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Abstract

“Spatio-temporal modelling and analysis of epileptiform EEG”.
A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy by Marc Goodfellow, 2011.

In this thesis we investigate the mechanisms underlying the generation of abnor-
mal EEG rhythms in epilepsy, which is a crucial step towards better treatment of
this disorder in the future. To this end, macroscopic scale mathematical models
of the interactions between neuronal populations are examined. In particular, the
role of interactions between neural masses that are spatially distributed in cortical
networks are explored. In addition, two other important aspects of the modelling
process are addressed, namely the conversion of macroscopic model variables into
EEG output and the comparison of multi-variate, spatio-temporal data. For the
latter, we adopt a vectorisation of the correlation matrix of windowed data and
subsequent comparison of data by vector distance measures.

Our modelling studies indicate that excitatory connectivity between neural masses
facilitates self-organised dynamics. In particular, we report for the first time the pro-
duction of complex rhythmic transients and the generation of intermittent periods of
“abnormal” rhythmic activity in two different models of epileptogenic tissue. These
models therefore provide novel accounts of the spontaneous, intermittent transi-
tion between normal and pathological rhythms in primarily generalised epilepsies
and the evocation of complex, self-terminating, spatio-temporal dynamics by brief
stimulation in focal epilepsies.

Two key properties of these models are excitability at the macroscopic level and
the presence of spatial heterogeneities. The identification of neural mass excitabil-
ity as an important processes in spatially extended brain networks is a step towards
uncovering the multi-scale nature of the pathological mechanisms of epilepsy. A
direct consequence of this work is therefore that novel experimental investigations
are proposed, which in itself is a validation of our modelling approach. In addition,
new considerations regarding the nature of dynamical systems as applied to prob-
lems of transitions between rhythmic states are proposed and will prompt future
investigations of complex transients in spatio-temporal excitable systems.
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Chapter 1

Introduction

Epilepsy mechanisms and dynamic EEG state transitions

Epilepsy is a prevalent neurological disorder which manifests as a predisposition

for the brain to undergo transient seizure periods (Fisher et al., 2005) caused by

abnormal neuronal activity. The predominant means of imaging neuronal activity

in epilepsy is the electroencephalogram (EEG) due to its favourable time resolution,

low cost and non-invasiveness. The EEG measures electrical field potentials (see

Chapter 5) via a series of electrodes placed on the scalp (scalp EEG), or implanted

inside the skull (ECoG or depth electrodes), and acts as a biomarker for different

normal brain states such as waking, sleep, stimulus processing, as well as pathological

states such as epileptic seizures. Often, these states are distinguished on the EEG by

the presence or absence of certain rhythms, i.e. repetitive or periodic time evolving

signals. Since clinical EEG consist of recordings from multiple electrodes, these

projections of the abnormal processes of epilepsy are spatially distributed, multi-

variate time series, or equivalently, dynamic spatio-temporal patterns. Thus, the

problem of understanding the mechanisms of clinical epilepsy is inseparable from the

problem of understanding transitions between dynamic, spatio-temporal states of the

EEG. Improving our understanding of the spatio-temporal mechanisms responsible

for EEG transitions in epilepsy is a key problem we wish to investigate in the current

thesis.

Temporal properties

EEG rhythms associated with epileptic processes (epileptiform rhythms) can be

revealed, in most cases, by visual inspection. Some of the key temporal features dis-

tinguishing epileptiform rhythms from “background” EEG are waveform, frequency,

amplitude and stereotypy. Observations or analyses of temporal, as well as spatial

aspects reveal a rich diversity in the EEG manifestation of seizures, which are as-

sociated with a range of physical symptoms. However, certain features of the data
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observed as well as the symptoms experienced during seizure support a classifica-

tion of different seizure types (ILAE, 1981). In turn, patients experiencing seizures

with certain characteristics may be classified as having a particular epilepsy syn-

drome when combined with other information such as the age of the patient and the

potential cause of the seizure (ILAE, 1989).

A classic example of salient temporal features during an epileptiform rhythm can

be seen in the EEG during absence seizures (see Figure 4.2), which are accompanied

clinically by a brief period of impaired consciousness and often minor motor mani-

festations such as eye lid fluttering. In this case, seizures are identifiable on the EEG

by a sudden onset and offset of high amplitude slow rhythms with a characteristic

multi-modal morphology, known as the spike-wave discharge (SWD). Other common

features, seen in different seizure types, include a possible high frequency and low

amplitude onset to seizure activity, high amplitude rhythms during seizure, and a

slowing of rhythms towards the end of a seizure. Patients with certain epilepsies can

also present transient inter-ictal abnormal activity, such as inter-ictal spikes or slow

waves. Others might be susceptible to initiation of abnormal EEG rhythms due to

stimulus, for example in the photo-paroxysmal response.

EEG abnormalities are visually identifiable because of their contrast to “normal”,

or “background” EEG. The normal waking EEG of the adult is characteristically

low amplitude, and of an apparently random nature. Investigation of the frequency

spectrum reveals a predominantly 1/f distribution of power, often with excess con-

tribution in the alpha frequency band at around 10Hz.

Spatial properties

The spatial characteristics of epileptiform EEG are other important, variable fea-

tures, and as such form a high level classification of seizure types as focal versus

generalised events. Generalisation here refers to the appearance of abnormal ac-

tivity on all (or at least the majority of) recording electrodes, and can apparently

occur with the onset of seizures in the case of primary generalisation (e.g. absence

seizures, or idiopathic generalised seizures (IGE)), or can more obviously evolve from

an initially focal distribution in the case of secondary generalisation. Abnormal ac-

tivity on the EEG during focal seizures, on the other hand, initiates in, and remains

restricted to, isolated regions of brain tissue. Improving our understanding of the

mechanisms of focal onset (even in the case of primary generalisation, see Chapter

4 and e.g. Meeren et al. 2002) and spreading or restriction of abnormal activity, at

the level of the EEG, is another important motivating factor for the current thesis.

Clearly, in order to address the spatio-temporal dynamics of epileptiform rhythms,

one must consider the influence of connectivity in the brain. The general aim of the

current thesis is therefore to investigate the mechanisms of epileptiform rhythms
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using spatially extended mathematical modelling. In addition to presenting mod-

els for epileptiform rhythms and transitions (Chapters 3 and 4), the problems of

comparing model output to clinical EEG (Chapters 5 and 6) are also discussed.

Structure of the thesis

In Chapter 2 the question of which modelling strategy to pursue is discussed, and

leads to the conclusion that spatially extended neural mass models will be the fo-

cussed approach. In the two chapters that follow, two applications of this strategy

are described which provide insight into two different epileptic phenomena, namely

the repetitive response to stimulation (Chapter 3, (Valentin et al., 2002; Valent́ın

et al., 2005; Flanagan et al., 2009)) and the spontaneous occurrence of absence

seizures (Chapter 4, e.g. (Snead, 1995)). This latter chapter provokes further con-

siderations of the generation of epileptiform EEG, which are discussed in Chapter

5. The problem of quantification and comparison of spatio-temporal patterns via

multi-variate time series analysis is introduced in Chapter 6. In Chapter 7, the

implications of the work are discussed and the main conclusions are summarised.

The main results of Chapters 3 and 4 are presented in an article in press (Good-

fellow et al., 2011b) and in the publication Goodfellow et al. (2011a), respectively.
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Chapter 2

Macroscopic modelling of brain

dynamics

2.1 Overview

Observations and statistical analyses can help catalogue properties of neurological

data and allow us to compare output under different conditions. However, under-

standing the mechanisms that cause our data observations requires mathematical

models of dynamical systems (Breakspear and Jirsa, 2007). There is a long his-

tory of mathematical modelling (i.e. using systems of coupled ordinary differential

equations to observe the effect of plausible mechanistic interactions) in relation to

problems in neuroscience (e.g. references in Gerstner and Kistler 2002; Deco et al.

2008). Indeed, the pioneering work of Hodgkin and Huxley, who made quantitative

models of action potentials in the giant axon of the squid (Hodgkin and Huxley,

1952), is often cited as an early example of quantitative modelling in complex bio-

logical systems (Crampin et al., 2004; Hunter and Nielsen, 2005), and can therefore

be considered a forebear of systems biology or computational physiology.

In attempting to understand brain dynamics, models are typically formulated at

one of two different scales, roughly speaking. At the microscopic scale, the activity

of individual neurons is the observation of interest. In this case, a mathematical

system is formulated based upon the components and mechanisms that influence

the dynamics of a single neuron, for example ion concentrations, membrane poten-

tials and voltage dependent conductances. The classical model formulation of these

processes was described by Hodgkin and Huxley (1952). The microscopic level of

modelling can also be extended to include networks of individually modelled neu-

rons, and in this case can also incorporate further abstractions regarding the exact

mechanisms leading to neuronal dynamics. One of the major features of neuronal

activity is the action potential spike, and this feature has been abstracted in certain

reduced forms of the Hodgkin-Huxley model, such as the Fitzhugh-Nagumo model

(Fitzhugh, 1961; Nagumo et al., 1962; Gerstner and Kistler, 2002), which retain the
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important feature of excitability (see Chapter 3) to generate action potential spikes.

At the microscopic level, the mechanisms of synchronisation in neural networks is

a fundamental question in investigations of the mechanisms of epilepsy (Traub and

Wong, 1982; Destexhe, 1998; Bazhenov et al., 2008).

It is clear that modelling at the microscopic scale is particularly appropriate when

data observations reside at the level of recordings from single cells or relatively small

networks of cells. The goal of modelling in this case is to account for observations

in the microscopic data by relating them to appropriate variables in a microscopic

model, in which the mechanisms are known. However, as described in Chapter 1 our

observations of the mechanisms of epilepsy in humans most often reside at the level

of EEG recordings, and these derive from current sources due to (post-synaptic)

activity in large regions of nervous tissue (for more details refer to Chapter 5 and

e.g. Nunez 1981). Thus, mechanistic modelling of human epileptiform EEG at the

microscopic scale presents a number of important problems. Firstly, the specific

microscopic mechanisms have to be described in detail for a large region of nervous

tissue. Since there are approximately 10,000 neurons and as many synapses per

neuron in the cortical column, this represents a major challenge (Markram, 2006).

Difficulties in the application of such a model are due to the complexity of i) the

description of the underlying physiological system and ii) the way in which it can

be analysed in terms of perturbations of its many parameters in order to uncover

the mechanisms for generation of abnormal activity.

Thus it is clear that, in order to address the mechanisms underlying epileptiform

EEG rhythms, a modelling strategy based at the macroscopic scale is important. At

this level, state variables represent the activity of populations of neurons (see e.g.

Wilson and Cowan 1973; Deco et al. 2008; Coombes 2010). From the systems biology

point of view, it is interesting to note that both bottom up and top down approaches

have been employed to account for the dynamics of populations of neurons.

An example of the bottom up approach is the continuum formulation of Wil-

son and Cowan (1973), and later that of Amari (1977). These models are derived

from several important assumptions. Firstly, cortex is assumed to be effectively

two-dimensional, with local populations of neurons being approximated by activity

within a vertical column. In these formulations, tissue is continuous, with activity

described at each spatial location on the continuum. The dynamics of local activity

is assumed to be due to the influence of inhibitory and excitatory afferents from

other locations in the brain. Thus one of the main components of the evolution

equation for a point on the continuum relates to a weighted sum over the activity

at other regions in the model, with negative weighting for inhibition. The other

crucial component in this formulation is a non-linear, sigmoid curve into which the

afferent activity is placed in order to determine the activity (population firing rate)
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at the current location. This non-linearity is based upon there being an underly-

ing Gaussian distribution of states or membrane thresholds, above which individual

neurons in the mass will fire. The density of neurons whose threshold is below the

current population membrane potential is given by the cumulative probability over

the Gaussian curve, which results in a sigmoid function (see section 2.3).

Pioneering top down approaches have been introduced by Freeman (Freeman,

1975). Although several features of models resulting from top down and bottom up

formalisms coalesce, it is important to identify a distinction here between the two

approaches. Whilst Wilson-Cowan and subsequent researchers place an emphasis

on the derivation of the activity of neural masses from properties of interactions

amongst neurons, Freeman emphasises the neural mass as a new entity in the nervous

system, which we might expect to have emergent properties. Thus a tenet of his

work is to catalogue the response of neural masses to stimulation, and then use

these observations in conjunction with considerations on the underlying physiological

aspects of the mass. It is important to consider that neural mass activity might not

be entirely attributable to neuronal or afferent activity, especially given that the

constituents of the cortical mass are not only neuronal (Liley et al., 2002). However,

it is often the properties of neurons, such as spiking, excitatory and inhibitory

processes, membrane and axonal delays etc., that constitute our population or neural

mass theories. Indeed, a different approach to modelling populations of neurons is

the “mean field” model which explicitly accounts for statistical properties of the

distribution of states of neurons in a population (Deco et al., 2008). Determining

the degree to which population activity can be derived bottom up, and exactly

which emergent aspects are important will be crucial in the future for making truly

multi-scale models of brain activity.

A different perspective on the modelling of activity of populations of neurons was

introduced by Lopes Da Silva et al. (1974). In this work, a network of microscopic

level neurons was simulated in an investigation of the alpha rhythm. In an important

step towards accounting for the local field potential (LFP) rather than the activity

of a population of neurons, the time course of post-synaptic potentials was explicitly

incorporated, in a simple way. The network of neural elements in this study was

referred to as a distributed model. In tandem, the authors also proposed a lumped

version of their model. The lumped model assumed that the post-synaptic potential

dynamics were representative of a population of neural elements, or a neural mass.

This allowed the complexity of the explicit (distributed) neuronal network to be

significantly reduced, and therefore allowed a systems analysis on the population

dynamics over changes in lumped parameters.

There are thus pros and cons associated with the use of continuum or neural

mass/ lumped parameter approaches. An advantage of the continuum type of model

is that they are explicitly derived in terms of spatial interactions in nervous tissue.
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However, since they in general do not provide time courses of post-synaptic poten-

tials, and are formulated from theoretical rather than empirical considerations, it is

unclear in what way they relate to the generation of the EEG. This is in contrast

to neural mass approaches which either account for post-synaptic activity or are

derived from observations of modulations in cortical output under certain changes

of input.

The above models represent a local view of the generation of brain rhythms.

That is, they assume that temporal oscillations seen on the EEG can be accounted

for by local circuitry with oscillatory capability. An alternative view to this is the

possibility that certain brain rhythms are the result of global wave properties of the

brain as a conducting medium (Nunez 1981, Chapter 11). In this context, Nunez

emphasises several important perspectives with respect to the generation of EEG

activity. In particular, it is recognised that the activity at a macroscopic scale can be

formed as the average of activity at spatial scales below this (Nunez 1995, Chapter 1).

In addition, the dynamics of EEG are captured in a spatially extended wave equation

based on inherent delays and spatial scales of cortico-cortical interactions. This

emphasis on spatio-temporal generation of travelling or standing waves highlights

several limitations of models accounting for EEG rhythms in the output of a spatially

localised neural mass. In particular, that a neural mass model can generate a certain

rhythm does not imply that this will persist in the obvious spatial extension to that

system. Coupled oscillators can introduce new modes, other than those inherent in

the individual oscillators (Nunez, 1981). A further complication to an account of

EEG waves based on a local mass with a single oscillatory mode is that time scales

are likely to be heterogeneous so that it is unclear whether averaged activity at the

level of the EEG is likely to reflect this oscillatory mode (Nunez, 1981). However,

epileptic rhythms present a richer spatio-temporal dynamics than simple standing or

travelling waves. For example, heterogeneous oscillations can be seen in focal onset

seizures, as can localised slow waves, spikes or SWD. In addition, the spatial scale of

recordings can determine whether abnormal rhythms are present at all (Stead et al.,

2010).

It is clear that there are a wide range of tools with which to tackle the problem

of understanding macroscopic mechanisms of epileptiform rhythms. Many of the

previous studies into the EEG dynamics of epileptic tissue have utilised neural mass

models (see e.g. Wendling et al. (2002); Breakspear et al. (2006)). Therefore, the

spatially extended interactions between neural masses is a good starting point for

our investigation into spatio-temporal dynamics of epilepsy, and thus will form the

basis for the modelling aspects of this thesis. The reasons for this approach are

elucidated in the following section, which forms a more in depth review of this type

of model and its application to epilepsy.
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2.1.1 Neural mass models

In terms of the fundamental principles of network communication in the nervous

system, neurons can be thought to behave as input to output converters (Freeman,

1975). In this model, afferent pulse trains of action potentials provide input by

causing a temporally smeared propagation of membrane potential change down to

the soma. At this juncture, the neuron will fire an action potential if the soma mem-

brane potential is above threshold, therefore producing output. The neural mass

framework abstracts this model to the population level by utilising two conversion

operators. The first is “pulse to wave”, in which incoming population pulse densi-

ties are temporally filtered by the action of post-synaptic potentials in the dendrites

and by the cable properties to induce a change of membrane potential at the soma.

These waves are then summed at the soma, and the population output is determined

by the second conversion operator, the “wave to pulse”. The principle of these two

conversion operations are conserved in many different derivations of neural mass

models. Often, the sigmoid function is used to convert wave to pulse, and is as-

sumed to represent a gaussian distribution of underlying states or firing thresholds

within the population. Crucially it captures a non-linear property of neural masses

in providing saturation of their output in networks of connected populations. In the

pioneering study of of Lopes Da Silva et al. (1974), the pulse-to-wave conversion

was mediated in the lumped system by the time profiles of post-synaptic potentials.

