highly sensitive. Upon viewing, these candidates

included different types of bursts as well as electrode artifacts, prompting a need for further

refinement.

Figure 30: Schematic of burst detection. 1. A hypersensitive detector is used to segment the
EEG before a 2. 8-12 Hz power threshold is used to extract rhythmic bursts. The group
with more complex frequency activity is then separated using a random forest classifier
trained on 3 rats that performed with 90% cross-validation accuracy.
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Figure 31: Example of hypersensitive detection. Epileptiform burst (top) and corresponding
feature value (bottom) intended for hypersensitive detection. The red line indicates the
feature values of the pattern of interest, and the black lines indicate background.

4.3.4 Burst classification

Bursts were then classified into three groups (Rhythmic bursts, epileptiform bursts, and

artifact) in two steps.

Rhythmic bursts were observed to have a clear single dominant frequency with no mod-

ulation. To separate rhythmic bursts, candidate bursts from all rats were combined and

bursts with greater than 60% of power in the 8-10 Hz or 10-12 Hz bands were classified as

rhythmic. This threshold extracted bursts with one dominant frequency range.

The remaining candidate bursts were observed to be epileptiform or artifact, both with

more complex frequency distributions and waveforms. To separate epileptiform bursts from

artifacts, a training set was created, where a board certified epileptologist (DM) classified
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100 bursts from three rats each. Spectral and time-domain features were extracted from

each burst, which were selected by manual observation of the frequency and time domain

signals belonging to epileptiform bursts and artifacts. These features included power (1-4,

4-8, 8-10, 12-14, 14-30, 30-60 and 60-90 Hz bands), area, zero crossings, line length, as

well as autoregressive (AR) coefficients from a 5th order AR model. Since many of these

features were expected to be uninformative and reduce the performance of the algorithm,

feature selection was performed on the first three rats using a penalized logistic regression

model using 10-fold cross-validation. The final set of features corresponding to optimal

cross-validation was selected.

A random forest classifier with 300 trees was then trained to separate artifacts from epilep-

tiform bursts using this reduced feature set. To assess algorithm performance, the model

was trained on 30% and tested on 70% of the training set, resulting in 89% accuracy (0%

false positive rate, 13% false negative rate) in classifying epileptiform bursts (positives)

from artifacts (negatives). A final model was trained on the entire training set and was

subsequently used to remove artifacts from all 23 rats.

4.3.5 Statistical analysis

The rate of epileptiform and rhythmic bursting per day was extracted from all rats. Fur-

thermore, the duration of each burst was extracted. One-sided T tests were conducted to

determine the difference in the rate and duration of each type of burst between the sham,

non-seizure, and seizure rats. Significance was determined using a non-parametric permu-

tation test iterated 10000 times, where in each permutation, the group of each rat was

randomly permuted.
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4.3.6 Results

Two distinct types of candidate bursts were identified. Representative examples of each and

the correspond frequency spectrum is shown in Figure 32. The clustering step separated

over 15,492 initial bursts for roughly 2432 epileptiform bursts and 6399 rhythmic bursts

and removed 6661 artifacts across 332 hours of recordings. No differences were found in the

number of rhythmic bursts between the sham, non-seizure, and seizure groups.

Figure 32: Example of epileptiform and rhythmic burst with corresponding FFTs. Note
that each contains a primary peak between 8-12 Hz, though the epileptiform burst contains
more complex frequencies. The additional frequencies appear to be harmonics at first, but
upon closer inspection, these higher frequencies are visible on the time domain signal.

Similarly, no significant difference was seen in the number of epileptiform bursts (p = 0.8,

Wilcoxin rank sum), though variability existed between rats (Figure 33). This difference

is noted to exist between the two recording periods (Week 8 vs Week 10) (Figure 34,36).

There was also no difference in epileptiform burst duration (37). The number of rhythmic

bursts as well as artifacts are shown in Figures 38 and 39.



CHAPTER 4. BURSTS AS A BIOMARKER OF EPILEPTOGENESIS 89

Figure 33: Epileptiform bursts for all groups. Note skewed boxplot for the SZ group. There
was no significant differences between groups by Kruskal-Wallis test.

Figure 34: Epileptiform bursts per hour per group, separated by Week. It is noted that
there is a significant difference between Week 8 and Week 10 rats.
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Figure 35: Note that three of seven rats in the SZ group had elevated epileptiform bursts
per hour.

Figure 36: Epileptiform bursts per rat by week from TBI. There is a significant difference
between the epileptiform bursts for rats from Week 8 vs Week 10 (Wilcoxon Rank Sum,
p¡0.001)



CHAPTER 4. BURSTS AS A BIOMARKER OF EPILEPTOGENESIS 91

Figure 37: Duration of Epileptiform bursts per rat. There is no relationship between the
week of first seizure and the number of bursts per day.

Figure 38: Rhythmic Bursts per rat, grouped by Week from TBI. Note that the number of
detections mirror epileptiform bursts
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Figure 39: Artifacts Per Rat

Figure 40: Circadian pattern of epileptiform bursts. Note that the x axis does not represent
real time.
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Figure 41: Circadian pattern of rhythmic bursts. Note that the x axis does not represent
real time.

4.4 Discussion

In this study, we investigated interictal epileptiform bursts in hippocampal depth recordings

in rats that received lateral FPI as well as a sham surgery group. Approximately half of

the rats that received lateral FPI developed seizures over the course of the year, and we

found that in this group, the number of epileptiform bursts were significantly greater in

both count and duration.

4.4.1 Rhythmic Bursts

The bursts described here as rhythmic bursts have one dominant frequency in the 10 Hz

range but with significantly smaller frequency components in the 20 and 30 hz range (Fig2).

There was no difference in the frequency of rhythmic bursts between the sham, non-seizure,
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and seizure groups. This may be explained by the origin of these oscillations. These bursts

may correspond to movement artifacts, such as grooming or chewing (Winson, 1974), as

well as representative of nonspecific activity associated with aging in this particular strain

(citation). Due to this, it was important to separate them in the analyses.

4.4.2 Epileptiform Bursts

The epileptiform bursts detected in this analysis have a dominant frequency in the 10 Hz

range, similar to rhythmic bursts, but have a much more prominent higher frequency com-

ponent in the 20 Hz and 30Hz (Fig 2). The lower amplitude 20Hz and 30Hz components

at first appear to be harmonics, but from manual observation there were clear higher fre-

quency components to each of these bursts. The complexity of the signal is similar to that

described by DAmbrosio [25], though the specific frequencies do not completely align. In

DAmbrosios experiments, the epileptiform patterns had peaks in the 7Hz, 15Hz, and 21Hz

range. The reason for these differences is unclear, and may reflect differences in hardware

or software or a different underlying physiologic process altogether. These bursts may be

a consequence of abnormal firing associated with increased mossy fiber sprouting originally

seen on histology in animals with PTE [73].

Furthermore, as interictal bursts have not been well characterized before, this study at-

tempts to quantify and describe different kinds of bursts seen in this dataset. While many

bursts are observed that are rhythmic with one dominant frequency, and many bursts are

clearly epileptiform, the delineation may be less clear and difficult to classify even to a

trained eye. We see here a separation of bursts into rhythmic and epileptiform. Further

study of these patterns may address the significance of signal complexity in the context of

epileptogenesis.

We also found that the bursts in the epileptic group were on average of greater duration
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than the sham group and non-seizure group (Fig 5). This trend is an interesting finding that

may indicate that both the count and length of a burst contain information. We speculate

that longer bursts may indicate greater severity of injury and a reduced ability of control

mechanisms to inhibit bursting. It is plausible that if bursting activity continues longer

than a threshold, propagation leads to clinical seizures.

It is difficult to reconcile the observation that epileptiform bursts occurred in all groups,

including the sham group. Previous human studies have attributed epileptiform discharges

to cerebral injury, and presence of these bursts in the sham group may reflect surgical or

electrode implantation injury. It is also plausible that the increased frequency of bursts

may correlate with an underlying epileptogenic process. Thus, more severe trauma (e.g.

through FPI) may lead to higher frequency, longer duration bursts that reflect cerebral

injury and leads to a higher incidence of epilepsy [3]. It is important to note that the rats

were follow-up for roughly one year before sacrifice, and thus it cannot be excluded that

many of the rats would have developed epilepsy given a longer follow-up. However, there

was no correlation between the number of bursts of any kind and the time to first seizure.

4.4.3 Spikes

The exact significance of interictal spikes in the context of epilepsy is a topic of debate.

Interictal spikes are often used to aid in the diagnosis of epilepsy, and many papers have

suggested that they may help localize epileptogenic tissue and possibly the prediction of

seizures [19, 67, 115, 155]. In this particular analysis, we do not see any differences in the

frequency of spikes between the sham, non-seizure, and seizure group.

4.4.4 Limitations

There are several limitations to this study. First, this analysis is based on recordings

captured during a relatively brief window of time into a presumably longer epileptogenic
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process. Although we did not see any trends in burst counts or duration over the one-

week recording, the time scale may be too small to draw a significant conclusion. Further

analysis should be performed on numerous recordings with longer durations to identify

longitudinal trends. In addition, having more animals for longer durations will allow us to

assess relationships between these patterns of EEG and time to first seizure, which may

have a better defined relationship irrespective of time of monitoring.

Second, there was variability between rats in each group. Some rats in the seizure group had

very few epileptiform bursts during their recordings, while several rats in the non-seizure

group had more epileptiform bursts than expected. The bursts in these rats were manually

reviewed and determined to be correctly classified. There are several possible explanations

for this variability. Rats that developed seizures but were observed to have relatively few

interictal bursts may have a slower, more chronic epileptogenic process, and bursts would

be seen if recorded closer to first seizure. Alternatively, this may suggest that bursts are

only part of the picture, and some epileptogenic processes may be captured by different

biomarkers than what was studied. Thus, we believe that bursts may only be a proxy or

endophenotype of epileptogenesis and a final prediction model will need to be informed by

other features as well.

Finally, we make the assumption during our statistical analysis that burst counts per day

are independent and identically distributed. However, we did not see a significant linear

trend when viewing burst counts over times, and believe it is a valid assumption given the

relatively short time window in the process of epileptogenesis.

4.4.5 Conclusions

In this study we have analyzed spikes and bursts in a rat fluid percussion model of traumatic

brain injury, and found that the group that developed seizures had a greater number of
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epileptiform bursts that were also longer in duration relative to rats that did not receive

injury. These differences were not seen with more rhythmic bursts or spikes. We believe

that the epileptiform bursts may be a marker of cerebral injury or epileptogenesis that

deserves further study as a potential biomarker of the epileptogenic process post-injury.



Chapter 5

Bursts related to seizure onset

5.1 Abstract

Brain regions are localized for resection during epilepsy surgery based upon rare seizures

observed during a short time period of intracranial EEG (iEEG) monitoring. Interictal

epileptiform bursts, which are more prevalent than seizures, may provide complementary

information to aid in epilepsy evaluation. In this study, we leverage a long-term iEEG

dataset from canines with naturally occurring epilepsy to investigate interictal bursts and

their electrographic relationship to seizures. Four dogs were included in this study, each

previously monitored with continuous iEEG for periods of 475.7, 329.9, 45.8, and 451.8 days

respectively for a total of over 11,000 hours. Seizures and bursts were detected and validated

by two board-certified epileptologists. A published Bayesian model was applied to analyze

the dynamics of interictal epileptic bursts on EEG and compare them to seizures. In three

dogs, bursts were stereotyped and found to be statistically similar to periods before or near

seizure onsets. Seizures from one dog during status epilepticus were markedly different than

other seizures in terms of burst similarity. Shorter epileptic bursts explored in this work

have the potential to yield significant information about the distribution of epileptic events.

In our data, bursts are at least an order of magnitude more prevalent than seizures and

occur much more regularly. Our finding that bursts often display pronounced similarity to

seizure onsets suggests that they contain relevant information about the epileptic networks

98
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from which they arise and may aide in the clinical evaluation of epilepsy in patients.

5.2 Background

Prior to surgical resection, patients with neocortical epilepsy typically undergo intracranial

EEG (iEEG) monitoring to localize the seizure onset zone. Unfortunately, after undergoing

extensive pre-surgical evaluation often lasting several weeks, only ∼50% of patients with

neocortical epilepsy will become seizure-free or have a significant reduction in their seizure

burden following surgery [88]. A long-standing goal of the epilepsy research community is to

identify electrophysiological biomarkers of epileptic networks and their dynamics to better

target anti-seizure therapies, particularly surgery and implantable devices. The identifi-

cation and validation of these biomarkers necessitates long-term iEEG recordings through

which many repeated observations can be detected and analyzed.

In prior work from our lab, we presented recordings from a novel implantable device that

continuously records iEEG for prolonged periods [27]. Six dogs with naturally occurring

cryptogenic localization related epilepsy were monitored for over 11,000 hours with 16 in-

tracranial electrodes, eight implanted over each hemisphere. Over 200 ictal events which

showed remarkable similarity to human seizures were recorded across these canines. Back-

ground EEG and interictal bursts of epileptiform discharges in these animals were also

indistinguishable from human iEEG recordings. This work validated canines with spon-

taneous seizures as a promising model of human epilepsy and provides a rich dataset of

unprecedented length for biomarker detection and analysis.

One potential biomarker of interest is interictal bursts observed on human iEEG as well

as on our canine recordings. These bursts have been described in various studies as brief

rhythmic discharges (BRDs) and brief potentially ictal rhythmic discharges (B(I)RDs) [2,

27, 47, 105, 126, 164] and have been associated with epilepsy and cerebral trauma. These



CHAPTER 5. BURSTS RELATED TO SEIZURE ONSET 100

patterns exhibit similarities to electrographic seizures in that they are paroxysmal, stereo-

typed, and can evolve temporally and spatially. However, it is currently not known how

these epileptiform bursts relate to epileptic networks, their dynamics, or if they quanti-

tatively resemble epileptic seizures. Some investigators differentiate between bursts and

seizure by an arbitrary duration set at 10 seconds, which we investigate and address in

the discussion below. Furthermore, since interictal bursts occur much more regularly than

seizures, they may aid in the localization of epileptic networks for surgical resection or serve

as an important feature in seizure prediction.

The primary goal of this study is to investigate interictal bursts and to determine their

relationship to clinical seizures on continuous iEEG from canines with naturally occurring

epilepsy. Specifically, we aim to characterize interictal bursts and determine their dynamic

similarity to seizures. Assessing the relationship between bursts to well-established seizures

will allow us to determine the importance of these epileptiform discharges and to justify

future in-depth studies of these interictal patterns. Furthermore, we can improve our un-

derstanding of how these bursts relate to seizures and potentially shed light on mechanisms

of seizure onset and propagation. A secondary goal of this study is to focus on the chal-

lenges presented by new devices that continuously monitor and process human data over

long periods - ”big neural data”. This work has evolved and improved steadily over recent

years, embodied in devices to detect, predict and respond to seizures in several new im-

plantable devices [27, 41, 102]. Traditionally, iEEG is interpreted by human readers and

marked by hand. The large archive of continuous data analyzed for this project required

rigorous, automated methods for detecting and processing bursts of activity. In this study

we leverage automated, machine learning approaches to data reduction to study interictal

bursts in data streams too long and complex to be marked manually by human readers.

These methods offer more flexibility and the ability to learn patterns from data, a substan-
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tial improvement from rule-based methods employed in epilepsy monitoring equipment and

implantable anti-seizure devices currently being deployed.

5.3 Methods

5.3.1 Dataset

Four dogs originally described by Davis [27] were included in this study each monitored

with continuous iEEG for periods of 475.7, 329.9, 45.8, and 451.8 days [27] (Figure 42). All

dogs were observed to have spontaneous focal epilepsy of unknown etiology with secondary

generalization. All dogs exhibited focal onset seizures with and without generalization. The

dogs were normal on physical and neurological exam with no history of trauma. The dogs

were housed at BioAssist Inc., a USDA Class R research facility located in Vacaville, CA.