These delays, together with temporal smearing of activity due to cable properties are

often described as the physiological basis for this component of the system (Robin-

son et al., 1997). With this interpretation, the neural mass can be viewed as a “grey

box” model, as its dynamics can be related in some way to physiological mechanisms

(Ortega et al., 2008).

The neural mass is often used to examine the possible role of interactions between

different neural populations for the generation of rhythms (Lopes Da Silva et al.,

1974; Freeman, 1975). In this way, a notation was introduced by Freeman to describe

the complexity of the resulting network. The isolated mass, in its “open loop” form

is denoted K0, whereas two connected K0 sets form a K1 set, etc. These networks

of neural masses have been investigated extensively in relation to the activity of the

olfactory bulb (Freeman, 1975).

A famous example of the neural mass model, which has been used in a wide

range of applications is the model proposed by Jansen et al. (1993); Jansen and Rit

(1995). This model was derived to provide a mechanistic account for the generation

of sensory evoked potentials, and is based upon an important canonical circuit in the

brain. The circuitry modelled is the network of principal (pyramidal) neurons, which

incorporates both excitatory and inhibitory feedback. Its three components are, ex-

plicitly, i) pyramidal cells, ii) inhibitory interneurons and iii) excitatory interneurons
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(stellate cells). In the Jansen model the inhibitory and excitatory post-synaptic po-

tentials on pyramidal neurons are explicitly modelled (motivated by the lumped

parameter model of Lopes Da Silva et al. (1974)). Since these processes operate

on time scales equivalent to processes that contribute to the EEG, this model is

an obvious starting point for an investigation of clinical data in epilepsy. Further

considerations on the ways in which neural mass models can be used to account for

epileptic EEG are given in Chapter 5.

Indeed, an investigation of the dynamics of the Jansen model revealed the pres-

ence of spiking solutions, as well as lower amplitude oscillations (Jansen and Rit,

1995). This led to the incorporation of mass modelling to investigate the mecha-

nisms underlying epileptiform EEG by Wendling et al. (2000). In these early studies

it was noted that a noise driven system could produce inter-ictal spiking like wave-

forms, and that periodic spiking could be seen under the same noise driving with

different parameters (Wendling et al., 2000). This was an important demonstration

of the way in which neural mass models could be used to account for the transition

between different rhythms observed on recordings from epileptic patients, and has

sparked much subsequent interest. Importantly, Wendling also used this model to

investigate whether connectivity between different spiking regions could be inferred

from the measured signals (Wendling et al., 2001). This provided a first insight into

the effect of connectivity in these spiking neural masses, for example in the trans-

ference of spiking between regions. We expand on this idea in our model proposed

in Chapter 3.

The mathematics behind Wendling’s observations were formalised in bifurcation

analyses by Grimbert and Faugeras (2006) and later by Spiegler et al. (2010). This

latter paper accounted for the interim expansions of the Jansen model to incorporate

additional important physiological aspects. These expansions are in the spirit of the

formation of higher “Ki” sets by Freeman. In one such study, it was shown that

many features of the dynamic transitions in focal epilepsies could be modelled by

changing parameters in an extended neural mass model (Wendling et al., 2002).

Other, more recent developments include the incorporation of a forward model to

better account for the generation of spikes and infer on the size of the required

region of activity (Cosandier-Rimélé et al., 2008) as well as the development of

whole brain, hierarchical extensions to the neural mass framework (Sotero et al.,

2007; Babajani-Feremi and Soltanian-Zadeh, 2010).

Alongside these models of focal epilepsies, neural mass models have also been

used to investigate transitions into absence seizures in thalamocortical networks

(Suffczynski et al., 2004; Breakspear et al., 2006). Suffczynski et al. (2004) found

that a model of the thalamocortical system of the rat could support a bistability

between steady state and oscillations, which when perturbed by noise could pro-

duce spontaneous transitions from background into high amplitude rhythms. An
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alternative mechanism for seizure onset was given by Breakspear et al. (2006), who

mapped the global bifurcation structure of the thalamocortical neural field model of

Robinson et al. (1997) and showed that certain parameter sets could display absence

seizure-like rhythms. Interestingly, this model could also display rhythms associated

with generalised tonic-clonic seizures. Thus, a unified model of generalised epilepsies

was proposed in which pathological oscillations could occur if deviations were made

in the parameter set of a fixed model structure (thalamocortical system).

These two different modelled routes into seizure highlight one of the major en-

deavours in epilepsy research, which is to search for the mechanisms of the onset

and offset of seizure activity. They also demonstrate the potential of the analysis

of macroscopic, non-linear dynamical systems to frame this problem in a concise

and useful way. The formalisation of these ideas has been provided in a number of

studies (see e.g. Lopes da Silva et al. (2003a); Milton (2010)), and will be discussed

in greater detail in the introduction and discussion of Chapter 4.

2.2 Spatially extended macroscopic models

Robinson et al. (1997) provided a major advance by introducing a wave equation

for propagation of activity in the cortex, based on previous considerations by Jirsa

and Haken (1996) and Wright et al. (1994). This synthesised the mass modelling

framework into a tractable spatially continuous system, known as a neural field.

Another feature of the works of Robinson, and of Wright and Liley (see e.g. Wright

et al. (1994)) has been to emphasise the physiological plausibility of macroscopic

models. Wright et al. (1994) aimed to make quantitative estimates of connectivity

parameters in their model whilst Robinson et al. (1997) emphasise the characteristic

length scale of synaptic connectivity, for example. However, it is clear that these

parameters, and even the concept of neural masses or neural fields retain an abstract

quality and that their exact nature demands further investigation in the future.

An important contrast between neural mass and neural field models is that the

latter model EEG by the excitatory field which propagates in the cortex. This is in

contrast to the mass models of, for example, Lopes Da Silva et al. (1974); Jansen

and Rit (1995), which relate the EEG directly to the net depolarisation due to post-

synaptic membrane changes, i.e. a net post-synaptic potential. Neither of these

methods rely on a mechanistic derivation of the EEG in relation to model variables,

for example in terms of induced current flow, which, if addressed, may represent

an important advance (Avitan et al., 2009). Currently used mass models therefore

assume the EEG to be proportional either to the activity of pyramidal neurons or

their net depolarisation at the soma. Though this may be adequate in cases where

frequency properties are the features of interest, and therefore the choice of model

output matters less, in the case of epilepsy we are often concerned with the task
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of elucidating mechanisms for distinctive multi-modal waveforms such as the spike

wave discharge (SWD). In this case it is clear that one should, in addition, take into

account the contribution of inhibitory PSPs and also the depth at which afferent

activity arises. Current source density analysis has shown that these laminar profiles

of activity can be complex and time varying in animal models of generalised seizures

(Kandel and Buzsáki, 1997). These matters are discussed further in Chapter 5.

The question of the origin of spatio-temporal patterns in EEG and ECoG dur-

ing epileptiform events is difficult but crucial in advancing our understanding of

epilepsy. One of the key questions is whether it is appropriate to examine spatially

continuous systems or interacting, discretised local masses, where discrete network

structure is a facet of interest in the latter. In any case, the computational simula-

tion of models derived from a continuum approach requires a discretisation at some

arbitrary resolution. It is plausible that epilepsy is characteristic of a state of the

brain in which assumptions regarding continuity of connectivity or homogeneity are

no longer valid. In particular, isolated epileptiform rhythms have been observed at

a variety of spatial scales, including those of the order of micrometres (on micro-

electrodes) (Stead et al., 2010). Recent work has demonstrated that these rhythms

are likely not attributable to volume conduction, which highlights the importance of

considering local mechanisms for the production of epileptiform rhythms, and their

subsequent spreading (Schevon et al., 2010). It will be the aim of the current thesis

to begin an investigation of the effects of spatial interactions between local neural

masses, in particular those that are capable of displaying epileptic dynamics.

Motivated by this discussion, we will focus upon simulating discrete networks of

connected neural masses in order to increase our understanding of the mechanisms

of epileptiform rhythms.

2.3 The neural mass model of Jansen and Rit

Throughout the thesis, we use the model of cortical neural mass activity of Jansen

(Jansen et al., 1993; Jansen and Rit, 1995). The structure of this model is therefore

described in this section. The model follows the lumped parameter formulation em-

ployed by Lopes Da Silva et al. (1974). The system under study in the Jansen model

is a cortical circuit of three neuronal populations, namely i) pyramidal neurons, ii)

inhibitory interneurons and iii) excitatory interneurons. It thus describes a salient

cortical network (Douglas and Martin, 2004).

Activation of neural populations within the model is given by a pulse-to-wave

conversion. Incoming pulse afferents are convoluted in time in a second order impulse

response of the following formulation:

ÿ(t) = Aa{Q(t)} − 2aẏ(t)− a2y(t) (2.1)
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Figure 2.1: Schematic of the neural mass model. “Sigm” represents the static non-
linear wave-to-pulse conversion. Blocks represent impulse responses (pulse-to-wave
conversions). p(t) is the time varying input, which throughout this thesis is denoted
I. Recreated from Figure 1 of Jansen and Rit (1995).

Here, Q is the input to the impulse response. This formulation arises from the

time convolution of input, Q as follows (see also Robinson et al. (1997)):

y(t) =

∫ t

−∞
w(t− t′)Q(t′)dt′ (2.2)

with

w(u) = Aaue−au (2.3)

In the Jansen model, activation of both excitatory and inhibitory interneurons

is given by a single impulse response, driven by excitatory synaptic kinetics (Jansen

et al., 1993). However, the pyramidal neuron population has two impulse responses,

one each for excitatory and inhibitory PSPs. This allows a rough approximation to

the contribution of both sources and sinks in the EEG output (an expanded use of

this idea is given in Chapter 5).

The activity of each neural population is given as the output of the static non-

linear sigmoid curve (wave-to-pulse conversion):

S[v] = 2e0/(1 + exp(r(v0 − v))) (2.4)

Here, e0 represents the maximum firing rate, v0 is the mid-point of the distribu-

tion of membrane thresholds for action potential firing at the population level, and

r represents the steepness of the sigmoid (Jansen and Rit, 1995).

A schematic of the network and its conversion operators is given in Figure 2.1.

It can be seen that the connectivity between each population is parameterised by

C1, C2, C3 and C4. The ratios for these parameters are assumed to remain fixed (as

defined in Jansen and Rit (1995)), such that the extent of internal connectivity can

be lumped into a single parameter, C.

The equations for the neural mass model are therefore:
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ẏ0(t) = y3(t)

ẏ3(t) = Aa{S[y1(t)− y2(t)]} − 2ay3(t)− a2y0(t)

ẏ1(t) = y4(t)

ẏ4(t) = Aa{I + C2S[C1y0(t)]} − 2ay4(t)− a2y1(t) (2.5)

ẏ2(t) = y5(t)

ẏ5(t) = Bb{C4S[C3y0(t)]} − 2by5(t)− b2y2(t)

A and B represent the excitatory and inhibitory gains, respectively. a and b are

the time scales (inverse duration) of the excitatory and inhibitory PSPs, respectively.

It can be seen from these equations and the schematic of Figure 2.1 that the net

output of pyramidal neurons that is passed through the sigmoid to generate activity

is the net depolarisation y1(t) − y2(t). This is traditionally also taken to represent

a model of the EEG, though we re-examine this assumption in Chapter 5.

Several recent studies, particularly in the context of epilepsy, have used extended

formulations of the system above (Wendling et al., 2002; Labyt et al., 2006). In this

way, further important interactions and important mechanisms can be accounted for

in the mass model. In Wendling et al. (2002), for example, a second, fast inhibitory

population was incorporated into the model, whereas in Labyt et al. (2006) several

different time scales of inhibition were included. Such extensions have also been

made in model studies of normal brain rhythms (Ursino et al., 2010). The general

extension to the model above is to introduce further populations as additional wave

to pulse conversions and incorporate their effect on the principal cells by including

their output as a term in the summation for net PSP on these cells (see e.g. Spiegler

et al. (2010)). In Chapter 4 an extension to the neural mass model along these lines

will be described and investigated.

In the next two chapters (Chapters 3 and 4) the extension of the neural mass

model into networks of connected nodes will be considered. It will be shown that

this approach can provide insight into the mechanisms of spontaneous transitions

into seizure as well as the macroscopic response of nervous tissue to stimulation.
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Chapter 3

Spatial extensions of a neural mass

model: excitable media and

stimulus response

3.1 Abstract

In this chapter we begin our investigation of the dynamics of spatially extended

neural mass models in the context of epilepsy. Following the discussion in the

previous chapters, our starting point is the neural mass model of Jansen and Rit

(1995), which has been used as a model for epileptic spiking. We use this model

to construct an excitable medium of locally coupled compartments and investigate

the response of this system to perturbation. This is an attempt to provide new

understanding of the macroscopic mechanisms of the response of nervous tissue to

stimulation which is a fundamental open question in epilepsy.

In particular, stimulation of human epileptic tissue can reveal complex, self-

terminating, transient oscillatory responses on the EEG or ECoG. These responses

play a potentially important role in localising tissue involved in sustained seizure

activity, yet the mechanisms underlying their generation are still unknown. However,

in vitro evidence suggests that oscillations in nervous tissue are underpinned by non-

trivial spatio-temporal dynamics in an excitable medium.

Here, we demonstrate that our spatially extended model, in one and two di-

mensions, displays propagating travelling waves but also more complex transient

dynamics in response to perturbation. Crucially, the neural mass framework allows

the incorporation of spatially distributed, functional abnormalities, such as regions

of reduced inhibition. Such spatial heterogeneities are fundamental to epileptic pro-

cesses, though their effect on macroscopic dynamics are currently unknown. It is

demonstrated that the incorporation of regions of reduced inhibition in our model

can lead to self-terminating reverberating responses to a single pulse perturbation,

depending upon the location at which the stimulus is delivered. We thereby provide
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a hypothesis for the generation of space dependent, transient responses to pertur-

bation at the macroscopic scale in the epileptic brain.

3.2 Introduction

Excitability

A fundamental feature of the brain which enables the processing of environmental

information is its ability to provide a response to external stimuli in normal working

states. The output of the brain’s processing of stimulation can be measured in con-

trolled conditions as an evoked response on the EEG. In this way one can consider

the entire brain in terms of input to output conversion, similarly to the conceptuali-

sation of the dynamics of neural masses, as presented by Freeman (Freeman, 1975).

Aside from natural stimuli, it can also be shown that electrical (or magnetic) stimu-

lation can evoke a response in the brain that can be seen on the EEG (the electrical

evoked response). An important means by which this stimulus response is mediated

in nervous tissue is by the excitability of neurons, which enables information to be

conferred across large regions of nervous tissue. Indeed the functional units of the

brain, the neurons, are archetypal biological excitable units. Intuitively this means

that a small perturbation to the neuron (for example the activation of an afferent

excitatory synapse) can cause a large deviation in its activity (the action potential

spike).

Excitability is an important concept in non-linear dynamics and is used to de-

scribe many important processes in physical systems, for example certain chemical

reactions and biological processes. Formally speaking, an excitable dynamical sys-

tem is characterised by a large amplitude trajectory in the near vicinity of a resting

state, such that a perturbation can cause a large deviation in its dynamics (Stro-

gatz, 1994; Izhikevich, 2006). Traditionally, the rest state is considered to be a

stable equilibrium, though as we shall see in Chapter 4, excitability from a resting

oscillatory state is also important and the existence of a deviating trajectory behind

some separator in phase space can imbue spontaneous synchronising capabilities.

There are a number of dynamical system structures (in the geometric or global

bifurcation sense) that can lead to excitability as defined by Izhikevich (2006). These

structures exist because the excitable system resides close to a bifurcation into limit

cycle dynamics. In general, these bifurcations are due to the disappearance or loss

of stability of the stable equilibrium, as shown in Izhikevich (2006) (figure 7.3 page

217). The large excursion evoked by perturbation may be replaced by a stable

limit cycle due to different bifurcations such as a saddle-node on invariant circle

or a supercritical Hopf. Alternatively the limit cycle can emerge via intermediate

bistable systems as is the case in a saddle-homoclinic orbit bifurcation followed by

a saddle node bifurcation.
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In Neuroscience, the concept of excitability arose due to empirical observations

by Hodgkin (1948), who identified different classes of excitability for cells of the

nervous system. In the first two such distinctions, Class 1 and Class 2, the impor-

tant observation was made that an injection of current can cause periodic spiking

with arbitrarily low spiking frequency (Class 1) or with a robust, fixed frequency

(Class 2). Crucially, these observations have direct analogues in bifurcation theory.

Class 1 dynamics relate to a bifurcation in which the birth of a limit cycle occurs

with a saddle node on the limit cycle, which therefore can lead to long period (low

frequency) oscillations. Class 2 dynamics on the other hand occur when a limit

cycle appears due to the disappearance of a stable equilibrium (off the limit cycle),

or a change in stability of the equilibrium (Hopf bifurcation). In addition, Class

3 neurons exhibit a single spike in response to perturbation but then maintain a

plateau through the duration of the injected current. Class 3 dynamics, therefore,

relate to the preservation of a stable equilibrium.

The concept of excitability has profound importance in spatially extended sys-

tems, wherein network connectivity between excitable nodes can produce the effect

of conferred excitation. Such systems, known as excitable media are of particular

importance in neuroscience, and indeed the brain can be referred to as an excitable

medium due to its excitable components (neurons) and network (synaptic) connec-

tivity. Mathematical and physical (for example in chemistry and biology) excitable

media display some characteristic spatio-temporal dynamics due to the transmission

of threshold excitation across the system. For example, such systems may display

travelling waves and spiral waves (Winfree, 2001).

Stimulus response and excitability in epilepsy

There is a long standing notion that epileptic tissue (or the epileptic brain) is some-

how “more excitable” than its “normal” equivalent. However, we can appreciate

from the previous section that in the mathematical sense, the notion of “more” or

“less” excitable is perhaps not well defined. One might suggest that a stable equi-

librium closer to the start of its deviating excursion (in the sense that a “smaller”

perturbation can take it there), could be considered more excitable than an equilib-

rium “farther” from its equivalent point.

In the context of epilepsy, this use of the term “excitability” most likely stems

from the fact that abnormal rhythmic activity, as well as clinical symptoms, can be

elicited by stimulation. Stimulation can either be sensory (for example by visual

stimulus in the case of the photo-paroxysmal response (Parra et al., 2003)), or

electrical. The latter was explored to a great extent in humans in the seminal work

of Penfield and Jasper (1954), and has also been explored in animal models (see e.g.

Lüttjohann et al. (2011) for a recent, pertinent example and the extended discussion

below). In this context, a lengthy elicited period of abnormal rhythmic activity is
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often termed an afterdischarge (see e.g. Blume et al. (2004)).

It seems that the invocation of an afterdischarge, defined at the level of macro-

scopic recordings, does not fit immediately into the context of excitability as defined

for neurons, or more generally as discussed above. However, the concept might ex-

tend if one considers that the long trajectory onto which a system at rest is perturbed

is in this case represented by a long lasting, rhythmic transient. This transient is

then the analogue of the high amplitude spike trajectory that epitomises excitability

in single neurons. Indeed it has been demonstrated that the afterdischarge length has

a threshold relationship to various stimulation characteristics (Pinsky and Burns,

1962) which are reminiscent of the plots of frequency of spiking against input current

for single neurons (Izhikevich, 2006).

It is worth noting that a more traditional dynamical systems perspective of the

afterdischarge, since it is characterised by a lengthy period of oscillatory dynamics

(Blume et al., 2004), would be that the system has deviated onto an “abnormal”

attractor due to stimulation. In this sense, a distinction between epileptic and

control nervous tissue might be made by the strength or duration of the perturbation

required to push the system onto this attractor, or the length of time the system stays

there before returning to its “normal” state (Penfield and Jasper, 1954; Lüttjohann

et al., 2011). Since it is unclear what effect would push the system away from this

attractor and back towards its “normal” state, the transient concept seems more

appealing. Considerations regarding different dynamical regimes for the rhythmic

transitions of epilepsy have been the subject of previous work, most notably by Lopes

Da Silva (Lopes da Silva et al., 2003b). This will be expanded upon in Chapter 4.

To summarise, the notion of excitability in relation to elicited macroscopic responses

demands clarification and extension to the level of the neural mass. This will be

addressed in the context of the current work in the discussion of the current chapter.

Stimulation in human epilepsy and considerations for therapy

The response of human cortex to electrical stimulation has historically been the

source of much research. Penfield and Jasper (1954), for example, described de-

tailed case studies of afterdischarges evoked in several patients. They produced a

categorisation of the kinds of responses that can be seen, which was subsequently

reorganised by Blume et al. (2004). The morphologies were reported to contain a

good degree of overlap, and some non-trivial evolution, but they were grouped as i)

rhythmic waves, ii) rhythmic waves evolving into spike-waves, iii) polyspike bursts

and iv) spike-waves (Blume et al., 2004). These responses were elicited via sub-

durally implanted electrodes, and stimulation was used to locate eloquent cortex,

which is the part of cortex indispensable for important normal function (Rosenow

and Lüders, 2001).
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Mapping the eloquent cortex is an important consideration in pre-surgical eval-

uation for intractable epilepsies in which a region of nervous tissue is targeted for

resection. The aim of surgery is to remove the epileptogenic zone, which is the

hypothetical region of tissue necessary for the generation of seizures (Rosenow and

Lüders, 2001). An additional motivation for studies such as Blume et al. (2004)

is that stimulation might be used to localise the region of tissue responsible for

the initiation of spontaneous seizures, namely the seizure onset zone (Rosenow and

Lüders, 2001). Although early studies reported a correlation between aspects of af-

terdischarges, such as their length, and the seizure onset zone (Penfield and Jasper,

1954), Blume et al. (2004) found evidence for the contrary and highlighted the po-

tential mis-localisation of seizure generating tissue as judged by features of stimulus

evoked afterdischarges.

The discussion above introduces several key concepts to motivate the work in

this chapter. Firstly, it is clear that in focal epilepsies (and in epilepsy in general)

we are presented with spatial heterogeneities. These are specified by their capability

to influence epileptic and ongoing activity, and are referred to in the case of focal

epilepsy as different zones. For example, the seizure onset zone, introduced above, is

a spatially localised region of nervous tissue that influences the onset of spontaneous

seizure activity. It is worth noting that this does not correspond directly to the

epileptogenic zone, so that information regarding the onset of seizure activity on

the EEG or ECoG is not sufficient to determine which region of tissue to remove.

The major goal in epilepsy surgery is to accurately locate the epileptogenic zone

and remove it, whilst minimising the impact to eloquent cortex. This is the method

by which patients will be rendered seizure free with minimal impact on essential

cognitive function, or equivalently the intervention that maximises a gain in quality

of life for the patient. Clearly a greater understanding of the spatially distributed,

functional abnormalities of nervous tissue in focal epilepsy will provide advances

in the treatment of epilepsy. The spatially varying response to stimulation is an

intriguing and promising candidate for exploration in this direction.

The aforementioned afterdischarges are often evoked in response to prolonged

stimulation, which also produces substantial post-stimulus artefact (Penfield and

Jasper, 1954; Blume et al., 2004). It is therefore possible that this kind of stimula-

tion initiates substantial interim changes in local brain dynamics, rather than being

the kind of threshold excitation response alluded to from the dynamical systems per-

spective. However, shorter stimulus protocols have also produced interesting and

potentially useful spatially dependent responses. Single pulse stimulation has re-

cently been shown to produce space dependent responses in epileptic patients with

intractable epilepsy (Valentin et al., 2002; Valent́ın et al., 2005; Flanagan et al.,

2009). In this case, “abnormal” responses are delayed or repetitive, rhythmic re-

sponses, whereas the “normal” response is a single deflection (examples of these are
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shown in Figure 3.11). There is some evidence that these different types of response

may aid the spatial localisation of epileptogenic tissue (Valentin et al., 2002). How-

ever, although an imbalance between excitatory and inhibitory processes is expected

to contribute to the excitability of epileptic cortex, and thereby convey an ability

to display abnormal responses (Valentin et al., 2002), the mechanisms underlying

macroscopic responses to stimulation in human epilepsy remain essentially unknown,

despite their potential clinical importance.

Spatio-temporal dynamics: insights from animal models

Afterdischarges have been investigated in feline models (Pinsky and Burns, 1962)

and insight into the excitability of epileptic tissue has been provided by electrical

recordings from in vitro slice models of partially disinhibited cortex (Chervin et al.,

1988; Pinto et al., 2005) as well as the imaging of spatio-temporal patterns of volt-

age sensitive dyes (Bai et al., 2006; Wu et al., 2008). It has been shown in these in

vitro models that stimulation can induce the propagation of simple or more com-

plex wave patterns, with propagation found to be mediated by synaptic excitation

(Pinto et al., 2005). The study of Pinto et al. (2005) provided a highly resolved set

of one-dimensional recordings from a widely studied in vitro preparation, the par-

tially disinhibited neocortical slice. In this study, a series of 25 µm electrodes placed

100 µm apart were used to measure the spatial evolution of local field potentials

(LFPs) across the slice in response to a bipolar stimulation. As expected for ex-

citable media, the cortical slice could propagate simple travelling waves in response

to local perturbation. Interestingly, more complex patterns, which incorporated re-

flected waves could also be evoked. The invocation of travelling activity was found

to be a threshold event in which the threshold depended upon pharmacologically

manipulated excitatory and inhibitory efficacy.

Several other studies (e.g. Chervin et al. (1988)) have also observed travelling

waves in response to stimulation in nervous tissue. In addition, more complex dy-

namics attributable to excitable media such as spiral waves have been observed

(Huang et al., 2004; Schiff et al., 2007). These studies highlight the need to un-

derstand normal and pathological brain rhythms in terms of their spatio-temporal

dynamics. The imaging of voltage sensitive dyes has provided insight in this direc-

tion. Bao and Wu (2003), for example, observed simple (single travelling wave) and

complex spatio-temporal patterns underlying a theta oscillation in a slice prepara-

tion. Interestingly, this study demonstrates that the relationship between local field

potential recordings and underlying spatio-temporal activity (as imaged by volt-

age sensitive dyes) may be non-trivial. For example, irregular oscillations in the

LFP could be seen to coincide with complex travelling waves on the voltage dye

image. Non-trivial and spatially heterogeneous dynamics have also been observed

in an evoked response in rat neocortical slice (Bai et al., 2006). A review of results
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concerning propagating wave activity in neocortex is given by Wu et al. (2008).

Mathematical models of excitable media

In the paradigm of the cortex as an excitable medium, it is clearly imperative to

examine stimulus response dynamics in spatially extended mathematical models,

as will be the case in this chapter. This kind of approach has been very fruitful

in investigation of the activity of the heart which is another important excitable

system in Biology and Medicine. Bub et al. (2003), for example, investigated the

role of the density of cells in culture and its effects on spatio-temporal dynamics and

found that low densities could support spirals and wave-breaks.

There are many examples of spatio-temporal mathematical models in the context

of neuroscience and epilepsy. In fact, an archetypal excitable medium can be formed

by connecting Fitzhugh-Nagumo neurons. In general, networks of connected models

at the neuronal level have been extensively investigated. In the context of epilepsy

a particular point of interest is their synchronisability (see, for example, Destexhe

(1998)). On a more abstract level, cellular automata are another important type of

spatio-temporal dynamical system which incorporate nearest neighbour connectivity

and discrete state transitions. They have been used in the context of epilepsy by

Traub et al. (2010) to investigate pattern formation in high frequency local field

potential oscillations.

The spatio-temporal dynamics of nervous tissue have also previously been mod-

elled at the macroscopic level, most often in the Wilson-Cowan framework (Wilson

and Cowan, 1973), and have been demonstrated to be capable of producing single

and multiple propagating waves (Pinto and Ermentrout, 2001; Troy and Shuster-

man, 2007) and spiral dynamics (Huang et al., 2004; Laing, 2005). Although often

formulated without inhibitory components in line with conditions leading to exper-

imentally observed spatio-temporal dynamics, sustained synchronous responses to

stimulation have also been shown to form in models incorporating inhibition (Shus-

terman and Troy, 2008). Neural field formulations also include a spatial dimension

(see Chapter 2) and have been used to study travelling oscillatory activity in epilepsy

(Kramer et al., 2005; Kim et al., 2009).

Despite its repeated use in studies of epileptic rhythms (Wendling et al., 2000,

2001, 2002; Labyt et al., 2006; Cosandier-Rimélé et al., 2008), no extensive exami-

nation of the dynamics of spatial extensions to the neural mass model of Jansen and

Rit (1995) has been undertaken. Of particular importance in this type of model, as

utilised extensively in the context of epilepsy (e.g. Wendling et al. (2002); Breakspear

et al. (2006)), is the opportunity to relate dynamics to physiologically meaningful

parameters such as gain and time scale of inhibitory and excitatory PSPs. This

implies the opportunity to explicitly model spatial heterogeneities and also allows

to study the response to perturbation of networks of neural masses, connected via
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explicitly modelled excitatory synapses.

Excitability in the neural mass model

The dynamics of a single neural mass in the standard parameter set suggested

by Jansen and Rit (1995), have been previously explored (Jansen and Rit, 1995;

Grimbert and Faugeras, 2006; Spiegler et al., 2010) and shown to have a structure

of particular interest for the study of epilepsy (Wendling et al., 2000), which we

briefly review here. The bifurcation structure for changes in the input parameter,

I, presents two branches: a lower branch, corresponding to relative quiescence (low

firing output of principal cells) and an upper branch, corresponding to increased

activity (high output of principal cells and oscillatory activity). When starting

at the lower branch and increasing I, there is a saddle node on invariant circle

bifurcation (SNIC) which eliminates the stable fixed point on the bottom branch.

The system, when placed at rest at the stable equilibrium for low I, has implicitly

been shown to be excitable (Wendling et al., 2000) and as such has been used as a

model for inter-ictal spiking. The bifurcation structure is in line with the Class 1

excitability described above.

This SNIC bifurcation reveals a high amplitude limit cycle which has previously

been used to model epileptic EEG spiking (Wendling et al., 2000). The upper branch

is a saturated high output fixed point for high I and undergoes a Hopf bifurcation

into a small-amplitude oscillation when I decreases. For intermediate I there is

a region of bistability between the large limit cycle and the Hopf oscillation. The

small-amplitude oscillation generated via Hopf bifurcations was previously suggested

as a model for (background) alpha rhythm (Jansen and Rit, 1995). However, pre-

vious mass modelling studies of epileptic transitions (Wendling et al., 2000, 2002;

Breakspear et al., 2006; Marten et al., 2009a) would suggest the lower branch fixed

point as a model for background activity.

Aims of this chapter

Motivated by the foregoing discussion we aim to explore the dynamics of spatially

extended networks of coupled neural mass models. In particular, it is important to

investigate the excitability of these systems in order to progress our understanding

of the potential mechanisms underlying macroscopic responses to perturbation in

the epileptic brain. It will also be crucial to begin to examine spatially structured

heterogeneities in order to progress a theoretical framework for the investigation of

the hypothetical epileptogenic zone (Rosenow and Lüders, 2001).
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3.3 Methods

The neural mass model used in this chapter is that proposed by Jansen (Jansen

et al., 1993; Jansen and Rit, 1995), and presented in detail in Chapter 2. Here, we

describe how this model is extended into a spatially extended system.

N interacting neural masses are connected and communicate via excitatory out-

put from principal neurons. In this thesis we focus predominantly on local connec-

tivity, and so explicit time delays are not considered. However, future extensions

to the method presented will account for these effects. Each neural mass, defined

by superscript i, is modelled by a system of six differential equations representing

the interaction of excitatory and inhibitory cortical processes (Jansen et al., 1993;

Jansen and Rit, 1995), with model equations given by:

ẏi0(t) = yi3(t)

ẏi3(t) = Aa{S[yi1(t)− yi2(t)]} − 2ayi3(t)− a2yi0(t)

ẏi1(t) = yi4(t)

ẏi4(t) = Aa{I + P i + C2S[C1y
i
0(t)]} − 2ayi4(t)− a2yi1(t) (3.1)

ẏi2(t) = yi5(t)

ẏi5(t) = Bb{C4S[C3y
i
0(t)]} − 2byi5(t)− b2yi2(t)

Inter-compartment connectivity is defined by a homogeneous connectivity con-

stant, R, representing coupling between different local populations. Previous neural

mass models have employed nearest neighbour (Wendling et al., 2000, 2001; David

et al., 2005) or distance dependent connectivity (Sotero et al., 2007; Babajani-Feremi

and Soltanian-Zadeh, 2010), whereas neural field models couple via diffusion terms

(Kim et al., 2009) or by distance dependent integration over the output of a spa-

tially extended continuum (Kramer et al., 2005; Shusterman and Troy, 2008). Here

we begin a systematic investigation of the dynamics of spatial extensions by opt-

ing initially for a nearest neighbour connectivity scheme. Thus, larger systems are

formed as open ended chains in 1-d, and ultimately an open ended sheet in 2-d. In

addition, we study an alternative connection scheme and, briefly, the impact of long-

range connections on the dynamics, but leave considerations of inhibitory coupling,

more complex connection topology and the effect of different boundary conditions

for future studies. The input to each population, P i (i = 1, .., N) is given by the

weighted contribution of nearest neighbours, as shown below, where R indicates the

strength of connectivity and δij indicates the presence of connections:

P i =
N∑
j=1

δijRS[yj1 − y
j
2] (3.2)
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As discussed in Chapter 2, model output for the ith compartment is given by the

net PSP on principal neurons in that compartment (yi1−yi2). Within the model a net

post-synaptic potential (PSP) is transformed via the sigmoidal activation function

S[v] (Marreiros et al., 2008) into neuronal activity or firing rate:

S[v] = 2e0/(1 + exp(r(v0 − v))) (3.3)

Within compartment connectivity is governed by a parameter, C, which provides

an overall weight for parameters C1, C2, C3 and C4 (see Table 3.1). In order to

simplify the dynamics, we reduce the extent of bistability in the model by slightly

increasing the internal connectivity parameter, C, from 135 to 140 (Grimbert and

Faugeras, 2006). In this configuration, I=50 is chosen to represent the lower branch

fixed point dynamics (henceforth referred to as “fixed point”). We summarise the

values for system parameters in Table 3.1. The reader is referred to Grimbert and

Faugeras (2006) and Spiegler et al. (2010) for a detailed examination of the single

compartment model.

The presence of oscillations in large systems was determined by calculating the

variance over time for the mean output over all compartments. A threshold of

variance ≤ 0.0001 was found adequate to reliably distinguish fixed point from out

of phase oscillations. The length of transient responses to perturbation was found

by comparing the mean output over all compartments one second before stimulus

to the mean post stimulus. The length was given by the time taken to return to

within 0.001 of the pre-stimulus mean value.