None of the dogs were on antiepileptic medication at the start of the study. One of the

four dogs included in the present study died from status epilepticus during the monitoring

period, after which phenobarbital (PHB) therapy was initiated in all remaining dogs. The

results from this dog are discussed separately.
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Figure 42: Schematic of canine implant with recorded timepoints durations for Dogs 002,
004, and 007.

Each dog exhibited similar seizure symptomatology. Typically, these are focal seizures with

secondary generalization proceeded in four phases. The first phase lasted 5-12 seconds and

started with vigorous side-to-side shaking of the head, or jerking of the head followed by

shaking, with altered awareness. The second tonic phase lasted 2-15 seconds with extensor

rigidity of the jaw and opisthotonus of the head, neck, and limbs. These tonic movements

were followed by rhythmic clonic jerking of the limbs, which were initially rapid (25-30

seconds) but slowed to resembled post-ictal running movements (10-50 seconds). In the

recovery phase, the dogs lay quietly in lateral recumbency, with occasional jerks and hyper-

ventilation.
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5.3.2 Event Detection

Both seizures as well as interictal bursts were initially detected with a sensitive line-length

detector and subsequently validated manually. Line-length is a feature that incorporates

both the amplitude and frequency components of a signal and has been shown to be robust

for detection of epileptiform events [38]. Detections that were interrupted by data dropout

from device dysfunction or repair were eliminated from analysis. Three channels with sig-

nificant electrode artifacts in dog 4 were also omitted from analysis. To detect seizures, the

average line-length feature was calculated across all 16 channels with a 2-second moving win-

dow, and candidate event EEG clips with line-length above a specified threshold were saved.

Thresholds for each dog were individually set to be of high sensitivity and low specificity in

order to capture all events. Clinical seizure candidates were validated with simultaneously

video by a consensus of two board-certified epileptologists (B.L. and G.W.). To detect

interictal bursts, a similar line-length detector was used and candidate bursts were further

refined by both quantitative and qualitative criteria. We excluded candidate events with

maximum average line length feature values two times above the maximum value observed

during known ictal events, since artifacts often displayed large-amplitude, high-frequency

noise simultaneously on all channels. We eliminated candidate non-seizure events with

above-threshold activity shorter than 500 ms and longer than 30 seconds. Longer events

were manually reviewed to insure that real clinical events were not eliminated. Burst detec-

tions were validated by a consensus of two board-certified epileptologists (B.L. and K.D.).

After interictal epileptiform burst and seizure detections were finalized, each iEEG event

was low-pass filtered at 100 Hz and downsampled from 400 Hz to 200 Hz, preserving event

features relevant to clinical practice while reducing computational burden. iEEG voltages

in each event were rescaled to [-10, 10] based on data that lies within a 99% confidence

interval. This scaling prevents the extreme outliers from compressing the majority of the
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data and is necessary for numerical stability of statistical inference, but no data in any

event was discarded. Once the events (bursts and seizures) were identified, we then aimed

to parse the dynamic activity of each event into states and determined the relationship

between bursts and seizures.

5.3.3 Modeling

In order to assign a state to each timepoint during the bursts as well as seizures, we looked

directly at the evolution of raw EEG voltages across time. This approach is similar to that

which an epileptologist would use to analyze EEG, and captures evolving trends within

time-traces. Here, we use an autoregressive hidden Markov model (AR-HMM) to parse the

voltage signal into interpretable states that switch. Specifically, we model a single channel’s

activity as switching between a set of autoregressive (AR) processes, which are each locally

stationary to account for the non-stationary properties of EEG. From a particular configu-

ration of channel states, we can then assign global event states at any point in time[163].

This global event state, capturing the activity of all channels, is the focus of our analysis

and the basis for determining similarity between two events. Notably, two extensions make

this model suitable for this analysis. We mimic focal changes in the iEEG by allowing

channels to share AR states and allowing asynchronous state switching. Finally, a spatial

constraint is added due to the physical electrode configuration, allowing for spatial propa-

gation of activity and more tractable statistical inference. Readers are referred to published

literature by Drausin Wulsin for further details and technical implementation [163, 162].

5.3.4 Event comparisons

For each dog, all bursts and seizure events, regardless of focality were modeled together.

This allows sharing of event states between both bursts and seizures as well as comparing

dynamic similarity between events. We then ask the question: what parts of a seizure are
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most similar to bursts? This can be answered by determining the similarity of the timepoints

in a seizure to all bursts. Specifically, we first calculate the probability that a given timepoint

in a seizure is assigned to the same state as a given timepoint in a burst. This probability is

derived from the Bayesian estimation of the ARHMM model, and readers are referred to the

supplementary materials and references for further details [44, 45, 163]. Secondly, we take

the maximum probability across all time points in the given burst to find the similarity

between the seizure timepoint and the given burst. Finally, we average this probability

across all bursts to obtain the similarity between a given timepoint in a seizure and all

bursts. Intuitively, this represents the average probability that a given time point in a seizure

clusters with a burst. The model inference and analysis were run primarily on a cluster of ten

8-core Amazon EC2 machines http://aws.amazon.com/documentation/, linked together

into a cluster with the third-party StarCluster http://star.mit.edu/cluster/. Matlab

code for this model is available online www.seas.upenn.edu/~wulsin.

5.4 Results

Table 8 summarizes resulting data segments containing event detections analyzed for each

of the four subject dogs. Bursts were on average 3.97 seconds long with a standard deviation

of 2.48 seconds. The 95% interval is between 1.2 seconds and 11.08 seconds. Qualitative

analysis of bursts indicates that they are very similar to the bursts described in human EEG.

Figure 43 shows examples of 4 bursts from one dog in this study, which is representative of

all animals monitored for this experiment. Figure 43A shows a burst of sharply contoured

rhythmic alpha activity present over both hemispheres, most prominent at channels L5, L6,

R3, and R4. In Figure 43B, a burst of diffuse rhythmic gamma activity most marked at

channels L4, L5, R3 and R4 is present. The sharply contoured burst of rhythmic gamma

activity is more focal in Figure 43C in the left hemisphere channels 4 and 5. Figure 43D

also shows a burst of more focal sharply contoured beta activity also in the left hemisphere

http://aws.amazon.com/documentation/
http://star.mit.edu/cluster/
www.seas.upenn.edu/~wulsin
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channels 4 and 5.
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Table 8: Data summary from four dogs with recorded iEEG

D ECoG Time (days) Initial Burst Detections Final Burst Detections Final Seizure Detections#

002 475.7 1,846 740 37

004 329.9 16,026 758 14

005* 45.8 6,437 811 91

007 451.8 11,149 1001 48

Initial and final detections are noted. Dog 005 died from status epilepticus during this study. # clinically validated.
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Figure 43: Examples of bursts detected on the canine iEEG data. There are 8 electrodes
on each hemisphere, two parallel strips of four electrodes each. L1-8 are over the left
hemisphere and R1-8 are over the right hemisphere. An average referential montage is
displayed. (A) Burst of sharply contoured rhythmic alpha activity seen bilaterally most
prominent at channels L5, L6, R3, R4. (B) Burst of diffuse rhythmic gamma activity most
marked at channels L4, L5, R3, R4. (C) Focal burst of rhythmic gamma activity most
prominent in L4, L5. (D) Burst of focal sharply contoured beta activity most prominent at
L4, L5.
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Figure 44: Timelines of the seizures (red vertical bars) and sub-clinical bursts (dots jittered
vertically for display) for each dog over the span of the continuous recording. Gray periods
in the recording denote times of no available data. The majority of the seizures occur in
groups spaced a few hours from each other. The last 73 days of dog 004’s record are omitted
because only bursts excluded during the culling (and no seizures) occurred during that time
frame. Figure modified from [161].
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5.4.1 Do Bursts Correlate with Seizures?

A time line of the seizures (red vertical bars) and sub-clinical bursts (dots scattered vertically

for display) is shown in Figure 44 for each dog over the span of the dogs entire continuous

recording. Note that most seizures occur in clusters spaced a few hours from each other.

A correlation analysis of burst distribution with seizure distribution indicated that bursts

tended to cluster around seizures in dog 2, though not tightly (r = 0.31, p = 0.006). This

pattern was not evident in the other dogs and bursts did not statistically predict seizures

in any of the 4 subjects.

5.4.2 Bursts Characteristics and Similarity to Seizures

An example of event state assignments over EEG is shown in Figure 45. In panel A, the

full seizure and 5 seconds of the seizure onset are shown. The colors beneath each EEG

represent the state assignment at each timepoint. In panel B, the state assignments are

shown for two bursts with transient decrease in activity in the center. Panel C shows the

state assignments for the onset of a burst.
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Figure 45: Multichannel examples of seizure onset and interictal bursts with corresponding
event states. Colors below EEG represent state assignment. (A) Full seizure with event
state assignments for the seizure onset (5 s). (B) Interictal bursts and corresponding state
assignments (1 s). (C) Interictal EEG showing burst onset (1 s). Figure modified from
[161].

Figure 46 shows the average burst similarity for one representative seizure from each dog. In
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three dogs (excluding dog 5, who died from status epilepticus) bursts were stereotyped and

found to be statistically similar to periods before or near seizure onsets. Higher amplitude

activity following seizure onset had relatively little similarity with interictal bursts.

Figure 46: Burst similarities for a representative seizure in each dog. Each horizontal line is
a channel. Vertical lines indicate averaged similarity of given timepoint with all bursts. Red
denotes timepoints with high similarity to all bursts. Bursts were stereotyped and found to
be statistically similar to periods before or near seizure onsets. Figure modified from [161].
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Figure 47 shows the averaged burst similarity across all the seizures for each dog 10 seconds

prior to marked unequivocal electrographic onset (UEO) 12, where each row contains the

same information in the EEG shown in Figure 3. This displays how the burst similarities

change across seizures and over each subjects monitoring period. Of particular interest,

note how each cluster of seizures (denoted by the horizontal black lines) tends to display

similar organization. There were few seizures during phenobarbital administration, but the

relationship of bursts to non-status epilepticus seizures was unchanged.

Figure 47: Burst similarities across all the bursts for each seizure in each dog. Horizontal
axis denotes the time series of each seizure. The vertical axis stacks seizures in time over
the course of the monitoring period. Horizontal black lines separate clusters of seizures,
defined as >24 hours apart. Vertical dashes line defines the unequivocal electrographic
onset (UEO). Red denotes timepoints with high similarity to all bursts. Figure modified
from [161].

In dog 2, the first two clusters of seizures have little onset similarity with interictal bursts,

though the later groups all display strong onset similarities. The high-amplitude seizure

activity is in general not very similar to the bursts, though very discrete periods of the

offsets tend to display strong similarities. The less marked similarity present at the end of

the seizures occur at discrete, low-amplitude post-ictal discharges. In dog 4, 12 of the 14
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seizures recorded occurred within the period of just a few days. These all display strong

onset similarities with a subset of interictal bursts on iEEG, generally those bursts that

occur before the large data gap shown in Figure 2. The two seizures occurring much later

in the record contain similarities across more of the bursts. As in dog 2, all of the seizures

in dog 4 contain patterns of very brief but very strong similarity at seizure offset. In dog 7,

an early cluster of four seizures, as well as a late cluster of 32 seizures which occurred within

two days also showed onset similarities with the bursts. However, the strongest similarity

occurs with two clusters totaling 12 seizures. Bursts are similar to seizure onsets in the

first three groups of seizures. Dog 5 is a particularly interesting case in that it contained

two main groups of seizures, the second of which occurred while the dog was in status

epilepticus. The five seizures in the first group all contain very strong onset similarities and

a few brief periods of offset similarity across almost all the bursts, as in dogs 2, 4, and 7. The

second group of seizures display physiologic changes associated with status epilepticus that

manifest in changes in iEEG seizure dynamics (Figure 48, see discussion below). During

status epilepticus the bursts no longer are similar to the seizure onset or offset as seen in

prior seizures.
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Figure 48: Burst similarities for the seizures of dog 005 (middle), similar to those shown for
the other three dogs in Figure 47. An early (top) and late seizure (bottom) in dog005s status
epilepticus, where the time points of each seizure are colored based on their similarities to
the other bursts. Red denotes timepoints with high similarity to all bursts.

5.5 Discussion

EEG representations of seizures can be thought of as observations from a complex physi-

ologic network. We have every reason to believe that this network can change, especially

after acute injury like traumatic brain injury or electrode implantation. We can think about

these networks as creating a probability distribution of epileptic events, where each epileptic

event is a sample from this distribution. Perturbations increase the probability of certain

epileptic events, including seizures. Ideally, clinicians would have a reasonably high degree
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of confidence about the distribution of epileptic events, and thus confidence in the proba-

bility of future seizures, before making a dramatic clinical decision. However, this requires

many observations of epileptic events, and often only a few seizures are recorded over weeks

of intracranial monitoring. Furthermore, the network can generate a multimodal seizure

distribution, meaning that a patient may have more than one type of seizure which could

be missed during observations in the Epilepsy Monitoring Unit. Furthermore, the network

can change, meaning that a seizure observed at one point in time may not be representative

of events in the future. Can we really be confident in the conclusions we draw about the

underlying epileptic networks when we have so few observations generated by it?

We believe that the interictal bursts explored in this work have the potential to yield

significant information about the distribution of epileptic events. Our data show that bursts

are at least an order of magnitude more prevalent than seizures and occur much more

regularly. Interestingly, although our algorithm detected all bursts less than 30 seconds,

95% of the finalized bursts were between 1.2 seconds and 11.8 seconds. This aligns with

the 10 second cutoff that originated from the Young Criteria for subclinical seizures which

is often extrapolated to the intracranial EEG setting by clinicians [165]. However, since

bursts longer than 11.8 seconds were rare, it is plausible that bursts represent a continuous

spectrum of subclinical seizures and that a longer duration interictal burst may reach a

physiological threshold for propagation, manifesting as clinical seizures.

We also showed that bursts display pronounced similarity to seizure onsets, suggesting that

they contain relevant information about the epileptic networks from which they arise. In

Figure 45, the state assignments of two interictal segments provide insight into the particular

burst patterns and their similarity to seizure onset. Panel B shows two bursts with state

assignments similar to high voltage activity at the earliest electrographic onset (EEC). The

transient decrease in voltage, assigned a red state, likely corresponds to a quieting phase
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as seen in Panel C before burst onset. Because these event states are switching between

AR processes, similar state assignments can be interpreted on a high level as having similar

evolving frequency compositions. Physiologically, this similarity of bursts to the onset of

a seizure may represent aborted seizure onsets, and comparing them to seizures may yield

important mechanistic information on how clinical events are generated and guide surgical

decision making.

In addition to being similar to seizure onset, we noted that burst similarities were statisti-

cally similar to seizure offset as well, but not the middle of seizures. Similar findings have

been noted by other investigators who have shown dynamic iEEG network synchronization

and desynchronization as a seizure progresses [82, 127], which is thought to reflect changes

in network topology. It is, however, not well understood why the middle of seizures shows

decreased network synchronization. Some have postulated that there exists a relationship

between network topology and bursting dynamics, which is also supported by in vitro stud-

ies [81, 106]. It is plausible that bursting activity characterizes a transition between various

brain states, which would explain the similarity to seizure onsets and offsets, but not the

middle of seizures.

Dog 5, who unfortunately died from status epilepticus, is a case that allows us to explore

differences between isolated seizures and status epilepticus. The onsets of the initial isolated

seizures were similar to interictal bursts. However, seizures that occurred during status

epilepticus were not similar to the bursts. Although not well established in the literature,

clinicians often note a substantial change in seizure characteristics during status epilepticus,

in comparison with isolated spontaneous seizures in the same individual. The lack of burst

similarity in dog 5 during status epilepticus is consistent with this finding. The transition of

burst dynamics as this animal entered status epilepticus is also of great interest. The change

in structure appears to change abruptly within the first several clinical events, suggesting
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that status epilepticus may represent an acute transition in epileptic networks, not a gradual

transition into a stable, pathological state. However, these anecdotal observations are of

only one dog, and further study in a larger dataset is needed for confirmation.