Two dimensional figures and corresponding supplementary movies (which are

available from the supplementary material of Goodfellow et al. (2011b)) are colour

coded by amplitude on a blue to red scale, with deep blue representing the lowest

amplitude. The resolution of these figures was improved by inserting additional

compartments and interpolating over their values.

3.3.1 Model perturbations

The effect of stimulation was investigated by delivering a short, rectangular pulse in

the input parameter, I, to the EPSP (of the principal neuron population) of a single

compartment either at the centre of the system, or at different locations. Square

wave pulses of duration 0.1 seconds were considered in this study, though the ampli-

tude was varied. This follows previous investigations of the effects of stimulation on

the dynamics of neural masses in the context of epilepsy (Suffczynski et al., 2004;

Adhikari et al., 2009), and provides an abstract notion of the fact that stimulation

introduces a local excitatory perturbation to the system. However, we note that,

in experimental settings, bipolar stimulation is delivered via implanted electrodes

(Valentin et al., 2002), with current flowing between anode and cathode and with
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Parameter Description Value
A Average excitatory gain 3.25mV (is varied)
B Average fast inhibitory gain 22mV (is varied)
a Average excitatory time constant 100s−1

b Average fast inhibitory time constant 50s−1

C,C1, C2 Connectivity constants C =140, C1 = C,C2 = 0.8C
C3, C4 C3 = C4 = 0.25C
I External input to pyramidal neurons I=50
R Matrix of connectivity constants R is varied though is homogeneous.
v0 Parameters of the sigmoid function v0 = 6mV
e0, r e0 = 2.5s−1, r = 0.56mV −1

Table 3.1: Parameter values for all model output in Chapter 3.

strongest impact (highest current density) at the tip of an electrode. In addition, the

action of direct stimulation is complex, and not completely understood, with exci-

tation probably targeting axons rather than dendrites, remote effects (David et al.,

2010) and also the possible activation of inhibitory neuronal populations. Thus,

future studies will need to account for greater bio-physical detail of nervous tissue

stimulation, for example as implemented in the models of Anderson et al. (2007,

2009). However, in the current study we focus on the macroscopic propagating ac-

tivity due to a short time dependent “activation”. In future, this principle might

therefore extend to localised pharmacological stimulation, where the details of an

applied electrical field would not need to be considered.

Propagation of activity to the extremes of a system was detected by whether

the maximum of the EEG output variable in one of the compartments at the edge

of the system exceeded a value of 2, which is above the range of output seen in

non-oscillating compartments. The threshold stimuli to elicit such a response was

found by sequentially incrementing the stimulus strength in successive simulations

proceeding from the background fixed point.

3.4 Results

We explore the transition from background activity to abnormal spiking in progres-

sively larger systems, beginning with two coupled compartments and moving onto

one and two-dimensional spatially extended systems. In the penultimate subsec-

tion we investigate the effect of adding a spatial heterogeneity to a two dimensional

system, simulating a patch of abnormal tissue in the epileptic brain. In the final

subsection we relax the assumption of strict nearest-neighbour coupling and show

how the current scheme can be extended to include long range connections.
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3.4.1 Bifurcations and excitability in two coupled compart-

ments

Each model compartment is representative of a salient cortical circuit with excitatory

and inhibitory influences at the level of populations of neurons (for example a cortical

column (Jansen and Rit, 1995; Mountcastle, 1997)) and is referred to as a neural

mass. Thus the effect of excitatory connectivity between neural masses can be

explored by connecting compartments in the model framework described in section

3.3. This introduces an additional parameter into the model, R, which represents

the strength of excitatory influence between one neural mass and another. The effect

of changes in this parameter on the model dynamics are explored in the bifurcation

diagram of Figure 3.1 (a) (for details on bifurcations in neural mass models see e.g.

(Grimbert and Faugeras, 2006; Breakspear and Jirsa, 2007; Spiegler et al., 2010)).

The system of two coupled compartments shows fixed point behaviour for values

up to R=135, which is characterised by a low (resting) activity of the neural mass.

Between R ≈135 and R ≈147, there is a window of oscillatory activity which resem-

bles the periodic spiking of a single compartment (see example time series in Figure

3.1 (b)). The spiking frequency is variable and depends on the coupling strength;

for R=139 it is around 1/s, but by R = 143 the oscillation has a faster frequency

of around 6/s and a slightly smaller amplitude (see example time series in Figure

3.1 (c)). Beyond R=148, the system settles into a fixed point with permanent high

activity of principal neurons in the neural mass.

In Figure 3.1 (d) we demonstrate the excitability of this system of two coupled

compartments by delivering a sub- or supra- threshold pulse stimulus to both com-

partments. This threshold response to stimulus defines excitability and it can be

seen in the coupled compartment model over a large range of coupling strength, R.

Interestingly, certain stimuli could also lead to a prolonged response in both com-

partments mediated by faster oscillations. An example of this behaviour is shown

in Figure 3.1 (e). The initial excitation is followed by a number of oscillations with

small amplitude, but at an elevated level of excitation, before the return to basal ac-

tivity. This indicates that the coupling of compartments creates complex transients

due to the mixing of the two oscillatory modes present in the uncoupled system (c.f.

the description in section 3.3).

3.4.2 Simple and complex propagating activity in one-dimension

The consequences of excitatory connectivity in larger systems of interacting neu-

ral masses, and its impact on the model’s excitability, were explored by connect-

ing 21 compartments in a nearest neighbour coupled chain. This provides a one-

dimensional approximation to an extended region of cortical tissue. The choice here

of 21 compartments allows an initial exploration of the dynamics of a larger system
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Figure 3.1: Dynamics of two coupled compartments under changing connectivity
strength. a) bifurcation diagram for changing R. Maxima and minima for com-
partment 1 are shown. The dynamics of compartment 2 are equivalent. b) spiking
solution, R=139, c) faster oscillations, R=143, d) response to perturbation with R
= 130. Stimulus strength at t=10 seconds is 62 and at t=13 seconds is 62.5. e)
response to stimulus of strength 150 at t=10 seconds, R=30. Time series in e) are
plotted with an offset on the vertical axis. Arrows indicate stimulus times.

with symmetry about a central compartment that will receive a stimulus. Larger

systems were also explored and allowed qualitatively similar results (i.e. regarding
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the nature of oscillations and the response to stimulation) under alternative param-

eter choices. For example, under the default parameter settings employed for the

simulations in Figure 3.2, increasing the size of the system causes the fixed point to

become unstable and leads to permanent oscillations, due to reverberating, travel-

ling activity. However, the lower steady state and the travelling wave response to

stimulation can be recovered in larger systems by adjusting, for example, the in-

hibitory gain parameter, B. In addition, the generalisation of these results to larger

two dimensional systems is explored in subsequent sections. As in the previous sec-

tion, the effect of varying strengths of connectivity between masses was examined

as a function of the coupling strength, R. These results were additionally tested

for stability by introducing a small heterogeneity (random distribution around the

value given in Table 3.1) in each of the parameters in the first two compartments.

In this spatially extended system with N=21, the coupling strength required to

produce sustained oscillatory activity is lower than in the two compartment case, as

can be seen in the bifurcation diagram of Figure 3.2 (a). In this case, the onset of

oscillatory activity is at R ≈ 68, initially as regular propagating spikes, similar to

those observed in Figure 3.1 (b). For a small region, approximately 68 ≤ R ≤ 68.7,

this spiking solution is bistable with the background steady state. The simple spiking

solution is replaced by complex oscillations for 70 ≤ R ≤ 74, with reverberating

activity across the range. An example of complex oscillations (henceforth referred

to as “mixed oscillations”) is shown in Figure 3.2 (b).

It can be seen that activity is heterogeneous across the range apart from a brief

refractory period which is conserved across all compartments. As R is increased

within the region of mixed oscillations, these global refractory periods become more

sparse. An important feature of this complex dynamic regime is that the spatial

symmetry of the model is broken and a given variable varies in amplitude and phase

at different locations for any given time point. Note that the spatially symmetric

oscillatory state still exists as a solution when initiated in a spatially symmetric

state (i.e. when all compartments and coupling parameters are identical). However,

this solution is unstable and would therefore be unobservable under physiological

conditions, where fluctuations are unavoidable.

As R increases beyond 70, the amplitude of oscillatory activity at the centre

of the system becomes smaller until it appears saturated at high output, though

until R ≈ 85 there are oscillations at the periphery of the system, as can be seen

in Figure 3.2 (a). The region of bistability apparent in Figure 3.2 (a) around R=75

is mediated by the amplitude of oscillations at the periphery. For R ≤ 72 the

periphery oscillates with spiking dynamics of variable amplitude. For 72 ≤ R ≤ 77,

the peripheral compartments are either both oscillating with high amplitude spikes,

or one of them is oscillating at the smaller amplitude, faster oscillations, which

give the lower amplitude maxima and minima seen in Figure 3.2 (a). In the region
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Figure 3.2: Dynamics of 21 compartments coupled in a one dimensional chain. a)
bifurcation diagram for changing R (remaining parameters are default values as in
Table 1). Maxima and minima are plotted for compartment 1 at the end of the
chain. Forward scan is plotted in black, backwards scan is in red. b) solution with
mixed oscillations at R=70. Note the refractory period at t=33. c) solution with
central saturation, R=75, d) response to perturbation of the central compartment
with R=60, strength = 87 at t=10 seconds and strength = 88 at t=13 seconds, e)
response to perturbation of the central compartment with R=30, strength = 120 at
t=10 seconds and strength = 121 at t=13 seconds. In b and c, time series for the
central compartment and a peripheral compartment (compartment 1) are plotted,
with an offset on the vertical axis. Arrows indicate stimulus times.

74 ≤ R ≤ 77, the maxima and minima of oscillations at the periphery fluctuate less.

An example of this activity is given in Figure 3.2 (c), for R=75.

If the one dimensional system is set in the fixed point state a single stimulus to
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the model elicits a single propagating wave of activity, as shown in Figure 3.2 (d),

where the elicited spike propagates uniformly from the central compartment to the

periphery. If the system is prepared in the fixed point state near the onset of the

periodically spiking solution, long initial transients of mixed oscillatory activity can

be observed.

Over a large region of R (for example, 25 ≤ R ≤ 50), a non-trivial response of

the background, fixed point state to single perturbations was found for the system

with N=21. An example of this behaviour is shown in Figure 3.2 (e). The complex-

ity is due to so-called “backfiring” (Bär et al., 1994) which occasionally sparks new

propagating oscillations starting from locations other than the perturbed compart-

ment.

As shown in Figures 3.2 (d) and (e), propagation of activity depends upon the

size of the stimulus to the central compartment, with an approximately all or none

threshold for propagation. That is, the system can either show only a damped

response with small amplitude in its neighbours, whilst leaving the periphery un-

affected, or actively propagate high amplitude activity throughout the entire chain

of compartments, with a sharp threshold for onset of propagation. Following previ-

ous in vitro experiments regarding the effect of changes in inhibitory and excitatory

strength on propagation of activity in epileptic tissue (Pinto et al., 2005), we ex-

plored the effect of changes in excitation and inhibition on the stimulus threshold in

our model. This was achieved by altering the gain parameters in the PSP equations,

A and B, the results of which are documented in Figure 3.3. It was found that, for

fixed parameter B, decreased excitation leads to an increase in the stimulus inten-

sity required to elicit a spreading response (Figure 3.3 (a)), whereas for constant

A, decreasing inhibition has the reverse effect (Figure 3.3 (b)). In the case of low

inhibitory gain, propagation is of the form of the previously described complex tran-

sients as e.g. in Figure 3.2 (e), rather than simple wave propagation as e.g. in Figure

3.2, (d)). This latter result suggests that responses reminiscent of epileptic afterdis-

charges can be modelled in the spatially extended system with low inhibitory gain,

whereas these reverberating responses to stimulus can be eliminated by increasing

the inhibitory gain in the system. In the system with 21 compartments, increasing

B shifts the onset of oscillatory activity to higher values of R (results not shown).

3.4.3 Propagating activity in two dimensional excitable me-

dia

The cortex can be approximated by a two-dimensional system of interacting neural

masses if it is assumed that the vertical direction is redundant, as is the case when

considering the local activity of neural masses (Wilson and Cowan, 1973; Mount-

castle, 1997). This induces an additional spatial degree of freedom compared to

the one-dimensional case, which must be investigated in model systems arranged
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Figure 3.3: Effect of changes in excitatory a) and inhibitory b) gain on the threshold
required to propagate activity to the edge of the 21 compartment system. In a),
R=60, B=22. In b), R=60, A=3.25. Vertical lines indicate previously used default
values of these parameters (Jansen and Rit (1995)).

in two-dimensions. Here, we examined these systems in a hexagonally arranged,

nearest neighbour coupled scheme. The central compartments have 6 neighbours

each, whereas the peripheral compartments have 3 neighbours.

We start with a model of one central compartment surrounded by 6 symmet-

rically coupled compartments, which represents the simplest such 2 dimensional

configuration (c.f. the arrangement of grey hexagons in Figure 3.8). The dynam-

ics of this model of 7 coupled compartments are characterised by the bifurcation

diagram in Figure 3.4 (a). It can be seen that these dynamics follow a similar struc-

ture to those of the one dimensional chain, in that the fixed points are interrupted

by a region of oscillations. However, the critical value for onset of oscillations is

lower (compare Figure 3.2 (a)) due to each compartment communicating with more

neighbours and therefore receiving an increased net contribution for equivalent R.

For R ≤ 32 the fixed point background solution persists. At R=32.5, the system

enters a region of bistability between fixed point and oscillatory dynamics. The

oscillatory activity in this region is around 8 Hz, with phases distributed across the

7 compartments. Figure 3.4 (b) shows that whilst the amplitude of the peripheral

compartment can be relatively stable, the amplitudes in other compartments (here,

the central compartment) may vary, leading to sub-harmonic components in the

Fourier spectrum. Between R=36 and R=40, the system is in a region of bistability

between large amplitude spiking activity, occurring at around 1 spike per second, and
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oscillations of smaller amplitude at around 8Hz, with phases distributed across the

7 compartments. The dynamics of the former are shown in Figure 3.4 (c), and the

smaller amplitude oscillations are shown in Figure 3.4 (d). The effect of increasing

R beyond 40 was i) to bring into closer alignment the phases of the oscillations

in the peripheral compartments, and ii) to produce an offset between the central

compartment, which oscillated at a higher mean value, and the rest of the system,

which oscillated around a lower mean.

Figure 3.4: Dynamics of 7 compartments with hexagonal nearest neighbour coupling.
a) bifurcation diagram for changing R. Maxima and minima are plotted for a
peripheral compartment. The forward scan is plotted in black and the backward
scan is plotted in red. b) mixed oscillations at R=34, c) spiking solution at R=38,
, d) oscillatory solution at R=38. In b-d, time series for the central compartment
and an outer compartment are plotted with an offset along the vertical axis.

A larger region of cortex was modelled by an extended two-dimensional sheet

of connected model compartments. At the default value of B=22, low values of R

in large two dimensional systems typically lead to sustained mixed oscillations. For

example a 15×15 grid with R=20 outputs heterogeneous oscillations with apparent
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frequency components ranging from 5 to 10 per second and heterogeneous ampli-

tudes and phases, somewhat reminiscent of mixed oscillations in the one dimensional

case. As in the one dimensional case, these oscillations can be replaced by the fixed

point solution if B is increased for a given coupling strength. In such a case, a

stimulus applied to the system in the background fixed point can evoke a travelling

wave, as shown in Figures 3.5 (a) and (b). A movie of this response is given in

supplementary file “SFigure5a.mp4”, which can be obtained from Goodfellow et al.

(2011b).

In contrast, at different values of coupling strength R, more complex responses

can be observed (Figures 3.5 (c) and (d)). Here, the system is identical to that in

Figures 3.5 (a) and (b), but R = 35, i.e. coupling is stronger. The initially induced

wave activity evolves with a tail of higher amplitude compared to that observed for

R=20, and causes the evolution of two subsequent travelling fronts. Collision of

wavefronts then eliminates further activity leading to a total duration of around 1

second for this transient. A movie of this response is given in supplementary file

“SFigure5c.mp4”, which can be obtained from Goodfellow et al. (2011b).

In addition to travelling waves, it is expected that a two dimensional excitable

system can propagate spiral activity (see e.g. Winfree (2001)). Indeed, our two

dimensional, excitable system is capable of generating complex spiral waveforms, as

shown in Figure 3.6 (a) and (b), for a N=421 square arrangement of hexagonally

coupled compartments with B=35 and R=50. A movie of these dynamics is given in

supplementary file “SFigure6.mp4”, which can be obtained from Goodfellow et al.

(2011b).

The effect of changes in inhibitory gain, B, and connection strength, R, on the

dynamics of a cortical patch modelled by the 421 compartment system were explored

with random initial conditions over different combinations of these two parameters.

Figure 3.7 (a) maps the presence of fixed point versus oscillatory dynamics and

therefore indicates the region appropriate for examining stimulus induced transitions

from the lower steady state. It can be seen that fixed point activity is generally found

for extremely low or high B. The fixed point region to the left of the oscillatory

band is saturated in a higher state, though peripheral compartments still oscillate

for smaller R. The band to the right of the oscillatory region resides at the lower

steady state and is therefore the starting point for the investigation of responses to

stimuli.