5.5.1 Limitations

The observations in this study suffer from several potential short-comings. First, the number

of animals is quite small, as this was a pilot study meant to gather preliminary data for a

larger, more detailed study. Though there is variability between dogs in this study, recording

periods were very prolonged, much longer than previous work in the literature, and our

conclusions regarding bursts, their relationship to seizures and their clustering behavior

are supported by a large number of observed events and strong statistical significance.

Secondly, the question of seizure typing and classification in the dogs used in this study is

one that affects the extension of our findings to human epilepsy. While there is significant

literature qualitatively describing canine epilepsy [96], there is little published on iEEG in

these animals, and their epilepsy syndromes are poorly characterized. We have described

the seizure disorders and EEG in our subject animals previously [27] and found both well

localized partial onset epilepsy in these animals, as well as poorly localized, regional onset

frontal lobe seizures, though these were partial in onset. However, the range of patterns

observed compares well to humans with medically refractory epilepsy undergoing iEEG

presurgical evaluation. None of the animals monitored in this study appeared to have

syndromes suggestive of disorders analogous to human primary generalized epilepsy, though

these entities are less well described in these animals. Certainly relating our findings to those

in human epilepsy will require similar extended recordings in patients, in order to determine

whether our findings hold in the human condition.

Finally, the interictal bursts detected in this study likely encapsulated different subtypes.

Here, the bursts we studied involved the majority of EEG channels because we were in-
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terested in the electrographic characteristics of each burst and not the spatial patterns.

However, there was clear focality in many of these bursts. Furthermore, in the current

analysis we did not stratify our analyses by the variability in the frequency composition

(such as those shown in Figure 46). It is possible that a certain subtype of burst with cer-

tain frequency composition or focality is most similar to seizure onsets, and this is current

topic of investigation in our lab.

5.5.2 Future directions

We believe we can use burst-burst similarity to determine when the epileptic network has

stabilized and thus when the seizure observations from that network are truly representative

of the future events. Based upon the known immunologic reaction to chronic intracranial

implants and the resulting anatomical changes, [59, 116, 119, 141, 151, 166] some inves-

tigators postulate that the implantation process itself may introduce epileptiform activity

that can confound localization of epileptiform activity. Current work in our lab is focused

on analysis of burst dynamics to determine if these patterns can be used as a proxy for

network stabilization.

Future research will help determine whether these bursts also contain localization informa-

tion similar to that found in seizures. Since we have established that interictal bursts occur

with greater frequency than seizures, this information might be harnessed to reduce or per-

haps eliminate the requirement to record ictal events to map patients for epilepsy surgery

or device placement. This study was not designed to test this hypothesis, but suggests that

further investigation in this area could be fruitful. This issue that has not been assessable

until now, with the appearance of prolonged intermittent recordings and more detailed,

continuous recordings from devices like the one used in this study [102]. Finally, an under-

lying theme of this research is using unsupervised methods to analyze massive streams of

continuous iEEG, raising the significance of big neural data in clinical care. Our ability to
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analyze and categorize continuous iEEG recordings spanning up to a year in duration on

Amazons Elastic Computing Cloud, suggests a possible paradigm shift in epilepsy research

and potential clinical care. We now possess tools that make continuous access to extremely

dense, prolonged and detailed brain recordings possible, with the ability to share them

world wide on The Cloud. These advances have tremendous potential to accelerate collab-

orative research and facilitate rigorous validation of studies like this one. In this light, we

are posting all of the data from this study on the International Epilepsy Electrophysiology

Portal (http://ieeg.org) after publication of this study.

5.5.3 Conclusion

We believe that the findings in this study expand our current knowledge about the prevalent

interictal bursts observed on iEEG and warrant further investigation into the predictive and

localizing ability of these patterns. We show that these interictal bursts are very similar

to both the onsets and offsets of seizures, potentially indicating that the bursts represent

aborted seizures or changes in brain state. Whether this belief is correct will depend upon

further human studies, now in progress, on a richer, larger continuous iEEG dataset. We

also believe that the power of faster digital computers, machine learning, cloud computing

and big neural data are poised to have dramatic impact on epilepsy research and clinical

care.

http://ieeg.org


Chapter 6

Burst Localization

6.1 Abstract

In the localization of seizure onset for resective surgery, confidence increases with the number

of observed seizures. Invasive intracranial monitoring may thus last for several days if seizure

frequency is low. In addition, inflammation from implantation may affect characteristics of

the EEG immediately afterward. Studying relatively frequent interictal epileptiform bursts

over an extended period of time may provide improved localizing information to aid in

surgical resection.

Three dogs with spontaneously occurring epilepsy were implanted with 16 electrodes, 8

in each hemisphere, and continuously recorded for 476, 330, and 452 days respectively.

Seizures were automatically detected, clinically validated, and onset channels identified. A

high sensitivity in-house burst detector was used to identify focal bursts, followed by a

culling procedure and an unsupervised Gaussian mixture model to remove false positives

and separate bursts subtypes from noise. Channels of maximum average power and power in

theta, alpha, beta, and gamma were calculated for each subtype and compared to clinically

validated seizure onset channels.

Each dog had multiple seizure types, with onset channels in multiple foci. The power

characteristics of each burst also evolved over time. The channels with high power in specific

121
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frequency bands (alpha, gamma) correlated with the seizure onset channels determined by

a board-certified epileptologist. However, there was variability between dogs. For dog 002,

burst power in the delta and theta band was maximum in the onset channels. For dog 004,

the theta band peaked in seizure onset channels, though they were less distinct from other

channels. For dog 007, peaks in gamma bands localize to onsets of a subset of seizures.

The extended intracranial recording of dogs with spontaneous epilepsy shows an evolution

of interictal burst characteristics. Power analysis of detected interictal bursts show that

power in certain frequency bands are more prominent in channels that were predetermined

to be located in the seizure onset area, though significant variability is present. These

results suggest that the analysis of more frequent interictal bursts in humans may improve

localization for the surgical treatment of epilepsy.

6.2 Background

Seizure localization is an integral part of the treatment of refractory epilepsy. During

inpatient evaluation of a patient’s candidacy for surgery, non-invasive methods (scalp EEG,

imaging) are employed and if necessary, invasive methods (intracranial EEG, iEEG) are also

employed. During iEEG monitoring in the inpatient unit, video and iEEG recordings of

each patient is collected to correlate observed behavioral symptoms with seizure semiology

on iEEG [110]. Though necessary for localization, the process is not benign, and associated

with hemorrhage, ischemia, and infection risk [42, 31]. The risks of monitoring are balanced

with the need to observe the patient’s seizure semiology, and any possibility of shortening

the duration of monitoring is important for the patient’s health.

We showed previously in chapter 5 that bursts are dynamically similar to seizures [28].

This suggests that the underlying seizure generating network may also be activated in

interictal bursts. Interestingly, the inverse relationship between the frequency of bursting
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and frequency of seizures [95] may indicate a release of energy by bursting that reduces the

frequency of seizures. This, coupled with the finding that bursts are dynamically similar

to seizure onset [28], suggests that bursts may localize to seizure onset. Since bursts occur

with higher frequency, this would expedite the invasive inpatient intracranial monitoring.

One of the hallmarks used for seizure localization is a sudden change in frequency, such as

a gamma buzz. For this reason, we examine the spectral characteristics of each burst to

determine if a particular frequency necessarily localizes to the onset zone or not.

6.3 Methods

6.3.1 Dataset

Three dogs originally described by Davis [27] were included in this study each monitored

with continuous iEEG for periods of 475.7, 329.9, and 451.8 days.

6.3.2 Event Detection

In contrast to detecting global bursts in chapters 5, in this experiment we focus on detecting

focal bursts. This is determined by pattern detection in each individual channel without

spatial integration. Using the detection pipeline above, we detect focal bursts from marked

datasets using line length as the initial segmentation feature. To account to transient

changes in the signal, this feature was normalized within every 1 hour block of data. A

window length of 2 seconds with a 3 second padding was used. A total of 113 features were

extracted:

1. Duration (1)

2. Line Length in each channel (16)
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3. Energy in each channel (16)

4. Zero crossings in each channel (16)

5. Power in 4 frequency bands (4× 16): 4-8, 8-13, 13-30, 30-100 hz

6.3.3 Modeling

As we expect these detections to be hypersensitive and contain many different types of

bursts, it may be the case that a subset of bursts are more important for localization. The

above features were each normalized before a gaussian mixture model with full covariance

structure was used to automatically separate all bursts into groups. The optimal number

of groups was selected based on the gap statistic [146]. The gap statistic is a metric that

compares the distribution of points with a. After clustering, random patterns from each

cluster were visualized for confirmation.

6.3.4 Localization

After separating the bursts into distinct clusters, we then determine which channels had

significantly more power in each frequency band. These channels thus represent a higher

frequency of the bursts detected and may serve to localize seizure onset. As seizure onset

is often characterized by changes in frequencies from background activity (e.g. gamma

activity or higher frequency oscillations), relative power in four bands were extracted from

each channel in each burst in each cluster. Channels with higher relative power to the

distribution of power for all channels were identified. Statistical testing was performed for

each band using a Z-test on any outliers to determine the burst foci.



CHAPTER 6. BURST LOCALIZATION 125

Table 9: Canine Seizure Onset Channels and Spread.

Dog Seizure type Onset Channels
002 1 9/10 → 13/14

2 5/6 → 9/10
3 13/14 → 9/10

004 1 1/5 → 6/7
2 7/8
2 9/13

007 1 13/14 → 5
2 5 → 13
3 5/6
4 13/14 → 9/10

→ details spread. All seizures were
noted to secondarily generalize.

Table 10: Proportion of bursts overlapping with SOZ. Each column corresponds to the
frequency band component extracted from bursts

[0-4] [4-8] [8-13] [13-30] [30-100]

Dog 002 0.97 0.58 0.31 0.22 0.12
Dog 004 0.09 0.56 0.44 0.39 0.45
Dog 007 0.00 0.36 0.46 0.45 0.68

6.4 Results

The power characteristics of each burst evolved over time, with certain clusters appearing

initially after implantation and others emerging later. Several power frequencies corre-

sponded with burst onset, though there is significant variability across power frequencies as

well as dogs. Delta and theta bands were useful in localizing seizure onset in dog 2, theta in

dog 4, and gamma in dog 7 (Table 10). Seizure onset channels noted for all dogs are shown

in Table 9. Seizure foci, burst foci, and any overlap are shown in Figure 53.
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Figure 49: Histogram of interictal bursts for dog 002 over time, colored by channel of
maximum power. Vertical red lines indicate seizure occurrence (37 total). Grey regions
indicate periods where no data was collected.
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Figure 50: Interictal burst clustering. Original bursts (left) clustered into 5 clusters based
on the gap statistic.
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(a) Cluster 1

(b) Cluster 2

Figure 51: Histograms of two of the five clusters of bursts, similar to Fig 49 above. These
two clusters were chosen to represent two distinct groups of bursts with differential power
spectrums as indicated by the channels of maximum power.
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(a) Cluster 1 (b) Cluster 2

Figure 52: Number of bursts in each channel with maximal power in given frequency bands.
Only the first two clusters are shown out of a total of five clusters. The outliers are indicated
and labeled with channel number.

Figure 53: Foci for each dog delineated by focus type, collapsed over each clinical band.
Red outlined circles indicate seizure foci. Blue outlined circles indicate common burst
foci aggregated across first four non-noise clusters. Green outlined circles indicate overlap
between seizure and burst foci.

6.5 Discussion

The extended intracranial recording of dogs with spontaneous epilepsy show an evolution

of interictal bursts, both in time and in spectral characteristics. Power in specific certain

frequency bands are more prominent in channels that were predetermined to be located in

the seizure onset area, though significant variability is present. These results suggest that
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the analysis of more frequent interictal bursts may be promising, though variability between

dogs and also in seizure localization may be barriers that will need to be investigated in

future datasets (See future directions). In dog 002, we see that burst onsets co-localize with

4 of 5 seizure onsets. However, bursts suggested seizure foci in 3 additional channels that

are neighboring to manually identified seizure onset zone are evident. As seen in Chapter 7,

it may be the case that specific clusters of bursts localize to certain seizure types, especially

given the temporal separation of burst characteristics seen in Figure 51. Though onset in

all three seizure types are represented (electrodes 5, 9, 13), cluster 2, which occurs later

in the recording, coincides with seizure type 3 for dog 002 and seems to suggest an onset

in electrode 15 from a power analysis (Figure 52b). In dog 004, all left hemispheric onset

electrodes were localized by bursts, although none of the right hemisphere electrodes were.

In dog 007, only one of the four seizure foci were localized. These findings are limited by

several factors, which have implications for future directions. First is the small number of

dogs. The variability present between dogs, with one of two showing decent localization and

a third dog with poor localization, limits the interpretation of our findings. Furthermore,

the multi-focal epilepsy present in dogs as well as the limited spatial resolution casts doubt

on the localizability of the seizures to begin with. It is possible that bursts may identify the

extent of an epileptogenic region, yet the variability between animals and the complexity

of their epilepsy make it difficult to draw such a conclusion. Further work is required

to determine the relationship of bursts to nearby seizures as well as to incorporate other

features into the filtering and clustering of the detected bursts. Ideally, this analysis would

be carried out on data primarily of unifocal patients where surgical outcome, and thus

ground truth, is available.



Chapter 7

Temporal Trends of bursts

7.1 Abstract

Epilepsy is a chronic disorder, but seizure recordings are usually obtained in the acute

setting. The chronic behavior of seizures and the interictal bursts that sometimes initiate

them is unknown. Localization of bursts in Chapter 6 suggests that seizures may follow

similar patterns. We investigate the variability of these electrographic patterns over an

extended period of time using chronic intracranial recordings in canine epilepsy.

Continuous, year-long intracranial EEG recordings from four dogs with naturally occurring

epilepsy were analyzed for seizures and interictal bursts. Following automated detection

and clinician verification of interictal bursts and seizures, temporal trends of seizures, burst

count, and burst-burst similarities were determined. One dog developed status epilepticus,

the recordings of which were also investigated.

Multiple seizure types, determined by onset channels, were observed in each dog, with sig-

nificant temporal variation between types. The first 14 days of invasive recording, analogous

to the average duration of clinical invasive recordings in humans, did not capture the en-

tirety of seizure types. Seizures typically occurred in clusters, and isolated seizures were

rare. The count and dynamics of interictal bursts form distinct groups and do not stabilize

until several weeks after implantation.

131
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There is significant temporal variability in seizures and interictal bursts after electrode

implantation that requires several weeks to reach steady state. These findings, comparable

to those reported in humans implanted with the NeuroPace RNS device [31, 75], suggest

that transient network changes following electrode implantation may need to be taken into

account when interpreting or analyzing intracranial EEG during evaluation for epilepsy

surgery. Chronic, ambulatory intracranial EEG may be better suited to accurately map

epileptic networks in appropriate individuals.

7.2 Introduction

In the absence of obvious causal lesions, candidates for surgery and neurodevice implants are

determined based on intracranial EEG (iEEG) and to an increasing extent, neuroimaging

(PET, SPECT). The purpose is to localize the seizure onset zone prior to surgical resection

or to identify network locations that may be amenable to neuromodulation. Unfortunately,

these therapies have less than ideal efficacy: only approximately 50% of patients with

neocortical epilepsy will achieve a clinically meaningful improvement in seizure frequency

following surgery [88]. Similarly, median seizure reduction rates are 53% in a recent study

of responsive neurostimulation [10]. Therefore, there is great interest in the research com-

munity in increasing the rate of seizure freedom in this challenging patient population.

New biomarkers in epilepsy are poised to impact patient care, from tracking epileptogen-

esis, to steering development of new pharmacologic agents, to enriching clinical trials [37].