The response to stimuli in the region of the lower steady state solution (white

region to the right of Figure 3.7 (a)) was found to vary depending upon the value

of R and B, the effects of which are explored in Figure 3.7 (b). Figure 3.7 (b)

is colour coded by length of activity evoked by stimulation, with darker colours

indicating longer transients, and displays approximately three regions of differing

activity. In the very light grey region at the top right (approximately R ≤ 18 and

43



Figure 3.5: The effect of perturbation to a central compartment in the two dimen-
sional, homogeneous system. a) snapshots of wave propagation due to stimulus,
R=20 and B=28, at t=10.1, 10.3 and 10.5 seconds The black line indicates a one
dimensional projection for the time series plotted in b), which are plotted with an
offset on the vertical axis. c) more complex transient due to stimulus, snapshots
shown at t=10.1, 10.5 and 10.8 seconds. R=35 and B=28, time series for compart-
ments along the black line in c) are plotted in d) with an offset on the vertical axis.
The duration of these responses can be seen in supplementary files “SFigure5a.mp4”
and “SFigure5c.mp4”, respectively, which can be obtained from Goodfellow et al.
(2011b).

B ≥ 22) a stimulus evokes no travelling response and therefore the duration of the

perturbation to model output is of the order of the length of stimulation. In the

darker grey region (approximately 18 ≤ R ≤ 40 and B ≥ 25), the stimulus evokes

at least one travelling wave. In general, for constant R, the responses are more

complex for smaller B, i.e. near the boundary of the oscillatory domain.

The darker squares within this region, including those coloured black, elicit more

than one travelling wave or more complex responses. We note that the number of

compartments stimulated, as well as their position in the system, affects activity
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Figure 3.6: Example of complex spiral waves in a system with N=421, B=35,
R=50. Images in (a) represent t=12.1, 12.35 and 12.6 seconds. Time series for the
compartments along the black line in (a) are plotted in (b) with an offset along
the vertical axis. A movie of these dynamics is provided in supplementary file
“SFigure6.mp4”, which can be obtained from Goodfellow et al. (2011b).

post-stimulus. For instance, if stimulation of a single compartment does not elicit a

response, the stimulation of multiple compartments occasionally can. The response

of the system to stimulus at the centre and at the edge of the system is often not

equivalent.

3.4.4 Reverberating activity in a stimulated model of het-

erogeneous cortex

It is expected that there are spatial heterogeneities in normal cortical tissue, as well

as in the case of focal epilepsies. In particular, in cases of intractable epilepsy, often

there exist deformations, such as dysplasias, which are capable of conveying abnor-

mal activity (Fauser and Schulze-Bonhage, 2006; Fauser et al., 2009). In addition,

a recent modelling study highlighted the importance of considering heterogeneity

in a spatially extended neural mass model of epileptic dynamics (Goodfellow et al.,

2011a). We investigated the effect of spatial heterogeneities in cortical tissue by

forming a two-dimensional extended system with a central region containing dimin-

ished inhibition. A 421 compartment system (21 x 21 hexagonally coupled com-

partments, i.e. with symmetry around the central compartment) was formed with

R=20. In the central hexagon of 7 compartments, B was set to 22 (“disinhibited”),

whereas in the surrounding compartments, B was set to 28 (“normal”). The layout

of this system is illustrated in Figure 3.8.
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Figure 3.7: Investigation of the dynamics and stimulus response of the homogeneous
two dimensional system with N=421. a) Map of fixed point versus oscillatory dy-
namics over changes in B and R (other parameters are default values as in Table
3.1). Systems with fixed points are coloured white. The region of grey represents
oscillatory dynamics. Fixed point solutions to the left of this region are at the high
steady state, whereas those to the right are at the lower steady state. b) shows the
length of response to stimulus, with the system initially in the lower steady state,
and stimulus of strength 300 applied for 0.1 seconds to the central compartment.
Darker colours indicate longer responses, with black representative of transients
longer than 3 seconds. Very light grey squares in the top right corner indicate a
response only in the stimulated compartment.

Following our previously described results, it might be expected that the sur-

rounding tissue is more likely to propagate single waves, whereas the compartments

of the centre might generate more complex oscillatory activity. From random initial

conditions, the system was left to settle into a background fixed point, to which a

stimulus was applied. The response to a stimulus of duration 0.1 seconds and size

300 applied to 8 different locations was investigated, with results shown in Figures

3.9, 3.10 and 3.11.

Depending upon the location of the stimulus, the system can display different

responses, consisting of i) a simple propagating wave (Figure 3.9, (a)), ii) two waves

propagating from the centre (Figure 3.9, (b)) or iii) more complex and longer lasting

transients (Figure 3.9 (c, d, e)). In the latter case, the oscillatory waveform at each

compartment is heterogeneous, similar to the results reported previously in evoked

oscillations in cortical slices (Bai et al., 2006). Example spatial patterns for stimuli

1 (a) and 8 (e) are shown as snapshots in Figures 3.10 (c) and (e), respectively.

Movies showing these responses are given in supplementary files “SFigure10c.mp4”

and “SFigure10e.mp4”, respectively, which can be obtained from Goodfellow et al.

(2011b).
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Figure 3.8: Schematic of the heterogeneous system with a central hexagonal region
of diminished inhibition. Also shown are the locations of 8 compartments which
were subjected to a single pulse perturbation.

In order to compare this behaviour to observations from repetitive responses

in humans, we must consider the size of the modelled system in relation to brain

tissue. A previous whole brain model based on the neural mass framework employed

a single compartment as a model for a voxel of diameter 1-3mm (Sotero et al., 2007).

These dimensions are in line with the original formulation of the neural mass model

as a model for a cortical column (Jansen and Rit, 1995). Thus we proceed with

the assumption that each compartment represents a 1mm diameter column, which

implies a size of 421mm2 for the entire 421 compartment model. Each quadrant

of this model can therefore be assumed to represent activity recorded by a single

electrode of diameter 2.3mm, separated by 10mm, as used in Valentin et al. (2002).

Figure 3.10 (d) and (f) each show four mean field time series representing the

averaged activity of each of the four corners of the heterogeneous system in Figure

3.8 under stimuli 1 and 8, respectively. The mean field of the response of the hetero-

geneous system to stimulation 8 (see Figure 3.8) shows a repeated series of irregular

waves, as in the abnormal “repetitive response” described by Valent́ın et al. (2005)

(recreated here in Figure 3.11 (b)). This is in contrast to activity propagated in the

homogeneous system, the mean field of which is a single wave lasting approximately

half a second, as observed in the “early response” presented in Valent́ın et al. (2005)

(recreated here in Figure 3.11 (a)). For direct comparison, we re-create in Figure

3.11 some features of the spatially varying response to perturbation observed in

humans.

The time series of a mass adjacent to the stimulated compartment is shown
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Figure 3.9: Time series for response to stimulus at a selection of the different loca-
tions marked in Figure 3.8. Shown are responses for positions 1 (a), 4 (b), 2 (c), 6
(d) and 8 (e) in Figure 3.8. Time series are plotted with an offset on the vertical
axis. Stimuli were delivered at 10 seconds for a duration of 0.1 seconds and with
strength 300.

for the homogeneous and heterogeneous cases in Figure 3.12. It can be seen that
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Figure 3.10: Comparison of spatiotemporal patterns and model mean field in the
case of wave propagation in the homogeneous system (a and b), stimulus 1 in the
heterogeneous system (c and d) and stimulus 8 in the heterogeneous system (e and
f) (see Figure 3.8 for the location of these stimuli). The four channels in b), d)
and f) represent averages of activity in the 4 corners of the system, indicated by
broken black lines in (a, c, e). These are plotted with an offset on the vertical
axis. Movies for the responses shown in c) and e) are given in supplementary files
“SFigure10c.mp4” and “SFigure10e.mp4”, respectively, which can be obtained from
Goodfellow et al. (2011b).
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Figure 3.11: Examples of (a) “early” and (b) “repetitive” responses observed in
human tissue in response to single pulse perturbation. (a) recreated from Valent́ın
et al. (2005), Figure 2A and (b) recreated from Valent́ın et al. (2005) Figure 4A. A
key feature in relation to the present modelling study is the difference in transient
length due to single perturbation, which is space dependent in the epileptic brain.
The repetitive response, seen in retrospectively determined epileptogenic tissue is a
complex spatio-temporal transient.

in the case of simple single wave propagation, there is a strong hyperpolarisation

immediately following the large amplitude spike, whereas in the case of the more

complex transient, there are varying degrees of hyperpolarisation throughout the

transient. We note that in the case of the heterogeneous model, the steady state

of the compartments with reduced inhibition are at a higher level than those in

the heterogeneous system. The depth of the hyperpolarisation in the heterogeneous

compartment becomes closest to that of the homogeneous system only during the

hyperpolarisation preceding termination of the oscillation.

3.4.5 Beyond nearest neighbour coupling

The model we presented is governed by nearest neighbour connectivity in order to

examine the effect of transmission of neural mass spiking due to local connections.

In this section we demonstrate how this assumption can be relaxed in order to

investigate more complex connectivity patterns, which will be an important feature

of future work. We note that, in this section specific examples are provided to

guide the reader in the ways that the model can be extended in future, rather than

providing a thorough description of system dynamics, which will be left to future
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Figure 3.12: Time series of a compartment adjacent to the stimulated electrode in
the homogeneous system with propagating wave (dashed line, compare Figure 3.9
(a) and Figure 3.10 (a)) and the heterogeneous system with complex transient (solid
line, compare Figure 3.9 (e) and Figure 3.10 (c)). The solid horizontal line indicates
the minimum value reached by the homogeneous system.

work.

Here, we persist with the notion that, at the level of connectivity between neu-

ronal populations, connections to local regions predominate (Boucsein et al., 2011).

This has been modelled in large scale neural mass formulations of brain connectiv-

ity by an exponential, distance dependent function (Jirsa and Haken, 1996; Sotero

et al., 2007). In the model presented here, applying such a function smoothes the

coupling to include contributions from beyond the first neighbour. Connectivity in

this scheme is given by:

Rij = r · 1

2σ
e−
|xi−xj |

σ (3.4)

where Rij is the resulting connectivity between two compartments, r is a scaling

factor common to all network edges, σ is a parameter determining the spatial extent

of connectivity and xi, xj denote the position of nodes i and j in the square lattice.

|xi − xj| denotes the Euclidian distance given by:√
(xi(1)− xj(1))2 + (xi(2)− xj(2))2 (3.5)

With this extended connectivity, the homogeneous system can display complex

spatio-temporal patterns and also steady state dynamics depending on its param-

eters. For example σ = 0.5 and r = 146 leads to a fixed point in a square system
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of 31× 31 compartments, and the evocation of a single travelling wave due to stim-

ulation (data not shown). Adjusting σ leads to changes in the size of travelling

wave fronts (as well as parameters required for steady state). Thus, in exploring the

parameters of the model in future studies, one will need to consider the size of the

system and its boundary conditions in relation to the variance of connectivity.

This extended coupling scheme also allows the study of additional long-range

connectivity (Boucsein et al., 2011), since the propagation of activity is not depen-

dent only on nearest neighbours. We demonstrate how the system might be used in

the context of the current study by once again introducing a region of diminished

inhibition at the centre of the system (here a 4×4 square). With r = 100.7 the het-

erogeneous system settles into its steady state, in which stimulus response is space

dependent (results not shown).

We now provide an initial demonstration of the capability to explore more com-

plex connectivity patterns. The distance dependent connectivity was supplemented

by randomly drawn long-range connections of strength equivalent to that connecting

closest neighbours. This was achieved by first constructing the distance dependent

adjacency matrix, then scanning over entries and adding connections with a speci-

fied probability (with probability given by the parameter p). An image of the top

left corner of the resulting connectivity matrix is given in Figure 3.13 (a).

Interestingly, with p=0.001, the steady state, under the parameter settings pre-

viously employed, is often difficult to recover under random initial conditions. Thus,

we can speculate that in this regime, the system is more likely to reside in an os-

cillatory state due to the distribution of connectivity. If long range connections are

restricted to nodes outside this central region, the steady state can be more easily

recovered from random initial conditions, and stimulating a central compartment

elicits a prolonged reverberating response, as shown in Figure 3.13 (b).

Also of interest is that when the probability of long-range connectivity is in-

creased to 0.002, the steady state is also recovered even when the central region is

included in the long-range structure. In this case, the response to stimulation has

interesting dynamics, with increased synchrony in bursting across the range. This

response is shown in Figure 3.13 (c).

3.5 Discussion

In this study we explored spatial extensions to a previously proposed neural mass

model of epileptic spiking (Jansen and Rit, 1995; Wendling et al., 2000, 2001, 2002;

Grimbert and Faugeras, 2006; Spiegler et al., 2010). It was demonstrated that this

model, under the assumption of excitatory nearest neighbour connectivity, is an

excitable system which can propagate activity induced in a single stimulated com-

partment. We found that the system could display complex reverberating responses
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Figure 3.13: Dynamics of a system with non-local connections. a) shows the top left
corner of the adjacency matrix (nodes 1 to 200) when σ=0.5 and p=0.002. Notice
the scattering of long range connectivity in combination with distance dependent
connectivity. b) shows snapshots of the dynamics of the system with σ=0.5, r=100.7.
In this case long range connectivity is restricted to nodes outside the central region
of diminished inhibition. c) shows snapshots of the same system, but with p=0.002
and long range connectivity allowed also with the central region. See section 3.4.5.

to a single pulse perturbation and is therefore relevant to the mechanisms underly-

ing macroscopic epileptiform responses in vitro (Pinto et al., 2005) as well as in the

human brain (Valentin et al., 2002; Valent́ın et al., 2005; Flanagan et al., 2009).

Specifically, we predict the existence of complex rhythmic responses in excitable

media formed by interacting excitatory and inhibitory neural populations, as as-

sumed for the neocortex. This is due to excitability in the vicinity of a saddle-node

on limit cycle bifurcation and the (co-)existence of either a fast oscillation or a

corresponding saddle-focus. We demonstrate that this framework allows the investi-

gation of the dynamic consequences of spatial heterogeneity and that this can result

in the formation of long lasting rhythmic transients in response to single-pulse per-

turbations. This allows us to combine insight from smaller scale properties (cortical
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excitability) with macroscopic clinical observations to propose the specific hypothe-

sis that long EEG transients derive from the spatially transmitted self-activation of

regions of diminished inhibition.

3.5.1 Complex spatio-temporal responses to stimulation are

underpinned by neural mass excitability

An important correlate of epileptiform activity at the neuronal level is the parox-

ysmal depolarising shift (PDS), characterised by an overt depolarisation of neurons

(Elger and Speckmann, 1985; McCormick and Contreras, 2001). Certain epilepti-

form events on the EEG are caused by the synchronous activation of PDSs in local

neuronal populations. Thus, at the level of the neural mass, we propose that the

spiking dynamics observed in the neural mass model can be regarded as representa-

tive of locally synchronous paroxysmal depolarising shifts. Accordingly, the neural

mass makes a transition from relative quiescence to a brief period of high activity,

causing a spike in the output of the mass, with subsequent hyperpolarisation.

This framework assumes a resting state of the neural mass with a low output

of principal neurons, which from the dynamical systems perspective is modelled

by a fixed point. This state can be perturbed by surrounding tissue undergoing

abnormal spiking, or stimulation delivered from an external source. The model of a

fixed point at the level of the neural mass is a scheme often employed in models of

the transition to epileptic activity (Wendling et al., 2000; Breakspear et al., 2006;

Marten et al., 2009a) and the apparently random nature of background EEG can

be approximated by applying a time dependent noise to the fixed point. Although

it might be a reasonable assumption that, at the level of the neural mass in an

asynchronous state, activity is averaged out and relatively quiescent, other models

of non-quiescent background activity have also been proposed (Shusterman and

Troy, 2008; Goodfellow et al., 2011a). In order to better understand the nature of

the production of epileptic rhythms in neural masses, the equations governing the

dynamics of background EEG demand more attention in the future.

The response of epileptic tissue to local perturbations as well as the spontaneous

initiation, spreading and termination of seizure activity is represented by transient

spatio-temporal rhythms. Complex spatio-temporal transients have been described

in excitable media (Zimmermann et al., 1997; Jung and Mayer-Kress, 1995; Tel and

Lai, 2008) and we here specifically introduce a dynamic mechanism for the genera-

tion of rhythmic transients following a single-pulse stimulus as used in pre-surgical

evaluation of epileptic neocortex. We find that a description at the macroscopic

level requires excitatorily coupled spiking mass models. By considering spatially

extended systems of population PDS, we offer a framework with which to investi-

gate the transmission of abnormal activity over large regions of cortex, mediated

by local, excitatory interactions. The role of these mechanisms in the spreading
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of epileptiform rhythms is an important unanswered question in epilepsy research

(Elger and Speckmann, 1985).

3.5.2 Spatially extended models of rhythmic activity: ben-

efits of the current model

Previous mathematical models have offered insight into the formation of spatio-

temporal patterns and the spreading of activity in nervous tissue. Nervous tissue

based excitable media have been demonstrated to be capable of producing prop-

agating waves (Pinto and Ermentrout, 2001) and spiral dynamics (Huang et al.,

2004; Laing, 2005), which are in line with experimental results (Chervin et al., 1988;

Huang et al., 2004; Pinto et al., 2005; Bai et al., 2006; Schiff et al., 2007; Wu et al.,

2008). Mathematical models have also been shown to propagate single and multiple

travelling waves (Troy and Shusterman, 2007) or sustained synchronous responses

to stimulation (Shusterman and Troy, 2008).

In addition to these disinhibited systems, cellular automata-like models have

been used to investigate the spreading of activity. Kaiser et al. (2007), for example

demonstrated that a hierarchical structure is capable of producing a critical state

for the contained propagation of activity in a network. Traub et al. (2010) presented

a cellular automaton model for the appearance of patches of activity in relation to

very fast oscillations observed in epileptic tissue. Examination of the activation of

neuronal networks in epilepsy has also been addressed at the microscopic level of

modelling, for example in the work of Lytton et al. (2008).