Recently, our group has shown that interictal bursts are dynamically similar to seizure on-

sets, but occur with much greater frequency [28]. These bursts, described in adults as brief

potentially ictal rhythmic discharges (B(I)RDs) [164], have been associated with increased

propensity for seizures in the critically ill but their exact significance is still unknown.

Studying these patterns in chronic ambulatory recordings will better allow scientists to



CHAPTER 7. TEMPORAL TRENDS OF BURSTS 133

understand the natural temporal dynamics of epileptic brain.

Canine epilepsy is similar to human epilepsy in its epidemiology, spontaneity, and its re-

sponse and resistance to therapy [118]. The similarities make canine models a promising

animal model for testing new therapies, particularly neurodevices. In fact, vagal nerve stim-

ulation was first shown to interrupt chemically induced seizures in a canine model [167].

We previously presented recordings from a novel implantable device that continuously mon-

itors iEEG deployed in six dogs with naturally occurring epilepsy [27]. This work further

validated canine epilepsy as a promising model of human epilepsy and generated a set of

continuous iEEG data of unprecedented length for analysis. These data are the first of

its kind to be publicly available on the International Epilepsy Electrophysiology Portal

(http://ieeg.org). The recordings, which contained over 200 observed seizures, exhibit

remarkable electrographic similarity to human recordings both in seizure onset patterns as

well as features of background EEG.

Importantly, this dataset provides epileptic iEEG recordings of an unparalleled length,

an average of 14 months across the three main dogs in this study. These recordings are

significantly longer than the typical human inpatient iEEG recordings of days to a few

weeks in duration [110] and provides 1) a greater number observations in time which allow

us to describe temporal changes of observed bursts and seizures with greater statistical

confidence, and 2) an opportunity to characterize transient post-implantation changes in

epileptiform patterns. It is known that chronic iEEG implants and the surgery to implant

them for invasive monitoring alters the underlying healthy cortex. The changes they induce,

including hemorrhage, ischemia, and inflammation affects overall signal quality, electrode

impedance, and possibly the representation of the epileptic network [151]. It is unknown

how changes in this acute setting influence localization of the epileptic network, as current

literature is primarily based on electrographic recordings during this period of inflammation.

http://ieeg.org
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It is also unclear whether interictal and ictal intracranial electrographic biomarkers currently

used for surgical localization are stable within the typical recording period. One recent study

analyzing 82 patients implanted chronically with a responsive neurostimulator demonstrates

that an accurate representation of the spatial and temporal variability of seizures in these

patients require at least 30 days of continuous monitoring [75]. Another study demonstrates

that this prolonged monitoring may reveal patients who have well localized seizures and be

good surgical candidates, though this was not apparent during acute monitoring [31].

In this study, we investigate temporal changes of both seizures and interictal bursts over

extended iEEG recordings. This dataset provides an unprecedented opportunity to track

temporal changes in epileptiform patterns over long periods of time after implantation, and

to assess how well acute monitoring represents epileptic networks at steady state. Fur-

thermore, in contrast to existing long-term iEEG findings in literature derived from two

recording electrodes recording several minutes per day, our extended dataset contains con-

tinuous recordings from a total of 16 contacts. We pay particular attention comparing the

initial one to three weeks after intracranial implant to the steady state in these record-

ings. Lastly, we study quantitative dynamics of interictal bursts, specifically identifying

how bursts fluctuate throughout the recordings.

7.3 Methods

7.3.1 Dataset

The canine dataset described in Chapter 5 is used here. To recap, six dogs with naturally

occurring focal epilepsy were originally implanted with four bilateral 4-contact subdural

strip electrodes, a total of 8-contacts over each hemisphere, for chronic iEEG recording

from a wireless system. Four of these dogs were selected for analysis due to the occurrence

of seizures. Dogs 2, 4, 5, and 7 were recorded for 475.7, 329.9, 45.8, and 451.8 days,
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respectively (Table 8). Dogs were withdrawn from any medications at enrollment. Dog 5

died from status epilepticus, after which all dogs received intermittent (2 mg/kg, twice a

day) phenobarbital (PHB) administration (detailed in Figure 54) during monitoring. In all

dogs this occurred well after the acute implantation period.

7.3.2 Event Detection

Both seizures and bursts were detected as described in prior work [28] (Chapter 5). Those

steps are summarized below.

7.3.3 Seizures

Seizures were identified with an automatic detector based on the line-length feature, which

captures both amplitude and time components of the signal and is shown to be robust for

seizure detection [38]. Of these initial detections, valid electrographic seizures were veri-

fied with simultaneous video and the consensus of two board certified epileptologists (BL

and GW). They were further subtyped according to localization of the seizure onset zone

by a board-certified epileptologist (KD). All dogs were observed to have focal epilepsy of

unknown etiology with secondary generalization and exhibited similar seizure symptoma-

tology. Typically, seizures that began focally and secondarily generalized proceeded in four

phases. The first phase of typical seizures lasted 5-12 seconds and started with vigorous

side-to-side shaking of the head, or jerking of the head followed by shaking, with altered

awareness. The second tonic phase lasted 2-15 seconds with extensor rigidity of the jaw

and opisthotonus of the head, neck, and limbs. These tonic movements were followed by

rhythmic clonic jerking of the limbs, which were rapid for 25-30 seconds, then slowed to

resembled post-ictal running movements for 10-50 seconds. In the recovery phase, the dogs

lay quietly in lateral recumbency, with occasional jerking movements and hyperventilation.
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7.3.4 Interictal bursts

Interictal bursts lasting greater than 500 milliseconds and less than 30 seconds were ex-

tracted by using a threshold on the average line-length feature across all the channels.

Candidate bursts were then manually culled and verified by an epileptologist (KD). Exam-

ples of bursts at different time points are shown in Figure 56. To determine the effect of

implantation on the number of bursts, a linear mixed model was used to model log burst

counts in the first 100 days across all animals, where the dog was modeled as a random

effect. Residuals were modeled with an autoregressive model to remove autocorrelation.

To determine how bursts dynamically change, we characterize each time point in a burst

by their dynamic frequency content and compare between bursts using a similarity metric.

First, time points in a burst are modeled as locally stationary autoregressive processes that

change states over time according to a Markov switching model. In this model, event (burst

and seizure) snippets are modeled together across all animals using a spatial autoregressive

hidden Markov model (AR-HMM). This model was used to capture the relative spatial lo-

cations of the electrodes as well as capturing non-stationarity with a state-switching model.

After statistical inference, each time point in each event is assigned a state, and we define a

similarity metric as the probability that two events belong to the same state. Two identical

events will have a similarity of 1, and two events with no time points in a common state

will have a similarity of 0. This similarity is calculated by determining the number of time

points in each burst that share the same state and provides a metric to compare dynamic

similarities between one or more bursts.

Similarity matrices were created to show burst-burst similarity for each dog by visualizing

the similarity of a given burst to all bursts. To determine stability across time, the similarity

of bursts on each day was compared to all future bursts for each dog. Readers are referred
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to our initial paper [28] as well as prior technical work for a more detailed description of

the model [45, 163].

7.4 Results

7.4.1 Seizures

A total of 37, 14, 91, and 48 seizures were detected for dog 2, 4, 5 and 7, respectively.

Seizures electrographically appeared qualitatively indistinguishable in onset and spread pat-

terns compared to human seizures as determined by to two epileptologists (BL and KD).

With the exception of the dog in status epilepticus (dog 5), most seizures in each dog oc-

curred in clusters, where all consecutive seizures with an inter-seizure interval (ISI) less than

or equal to 24 hours define a cluster (Figure 54). For Dogs 2, 4, 5, and 7, the mean cluster

duration was 29 (sd=7.6), 39 (sd=0), 18 (sd=0), and 25.5 (sd=5.9) hours, respectively.

The mean within-cluster ISI was 6.3 (sd=3.5), 3.5 (sd=2.5), 0.79 (sd=1.93), and 2.3 (sd =

3) hours, respectively. Importantly, each dog had multiple seizure types with onset zones

arising from bilateral hemispheres independently. The seizure types fluctuated across time.

Examples of two seizure subtypes from the same dog on day 14 and day 308 of recording

are provided (Figure 55). Within the first 60 days, each dog displayed two seizure types.

Across the entire recording there was more variability, as Dogs 2, 4, and 7 had three, two,

and four different seizure subtypes, respectively. The first 14 days of recording, analogous

to the human inpatient surgical evaluation period, did not capture the full extent of seizure

types in any of the dogs. When Dog 5 died from status epilepticus, PHB was intermittently

started for dog 2, 4, and 7 on days 54, 74, and 105, respectively. PHB therapy greatly

lowered seizure frequency (Figure 54).
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Figure 54: Seizures over the entire recording length across three dogs. Each marker repre-
sents a seizure, vertically jittered in time. Each color and symbol denote different seizure
types as determined by a board certified epileptologist (KD). Gray represents periods of no
data. Yellow represents periods of intermittent phenobarbital (PHB) administration.
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Figure 55: Two example seizure subtypes at Day 14 and Day 308 from dog 2. In panel A,
seizure onset channels were determined to be in R5/R6 and propagating to R1. In panel B,
seizure onset channels were on the left side, in channels L5/L6 and propagating to L1.

7.4.2 Interictal Bursts

Over 700 bursts were detected in each dog. Examples of bursts and the time of occurrence

for one dog are given in Figure 56. In three dogs without status epilepticus, bursts showed

temporal variation in similarity and in number. There were a significantly greater number

of interictal bursts initially after implantation that decreased over time (P=0.03) (Figure

57). The similarity of bursts approaches that of those at steady state weeks after recording

for each dog (Figure 58). A similarity matrix comparing bursts to all bursts show distinct

clusters that indicate evolving event dynamics after implantation (Figure 59). It can be

observed for dog 2 (6A), dog 4, (6B), and dog 7 (6C), that there are remarkably distinct
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groups of bursts that are temporally restricted. For dogs 2 and 7, the largest and most

stable group emerges in the first few weeks of recording, while dog 4’s bursts undergo a

more gradual, but still observable, transition. Interictal bursts were unaffected during PHB

administration, both in count as well as in similarity.
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Figure 56: Examples of interictal bursts detected on the canine iEEG data and correspond-
ing days after implantation from dog 2. There are 8 electrodes on each hemisphere, two
parallel strips of four electrodes each. L1-8 are over the left hemisphere and R1-8 are over
the right hemisphere. An average referential montage is displayed. (A) Burst of beta ac-
tivity bilaterally most prominent in L5-6 and R3-4 on Day 11. (B) Burst of diffuse beta
activity most marked at channels L5-L6 on Day 68. (C) Burst of rhythmic gamma activity
most prominent in L5-6, R3-4,8 on Day 260. (D) Burst of gamma activity most prominent
in L5 on Day 300.
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Figure 57: Average number of bursts per day for the first 100 days across three dogs
(excluding dog with status epilepticus). The blue line represents the mean number of
bursts across three dogs. A linear mixed model fit to log bursts show a significant decrease
in burst count (p=0.03).
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Figure 58: Normalized burst similarity in comparison with all future bursts in three dogs
over the first 45 days of recording. Black points represent the similarity of the burst at that
time point to future bursts. The red line denotes the median similarity within a 2-week
moving window. High similarity represents a value of 1. Of note, early bursts are dissimilar
to later bursts and that similarity levels off 20 days. Figure modified from [161].
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Figure 59: Similarity between bursts over time. Red indicates high similarity, white indi-
cates low similarity. Vertical axes show bursts in rank order. Horizontal axes show bursts
based on day of occurrence. Time periods when dogs received phenobarbital (PHB) are
indicated in gray. Panels A, B, and C all show distinct clusters of bursts that are very
similar to one another, indicated by well demarcated blocks of high similarity. Panel D
displays similarities of all bursts during status epilepticus, showing that most bursts were
dynamically similar. Figure modified from [161].

7.4.3 Status epilepticus

One dog died after developing status epilepticus one month following implantation. In this

dog, all bursts showed remarkable similarity (Figure 59D), suggesting that a single network

generated and sustained status epilepticus in this animal. Following the death of this dog,

all other dogs were treated clinically with intermittent PHB.



CHAPTER 7. TEMPORAL TRENDS OF BURSTS 145

7.5 Discussion

In this work, we investigated the temporal evolution of seizures and interictal bursts in

long-term canine recordings and demonstrated that seizure onset location and burst dy-

namics fluctuate throughout the recording. These findings, while obtained in natural ca-

nine epilepsy, may have significant implications for current practice in the management of

human epilepsy.

Intracranial EEG provides high resolution and fidelity recordings that allow interrogation

of the epileptic network. However, most of these recordings are currently collected during

clinical monitoring for resective surgery, lasting a few weeks at maximum due to the invasive

nature of intracranial electrodes. Trauma to the brain during implantation may result in

hemorrhage as well as an acute inflammatory response that activates surrounding glial

cells as early as one day post-implantation [42]. A chronic foreign body reaction is often

observed with the formation of a glial scar [116]. This reactive tissue at the electrode-tissue

interface is presumed to be the cause of increased electrode impedance over time [134].

Acute implantation of electrodes also alters brain physiology, at least transiently, and even

sometimes renders patients seizure free. Despite these findings, the gold standard for seizure

onset localization is recorded while the brain is in an acute inflammatory state, and it is

important to investigate the validity of inferences drawn from data collected in this period.

Although impedance may lead to lower signal to noise ratios, we have shown here that

seizure and burst patterns also change when studied over an extended period of time, an

effect unlikely related to electrode impedance alone.

7.5.1 Seizures

We observed that seizures occur in clusters, a finding previously reported in human seizure

diaries and short-term EEG monitoring. Confirmation of this finding in our rigorously
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annotated data over many months further validates the relevance of naturally epileptic

canines as a model of human epilepsy [60, 133]. It is interesting to note that across each

dog there were relatively few clusters despite the relatively large number of seizures (Figure

54).

One interesting finding was the occurrence of multiple seizure types which were not all

captured during the first two weeks of recording, a period analogous to inpatient presurgical

monitoring. During this period, PHB had not yet been administered to the canines. It is

important to note that many seizure clusters consisted primarily of one type of seizure, and

that localizing all epileptogenic regions in these animals required recording not multiple

seizures, but multiple clusters of seizures. This pattern may hold for humans as well.

Furthermore, while each seizure type included a different set of onset electrodes, there were

similarities in each seizure type within individual dogs. The unequivocal electrographic

change that localized the seizure onset zone alternates between a finite set of spatial lo-

cations, though in each type there were common channels. In other words, each seizure’s

onset channels formed an incomplete set of onset channels across all seizures. It is plausible

that an underlying propagation pathway could have been kindled in these animals, and that

these electrode locations are all part of a single epileptic network which can be ignited to

begin from any of these locations. Thus, a patient with focal epilepsy may in fact involve

multiple onset regions if enough observations are captured, suggesting that long-term mon-

itoring to capture the full extent of a patient’s network may be key to improving outcome

from epilepsy surgery or implantable devices. This conclusion is supported by the work

of DiLorenzo et al., who found that a group of patients who were poorly localized during

acute implantation were well localized after chronic implantation of a neuromodulatory de-

vice and were seizure free following resection of their chronically localized network [31]. It is

also possible that the emergence of other seizure patterns after months of chronic electrode
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implantation could be due to secondary epileptogenesis, though data from King-Stephens,

DiLorenzo, and significant relapse rates after resection of well localized unilateral tempo-

ral lobe seizure during acute intracranial recordings argue against this conclusion [31, 75].

The recurrence of early seizure types later in our canine recordings suggests that the ini-

tial seizure types are likely not a transient result of tissue reaction post-implantation. The

variability observed in seizure types and the associated trend might be also be interpreted

as a recovery phase from which a patient’s true network emerges following resolution of

the acute trauma, which itself or coupled to acute medication withdrawal might initiate

atypical seizures [36].