The model we present here, based on interconnected neural masses, provides

several important advances compared to these previous models. First of all, it is

important to address the mechanisms of clinical epileptic data at the macroscopic

level (Wendling et al., 2000; Suffczynski et al., 2006b; Goodfellow et al., 2011a). By

forming spatially extended systems at this level in the form of neural mass models,

with physiologically interpretable parameters, the macroscopic propagation of activ-

ity, and its dependence on local excitatory and inhibitory processes (Wendling et al.,

2000) as well as network interactions (Goodfellow et al., 2011a) and heterogeneities

can be explored. A key feature relating to the spreading or suppression of epilep-

tiform activity is the presence of local “surround” and “vertical” inhibition (Elger

and Speckmann, 1985) and the modulation of inhibitory processes has been demon-

strated to affect the ability of synchronous activities to form and spread (Trevelyan

et al., 2006). It is therefore important to consider the role of inhibitory processes,

which are preserved in the mass model presented in this study. The model might be

extended to include inhibitory nearest neighbour connections, which, when dimin-

ished, might then support the spreading of activity, as suggested by Trevelyan et al.

(2006). The physiological interpretability of parameters in the mass model allow

us to make more meaningful models of functional deficiencies, such as diminished
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inhibition, and assess their impact on network dynamics.

Another crucial aspect of the framework presented here is that we consider the

transition into epileptiform rhythms as invoked spatio-temporal dynamic transients.

This marks a shift in emphasis away from a time dependent modulation in system

parameters (bifurcations) to explain epileptiform EEG (Breakspear et al., 2006;

Marten et al., 2009a; Kramer et al., 2005; Kim et al., 2009; Lopour and Szeri,

2010) and places more weight on the self-organising capabilities of spatio-temporal

networks in the brain.

3.5.3 Network connectivity and dynamics

There is much work regarding network connectivity in nervous tissue and its relation

to epilepsy. Morgan and Soltesz (2008), for example, used a detailed neuronal model

of the dentate gyrus to show that the inclusion of hubs in the connectivity network

could lead to an enhanced susceptibility of the network to seizure activity. Hierar-

chical connectivities have been shown to be important for the spreading of activity

(Kaiser et al., 2007). Though we focussed here initially on nearest neighbour connec-

tivity and the properties of excitable media, we also demonstrated an extension of

the system into more complex network structures through the addition of long range

connections. The future investigation of stimulus response dynamics in the model

framework presented here must consider different model connectivities. Indeed, our

model framework will allow the investigation of the role that network connectivity

plays in the formation of complex responses to stimuli at the macroscopic level, and

in combination with spatially structured heterogeneities.

The incorporation of different connectivity structures, including hierarchical and

long range connectivity, must be supplemented by considerations regarding time

delays in transmission between different neuronal populations separated by increased

distances in the brain. Several previous formulations of large scale brain dynamics in

the neural mass framework have taken into account delays between compartments

(Jansen and Rit, 1995; Wendling et al., 2000; David et al., 2004; Sotero et al.,

2007). Indeed, the value of an explicitly modelled time delay has been shown to

affect the frequency of rhythmic dynamics in a heterogeneous coupled neural mass

model (David and Friston, 2003). Future investigations of the dynamics of the

system presented here can incorporate transmission delays in the ODE framework by

modelling delayed transmission as an additional temporal convolution, as proposed

initially by Jansen and Rit (1995).
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3.5.4 Local inhibition and excitation balance determines stim-

ulus response dynamics in connected neural masses

Excitatory coupling induced new types of behaviour in the model composed of com-

partments set into a region of parameter space conferring fixed point dynamics. In

the system composed of two compartments, for example, coupling led to spiking or

faster oscillatory activity for certain values of coupling strength, R (see Figure 3.1).

In larger systems, the region of oscillatory activity for the default value of inhibitory

gain, B, was extended, although the fixed point was recovered for increased inhibi-

tion. This is in agreement with the notion that a modulation of inhibitory processes

is important for the generation of rhythmic activity in epileptic tissue.

Three important features of the experiment of Pinto et al. (2005) can be recre-

ated by our model of stimulus response in brain tissue, namely i) the all or none

response depending on the size of perturbation (Figures 3.1 (d) and 3.2 (d)), ii)

the dependence of this threshold on the regulation of excitatory and inhibitory ac-

tivity in the slice (Figure 3.3) and iii) the demonstration of simple waves or more

complex activity (Figure 3.2 (d,e), Figure 3.5). Thus our model provides evidence

for the generation of propagating activity due to proximal excitatory coupling in a

model with threshold excitability. In addition, many aspects of our model are also

in agreement with analyses of spatio-temporal patterns imaged by voltage sensitive

dyes. In particular, the study of Bai et al. (2006) reported the propagation of ac-

tivity in a slice preparation with heterogeneous oscillations at different locations in

the slice (see Figure 3.7 A in Bai et al. (2006)). This is reminiscent of our model

activity close to the disinhibited region during reverberating activity (see our Figure

3.9 (e), bottom 2 traces). However, certain other observations cannot at present be

recreated by our model, such as the potential delay, both temporally and spatially,

from the onset of stimulation to the propagation of activity. Such effects have also

been observed in humans (Valent́ın et al., 2005; Lesser et al., 2008). Future improve-

ments to the model in terms of more complex spatial coupling may help to uncover

potential mechanisms underlying these phenomena.

3.5.5 Modelling the implications of functionally heteroge-

neous regions: a hypothesis for the prolonged tran-

sient response to brief stimulation

The effect of introducing a localised region of diminished inhibition was the pro-

duction of long and complex responses to perturbation (Figures 3.9, 3.10 and 3.11),

which on the mean field were reminiscent of repetitive responses seen in human

recordings (Valentin et al., 2002; Valent́ın et al., 2005; Flanagan et al., 2009). Our

investigation of travelling wave and complex transient responses to pulse stimulation
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therefore lead us to the following mechanistic hypothesis for the formation of repet-

itive responses. Local neural masses capable of generating spiking responses are

modelled by the bifurcation structure inherent to the Jansen model framework, i.e.

the presence of excitability from a low output state to a high amplitude “spike” orbit

(“population PDS”) due to a perturbation of the excitatory input (EPSP). These

local masses are connected by nearest neighbour coupling. A spatially contiguous

region of “reduced inhibition” within this system can then confer the capability

to produce long lasting transient responses to short pulse perturbations due to i)

a reverberation within the region of reduced inhibition and ii) the propagation of

non-trivial wave activity from this location, which can then break and cause subse-

quent activity. Cessation of these transients is autonomous and relies on the system

propagating a trivial wave away from the region of reduced inhibition, thus causing

no further reverberation.

Thus we provide a demonstration of the putative mechanism proposed by Va-

lent́ın et al. (2005), i.e. a “re-entry of neuronal activity” after the initial stimulation.

This is supported, in our model, by a local region of reduced inhibition. Thus we

predict that the complex space varying, transient responses to perturbation seen

in epileptic tissue derive from a spatially localised diminished inhibition. This pre-

diction is open to experimental testing in vitro and comparison to human stim-

ulus responses in the future, and suggests that in understanding the mechanisms

of epileptic processes, one should investigate in neural mass models not only the

properties of tissue at a single location, but also the effect of spatial variation on

pathological dynamics. The use of mechanistic modelling of the stimulus response

in heterogeneous, macroscopic systems may in future provide a valuable tool with

which to specify the neurophysiological features of the epileptogenic zone in focal

epilepsy, which is defined as the brain area that has to be removed to render a

patient seizure free (Rosenow and Lüders, 2001). Comparison to clinical stimulus

responses in pre-surgical testing could then aid the localisation of the epileptogenic

zone.

3.5.6 Modelling spatially dependent stimulus response dy-

namics

That single pulse perturbation might aid in the localisation of ictogenic tissue is

of great interest clinically (Valentin et al., 2002; Valent́ın et al., 2005; Flanagan

et al., 2009), where resection of epileptic tissue is an important therapeutic option

for pharmacologically intractable cases. However, the mechanisms for spatially het-

erogeneous responses that depend on distance from ictogenic tissue are unknown.

Applying perturbations to different regions in our heterogeneous model suggest that

a stimulation in and around the region of diminished inhibition can cause an “ac-

tivation” of this region in terms of subsequent generation of long lasting transients
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(see Figures 3.9, 3.10 and 3.11). On the other hand, stimulating further from this

region elicited a simple travelling wave, which on passing through the diminished

inhibition region did not spark prolonged activity. These contrasting dynamics dis-

played waveforms on the mean field similar to those of the “repetitive” and “normal”

responses seen post-stimuli in humans with epilepsy (Valentin et al., 2002; Valent́ın

et al., 2005; Flanagan et al., 2009). Interestingly, stimulating a compartment di-

rectly adjacent to the region of diminished inhibition could evoke a longer transient

than a stimulation inside this region (compare Figures 3.9 (b) and (c)). This offers

an initial demonstration of the potential mis-localisation of ictogenic cortex. Future

investigation of the mechanisms underlying these phenomena in mathematical mod-

els may aid our understanding of the processes relevant to repetitive responses, and

therefore inform as to what responses are expected from various locations around an

ictogenic region. Assisting the processes of accurately identifying appropriate tissue

for surgical resection must be a long term goal for modelling studies such as the one

presented here.

The observed time varying response to stimulation (Lesser et al., 2008) suggests

the possible involvement of ictogenic processes at a variety of different time scales.

A more complete understanding of the processes underlying epileptiform activity

would therefore consider, in models of epileptic tissue, the contribution of long term,

epileptogenic processes as well as short time scale and longer time scale ictogenic

processes. Such considerations might be appreciated in Figure 3.7 (c) where the

boundary between fixed point and oscillatory dynamics with respect to two of the

system parameters can present regions of longer transient activity. In this kind of

framework one might suggest that epileptogenicity presents the system with the

capability to demonstrate such bifurcation structures, whereas ictogenicity presents

a movement in this structure towards regions of oscillatory activity. In our model,

as the system moves closer to the oscillatory region over time, longer transients due

to stimulation can be observed.

However, we also showed in the heterogeneous system the effect of moving closer

in space to an ictogenic region. In this way we demonstrated the potential im-

portance of considering spatial heterogeneities in models of epileptic tissue, and

therefore in the tissue itself. Indeed, it is known that spatial heterogeneities are

associated with epileptogenicity. In models of post-trauma epilepsy, for example, it

has been suggested that mechanisms leading to an enhancement of local excitatory

connectivity (e.g. sprouting) or an impairment of inhibition (reduced effectiveness of

inhibitory interneurons) are important epileptogenic processes (Prince et al., 2009).

These mechanisms have been shown to contribute to the propagation of rhythmic

activity in our model.

59



3.5.7 Perspectives on the measured speed of propagation of

epileptic activity

The peak to peak time of transmission of spikes from one compartment to its neigh-

bour in our two-dimensional system with R=35 was 0.02 seconds, which means that

a distance of 1mm between compartments gives a velocity of 0.05ms−1. This is of

the same order of magnitude as that reported by, for example, Pinto et al. (2005)

and Chervin et al. (1988). However, it is important to note that many different

propagation velocities for travelling spiking activity have been reported in the lit-

erature. In addition to the aforementioned values, which were derived from slice

experiments, Meeren et al. (2002) reported propagation velocities of 1ms−1 in local

field potentials recorded from epileptic activity in vivo. Kramer et al. (2005) re-

ported speeds of 0.5ms−1 in ECoG recordings from human epileptic seizures. The

differences in these reported velocities raise several important points. The first point

is with regards to the scale at which measurements of spatio-temporal patterns are

made. In the study of Meeren et al. (2002), activity was recorded bilaterally in the

cortex of WAG/Rij rats using 100µm diameter electrodes separated by 2mm. In

the study of Kramer et al. (2005), ECoG recordings were made from electrodes with

2.3mm exposed surface and with 10mm spacing between discs. Thus, neither of

these recordings allow to map the transmission of spiking activity between neigh-

bouring cortical columns in the same way as the experiment of Pinto et al. (2005). In

addition, we demonstrate in Figure 3.10 that transmission velocities in an excitable

medium may not be conserved across scale. The underlying travelling wave, when

averaged at the macroscopic scale appears synchronous between the four electrodes

due to the location of the initiation of the wave at the centre of the system. Further

discrepancies relate to whether propagating activity is conserved between in vivo

and chemically treated in vitro recordings, between spontaneous and evoked activ-

ity, and also by the different techniques used to measure time delays. Each of these

issues will need to be studied in order to resolve the spatio-temporal mechanisms of

responses to stimuli in nervous tissue in the future.

3.5.8 Future perspectives on oscillations in the EEG and

travelling wave activity

In this model we showed that macroscopic oscillatory activity might be underpinned

by travelling waves at a smaller spatial scale (for example in the average waveforms

observed in Figure 3.11). This raises an important issue regarding the origin of

EEG waves and their relation to underlying “activity” of populations of neurons.

In this sense, activity refers to a population level representation of the output of

neuronal populations, or equivalently the entity that will be synaptically transmitted

between locations in the networks of the brain. Importantly these two attributes
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do not always coalesce, as will be outlined in greater detail for the case of SWD,

in Chapter 5, and as can be seen directly in simultaneous recordings of neuronal

activity and local field potentials (Truccolo et al., 2011). In this sense, one might

therefore consider that there is a hidden variable in studies of LFPs (EEG), which

is the activity output of the local mass. Indeed, since the EEG or LFP is thought

to represent post-synaptic activity, it can be considered to represent the input into

a local population rather than the output or activity of that population.

As mentioned in the description of spatially extended models in Chapter 2, and

in the implementation of the model in the current chapter, the input to a neural

mass is considered to be a spatially weighted average of connected activity. In this

way, one might suggest that a locally recorded LFP wave represents the rise and fall

of weighted afferent activity. The spatially extended neural mass model used in this

thesis captures these dynamics by using the afferent post-synaptic potentials as the

output of the mass at a given location. In future it will be important to ascertain

the spatio-temporal dynamics of epileptic activity in vivo at the mesoscopic scale,

in which the output of functional units such as cortical columns are visualised.

3.5.9 Outlook

In addition, future work will be needed to more systematically clarify the dynamics

of the system, for example in comprehensive bifurcation and sensitivity analyses.

Sensitivity in the current context will be most informative if it relates stimulus

response dynamics to changes in the structure of the system, the spatial distribution

of heterogeneities and the location of stimulation relative to heterogeneities (i.e.

when specifying the concept of the “epileptogenic zone”). It is anticipated that

these will be some of the most prominent patient and experiment specific features.

However, this raises a number of non-trivial and currently unexplored details, for

instance the quantification of spatio-temporal dynamic transients, and methods by

which to systematically evolve heterogeneous topologies and assess spatial patterns,

parameter distributions and network connectivities. It is therefore expected that

future investigations of systems such as the one presented here will require advances

in the study of dynamical systems and their computational implementation.

3.5.10 Summary

In conclusion, we have demonstrated a spatially extended neural mass model of

complex, self-terminating, transient responses to perturbation. The systems creat-

ing these responses are excitable media based upon the excitatory transmission of

epileptic activity at the level of the neural mass. The model gives potential new

insight into the creation of complex reverberating responses due to perturbation

in epileptic tissue, the propagation of complex oscillations in in vitro preparations,
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and introduces new considerations regarding the spatio-temporal manifestations of

epileptiform activity in the human brain. From the non-linear dynamics perspective,

new emphasis is placed on transients to explain epileptiform activity, rather than

the traditional analysis of asymptotically stable phase space structures.

In the following chapter (Chapter 4) the spatially extended neural mass model

framework is extended to investigate the network mechanisms underlying sponta-

neous transitions into epileptiform EEG.
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Chapter 4

Intermittent state transitions in a

spatially extended neural mass

model of SWD

4.1 Abstract

Generalised epileptic seizures are frequently accompanied by sudden reversible tran-

sitions from low amplitude irregular background activity to high amplitude, regular

spike-wave discharges (SWD) in the EEG. The underlying mechanisms responsible

for SWD generation and for the apparently spontaneous transitions to SWD and

back again are still not fully understood. Specifically, the role of spatial cortico-

cortical interactions in ictogenesis is not well studied. In this chapter we investigate

the nature of this transition in spatially extended neural mass models.

Following previous investigation into the mechanisms of absence epilepsy, a sim-

ple extension is made to the neural mass model in the form of an additional slow

inhibitory component. Spatial extensions to this model are explored and reveal

bistability between two different oscillatory modes, one of which is a high ampli-

tude spike-wave discharge (SWD). Further spatial extensions reveal intermittent

transitions between background and SWD oscillations on the mean field. The deter-

ministic model is therefore capable of producing absence seizure-like events without

any time dependent adjustment of model parameters.

The emergence of such mechanisms due to spatial coupling demonstrates the

importance of spatial interactions in modelling ictal dynamics, and in the study of

ictogenesis. That these dynamics arise in heterogeneous systems highlights the role

of focal abnormalities. In addition, a new model of the dynamics of transitions in

epilepsy in neural mass models is introduced.
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4.2 Introduction

The spike wave discharge

Spike and wave discharges (SWD) are electrographic features commonly recorded on

the EEG during a variety of generalised epileptic events, including absence seizures,

myoclonic seizures and seizures of the Lennox-Gestaut syndrome (see e.g. Hrachovy

and Frost 2006). They can also be observed in stimulus induced afterdischarges

(Blume et al., 2004). The term “spike-wave” gives an intuitive description of the

multi-modal nature of this rhythm in that there is a fast component (the spike)

followed by a slow component (the wave), although the exact morphology can be

variable (Weir, 1965). In idiopathic generalised epilepsy (IGE), there is a char-

acteristic, though variable frequency range for the rhythm at approximately 3Hz

(Niedermeyer and Lopes da Silva, 2005), with slowing towards the end of seizures.