Since our seizure subtyping was based on electrographic focal onset and spread, one may

expect clinical semiology to vary with each type. Interestingly, each seizure’s clinical semi-

ology appeared grossly similar on continuous video recording, and no relationship between

subtypes and generalization was observed. Our observations regarding shifting onset pat-

terns may be a feature specific to canine epilepsy, but no detailed IEEG studies of human

epilepsy currently exist to allow for adequate comparisons. Our group is actively trying to

determine the extent of these findings to human epilepsy in an analogous human dataset.

7.5.2 Interictal Bursts

In addition we found significant variability in the dynamics of interictal bursts throughout

the recording. In this study, we found that the number of bursts is significantly elevated in

the weeks after implantation (Figure 57). This period of abnormal electrographic activity

may represent the decline of the acute inflammatory stage and possibly stabilization through

chronic inflammation and a foreign body reaction. Though this may result in increased elec-

trode impedance and reduced voltage readings, we report also a decline in the number of

interictal bursts. This is important because the former may necessitate measures to correct

for impedance, but the latter suggests more cautious interpretation of traditional epilep-
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tiform patterns that may be transiently distorted by electrode implantation. This effect

is unlikely to be medication-driven because the decreasing trend of burst count stabilizes

around day 25, before any PHB was administered.

For each dog it is clear that the dynamics of interictal bursts are in flux during the initial

stages of a recording. By comparing the similarity of a burst to all future bursts, we observe

that the event dynamics of the bursts begin to stabilize days to weeks post-implantation

(Figure 58). Distinct groups of bursts are also seen in Figure 59 and it is plausible that

they reflect the current state of an underlying seizure generating network. Observationally,

the period of time where bursts are heterogeneous correspond to periods where multiple

seizure types originate. For example, in the first 50 days dog 4’s burst types are constantly

changing, and the seizure cluster on day 45 consists of two different seizure types. In dog 7,

different seizure types were observed before and after day 22. Furthermore, around day 100,

many new seizure types are seen, and a break in similarity is also seen near day 100. PHB

does not appear to have any effect on burst dynamics or frequency, though it did control

seizures. In previous work we showed that these bursts are dynamically similar to seizure

onsets. This suggests that bursts and seizures may share a similar underlying mechanism,

and that the former represents seizures that fail to initiate. It is possible then that PHB

preferentially inhibits seizures but not necessarily abnormal interictal patterns, a finding

previously reported in children and rodents [26, 89].

The observations that seizure onset electrodes vary over an extended recording and that

the initial weeks after implantation represents an unstable electrographic network may have

important implications in the clinical management of human epilepsy. If present in humans,

this suggests that chronic outpatient iEEG monitoring during presurgical evaluation may

more accurately define the epileptic network and ultimately lead to improved seizure free-

dom after surgery. In light of our findings, the reliability of potential biomarkers such as
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high frequency oscillations extracted within the first several weeks after implantation must

be interpreted with caution, as the variability of iEEG properties may be too great during

the acute and subacute phases to use these features for clinical decision-making.

Dog 5 is an example of canine status epilepticus and provides an interesting case to analyze.

The bursts before and during status epilepticus were very similar to each other, even though

the first seizure occurred at day 25 (Figure 59D). It is plausible that the bursts were a result

of implant injury, or otherwise coincidental during recording, and subsequently evolved into

status epilepticus and resulted in death. An alternative explanation is that there was one

particular region of the network that gave rise to status epilepticus, and that its particular

neurophysiologic composition might have been predisposed to seizures that would not stop

spontaneously. Although these observations were made in only one dog, comparison of

results with the other three dogs suggests that bursts and seizures that occur during status

epilepticus are different from more typical seizures and is supported by prior work in human

and other animal models of status epilepticus [148]. It deserves further study to determine

if there is high burst similarity in human status epilepticus and whether burst variability is

mechanistically involved in seizure cessation.

7.5.3 Limitations and Future Directions

The observation that iEEG patterns do not stabilize until weeks after implantation could

have significant implications for the interpretation of iEEG both in clinical and research

realms. However, there are significant limitations that require further investigation and

that must temper this conclusion. First, this study involves a limited number of canines,

which may have different etiologies of epilepsy particularly as a result of inbreeding, though

many studies demonstrate striking similarities between human and canine epilepsy such as

in response rates, refractory rates to therapy, and clinical and electrographic presentations

[118]. To ultimately determine both the generalizability and applicability of our conclusions,
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current work in our lab is directed towards verifying and extending these findings to human

long-term iEEG. Nevertheless, we believe that our findings on a novel long-term ambulatory

EEG dataset will help evaluate canines as an experimental model and lend insights into the

investigation of similar datasets in humans.

Phenobarbital was also administered intermittently to all dogs following the death of one

animal from status epilepticus. While this likely reduced the occurrence of seizures, it did

not have an effect on burst-burst similarities as indicated in Figure 59. In addition, although

a large portion of time was recorded during PHB administration, this was started no earlier

than 50 days post-implantation, which still allows for interpretation of the initial weeks

of recording. This finding is interesting as humans undergoing presurgical evaluation are

typically continued on anti-epileptic drugs, which are tapered during significant periods of

iEEG recording.

Finally, the issue of whether the steady state of our recordings represents the true natural

state of epileptic networks, or a state of recovery following traumatic electrode implantation,

is difficult to answer. DiLorenzo’s data demonstrating more accurate localization of typical

seizures and seizure freedom after chronic localization suggest that the patients’ long-term

steady state is likely to represent their true baseline. Still, DiLorenzo’s study contains only

three patients. The much larger study by King-Stephens et al. is more supportive of our

conjecture that our chronic recordings resolve to the patient’s more natural steady state,

but outcome data after some of these patients go to surgery will lend itself to useful insights

into this issue. In the meantime, there is no alternative to chronically implanted electrodes

for obtaining these kinds of recordings, and we believe that studying these types of chronic

implants is warranted.
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7.5.4 Conclusion

This study provides insight into the stability of iEEG recordings immediately after intracra-

nial electrode implantation in canines, and there is growing evidence that the conclusions

may be very relevant to human studies. The observation that seizure onset zones, inter-

ictal burst counts, and burst similarities do not stabilize until weeks after implantation of

intracranial electrodes suggests that there is initial variability in iEEG recordings that may

not accurately delineate an individual’s epileptic network. Rather these recordings may be

biased as a result of injury and inflammation from surgery. Though further work is neces-

sary to determine generalizability of our findings to humans, they contribute to a growing

literature suggesting that in at least some patients iEEG obtained during standard hospital

evaluation of refractory epilepsy with intracranial EEG may not be sufficient to define the

epileptic network for optimal therapy.



Chapter 8

Transient changes in Long Term ECoG

8.1 Overview

Implanting subdural and penetrating electrodes in brain causes acute trauma and inflam-

mation, which alters intracranial electroencephalographic (iEEG) recordings. This behavior

and its potential impact on clinical decision-making and algorithms for implanted devices

have not been assessed in detail. In this study we characterize temporal and spatial vari-

ability in continuous, prolonged human iEEG recordings obtained from fifteen patients

with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously

monitored for an average of 18 months. Time and spectral domain features were computed

each day for each channel in five-minute non-overlapping windows for the duration of each

patient recording’s. A linear mixed model was used to characterize transient group-level

changes in feature values post-implantation. A significant change in features important to

seizure detection and prediction algorithms, mean line length, energy, and half-wave as well

as mean power in the Berger and high gamma bands was observed in the majority of pa-

tients over 100 days following implantation. In addition there was spatial variability across

electrodes post-implantation before stabilization. All selected features decreased by 14-50%

in the initial 75 days of recording. Our findings demonstrate that iEEG signal features are

unstable for over 2 months following implantation, most notably immediately post-implant,

when patients are evaluated for surgery. These findings suggest that conclusions drawn

152
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from iEEG, for research or clinical purposes, should account for this initial period of vari-

ability and that properly assessing the iEEG in patients, depending upon the region and

application, may require extended monitoring.

8.2 Introduction

Intracranial electrodes are routinely used to sample and map cortical networks when pa-

tients with drug-resistant, localization-related epilepsy are evaluated for epilepsy surgery

[110]. Emerging technologies of closed-loop stimulation and brain-machine interface (BMI)

technologies are broadening applications for chronic intracranial electrodes to include ther-

apeutic electrical stimulation, seizure monitoring and warning systems, responsive neu-

rostimulation, and adaptive deep brain stimulation [23, 93, 102, 108, 159]. Each of these

applications requires a thorough understanding of acute changes at the brain-electrode in-

terface and how they affect recorded signals.

Electrode implantation causes acute trauma and an immunologic reaction that has been

studied extensively [59, 141, 151, 119, 166, 116]. Greater than 50% of patients have

histopathological changes from electrode implantation as soon as one day after surgery

[42]. This reaction has been associated with changes in electrode impedance [12, 21, 90,

119, 160] and overall signal quality [94]. However, no studies have characterized the effect

of such changes on signal features other than signal-to-noise ratios and impedance measure-

ments. Furthermore, no analysis has been performed on long-term continuous recordings in

humans, which has direct implications for algorithm design and clinical interpretation. For

example, the Responsive Neurostimulator (RNS R©) System (NeuroPace; Mountain View,

CA) currently requires physicians to manually tune algorithm parameters to maintain high

sensitivity seizure detection over extended use [102]. Likewise, in the NeuroVista (Seattle,

WA) seizure advisory system study, feature drift was observed and algorithm retraining was
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necessary for months after implantation [23]. Characterizating changes in signal features

(line length, area, energy, half-wave, power) used in these two devices for seizure detection

would improve algorithm development, patient-specific customization, and clinical interpre-

tation of recorded results [24, 29, 33, 38, 53, 92, 141, 159].

Similarly, short-term intracranial EEG (iEEG) is the gold standard for guiding surgical

treatment of localization-related epilepsy, yet these therapies result in only 66% long-term

seizure remission rates at best [145]. In an attempt to electrographically localize the seizure

onset zone, iEEG recordings are obtained in an inpatient hospital setting, typically over 1-2

weeks. If reactions occurring at the brain-electrode interface affect recorded signals to the

degree that extracted biomarkers become unreliable, then clinical decisions based on these

features should be questioned. In addition, emergence of biomarkers such as high-frequency

oscillations for surgical planning [56] adds importance to assessing time-dependent changes

in spectral characteristics.

In this study, we evaluate continuous subdural iEEG recordings from 15 ambulatory hu-

man patients recorded for an average of 18 months. We aim to characterize the temporal

variability of each feature as well as the spatial variability across electrodes, specifically

focusing on time and spectral domain features that are of clinical and algorithmic interest.

8.3 Methods

8.3.1 Dataset

Fifteen patients with drug resistant, localization-related epilepsy were each implanted with

16 subdural platinum-iridium electrodes during a pilot trial of the NeuroVista seizure pre-

diction device [23]. Electrodes were placed over the region containing the presumed seizure

onset region as determined by standard clinical evaluation. In patients with bilateral tem-
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poral lobe seizures, leads were placed over the hemisphere observed to generate the greatest

number of seizures. Patient demographics and recording duration are given in Table 11.

Further details about the human subjects are discussed in the original manuscript reporting

this trial [23].
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Table 11: Subject demographics at baseline and recording duration

Subject Age Sex Diagnosis age Duration (Days) AEDs Epileptigenic Zone

1 (23 002) 26 M 4 767.4 CLZ, LEV, LTG, VPA PT
2 (23 003) 44 M 12 730.1 LCM, LTG, OXC , VPA OP
3 (23 004) 22 F 16 557.5 CBZ, LTG, PHT PT
4 (23 005) 61 M 48 233 CBZ, LCM, LTG, TPM, PHT PT
5 (23 006) 20 F 1 272.9 CLZ , LTG, OXC, TPM FT
6 (23 007) 62 M 37 441.3 None T
7 (24 001) 52 M 26 184.9 CBZ, CLZ, LEV FT
8 (24 002) 48 M 20 558.4 CBZ, LEV FT
9 (24 004) 51 F 10 394.9 CBZ OP
10 (24 005) 50 F 15 373.2 LEV, OXC, ZNS FT
11 (25 001) 53 F 15 721.6 LCM, PHT, PRP FT
12 (25 002) 43 M 20 729 LTG, LCM, PHT, RTG T
13 (25 003) 50 M 20 746.9 CBZ, CLZ, LEV, LCM T
14 (25 004) 49 F 4 627 CLZ, OXC PT
15 (25 005) 36 M 5 465.6 CBZ, LCM, PRP, TPM T

PT = Parietal-Temporal, OP = Occipital-parietal, FT = Frontal-temporal,T = Temporal
CLZ = clonazepam, LEV = levetiracetam, LTG = lamotrigine, VPA = Valproate, OXC = oxcarbazepine , CBZ =
carbamazepine, PHT = phenytoin, LCM = lacosamide, TPM = topiramate, ZNS = zonisamide, PRP = perampanel
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8.3.2 Recording device

The NeuroVista device consists of four electrode arrays each with four platinum-iridium

contacts implanted subdurally on the cortical surface. The electrodes were connected to a

hermetically sealed subclavicular implantable telemetry unit that sampled 16 channels each

at 400 Hz. The telemetry unit was inductively recharged and collected data, which was

wirelessly transmitted to an external belt-worn computing and warning device. Technical

difficulties and patient-related factors (e.g. telemetry dropouts, flat batteries) occasionally

interrupted data acquisition throughout the trial, resulting in occasional data gaps. The

data were converted to the Multiscale Electrophysiology Format (MEF) [16], ported to

ieeg.org, and accessed in Matlab using the IEEG-Portal toolbox for data analysis.

8.3.3 Feature Extraction

Each channel was initially low-pass filtered at 180 Hz with a third order Butterworth filter.

Four time-domain features (line length [38], area [141], energy, and half-wave amplitude

[54]) as well as average spectral power in delta [0.1-4 hz], theta [4-8], alpha [8-12], beta [12-

30], gamma [30-100], and high-gamma [100-180] bands were computed. These features were

selected to represent those commonly used in algorithms to detect epileptiform activity as

well as common, interpretable spectral bands. Line length is the absolute derivative of signal

amplitude, described by Esteller et al [38]. Area is defined as the absolute amplitude [33,

92]. The energy of a signal is calculated as the squared voltage amplitude. The half wave

feature represents the amplitude and duration of a signal after segmented based on local

minima and maxima [53, 142]. From the segmentation, the amplitude and duration can

be extracted and reflects energy at various frequencies depending on tunable parameters.

Here, the average amplitude is calculated. Spectral power was calculated using Welch’s

power spectral density estimate. Specific details of feature calculations are provided in the
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appendix.

The mean value of each feature within each 5-minute window was subsequently averaged

across 24-hour segments to reduce data dimensionality and account for changes due to

circadian rhythm.

8.3.4 Preprocessing

Artifacts, which were relatively rare, were identified for the majority of patients through

visualization of extracted features. Outliers were manually identified based on large spikes

or large drops in each feature space and, if verified to arise from artifacts on raw EEG, were

removed from corresponding channels across all features. Large increases in feature values

were often correlated with short periods of line noise harmonics or transient epileptiform

activity (seizures), particularly if these periods occurred in windows overlapping with data

gaps as they would not be averaged out. Large decreases correlated most often with multiple

electrode drop offs. In total, 396 out of 6565 days, or 6.1% of available days, were removed.

Examples of artifact are shown in Figure 60.
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Figure 60: Examples of removed artifacts. Artifacts were identified based on features and
subsequently verified on raw data. (A) Electrode dropouts in several channels resulting in
abrupt decreases in feature values (B) High frequency noise, possibly a harmonic of line noise
and (C) high frequency seizure activity causing sudden increases in feature values. Seizure
activity in general was not artifactual when averaged over a given day, however, days with
signal dropout artificially inflated feature values due to seizures and were removed.
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8.3.5 Statistical Analysis

Statistical analyses were performed in R. For each subject and for each day, the mean and

coefficient of variation (standard deviation/mean) across channels were calculated on each

day. The coefficient of variation captured spatial variability normalized by the mean feature

value. Before averaging across subjects for a group level analysis, feature values for each

channel and coefficients of variation for each subject were independently normalized to [0-1]

based on 95% of the values. Normalization enabled different channels and subjects to be

combined into a group level analysis and allows us to focus on time dependent changes.

Individuals were also analyzed independently to understand variability in mean feature

values.

Individual statistics Changes in feature values were observed to follow a linear trend

before stabilizing. To determine the average rate of change in feature values, independent

linear models were fit on the first 75 days post-implantation for each feature, for each subject

with time in days as the covariate. The significant main effects of time are reported after

adjusting for false discovery rate (FDR) of 0.05 (Benjamini-Hochberg). These main effects

(betas) represent the rate of decay (or growth) of a feature over time and whether this rate

is statistically different than 0 (indicating stability).

Group statistics To determine times where mean feature values and coefficients of vari-

ation differed from a stable period, a null normal distribution was obtained from the mean

and standard deviation of values from day 200 to day 500. As subjects dropped out due to

variable recording durations, these times were selected to include at minimum the majority

of subjects (8/15). Means corresponding to a critical value of a one-sided Z test with signifi-

cance of p=0.05 (z=1.645) were selected as the threshold. Values greater than this threshold

were significantly different than the distribution of values expected for a particular feature.
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To model the group level change in feature values in the initial 75 days post-implantation,

a linear mixed model (equation 8.1) was used with day as a covariate and feature value

averaged over channels as a response variable. Linear mixed models allow modeling of

patient specific trends and are also robust to missing at random data. Separate models

were fit for each feature and group level fixed effects (β1) and intercepts (β0) are reported.

As the feature value on day 1 and the rate of change across days 1-75 may vary with each

subject, a random intercept (b0i) and slope (b1i) was used. The Wald t-statistic was used

to determine the significance of any trend across time.

Yij = β0 + β1tij + b0i + b1itij + εij (8.1)

where boi ∼ N (0, τ2), b1i ∼ N (0, τ21i), Yij denotes the feature value, tij indexes the day after

implantation, boi and b1i are random intercepts and slopes for each patient, for subject i

and time j.

8.4 Results

8.4.1 Temporal stability

The day after implantation that each feature enters a steady state distribution is given

in Table ??. Time domain features show a prominent transient response in the first 100

days after implantation (Figure 61). Specifically, line length, capturing both voltage and

frequency fluctuations, half-wave amplitude, and energy are increased at implantation, enter

the steady state bound from day 27-48 and steadily decrease 36-42% until approximately

day 75, where they stabilize (Table 13). Area follows the same initial decreasing trend,

but fluctuates throughout the recording window and thus falls within our defined stable

distribution.
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Table 12: Days to stabilization

Days to Stabilization

Feature Temporal Spatial
Line Length 37.3 52.1
Area * *
Half-wave 8.9 37.5
Energy 21.6 *
Delta 17 52.5
Theta 23.5 41.6
Alpha 20.8 38.7
Beta 26.6 40.9
Gamma 42.9 *
High Gamma 42.4 *

For each feature, the time to stabi-
lization is calculated as the first day
when the mean value across subjects
enters a stable range. This range is
determined by the critical value of
1.645 (one sided Z-test) calculated
from the null distribution across days
200 to 500. *within stable distribu-
tion at implantation
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Table 13: Linear mixed model estimates

Feature (/Day) SE t(812) Adj. P % Change from Day 1-75

Line Length 0.332 0.076 -4.346 <0.001 0.68 36.6
Area 0.118 0.075 -1.574 0.116 0.605 14.7
HW 0.307 0.072 -4.28 <0.001 0.615 37.4
Energy 0.34 0.075 -4.542 <0.001 0.599 42.6
Delta 0.434 0.094 -4.636 <0.001 0.634 51.3
Theta 0.43 0.102 -4.2 <0.001 0.651 49.6
Alpha 0.318 0.06 -5.255 <0.001 0.61 39.1
Beta 0.295 0.063 -4.7 <0.001 0.615 35.9
Gamma 0.35 0.082 -4.276 <0.001 0.668 39.2
High Gamma 0.232 0.092 -2.522 0.0119 0.615 28.3

The fixed effect of time is shown for each feature. P values are adjusted for FDR at 0.05.
The estimated total percent change from Day 1 to Day 75 is calculated by as β0 − (β2 ∗ 75)
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Figure 61: Time domain feature trends. Line length, area, half-wave, and energy are shown.
The vertical axis represents a within-channel normalization to [0 1] based on 95% of each
channel’s values. For each feature, the smoothed mean (blue) and standard deviation (gray)
across subjects are shown. The red dashed line indicates the feature value that corresponds
to significance at p=0.05 (z=1.645) of a one-sided z test, with the null distribution generated
from day 200 to 500.

All spectral bands show an initial period of decline that stabilizes by 100 days (Figure 62).

The decline in power was 40% on average from day 1 to day 75 (Table 13).
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Figure 62: Spectral domain feature trends. Average power in delta (0-4 hz), theta (4-
8), alpha (8-12), beta (12-30), gamma (30-100), and high-gamma (100-180) frequencies
are shown. The vertical axis represents a within-channel normalization to [0 1] based on
95% of each channel’s values. For each feature, the smoothed mean (blue) and standard
deviation (gray) across subjects are shown. The red dashed line indicates the feature value
that corresponds to significance at p=0.05 (z=1.645) of a one-sided z test, with the null
distribution generated from day 200 to 500.

8.4.2 Spatial variability

The coefficient of variation for line length and half-wave declined in the first 100 days,

whereas the coefficients of variation for area and energy fluctuated within a stable boundary

(Figure 63). The coefficient of variation for spectral power in the delta, theta, alpha, and

beta bands also declined in the initial stages of recording. Increasing frequency bands were
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inversely related to the magnitude of post-implantation effect (Figure 64). These findings

indicate that spatial variability of lower frequency power bands across channels decreases

over time, entering our defined stable distribution between 37-52 days after implantation.

Figure 63: Spatial variation - Time features. The mean coefficient of variation is shown for
each time domain feature. This is calculated on a subject level as the ratio of the stan-
dard deviation across channels to the mean. The smoothed mean (blue) and the standard
deviation (gray) of the coefficient of variation across subjects are shown. The red line indi-
cates the feature value that corresponds to significance at p = 0.05(z = 1.96), with the null
distribution generated from day 200 to 500.
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Figure 64: Spatial variation spectral features. The mean coefficient of variation is shown
for each feature. This is calculated on a subject level as the ratio of the standard deviation
across channels to the mean. The smoothed mean (blue) and the standard deviation (gray)
of the coefficient of variation across subjects are shown. The red dashed line indicates the
feature value that corresponds to significance at p=0.05 (z=1.645) of a one-sided z test,
with the null distribution generated from day 200 to 500.
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Table 14: Pearson Correlation between all features

LL Area HW Energy Delta Theta Alpha Beta Gamma

Area 0.41
HW 0.54 0.67
Energy 0.56 0.73 0.90
Delta 0.41 0.67 0.86 0.86
Theta 0.56 0.64 0.85 0.83 0.80
Alpha 0.64 0.54 0.74 0.71 0.60 0.81
Beta 0.82 0.41 0.52 0.52 0.36 0.55 0.74
Gamma 0.79 0.32 0.36 0.38 0.28 0.35 0.42 0.64
High Gamma 0.41 0.21 0.21 0.22 0.20 0.22 0.22 0.27 0.58
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8.4.3 Individual Fits

Beta estimates for each patient and each feature are shown in Figure 65. Of the 135

patient-feature combinations, 83 displayed a statistically significant linear trend after False

Discovery Rate correction, 79 of which declined in the initial 75 days. Fourteen of the

15 subjects had significantly decreasing values in at least one feature. Subject 3 and 5’s

recordings were more stable in the spectral domain, resulting in insignificant beta estimates

across all power bands.
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Figure 65: Individual variability. The beta estimates from a linear model was fit for each pa-
tient for each feature from day 1 to day 75. Color scale indicates beta values (% change/day),
with red indicating an increase in feature values and blue indicating a decrease. Grey indi-
cates betas that were not significant after FDR correction. LL = line length.
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Figure 66: Individual plots of line length for the first 100 days. Each subject is included in
a subplot, and each point represents the averaged feature value for the given day. A best
smooth linear regression is shown. Additional plots are provided in A
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Figure 67: Individual trends for each dog across days. Normalized line length is shown

8.5 Discussion

In this study we analyze continuous long-term ambulatory recordings from subdural iEEG

electrodes implanted in humans and characterize the temporal and spatial variability of time

and spectral domain features frequently used in research and device algorithms. This study

is unique, as it explores the only known dataset of long-term continuously recorded human

iEEG spanning an average of 1.5 years, as opposed to episodic, brief recordings lasting

up to a few weeks. Our findings may directly impact the clinical management of human
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patients, since the selected features represent those used in current implantable devices.

We show that in the majority of features, there is an initial temporal decline in the mean

values that plateaus roughly 100 days after implantation (Figure 61, 62). This trend in

feature values is consistent in 13/15 patients. Furthermore, for line length, half-wave, and

a number of spectral bands (delta to beta), there is increased spatial variability between

channels that stabilizes in a similar time frame. These observations demonstrate an initial

period of spatial and temporal variability in iEEG recordings that requires several months

to stabilize.

8.5.1 Temporal variability

Both mean line length and mean energy significantly decrease from day zero to day 21-37

(Table 13) and reach a plateau by day 100 (Figure 61). Since line length captures features

of both frequency and voltage, there is an expected correlation between this feature and

energy that is reflected in similar temporal trends. Half-wave amplitude, also an indirect

measure of power, follows a similar trend. Area, however, fluctuates throughout the long-

term recording and does not stabilize in the same manner as the other features. For the

spectral domain features, each band is initially elevated before reaching a stable range 17-

43 days after implantation, with a plateau by 100 days (Figure 62). As expected, there is

a strong correlation between line length and power (e.g. Pearson r = 0.82 between beta

power and line length), which, coupled with the dissimilarity in trends with area, suggests

that line length in practice is more sensitive to recording changes in frequency than voltage

amplitude.

These findings immediately demonstrate the temporal variability present in time and fre-

quency domain features following implantation. Line length and half-wave, two features

used in the NeuroPace [141] and NeuroVista [23] algorithms, exhibit high temporal insta-

bility, decreasing by over 30% in the first 75 days. Using these features for seizure detection
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or prediction may lead to decreased sensitivity over time as feature values trend down. Fur-

thermore, power features decrease dramatically by over 40% on average (Table 13). This

drift must be accounted for in chronic neurodevices, either by directly modeling the change

or waiting until after day 75 before optimizing algorithms. Additionally, changes in RNS

detections observed in the first few months after a chronic implant should be interpreted

with caution, so as not to falsely attribute perceived clinical response to early changes in

stimulation parameters.

It is interesting to note that the canines’ feature values all follow a similar trend as the

humans, however, there is a much steeper decline in the mean values (Figure 67). This

suggests that the tissue reaction occurs at a faster timescale, potentially a reflection of

differences in immune reactivity or experimental procedure variability between humans and

canines. These findings imply that there are species specific changes that also need to be

taken into account (discussed further below).

8.5.2 Spatial variability

It is also important to capture the variability among electrodes to inform algorithms that

utilize spatial features (measurements among channels). If the processes causing post-

implantation changes affect all electrodes equally, the mean may decrease while the coef-

ficient of variation, which is normalized by the mean, would remain stable. However, we

observed that the spatial variation of line length, half-wave, and spectral power decreases

over time (Figures 63, 64) and, similar to temporal variability, this effect is more signifi-

cant in the lower frequencies. Notably, while the spatial variation enters the defined stable

distribution later than the temporal variation, suggesting a different rate of decline, the co-

efficients of variation form plateaus roughly the same time (day 100) as their corresponding

mean feature values. A decrease in the coefficient of variation suggests that the processes

responsible for the trend in mean feature values affect each electrode differently, and the
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magnitude of this difference decreases over time. As a result, we can expect any spatial

measures of iEEG to be unstable in the initial periods after an implant.While we did not

find an obvious association between electrode location in the brain, hospital of insertion

(patients were implanted at 3 different hospitals at the University of Melbourne [23]), or

specific operative technique to account for spatial variability, these were not investigated in

detail and patient numbers were too small to adequate test these hypothesis.

8.5.3 Previous studies

Histological changes at the brain-electrode interface likely explain our observed feature vari-

ability following implantation, since both follow a similar time course. These interactions

have been studied extensively in electrodes implanted into animals and human [94, 116,

141, 151] and involve an acute inflammatory response followed by chronic fibrosis that sig-

nificantly diminishes by 6-8 weeks [128, 140, 141, 158]. Notably, many of these past studies

analyzed the impact of intracortical electrodes, which penetrate the cortical surface and

have an increased burden on the brain. Several studies in non-human primates and rats

with subdural electrodes have shown minimal damage to the cortex but fibrous tissue en-

capsulation over time [30, 61, 125] that subsequently lead to greater changes in electrode

impedance relative to intracortical electrodes [74, 134, 160]. Since electrode impedance

directly impacts our calculated features, we relate our observations to previously reported

changes in electrode impedance in studies of subdural iEEG. Specifically, subdural elec-

trodes implanted in rats have shown an increase in impedance in the first 30 days after

implantation that stabilizes after week 18 [61]. On histology, fibrous tissue encapsulation

was observed surrounding the electrodes. Interestingly, a recent study in non-human pri-

mates recorded for over 600 days reported root-mean-square (RMS) voltage stability at 300

days, which is much later than the stability we observe in signal features [30] and possi-

bly suggests different timescales between non-human primates and humans. This difference
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might be related to differences in immune response in these animals, sterile conditions of the

implants or perhaps mechanical or material factors. In humans, Sillay et al. recently showed

that impedance in the NeuroPace RNS R©subdural electrodes increases an estimated 30%

from day 1 to day 84 after implantation and stabilizes by four months [134]. This is similar

to the magnitude of change that we observed in our time and spectral features from day 0 to

day 75 (Table 13), suggesting that our observed changes are similar to previously described

changes in impedance. However, it should be noted that the RNS impedance recordings

were collected intermittently with limited temporal resolution, whereas our recordings were

continuous. Notably, while we observe high degree of similarity between the time courses

of each of the power bands, the decrease in power was greatest in lower frequencies. These

changes could be motivated by an increase in both the resistive and capacitive impedance

due to tissue encapsulation, as previously reported in microelectrodes [124].

8.5.4 Clinical Implications

Our study is the first of its kind to extend these observations of RMS and impedance to

signal features in continuous recordings, a next step towards translating these findings into

clinically meaningful attributes. Variability in signal properties has ramifications for emerg-

ing closed loop systems for the treatment of drug-resistant epilepsy [102] with important

implications for device development and clinical trial design. These systems must be cog-

nizant of post-implant variability, suggesting a need for strategies to either algorithmically

control for this instability or focus optimization only following stabilization. As an exam-

ple, current common practice using the NeuroPace device includes a postoperative waiting

period to capture seizures for algorithm training. Detection parameters optimized before

stabilization may result in poor early performance.

Figure 65 shows that there is significant variability in the response of certain patients, with

some subjects (3 and 5) displaying more stable features following implantation. These sub-
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jects are relatively younger individuals who may have a more robust wound healing response

[52], though we do not have enough data to draw any definitive conclusions. Additional

insights may be found as chronic invasive recording becomes more widely available, though

in our cohort, 99.5% of statistically significant feature trends decreased over time.