In line with its importance in epilepsy, SWD dynamics and resulting spatio-temporal

distributions are investigated in the remainder of this thesis.

A thorough investigation of the waveform of the SWD was given by Weir (1965).

It was noted that “SWD” might be too simplistic a description, and that SWD are

actually composed of at least four important components, namely “spikes” 1 and

2, a “positive transient” and the “wave”. Weir (1965) also demonstrated some of

the potential variable waveforms of the SWD. These are discussed in greater detail

in Chapter 5. In addition to the variability in individual SWD waveforms, there is

also much variability in spatial distribution of SWD even in the prototypically most

homogeneous case of absence epilepsy. These spatial patterns are discussed further

in Chapter 6.

Animal models of epilepsy with SWD

The importance of SWD in brain dysfunction has led to intense investigation of the

underlying neuronal mechanisms in a number of different animal models of SWD

seizures (Gloor et al., 1977; Marescaux and Vergnes, 1995; Steriade and Contreras,

1998; Coenen and Van Luijtelaar, 2003). Perhaps the most prominent results have

been gained in studies of feline and murine models. Differences in findings between

the models has meant that many controversies remain regarding the mechanisms

of SWD seizures as observed, for example, in absence epilepsy. In addition, the

exact morphological characteristics of abnormal rhythmic EEG activity in animal

models often is not directly comparable to recordings made during human seizures.

For example, two of the modern genetic murine models, namely the WAG/Rij (Co-

enen et al., 1992) and the genetic absence epilepsy rats from Strasbourg (GAERS)

(Marescaux et al., 1992), display spontaneous, brief “absence” like seizure events

accompanied by appropriate behavioural signs (i.e. they display behavioural arrest

which appears similar to the impairment of consciousness observed in humans). The
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equivalent EEG recording shows high amplitude rhythmic activity reminiscent of the

sudden onset high amplitude activity observed in humans. However, the frequency

of activity recorded in rats (8-10Hz) is often much faster than the equivalent ob-

served in humans (∼3Hz). Indeed, these waveforms have previously been referred

to as high voltage spindles (Kandel and Buzsáki, 1997). Thus one of the grand

challenges in uncovering the mechanisms of SWD resides in translating results from

animal models into inference regarding human epilepsy. In future, there will al-

most certainly be a role for systems biology and mathematical and computational

neuroscience in making these links.

Many different hypotheses regarding the mechanisms of absence seizures have

resulted from studies in animal models. One of the persistent controversies has

been the role of the thalamus in their generation, although it is now commonly

accepted that absence seizures are disorders of thalamocortical networks (Blumen-

feld, 2005), and much work has investigated the role of the thalamic processes (for

example Cope et al. (2009) and Meeren et al. (2009)). However, it is also becom-

ing clearer that the term “generalised” may mask the underlying heterogeneity of

involvement of local networks (Holmes et al., 2004; Blumenfeld, 2005). Indeed, one

of the major recent advances has been a shift in emphasis towards the view that

a focal, cortical onset might be responsible for the generation of seizure activity

(Meeren et al., 2002). This highlights the importance of spatial heterogeneities and

spatially distributed networks throughout the brain. The apparently ubiquitous,

large amplitude activity observed on scalp recordings during absence seizures per-

haps led to the initial theories regarding the involvement of sub-cortical structures

to either produce or propagate seizure activity in primarily generalised epilepsies.

Although recent findings have reinforced the concept of focal, cortical abnormal-

ities in absence epilepsy (Polack et al., 2007, 2009; Lüttjohann et al., 2011), the

mechanisms by which seizure events arise and spread via macroscopic cortical and

thalamic networks remain largely unknown. It is therefore an aim of the current

chapter to advance our understanding of the potential mechanisms for spontaneous

seizure onset in spatially extended, heterogeneous networks.

Despite the many differences between animal models of SWD, a ubiquitous find-

ing is that of increased synchronous firing of cortical neurons during the “spike”,

followed by relative quiescence during the “wave”. Thus, with the SWD comes a no-

tion of increased synchrony and burst firing of neurons. One can assume, therefore,

that synaptic connectivity and inhibitory and excitatory processes are crucial to the

generation and propagation of seizure activity. However, another controversy that

remains is the exact role of inhibitory post-synaptic activity, in particular in relation

to the hyperpolarisation phase of the 3/s bursts which may rather be a product of

aberrant potassium concentrations (Bazhenov et al., 2008).
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Mathematical models of epilepsy with SWD

(Electro-) physiological investigations of animal models have been supplemented by

mathematical modelling studies of the processes underlying SWD generation, par-

ticularly with respect to the putative thalamo-cortical network interactions thought

to underlie the 3/s SWD of typical absence seizures, or the 9/s correlate in rat

models (Destexhe, 1998; Suffczynski et al., 2004; Traub et al., 2005; Breakspear

et al., 2006; Sargsyan et al., 2007; Marten et al., 2009a). Such approaches allow the

investigation of SWD generating mechanisms at the systems level, i.e. at the level

of complex interactions between the diverse range of processes known to underlie

brain (dys-) function. In this way one can test hypotheses about the relative im-

portance of these different processes for the generation of pathological macroscopic

brain activity. For example, epileptic rhythms are underpinned by hyperpolaris-

ing and depolarising mechanisms (McCormick and Contreras, 2001) including, but

not restricted to, synaptic interactions between excitatory and inhibitory neurons.

These interactions have been incorporated into mathematical models of both focal

onset seizures (Wendling et al., 2002; Labyt et al., 2006) and generalised seizures

with SWD (Destexhe, 1998; Breakspear et al., 2006; Suffczynski et al., 2004; Marten

et al., 2009b). In particular, the inclusion of different time scales of synaptic inhibi-

tion (Thomson and Deuchars, 1997) in these models has been important, although

controversy remains over the relative importance of synaptic inhibitory processes in

determining the rhythmic firing observed to underlie scalp SWD (Charpier et al.,

1999; Timofeev et al., 2004; Bazhenov et al., 2008).

The role of cortico-cortical interactions

Models of thalamocortical network interactions underlying the generation of SWD

represent an examination of a restricted set of the important mechanisms that may

underlie ictogenesis and the emergence of epileptic SWD. In particular, the majority

of connectivity within the cortex is of cortico-cortical origin (Douglas and Martin,

2007) and therefore one can assume that this connectivity plays an important role at

least with respect to propagation of epileptic rhythms in the cortex. In addition, the

mechanisms of SWD events in certain animal models are known to be predominantly

of a cortical origin (Steriade and Contreras, 1998). Thus a more complete under-

standing of ictogenic processes will come from mathematical models incorporating

these connections. However, the complex nature of neuronal connectivity in the

cortex makes this a difficult task. In particular, a detailed characterisation of neu-

ronal interactions over an extended region of cortex will result in an extremely large

model in terms of number of variables and parameters (Markram, 2006). Drawbacks

of such an approach include vast computational demands, difficulties in parameteri-

sation and an inability to characterise system dynamics over changes in parameters.
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These drawbacks can be overcome by modelling at the macroscopic level, with vari-

ables and parameters accounting for averages over large local networks of neurons,

thus providing a parsimonious way with which to study spatially extended interac-

tions (see Chapter 2).

Previous macroscopic models of SWD generation or ictogenesis in generalised

seizures (Suffczynski et al., 2004; Breakspear et al., 2006) have not accounted ex-

plicitly for extended cortico-cortical connectivity. The model of Breakspear et al.

(2006) was derived from spatially extended interactions in the cortex (a cortical field

approach), though the transition to SWD was examined in a globally homogeneous

mode. In the model of Suffczynski et al. (2004), a single thalamocortical network

was studied, with no spatial extension in the cortex besides the local population of

cortical neurons. However, macroscopic models incorporating cortico-cortical con-

nectivities at a variety of scales do exist (Wilson and Cowan, 1973; Amari, 1977;

Jansen and Rit, 1995; David and Friston, 2003; Sotero et al., 2007; Babajani-Feremi

and Soltanian-Zadeh, 2010; Ursino et al., 2010). In particular, the model of Jansen

and Rit (1995) incorporates a means to connect different cortical compartments and

has been exploited as such in the study of mechanisms underlying rhythm generation

in focal epilepsies (Labyt et al., 2006) and in Chapter 3.

Dynamic transitions in epilepsy

Transitions in EEG activity in epilepsy in general, and particularly in the case

of absence epilepsy are clear candidates for the application of ideas from non-linear

dynamical systems theory. In absence seizures, one observes a sudden transition into

a brief epoch of rhythmic, non-linear EEG spike-waves, with sudden termination into

background activity. The waveform observed, as well as the increase in synchrony

assumed for underlying firing patterns (Neckelmann et al., 1998), has suggested the

presence of a low-dimensional non-linear attractor, which has been supported by

measures of non-linearity (Breakspear et al., 2006).

The idea that dynamical systems theory can help to conceptualise and investigate

the dynamics of transitions in epilepsy has been forwarded explicitly by Lopes da

Silva et al. (2003a,b) and Milton (2010). This relates more generally to the concept

of “Dynamical Diseases” first proposed by Mackey and Glass (Mackey and Glass,

1977). In the case of epilepsy, Lopes da Silva et al. (2003a) proposed three explicit

models for transitions from background to seizure activity. Each of these models

relies on the existence of a “normal” and a “background” attractor (i.e. a bistable

system), separated in phase space by an unstable structure (separatrix). The three

models then relate to the process by which the brain might transit between these two

attractors, and these can then clarify a concept of what constitutes a “normal” or

“epileptic” brain from the perspective of the global structure of dynamical systems.

In Model 1, the epileptic brain displays a short enough distance between normal
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and abnormal attractors such that it can be perturbed between the two by noise.

In contrast, the attractors are separated by a greater distance in the non-epileptic

brain, and so the abnormal attractor is not likely to be reached due to perturbation

of the dynamics by intrinsic noise processes in the brain. This has been proposed

as a model for absence epilepsy, and demonstrated in a bistable, thalamocortical,

neural mass model (Suffczynski et al., 2004).

Model 2 and Model 3 on the other hand, propose that the two attractors are sep-

arated sufficiently in both the epileptic and normal brains. In these cases however, a

time dependent parameter variation (endogenous, Model 2, or exogenous, Model 3)

can cause the distance between the attractors to lessen, bringing the system into the

epileptic state. Clearly, the differences in these conceptual frameworks carry impli-

cations for the question of whether a detectable pre-ictal state exists. In the latter

two models it might be expected that the time dependent shift in phase space might

be projected onto the EEG, rendering it detectable. In Model 1, however, no such

time dependent change exists. However, in this case, one might test the hypothesis

of closeness of attractors by perturbing the system, as has been carried out recently

in WAG/Rij rats (see Lüttjohann et al. (2011), and the introduction to Chapter

3). Thus the idea that one can probe the “closeness” to an epileptic state is very

appealing (Suffczynski et al., 2008; Kalitzin et al., 2010). However, the question of

whether one requires the explicit feature of a separate dynamic attractor is open for

debate (see for example the discussion regarding transient dynamics in Chapter 3).

Milton et al. (2011), for example, has proposed that seizures can occur as transient

dynamics due to the emergence of bistability at the onset of state transitions in the

brain.

In this chapter we forward an alternative mechanism in the case of absence

seizures, namely that in the epileptic brain, abnormal rhythms may actually be

part of a single, complex attractor in a spatially extended system. In this case, the

abnormal rhythms emerge spontaneously due to intermittent excursions into the

apparently “abnormal” region of the attractor. The consequences of this idea are

discussed further in the discussion of the current chapter and also in Chapter 7.

Aims of this chapter

In this chapter we aim to asses the consequences of interactions between local neural

masses capable of producing SWD dynamics. Following previous studies regarding

the importance of inhibitory processes at different time scales, a slow inhibitory

process is incorporated into the model of Jansen and Rit (1995) and is shown to

produce different dynamics relevant for the transitions observed in absence seizures.

The dynamics of this model are explored in coupled systems in order to gauge the

effect of spatially extended excitatory connectivity on the dynamic repertoire of the

system.
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4.3 Methods

4.3.1 Model

As in Chapter 3, we begin with the neural mass model of Jansen (Jansen et al.,

1993; Jansen and Rit, 1995), which is described in detail in Chapter 2. We note

here that the original form of the mass model has evolved recently to include many

other physiologically relevant aspects of neuronal activity. In particular, versions of

this model designed to account for ictal dynamics in partial seizures have included

different time scales of inhibitory activity in the hippocampus (Wendling et al.,

2002) and cortex (Labyt et al., 2006), with the latter model incorporating a slow

inhibitory time scale mediated by GABAb inhibition. In this study we introduce a

simple extension to the original Jansen model by including a second, slow inhibitory

post-synaptic potential (IPSP) on the pyramidal neurons. The model structure is

therefore close to that used by Wendling et al. (2002), though we omit the inter-

actions between inhibitory processes that were inferred specifically for hippocampal

activity. Controversy exists regarding the exact nature of the mechanisms for the

hyperpolarising phase of bursting seen in neuronal recordings during the wave of

SWD, with intrinsic membrane currents and potassium ion concentrations recently

proposed to contribute (Bazhenov et al., 2008). Although the neural mass formula-

tion used here is based upon synaptic interactions between populations of neurons,

it can also encompass a more abstract notion of the delayed activation of excitatory

and inhibitory processes. In this way, the model can be used to explore the dynamic

effects brought about by coupling neural masses which incorporate relevant dynamic

processes.

In the current study we also incorporate N interacting local populations of neu-

rons, with inter-compartment connectivity as described in Chapter 3 . However, in

this case, rather than examining nearest neighbour coupling, we investigate a small

local region of cortical tissue by assuming all to all local coupling. Thus, the scale

of the model might relate to a single node as described in Chapter 3. Again, we

therefore do not consider here specific time delays. Investigations of inhibitory con-

nectivity, longer range interactions and considerations of multiple recording scalp

electrodes are also left to further studies.

In this chapter, each neural mass, defined by superscript i, is modelled by a

system of 8 differential equations representing the interaction of excitatory and in-

hibitory cortical processes (Jansen et al., 1993; Jansen and Rit, 1995), with model

equations given by:
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ẏi0(t) = yi4(t)

ẏi4(t) = AaS[yi1(t)− 0.5yi2(t)− 0.5yi3(t)]− 2ayi4(t)− a2yi0(t)

ẏi1(t) = yi5(t)

ẏi5(t) = Aa{I + P i + C2S[C1y
i
0(t)]} − 2ayi5(t)− a2yi1(t) (4.1)

ẏi2(t) = yi6(t)

ẏi6(t) = Bfbf{C4S[C3y
i
0(t)]} − 2bfy

i
6(t)− b2fyi2(t)

ẏi3(t) = yi7(t)

ẏi7(t) = Bsbs{C4S[C3y
i
0(t)]} − 2bsy

i
7(t)− b2syi3(t)

Inter-compartment connectivity is defined by a homogeneous connectivity con-

stant, R, representing coupling between different local populations. The input to

each population, P i (i = 1, .., N) is therefore given by the weighted contribution of

all other populations, as shown below:

P i =
N∑

j=1,j 6=i

R

N − 1
S[yj1 − 0.5yj2 − 0.5yj3] (4.2)

We therefore use 4 blocks of impulse response equations (see e.g. Jansen and Rit

(1995) and Chapter 2) to represent changes in the membrane potential of interneu-

rons (1 block, output variable y0) and pyramidal neurons (3 blocks, output variables

y1,y2 and y3). Within the model a net post-synaptic potential (PSP) is transformed

via the sigmoidal activation function as described in Chapters 2 and 3.

4.3.2 Model parameters

The excitatory post-synaptic potential (EPSP) has the same time scale and ampli-

tude parameters as the original model (Jansen and Rit, 1995). For the inhibitory

processes, we set a fast and a slow time scale and tune the amplitude using the

original parameter ratios (Jansen and Rit, 1995) as utilised in David and Friston

(2003) and Spiegler et al. (2010). We note the use of different time scale and gain

parameters for the inhibitory processes in this study compared to Wendling et al.

(2002). Time courses of inhibitory synaptic processes have been shown to be highly

variable and to lie in a range between lengths of the order of 20 ms (Thomson and

Deuchars, 1997) and 500 ms (Otis et al., 1993). The time course of the slow IPSP

used here is of the order of 300 ms (see Figure 4.1) and is thus within this physiolog-

ically plausible range. Furthermore, both of our IPSP time scale parameters reside

within a physiologically plausible range suggested for time scale parameters of the

Jansen model in a recent study (Spiegler et al., 2010).

We maintain the original internal connectivity ratios used to calculate C1 through
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Parameter Description Value
A Average excitatory gain 3.25mV
B Average fast inhibitory gain 44mV
Bs Average slow inhibitory gain 8.8mV
a Average excitatory time constant 100s−1

bf Average fast inhibitory time constant 100s−1

bs Average slow inhibitory time constant 20s−1

C,C1, C2 Connectivity constants C is varied, C1 = C,C2 = 0.8C
C3, C4 C3 = C4 = 0.25C
I External input to pyramidal neurons I is varied
R Matrix of connectivity constants R is varied though is homogeneous.
v0 Parameters of the sigmoid function v0 = 6mV
e0, r e0 = 2.5s−1, r = 0.56mV−1

Table 4.1: Parameter values used for all output shown in this chapter. The fast and
slow inhibitory gain parameters were derived by fixing the respective time scales
and then deriving the gain from the ratio B/b, as suggested by David and Friston
(2003).