It is also important to determine the impact of these changes on clinical biomarkers that are

used in the care of the drug resistant epilepsy population. Acute implantation can induce

interictal epileptiform activity and seizures that do not accurately represent the patient’s

underlying disorder [7, 43]. This may be a result of direct effects, such as of trauma,

electrode contact with the cortical tissue, or complications of electrode placement such

as hemorrhage, fluid collections or cerebral edema [7]. Seizure onset localization relies on

identifying subtle electrographic changes that are spatially distinct, so any changes in spatial

variability may interfere with the localization procedure. Of interest, there is evidence

that patients who appear to have multifocal onset seizures immediately after electrode

implantation during standard clinical evaluation localize to one predominant area in the

chronic steady state, eventually resulting in seizure-free outcome after surgery [31]. This

provides at least circumstantial evidence that the chronic steady state may better reflect

a patient’s baseline than alterations of the network from implantation. In this dataset,

clinical seizure semiology typically did not change in the chronic state from pre-implantation

in most of our patients, giving some reassurance that these effects are limited in scope.

However, it has been demonstrated in that seizures can have similar clinical appearance

while arising from different parts of an epileptic networks, sometimes with different EEG

signatures. A recent study by our group shows this phenomenon in a long-term canine

model [149]. Classifying seizures and mapping their temporal trends is an ongoing project

in our laboratory.

An interesting question to consider from our findings is whether the steady state observed
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after stabilization of chronic intracranial recordings represents ground truth. This question

is particularly important when considering epilepsy biomarkers, such as interictal epilepti-

form discharges and seizures, and interpreting what their temporal and spatial distributions

mean with respect to the fundamental mechanisms underlying epileptic networks. Like the

Heisenberg Uncertainty Principle, unfortunately, it is clear that our measurements of the

iEEG, for which there is not currently a noninvasive alternative, perturb the system and

may induce chronic change. At present, iEEG studies provide the best way of assessing

an epileptic network’s broad band activity on a clinical scale, even taking this limitation

into consideration. It will be important in future studies from this unique data archive,

to determine if localization of seizures and interictal epileptiform discharges change sim-

ilarly over the first 100 days, which may have more important consequences for current

epilepsy surgery and ablative therapies. Should spatial localizations change, as the paper

by DiLorenzo et al suggests, either due to brain disruption or merely inadequate temporal

sampling, this may require a paradigm shift in the duration of monitoring required to lo-

calize epileptic networks for intervention. This might require that we monitor patients in

the ambulatory setting for months, rather than weeks in the hospital.

8.5.5 Conclusion

We have shown that human subdural recordings exhibit a temporal and spatial post-

implantation response that requires 100 days for complete stabilization. These findings

directly explain observed trends in human neurodevice implants and show that systems

that use or interpret subdural electrode recordings must account for these changes for op-

timal performance. Implications for clinical care will require further evaluation of chronic

iEEG recordings to see if seizure localization is affected by acute electrode implantation.



Chapter 9

Conclusions

Epilepsy is a chronic disorder that provides a wealth of EEG data that enables many

opportunities for scientific discovery. This amount of data requires automated data mining,

machine learning, and robust statistical analyses to draw meaningful conclusions about

the underlying electrophysiological network. In this thesis, we’ve introduced an interactive

framework for detecting and characterizing transient interictal patterns. Though this thesis

focuses on spikes and bursts, the general framework can be applied to detect any marked

pattern, with informative features easily added. We have applied this pipeline to animal

and human datasets and studied their interaction in health and disease.

In Chapter 3, we showed that interictal spikes, the significance of which was unclear, are

indeed not benign and impedes in human cognition in a spatially specific manner. This

was made possible through an automated spike detection algorithm that mined 67 human

ECoG patients to determine the effect of spikes on word recall. Interestingly, the effect of

spikes was not seen in the seizure onset zone, which suggests potential utility in spike-aided

identification of dysfunctional tissue.

Chapter 4 examined a rat model of epileptogenesis, and found that a subset of bursts may

predict epileptogenesis post-TBI. This finding suggests that epileptiform bursts may be

precursors to seizures, though experiments with continuous recordings and simultaneous

video and electromyography are required for future improvements.
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In a canine model, we showed in Chapters 5, 6, and 7 that bursts are similar to seizure

onsets and display dynamics similar to the observed seizures. These findings suggest that

bursts may represent seizures that fail to manifest. In addition, there is evidence that these

bursts may localize to the seizure onset zone, though more work is necessary in humans

with better-defined seizure onset zones. Finally, we also show that burst dynamics fluctuate

over time in a manner that mimics seizures, suggesting that long-term recordings may be

necessary to provide a more complete picture of a patient’s epilepsy.

This was investigated further in Chapter 8, which focused on the analysis of year-long

continuous human iEEG. We showed that long-term recordings require several months for

stabilization. These were represented in features currently used in clinical devices and

explain the anecdotal instability in the development of neurodevice algorithms. Our findings

have significant implications for any scenario that incorporates invasive recordings, from

brain machine interfaces to clinical invasive monitoring for seizure localization.

We believe automated analysis of EEG is necessary to answer important questions about

brain electrophysiology. However, there are several steps that are imperative to achieving

this aim. Gold standard annotated data are necessary to improve the generalizability of

algorithms that we’ve developed. These data and algorithms should be publicly shared

to expedite research progress and translation into clinical utility. In the meantime, our

framework allows for an interactive pattern detection paradigm by which users can train and

test their own models quickly, with annotations uploaded to a publicly accessible database.

The hope is that patterns in this thesis as well as other patterns can be incorporated into

robust biomarker detection scheme. Though we are still far from the ease of automatic

EEG reading as predicted nearly half a century ago, we hope our efforts will help pave the

way.
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9.1 Future Directions

1. Technical Framework - The technical framework developed in this thesis will be pack-

aged and made available for public use. In conjunction with an open, shared platform

such as the IEEG.org portal, we can begin to develop a set of standardized EEG

records with validated tools to analyze them, which will pave the way for more gener-

alizable biomarker detection algorithms. This is much needed in the field of epilepsy,

where no standardized datasets or algorithms currently exist.

2. Biomarkers of epileptogenesis - The work involving post-traumatic epilepsy is very

promising but requires additional experiments to be performed for validation. Now

that we’ve developed the technical pipeline for automated analysis, continuous rat

datasets collected toward electrographic biomarker discovery can be quickly analyzed.

Ideally, this recordings will also have simultaneous video and/or EMG to also learn

about the origins of these patterns, which has not yet been well described in the field.

3. Cognitive spikes - In this particular project, we’ve shown that spikes affect cognition.

However, the effect is relatively small, and it is unknown how spikes affect cognition

outside of a short-term memory task. Improving the spike detections and more rig-

orously investigating associations with clinically important variables such as surgical

resection volume may improve the clinical applicability of spikes.

4. Bursts and seizures in Human EEG - We have detected and characterized bursts in

a canine model, showing that bursts as well as seizure onset changes over time. It is

imperative to continue this work in humans in order to more directly guide clinical

assessment of bursts and seizures in the context of long term iEEG. This work has

the potential to introduce long term ambulatory monitoring as an alternative therapy

for a sub-population of patients.



5. Seizure Prediction - Our long-term human iEEG dataset with clinically annotated

seizures is the only dataset of its kind that will allow for assessment of seizure predic-

tion. Previous datasets consisted of short term recordings aggregated over multiple

patients, reducing the generalizability and validity of previously published algorithms.

In this particular case, we have enough seizures to train a patient-specific algorithm

to determine the predictability of seizures in a use-case scenario.
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APPENDIX

A.1 Common time domain features

Line length: 1
N (

∑n−1
i=1 (|xi+1 − xi|))

Area: 1
N (

∑N−1
i=1 (|x[i]|))

Energy: 1
N (

∑N−1
i=1 (x[i]2))

Halfwave: The halfwave procedure decomposes a given signal into defined half waves. These

halfwaves are found by segmentation of signal based on local minima. Applied a dura-

tion threshold of half wave as well as an amplitude threshold essentially calculates power

above/below a certain frequency. The duration threshold applied in this experiment was 10

samples (with a sample rate of 400) and average amplitude is reported.
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A.2 Individual plots of feature values from Chapter 8
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Figure 68: Individual plots of Halfwave amplitude for the first 100 days
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Figure 69: Individual plots of Energy power for the first 100 days
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Figure 70: Individual plots of Area power for the first 100 days

186



●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●
●●

●
●●

●
●●

●

●
●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●
●
●

●
●●

●

●●●

●

●

●
●
●

●

●

●●

●

●

●

●●

●●
●

●●
●

●
●

●

●
●

●

●

●
●
●
●●

●
●

●
●●
●●
●

●

●

●

●

●

●

●
●
●
●

●

●●
●

●
●
●
●
●

●
●

●

●

●

●
●●

●

●

●

●●
●
●
●
●●
●●
●
●●●●

●●●●
●●●●

●

●●●
●●
●●●

●
●

●

●

●●
●
●

●
●

●●
●
●

●
●

●

●
●●
●
●●
●

●
●
●
●

●
●

●
●●●●

●
●
●

●
●●●

●
●●●

●●●●●
●●●●

●●●

●
●
●

●

●●

●
●●
●

●

●
●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●
●
●

●

●

●

●●

●

●
●

●
●

●

●
●●
●

●

●●

●

●
●●
●

●

●

●
●●

●

●
●
●

●

●

●
●●
●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●
●
●

●
●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●●●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●
●

●

●●

●
●

●

●
●

●
●
●

●
●

●
●●
●

●●
●

●
●

●
●

●

●

●●●

●
●

●
●

●
●

●
●
●●
●

●

●

●●●●
●

●

●
●●
●

●
●

●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●●
●●●●

●
●

●●

●

●

●
●

●

●●

●●●●●

●

●
●●
●

●
●

●●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●
●●
●●

●

●●

●

●

●

●

●●
●●

●

●●

●

●

●
●

●

●

●

●

●

●
●●
●
●●

●●

●

●
●●
●

●●●
●●

●

●

●

●

●

●

●

●●

●●
●
●
●●
●

●

●

●

●

●

●●
●
●

●

●

●●●●

●

●
●

●

●
●●
●

●

●

●

●●
●●●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●
●
●●

●

●●

●

●●
●

●
●

●

●
●

●
●

●●●●
●

●

●●
●●
●●
●●●

●

●

●
●

●

●

●
●
●

●
●

●
●●

●

●●●

●

●

●

●

●
●

NVC1001_23_002 NVC1001_23_003 NVC1001_23_004 NVC1001_23_005

NVC1001_23_006 NVC1001_23_007 NVC1001_24_001 NVC1001_24_002

NVC1001_24_004 NVC1001_24_005 NVC1001_25_001 NVC1001_25_002

NVC1001_25_003 NVC1001_25_004 NVC1001_25_005

200

400

600

800

1000

250

300

350

400

450

0

500

1000

1500

2000

50

100

150

200

100

200

300

400

200

400

600

0

1000

2000

3000

400

600

800

1000

300

600

900

1200

1500

400

800

1200

1600

400

600

800

1000

600

800

1000

1200

1000

1500

2000

2500

250

500

750

1000

500

1000

1500

2000

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0 25 50 75 0 25 50 75 100 0 25 50 75 100 0 25 50 75

0 25 50 75 100 0 25 50 75 100 0 25 50 75 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Time (Day)

D
el

ta
Individual fits for  Delta  by subject

Figure 71: Individual plots of delta power for the first 100 days
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Figure 72: Individual plots of theta power for the first 100 days
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Figure 73: Individual plots of alpha power for the first 100 days
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Figure 74: Individual plots of beta power for the first 100 days
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Figure 75: Individual plots of gamma power for the first 100 days
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Figure 76: Individual plots of High Gamma power for the first 100 days
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A.3 Circadian Rhythm of Time and Spectral domain fea-

tures

Figure 77: Circadian rhythm for NV C1001 23 002, all features
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Figure 78: Circadian rhythm for NV C1001 23 003, all features

Figure 79: Circadian rhythm for NV C1001 23 004, all features

194



Figure 80: Circadian rhythm for NV C1001 23 005, all features

Figure 81: Circadian rhythm for NV C1001 23 006, all features
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Figure 82: Circadian rhythm for NV C1001 23 007, all features

Figure 83: Circadian rhythm for NV C1001 24 001, all features
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Figure 84: Circadian rhythm for NV C1001 24 002, all features

Figure 85: Circadian rhythm for NV C1001 24 004, all features
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Figure 86: Circadian rhythm for NV C1001 24 005, all features

Figure 87: Circadian rhythm for NV C1001 25 001, all features
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Figure 88: Circadian rhythm for NV C1001 25 002, all features

Figure 89: Circadian rhythm for NV C1001 25 003, all features
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Figure 90: Circadian rhythm for NV C1001 25 004, all features

Figure 91: Circadian rhythm for NV C1001 25 005, all features
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[18] György Buzsáki, Costas a Anastassiou, and Christof Koch. “The origin of extracel-
lular fields and currents–EEG, ECoG, LFP and spikes.” In: Nature reviews. Neu-
roscience 13.6 (2012), pp. 407–20. issn: 1471-0048. doi: 10.1038/nrn3241. arXiv:
NIHMS150003. url: http://www.ncbi.nlm.nih.gov/pubmed/22595786.

[19] Laetitia Chauvière et al. “Changes in interictal spike features precede the onset of
temporal lobe epilepsy”. In: Annals of Neurology 71.6 (2012), pp. 805–814. issn:
03645134. doi: 10.1002/ana.23549.

[20] Jakob Christensen et al. “Long-term risk of epilepsy after traumatic brain injury in
children and young adults: a population-based cohort study.” In: Lancet 373.9669
(2009), pp. 1105–1110. issn: 1474-547X. doi: 10.1016/S0140-6736(09)60214-2.

[21] Stuart F Cogan. “Neural stimulation and recording electrodes.” In: Annual review
of biomedical engineering 10 (2008), pp. 275–309. doi: 10.1146/annurev.bioeng.
10.061807.160518.

[22] Laurent Cohen et al. “Language-specific tuning of visual cortex? Functional prop-
erties of the Visual Word Form Area.” In: Brain 125.5 (2002), pp. 1054–1069. issn:
0006-8950. doi: 10.1093/brain/awf094.

[23] Mark J. Cook et al. “Prediction of seizure likelihood with a long-term, implanted
seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study”.
In: The Lancet Neurology 12.6 (2013), pp. 563–571. issn: 14744422. doi: 10.1016/
S1474-4422(13)70075-9.

[24] Maryann D’Alessandro et al. “Epileptic seizure prediction using hybrid feature se-
lection over multiple intracranial EEG electrode contacts: a report of four patients.”
In: IEEE transactions on bio-medical engineering 50.5 (2003), pp. 603–15. doi: 10.
1109/TBME.2003.815899.

202

http://dx.doi.org/10.1023/A:1010933404324
http://arxiv.org/abs//dx.doi.org/10.1023{\%}2FA{\%}3A1010933404324
http://arxiv.org/abs//dx.doi.org/10.1023{\%}2FA{\%}3A1010933404324
http://link.springer.com/10.1023/A:1010933404324
http://link.springer.com/10.1023/A:1010933404324
http://dx.doi.org/10.2307/2676681
http://arxiv.org/abs/0010
http://projecteuclid.org/Dienst/getRecord?id=euclid.ss/1009213726/
http://dx.doi.org/10.1109/IEMBS.2009.5332915
http://dx.doi.org/10.1109/IEMBS.2009.5332915
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1073/pnas.1401752111
http://dx.doi.org/10.1073/pnas.1401752111
http://www.pnas.org/content/111/49/E5321.abstract
http://dx.doi.org/10.1038/nrn3241
http://arxiv.org/abs/NIHMS150003
http://www.ncbi.nlm.nih.gov/pubmed/22595786
http://dx.doi.org/10.1002/ana.23549
http://dx.doi.org/10.1016/S0140-6736(09)60214-2
http://dx.doi.org/10.1146/annurev.bioeng.10.061807.160518
http://dx.doi.org/10.1146/annurev.bioeng.10.061807.160518
http://dx.doi.org/10.1093/brain/awf094
http://dx.doi.org/10.1016/S1474-4422(13)70075-9
http://dx.doi.org/10.1016/S1474-4422(13)70075-9
http://dx.doi.org/10.1109/TBME.2003.815899
http://dx.doi.org/10.1109/TBME.2003.815899


[25] Raimondo D’Ambrosio et al. “Post-traumatic epilepsy following fluid percussion in-
jury in the rat”. In: Brain 127.2 (2004), pp. 304–314. issn: 00068950. doi: 10.1093/
brain/awh038.

[26] Margherita D’Antuono et al. “Antiepileptic drugs abolish ictal but not interictal
epileptiform discharges in vitro”. In: Epilepsia 51.3 (2010), pp. 423–431. issn: 00139580.
doi: 10.1111/j.1528-1167.2009.02273.x.

[27] Kathryn A Davis et al. “A novel implanted device to wirelessly record and analyze
continuous intracranial canine EEG.” In: Epilepsy research 96.1-2 (2011), pp. 116–
22. issn: 1872-6844. doi: 10.1016/j.eplepsyres.2011.05.011.

[28] Kathryn A Davis et al. “Mining continuous intracranial EEG in focal canine epilepsy:
Relating interictal bursts to seizure onsets.” In: Epilepsia 57.1 (2016), pp. 89–98.
issn: 1528-1167. doi: 10.1111/epi.13249. url: http://www.ncbi.nlm.nih.gov/
pubmed/26608448.

[29] Ross Davis and Sandra E Emmonds. “Cerebellar stimulation for seizure control:
17-year study”. In: Stereotactic and Functional Neurosurgery. Vol. 58. 1-4. 1992,
pp. 200–208. isbn: 1011-6125 (Print)\r1011-6125 (Linking). doi: 10.1159/000098996.

[30] Alan D Degenhart et al. “Histological evaluation of a chronically-implanted elec-
trocorticographic electrode grid in a non-human primate”. In: Journal of Neural
Engineering 13.4 (2016), p. 046019. issn: 1741-2560. doi: 10.1088/1741-2560/13/
4/046019. url: http://stacks.iop.org/1741-2552/13/i=4/a=046019?key=
crossref.fbb51d6754f6c5d84615ef40c9ba1b10.

[31] Daniel J DiLorenzo et al. “Chronic unlimited recording electrocorticography-guided
resective epilepsy surgery: technology-enabled enhanced fidelity in seizure focus lo-
calization with improved surgical efficacy.” In: Journal of neurosurgery 120.June
(2014), pp. 1402–14. issn: 1933-0693. doi: 10.3171/2014.1.JNS131592. url: http:
//www.ncbi.nlm.nih.gov/pubmed/24655096.

[32] Daniel L. Drane et al. “Better object recognition and naming outcome with MRI-
guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy”. In:
Epilepsia 56.1 (2015), pp. 101–113. issn: 15281167. doi: 10.1111/epi.12860.

[33] J. Echauz et al. Median-based filtering methods for EEG seizure detection. 1999.
doi: 10.1109/IEMBS.1999.802517. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=802517.

[34] H Eichenbaum, A P Yonelinas, and C Ranganath. “The medial temporal lobe and
recognition memory.” In: Annual review of neuroscience 30 (2007), pp. 123–52. issn:
0147-006X. doi: 10.1146/annurev.neuro.30.051606.094328. arXiv: NIHMS150003.
url: http://www.scopus.com/inward/record.url?eid=2-s2.0-34249055712{\&
}partnerID=tZOtx3y1.

[35] Jerome Engel. Biomarkers in epilepsy: foreword. 2011. doi: 10.2217/bmm.11.63.
[36] Jerome Engel and Paul H. Crandall. “Falsely Localizing Ictal Onsets with Depth

EEG Telemetry During Anticonvulsant Withdrawal”. In: Epilepsia 24.3 (1983), pp. 344–
355. issn: 0013-9580. doi: 10.1111/j.1528-1157.1983.tb04898.x. url: http:
//doi.wiley.com/10.1111/j.1528-1157.1983.tb04898.x.

203

http://dx.doi.org/10.1093/brain/awh038
http://dx.doi.org/10.1093/brain/awh038
http://dx.doi.org/10.1111/j.1528-1167.2009.02273.x
http://dx.doi.org/10.1016/j.eplepsyres.2011.05.011
http://dx.doi.org/10.1111/epi.13249
http://www.ncbi.nlm.nih.gov/pubmed/26608448
http://www.ncbi.nlm.nih.gov/pubmed/26608448
http://dx.doi.org/10.1159/000098996
http://dx.doi.org/10.1088/1741-2560/13/4/046019
http://dx.doi.org/10.1088/1741-2560/13/4/046019
http://stacks.iop.org/1741-2552/13/i=4/a=046019?key=crossref.fbb51d6754f6c5d84615ef40c9ba1b10
http://stacks.iop.org/1741-2552/13/i=4/a=046019?key=crossref.fbb51d6754f6c5d84615ef40c9ba1b10
http://dx.doi.org/10.3171/2014.1.JNS131592
http://www.ncbi.nlm.nih.gov/pubmed/24655096
http://www.ncbi.nlm.nih.gov/pubmed/24655096
http://dx.doi.org/10.1111/epi.12860
http://dx.doi.org/10.1109/IEMBS.1999.802517
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=802517
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=802517
http://dx.doi.org/10.1146/annurev.neuro.30.051606.094328
http://arxiv.org/abs/NIHMS150003
http://www.scopus.com/inward/record.url?eid=2-s2.0-34249055712{\&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-34249055712{\&}partnerID=tZOtx3y1
http://dx.doi.org/10.2217/bmm.11.63
http://dx.doi.org/10.1111/j.1528-1157.1983.tb04898.x
http://doi.wiley.com/10.1111/j.1528-1157.1983.tb04898.x
http://doi.wiley.com/10.1111/j.1528-1157.1983.tb04898.x


[37] Jerome Engel et al. “Epilepsy biomarkers.” In: Epilepsia 54 Suppl 4 (2013), pp. 61–9.
issn: 1528-1167. doi: 10.1111/epi.12299. url: http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=4131763{\&}tool=pmcentrez{\&}rendertype=

abstract.
[38] R. Esteller et al. “Line length: an efficient feature for seizure onset detection”. In:

2001 Conference Proceedings of the 23rd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society 2.3 (2001), pp. 1707–1710. issn:
1094-687X. doi: 10.1109/IEMBS.2001.1020545.

[39] Simon Finnigan, Andrew Wong, and Stephen Read. “Defining abnormal slow EEG
activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index”.
In: Clinical Neurophysiology 127.2 (2016), pp. 1452–1459. issn: 13882457. doi: 10.
1016/j.clinph.2015.07.014.

[40] Robert S. Fisher et al. “ILAE Official Report: A practical clinical definition of
epilepsy”. In: Epilepsia 55.4 (2014), pp. 475–482. issn: 15281167. doi: 10.1111/
epi.12550. url: http://doi.wiley.com/10.1111/epi.12550.

[41] Robert Fisher et al. “Electrical stimulation of the anterior nucleus of thalamus
for treatment of refractory epilepsy”. In: Epilepsia 51.5 (2010), pp. 899–908. issn:
00139580. doi: 10.1111/j.1528-1167.2010.02536.x.

[42] Joanna S. Fong et al. “Pathologic findings associated with invasive EEG monitoring
for medically intractable epilepsy”. In: American Journal of Clinical Pathology 138.4
(2012), pp. 506–510. issn: 00029173. doi: 10.1309/AJCPGSNL9VDVNJMX. url: http:
//www.ncbi.nlm.nih.gov/pubmed/23010704.

[43] Kostas N. Fountas et al. “Nonhabitual seizures in patients with implanted subdural
electrodes”. In: Stereotactic and Functional Neurosurgery 82.4 (2004), pp. 165–168.
issn: 10116125. doi: 10.1159/000081881.

[44] Emily B. Fox et al. “Sharing Features among Dynamical Systems with Beta Pro-
cesses”. In: Advances in Neural Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems 2010. 2009, pp. 388–396. isbn:
9781615679119.

[45] Emily Fox et al. “Bayesian nonparametric methods for learning markov switch-
ing processes”. In: IEEE Signal Processing Magazine 27.6 (2010), pp. 43–54. issn:
10535888. doi: 10.1109/MSP.2010.937999.

[46] Lauren C Frey. “Epidemiology of posttraumatic epilepsy: a critical review.” In:
Epilepsia 44 Suppl 1 (2003), pp. 11–17. issn: 0013-9580. doi: 10.1046/j.1528-
1157.44.s10.4.x.

[47] Nicolas Gaspard and Lawrence J Hirsch. “Pitfalls in ictal EEG interpretation: critical
care and intracranial recordings.” In: Neurology 80.1 Suppl 1 (2013), S26–42. issn:
1526-632X. doi: 10.1212/WNL.0b013e31827974f8.

[48] Nicolas Gaspard et al. “Automatic detection of prominent interictal spikes in in-
tracranial EEG: Validation of an algorithm and relationsip to the seizure onset
zone”. In: Clinical Neurophysiology 125.6 (2014), pp. 1095–1103. issn: 13882457.

204

http://dx.doi.org/10.1111/epi.12299
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4131763{\&}tool=pmcentrez{\&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4131763{\&}tool=pmcentrez{\&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4131763{\&}tool=pmcentrez{\&}rendertype=abstract
http://dx.doi.org/10.1109/IEMBS.2001.1020545
http://dx.doi.org/10.1016/j.clinph.2015.07.014
http://dx.doi.org/10.1016/j.clinph.2015.07.014
http://dx.doi.org/10.1111/epi.12550
http://dx.doi.org/10.1111/epi.12550
http://doi.wiley.com/10.1111/epi.12550
http://dx.doi.org/10.1111/j.1528-1167.2010.02536.x
http://dx.doi.org/10.1309/AJCPGSNL9VDVNJMX
http://www.ncbi.nlm.nih.gov/pubmed/23010704
http://www.ncbi.nlm.nih.gov/pubmed/23010704
http://dx.doi.org/10.1159/000081881
http://dx.doi.org/10.1109/MSP.2010.937999
http://dx.doi.org/10.1046/j.1528-1157.44.s10.4.x
http://dx.doi.org/10.1046/j.1528-1157.44.s10.4.x
http://dx.doi.org/10.1212/WNL.0b013e31827974f8


doi: 10.1016/j.clinph.2013.10.021. url: http://www.ncbi.nlm.nih.gov/
pubmed/24269092.

[49] Jennifer N Gelinas et al. “Interictal epileptiform discharges induce hippocampalcorti-
cal coupling in temporal lobe epilepsy”. In: Nature Medicine advance on (2016). issn:
1078-8956. doi: 10.1038/nm.4084. url: http://dx.doi.org/10.1038/nm.4084.

[50] Irina I. Goncharova et al. “Intracranially recorded interictal spikes: Relation to
seizure onset area and effect of medication and time of day”. In: Clinical Neuro-
physiology 124.11 (2013), pp. 2119–2128. issn: 13882457. doi: 10.1016/j.clinph.
2013.05.027.
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[133] Matti Sillanpää and Dieter Schmidt. “Seizure clustering during drug treatment af-
fects seizure outcome and mortality of childhood-onset epilepsy”. In: Brain 131
(2008), pp. 938–944. issn: 00068950. doi: 10.1093/brain/awn037.

[134] Karl A Sillay et al. “Long-term measurement of impedance in chronically implanted
depth and subdural electrodes during responsive neurostimulation in humans.” In:
Brain stimulation 6.5 (2013), pp. 718–26. issn: 1935-861X. doi: 10.1016/j.brs.
2013.02.001. url: http://www.sciencedirect.com/science/article/pii/
S1935861X13000752.

[135] N So et al. “Depth electrode investigations in patients with bitemporal epileptiform
abnormalities.” In: Annals of neurology 25.5 (1989), pp. 423–31. issn: 0364-5134.
doi: 10.1002/ana.410250502.

211

http://dx.doi.org/10.3389/fneng.2014.00013
http://dx.doi.org/10.3389/fneng.2014.00013
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4021112{\&}tool=pmcentrez{\&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4021112{\&}tool=pmcentrez{\&}rendertype=abstract
http://dx.doi.org/10.1088/1741-2560/11/4/046011
http://www.ncbi.nlm.nih.gov/pubmed/24941335
http://www.ncbi.nlm.nih.gov/pubmed/24941335
http://dx.doi.org/10.1111/j.1528-1157.1993.tb02412.x
http://dx.doi.org/10.1063/1.2966112
http://dx.doi.org/10.1002/jbm.820271106
http://dx.doi.org/10.1002/jbm.820271106
http://books.google.com/books?hl=fr{\&}lr={\&}id=xSKqZxXOlukC{\&}pgis=1
http://books.google.com/books?hl=fr{\&}lr={\&}id=xSKqZxXOlukC{\&}pgis=1
http://dx.doi.org/10.1093/cercor/bhl030
http://dx.doi.org/23/34/10809 [pii]
http://dx.doi.org/23/34/10809 [pii]
http://dx.doi.org/10.1097/00004691-199007000-00003
http://dx.doi.org/10.1093/brain/awn037
http://dx.doi.org/10.1016/j.brs.2013.02.001
http://dx.doi.org/10.1016/j.brs.2013.02.001
http://www.sciencedirect.com/science/article/pii/S1935861X13000752
http://www.sciencedirect.com/science/article/pii/S1935861X13000752
http://dx.doi.org/10.1002/ana.410250502


[136] Susan Spencer and Linda Huh. Outcomes of epilepsy surgery in adults and children.
2008. doi: 10.1016/S1474-4422(08)70109-1.

[137] L R Squire and S Zola-Morgan. “The medial temporal lobe memory system.” In:
Science 253.5026 (1991), pp. 1380–1386. issn: 0036-8075. doi: 10.1126/science.
1896849.

[138] Larry R Squire, Craig E L Stark, and Robert E Clark. “The medial temporal lobe.”
In: Annual review of neuroscience 27 (2004), pp. 279–306. issn: 0147-006X. doi:
10.1146/annurev.neuro.27.070203.144130. url: http://www.ncbi.nlm.nih.
gov/pubmed/15217334.

[139] Kevin J Staley and F Edward Dudek. “Interictal Spikes and Epileptogenesis”. In:
Epilepsy Currents 6 (2006), pp. 199–202. issn: 1535-7597. doi: 10.1111/j.1535-
7511.2006.00145.x.

[140] Paula Stice et al. “Thin microelectrodes reduce GFAP expression in the implant
site in rodent somatosensory cortex.” In: Journal of neural engineering 4.2 (2007),
pp. 42–53. issn: 1741-2560. doi: 10.1088/1741-2560/4/2/005. url: http://www.
ncbi.nlm.nih.gov/pubmed/17409479.

[141] David a Sun et al. “Postmortem analysis following 71 months of deep brain stimula-
tion of the subthalamic nucleus for Parkinson disease.” In: Journal of neurosurgery
109.2 (2008), pp. 325–9. doi: 10.3171/JNS/2008/109/8/0325.

[142] Felice T Sun, Martha J Morrell, and Robert E Wharen. “Responsive Cortical Stim-
ulation for the Treatment of Epilepsy”. In: Neurotherapeutics 5.1 (2008), pp. 68–74.
issn: 19337213. doi: 10.1016/j.nurt.2007.10.069.

[143] Rainer Surges and Josemir W Sander. “Sudden unexpected death in epilepsy: mech-
anisms, prevalence, and prevention.” In: Current opinion in neurology 25.2 (2012),
pp. 201–7. issn: 1473-6551. doi: 10.1097/WCO.0b013e3283506714. url: http:

//www.ncbi.nlm.nih.gov/pubmed/22274774.
[144] Thomas P Sutula, Joshua Hagen, and Asla Pitkänen. “Do epileptic seizures damage

the brain?” In: Current opinion in neurology 16.2 (2003), pp. 189–95. issn: 1350-
7540. doi: 10.1097/01.wco.0000063770.15877.bc. url: http://www.ncbi.nlm.
nih.gov/pubmed/12644748.
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