C4. The total connectivity, given by C and the input parameter I are varied

throughout the paper, though within ranges of previous publications (e.g. Jansen

and Rit 1995; Wendling et al. 2002; Labyt et al. 2006). Parameters of the sigmoid

function are the same as those used in previous incarnations of this model (Jansen

and Rit, 1995). Figure 4.1 shows the time profile of the PSPs used in the model and

Table 4.1 lists parameter values used in this study.

Figure 4.1: Time course of the three PSPs used in the model of section 4.3.1 with
R=0: EPSP (solid line), fast IPSP (dot-dashed line) and slow IPSP (dashed line).

4.3.3 Analysis

Solutions of the model were explored by plotting bifurcation diagrams of time series

maxima and minima over changes in parameters I, C, bf and R. I represents input

into the system and has been explored in previous bifurcation analyses (Grimbert

and Faugeras, 2006; Spiegler et al., 2010), C and R represent connectivity within and
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between cortical masses (Jansen and Rit, 1995), respectively, and are thus of interest

in relation to ictogenesis. The time scale of fast inhibition, here represented by bf ,

has been shown to be variable in experimental studies (Thomson and Deuchars,

1997). For each of these bifurcation diagrams, the presence of different solutions

was determined by evaluating the model over increasing and decreasing values of one

of these parameters, with all other parameters fixed. Relevant solutions identified

by this procedure were allocated distinct marker types, as shown in Figure 4.3.

In systems of multiple compartments, maxima and minima plots were given for

one compartment only, though we note in each case qualitatively similar diagrams

were obtained for the remaining compartments. In this case, we also calculated the

distribution of pair-wise phase differences between compartments over a 2 second

window using the Hilbert transform. The mean phase difference was plotted over the

range of bifurcation parameter, with solution type extracted by inspection. Thus, in

all bifurcation plots, regions of bistability were uncovered by forward and backward

parameter scans, with markers allocated on plots by visual inspection of the time

series of each solution.

In the spatially extended, heterogeneous models, the amplitude of the time series

provided a good distinction between seizure (turbulent) and non-seizure (laminar)

phases (see Figures 4.9 (b) and 4.10 (a)). It was observed that seizure periods

predominantly carried amplitudes greater than 10, whereas non-seizure periods were

of a much lower amplitude. Since each of these simulations was at least 1000 seconds

in length, it was decided that phase lengths would be determined at a resolution of 1

second. The lengths of laminar and turbulent phases were therefore characterised by

whether the maximum amplitude was greater than 10 in non-overlapping windows

of 1 second length.

4.4 Results

The results section is divided into three parts, representing an investigation of model

dynamics at three different spatial scales. Section 4.4.1 deals with a model of a sin-

gle compartment, section 4.4.2 considers two coupled compartments, and finally,

section 4.4.3 explores the dynamics of a model of a small cortical region composed

of twenty five connected compartments. In Figure 4.2 we provide a peri-ictal record-

ing of frontal scalp electrode EEG during absence seizure in order to demonstrate

several important clinical features of these events and also to facilitate comparisons

with features of the model transitions described. In particular we note the appar-

ently spontaneous transition from low amplitude oscillatory background dynamics

into high amplitude SWD activity and back again.
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Figure 4.2: 20 second extract of a clinical absence seizure recorded from a frontal
electrode. Negativity is plotted upwards by convention.

4.4.1 One compartment

The dynamics of the one compartment model were explored numerically by evalu-

ating model output over a range of a selection of system parameters. The effect of

changes in I, C and bf are shown in the bifurcation diagrams of Figure 4.3. Figure

4.3 (a), (b) and (c) show model dynamics over changes in I for C=190, 220 and 240

respectively. It can be seen that different system behaviours emerge for different

combinations of I and C. In particular, the system is capable of displaying fixed

point (thin lines, single maxima, “Fp”, Figure 4.3), sinusoidal limit cycle oscillations

(henceforth referred to as “background” oscillations, marked as “Bckg”, open circles

Figure 4.3), SWD (marked as “SWD”, stars in Figure 4.3), poly-SWD (marked as

“pSWD”, open squares in Figure 4.3) and “other oscillations” (marked as “O1”,

“O2” and “O3”, grey lines, Figure 4.3). Exemplary time series for each of these

solutions are given in Figure 4.3 (f), which also serves as a legend for this and sub-

sequent bifurcation diagrams (Figure 4.6 and Figure 4.8). Maxima and minima of

the SWD solution are identical in the forward and backward scan. Note that there

are two minima and two maxima per spike wave complex.

For small values of C, solutions are either fixed point or background oscillations

(Figure 4.3 (a)). There is a region of bistability between these two solutions for

small I at C=190 (Figure 4.3 (a), “BS1”). The SWD solution emerges for larger

C (Figure 4.3 (b), “SWD”) and widens over I as C increases (Figure 4.3 (b), (c)).

The amplitude of the background oscillations is consistently smaller than that of

the SWD. There is also the emergence of poly-SWD behaviour for large I and C

(Figure 4.3 (b), “BS3” and Figure 4.3 (c), “pSWD”).

With I fixed at 135 s−1, dynamics over changing C are shown in Figure 4.3

(d). As C increases the system moves from fixed point to background oscillations

and then into SWD for large C. With C fixed at 190, dynamics over changing

bf are shown in Figure 4.3 (e). It can be seen that low values of bf result in a

large amplitude slow oscillation (Figure 4.3 (e), “O3”), whereas intermediate values

produce SWD dynamics. As bf nears the default parameter value of 100 s−1 the
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system passes through a region of bistability between SWD and background oscil-

lations (Figure 4.3 (e), “BS8”). Though several other small regions of bistability

were encountered (Figure 4.3 (b) “BS2”, Figure 4.3 (c), “BS4” and “BS5”, Figure

4.3 (c), “BS6” and “BS7”), the default parameter values used throughout this study

placed the one compartment system into a monostable regime, with respect to the

parameters investigated. These default parameter values are indicated by vertical

lines in Figure 4.3.

Figure 4.4 shows details of two of the oscillatory solutions in the model, namely

the SWD and the background oscillation, which are the focus of this study. The

SWD solution consists of rhythmic “on/off” firing of neurons in the mass (Figure

4.4 (e)) as is commonly observed in animal models of SWD. The SWD waveform

carries contributions from all three underlying PSPs, with increased EPSP and

firing during the positive (downwards) deflection and quiescence of firing during the

“wave” (Figure 4.4 (c), (e)). The background solution also has rhythmic firing at a

faster frequency (approximately 15Hz, Figure 4.4 (f)), though firing is not “on/off”

as it reaches neither the maximum nor minimum firing capability. The Fourier

spectrum of the SWD (Figure 4.4 (g)) shows a dominant peak at 2.5 Hz and a

number of harmonics due to the nonlinear waveform. The Fourier spectrum of the

background oscillations (Figure 4.4 (h)) has its main peak at 15 Hz.

There exist several modes of transition into SWD dynamics within this model.

In Figure 4.5, we demonstrate two possible such transitions, namely i) a ramping of

parameter C for fixed I and ii) a perturbation of the input parameter I. Figure 4.5

(a) shows a model time series under the ramp in parameter C, which is displayed in

Figure 4.5 (b). In the “pre-seizure” state, the system oscillates at the background

frequency. As C starts to increase the amplitude of the oscillation increases and

at a threshold level of C the spike-wave oscillation is activated. When the control

parameter crosses the critical point the dynamics return to the original background

oscillation. The bistability (Figure 4.5 (d) “BS7”) seen for changing C means that

the threshold level on the way up and the critical point on the way down are not

equivalent.

To demonstrate transition ii), with the system in the background oscillation

state (e.g. C=190, I=135 s−1), a finite pulse of short duration (see section 4.4.2)

was applied. Depending on the phase at which this pulse was delivered, the system

could respond with a transient single spike-wave oscillation before returning to the

background oscillation. An example of this behaviour is shown in Figure 4.5 (c),

with stimulus time indicated by an arrow.
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Figure 4.3: Bifurcation diagrams showing model dynamics of a single compartment
(maxima and minima) over changes in I, C and bf . (a), (b) and (c) show dynamics
for changing I at C=190, 220 and 240, respectively. (d) shows dynamics for changing
C with I fixed at 135 s−1. (e) shows dynamics for changing bf with I=135 s−1 and
C=190. (f) shows 6 solutions along with the marker style used to represent them.
For clarity, background (Bckg), SWD (SWD), poly SWD (pSWD) and other (O1,
O2 and O3) solutions are also indicated by text labels on each figure, as are regions
of bistability (BS1 to BS7). The location of parameter values used in later parts of
the study are indicated by vertical lines.

4.4.2 Two compartments

To investigate the effect of spatial interactions in this model, the dynamics of a

system of two coupled compartments was explored (Figure 4.6). Here, C was fixed

at 190, which in the one compartment model resulted in background oscillations or

a fixed point (see Figure 4.3 (a)). In this regime, the effect of the input parameter,

I, was explored for different coupling strengths, with bifurcation diagrams of time

series minima over changing I shown for two of the investigated values, R= 25 and

R=50 in Figure 4.6 (a) and (b), respectively.

In the two compartment model we observed each of the dynamics observed in the
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Figure 4.4: Properties of two of the oscillatory model solutions in the one compart-
ment model. The left column (a, c, e, g) represents the SWD solution (C=220,
I=135 s−1) whereas the right column (b, d, f, h) represents the background oscil-
lation (C=190, I=135 s−1). (a) and (b) show model time series (1 second and 0.5
seconds, respectively), (c) and (d) show internal PSPs, (coded as in Figure 4.1), (e)
and (f) show firing rate of principal neurons (minimum is 0 and maximum is 5) and
(g) and (h) show normalised power spectra.

single compartment model. In addition to the qualitative differences in waveforms

observed with changing parameter values, which can be represented by standard

bifurcation plots of time series extrema (of one compartment only, Figure 4.6 (a)

and (b)), qualitative differences also emerged in terms of synchrony between the two

compartments. This was manifest by differences in both amplitude and phase. In

order to represent these effects, plots of phase difference between the two compart-

ments are shown in Figure 4.6 (c) and (d) (see section 4.3.3).

At a coupling value of R=25 (Figure 4.6 (a)), a region of bistability between

background and SWD oscillations emerges (Figure 4.6, (a) “BS9”). We note that

since the uncoupled individual compartments are set into the background oscillation

regime (see Figure 4.3, vertical lines), this new behaviour is entirely the result of
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Figure 4.5: Transitions from background (C=190, I=135 s−1) to SWD in the one
compartment model. (a) shows model time series output as C changes according to
the profile in (b). (c) shows the emergence of a SWD oscillation after perturbation
from the background state with a finite pulse (strength I=300 s−1, duration 0.15
seconds, onset at 5 seconds).

spatial coupling. In addition, the SWD solution is always homogeneous in the two

compartments (Figure 4.6 (c), zero phase difference for SWD solution in region

“BS9”), whereas the background solution in this region is always heterogeneous

(Figure 4.6 (c), open circles). In this case (as well as in the qualitatively similar

solution Figure 4.6 (d)) there exists a second solution with waveforms exchanged

between compartments due to the symmetry of the model. We note that the power

spectrum of the mean field of the SWD solution and the background solution are

comparable to the one compartment case (Figure 4.4). For higher values of I, less

sinusoidal “other” oscillations emerge, initially out of phase and with a periodic

amplitude modulation, then settling to higher amplitude, in-phase solutions for

larger I.

At R=50, SWD and pSWD solutions are identical in both compartments (Figure

4.6 (b) and (d)). A region of bistability exists for intermediate I between identical

pSWD and out of phase “other” oscillations (Figure 4.6 (b), “BS10”). The insets of

Figure 4.6 (c) and (d) indicate the nature of two of the out of phase solutions.

The bistable region between low amplitude, heterogeneous background oscilla-

tions and high amplitude, homogeneous SWD found for R=25 represents a good
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model to study perturbation-induced transitions. The nature of such a transition in

the model was explored by means of a stimulus to the input (I) of the model in its

background state (Figure 4.7), with C=190 and initially I=135 s−1.

The nature of model evolution post stimulus depended upon the strength, tim-

ing and duration of stimulus, and could either result in a return to background

(sometimes accompanied by a switch in amplitudes (high vs. low) between the two

compartments, results not shown) or transient or permanent SWD. In order to inves-

tigate these possibilities, the stimulus duration and amplitude were fixed (duration

= 0.1s, amplitude = 300), and the effects of stimulus timing were explored. Results

for two different stimulus times are given in Figure 4.7. The times relative to phase

of underlying activity are shown by vertical bars in Figure 4.7 (a).

In the case that the model eventually returned to the background state, this

invariably evolved via a transient of SWD activity. The length of this transient

event, and also the degree to which the two compartments were synchronised during

the transient period was found to be variable and dependent upon the state of the

system at time of stimulus. An example of such a transient, resulting in a two

second “seizure” is shown in Figure 4.7 (b). The underlying model PSPs for the

onset and offset of SWD activity in this transient are shown in Figure 4.7 (c) and

(d). It can be seen that the stimulus provides an increase in magnitude of all internal

PSPs and results in an increased contribution of the slow IPSP, relative to the fast

IPSP, thus starting the cycle of slow IPSP activation (dashed line) and subsequent

system rebound. The offset, or transition from SWD to background activity stems

from a rebound of activity before the end of the slow IPSP (Figure 4.7 (d)). In

this case, immediate post-SWD compartments are in anti-phase and settle back to

the heterogeneous background state. The stimulus could also provide immediate

transition into permanent SWD (Figure 4.7 (e)).

4.4.3 Twenty-five compartments

The relevance of these results to larger cortical regions was explored by investigat-

ing a model consisting of twenty-five compartments with homogeneous (all-to-all)

coupling (see section 4.3.1). The choice of twenty-five compartments enables the

exploration of a system with increased complexity, whilst maintaining computation-

ally tractable analysis time. An initial exploration of systems varying in size from

three compartments to hundreds of compartments have demonstrated the results

of this chapter to be conserved across vastly different system sizes. Here, we fixed

C=190 and I=135 s−1, and explored the dynamics of the system under changing

R. Maxima and minima are plotted for one of the twenty-five compartments in the

bifurcation diagram of Figure 4.8 (a). For low R, the system displayed out of phase

background oscillations, which developed a quasiperiodic (amplitude modulated)

dynamics with increasing R (Figure 4.8 (a), “Bckg” and “pBckg”). We stress that
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Figure 4.6: Bifurcation diagrams showing model dynamics in a system of two cou-
pled compartments over increasing I for different values of R. C is fixed at 190. (a)
represents dynamics at R=25, whereas (b) represents R=50. Maxima and minima
are plotted using the same markers as in Figure 4.3, and are plotted for one com-
partment only. Bistable regions of interest are marked BS9 and BS10. (c) and (d)
represent phase differences between the two compartments over the same ranges of
I used in (a) and (b) (see section 4.3.3). Example time series for the out of phase
solutions as well as the in phase SWD are shown in the insets of (c) and (d) at
parameter locations indicated by arrows.

although this region with periodic amplitude modulation may look like a noise arte-

fact, it is actually representative of certain periods during the time course in which

the amplitude in all compartments undergoes a smooth increase and decrease. For

higher R, the model produced a region of bistability (Figure 4.8 (a), “BS11”), again

between in phase SWD and out of phase background oscillations (phase-locked or

quasi-periodic). For values R > 40 the synchronised spike-wave is the only stable

solution. The phase relationships for each of these solutions are represented in Fig-

ure 4.8 (b) as the mean of the distribution of pair-wise phase differences (see section

4.3.3). We note that in this and in the two compartment case, a small random

error term was added to the initial conditions of each compartment prior to simula-

tion in order that the compartments were not simply starting from identical initial

conditions.

With reference to the results of Figure 4.7 in the two compartment case, we note

that in the twenty-five compartment model in the region of bistability “BS11” in

Figure 4.8 a pulse perturbation to the background oscillation most often elicited

only a single SWD. However, more complex perturbations, for example a train of
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Figure 4.7: Effect of transient stimulus (strength I=300, duration 0.1 seconds) to
the background state (C=190, I=135 s−1, R=25) of the two compartment model.
(a) shows a close up of the two compartments with stimulus times indicated by
vertical lines. (b) shows model evolution for stimulus 1, both compartments are
plotted, one solid and one dashed. (c) and (d) show close ups of underlying PSPs at
onset of stimulus and offset of the transient SWD. PSPs are coded as in Figure 4.1,
and are plotted for compartment one only for clarity. (e) shows model evolution for
stimulus 2. Stimulus times are indicated by arrows.

two consecutive pulses, could lead to longer transient SWD trains or permanent

SWD.

It is expected that spatially extended regions of cortex will not be homogeneous

either in terms of connectivity or intrinsic dynamics. In order to investigate the effect

of heterogeneity in our local cortical model, a random value drawn from a normal

distribution was added to the time scale parameter of the fast IPSP. This attempts

to reflect the array of fast inhibitory time scales observed in neocortex (Thomson
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and Deuchars, 1997). The dynamics of the resulting system of non-identical com-

partments is explored in Figures 4.9 and 10. We found that the system could either

display stable background oscillations, stable SWD oscillations or intermittent SWD

trains of varying lengths and frequency of occurrence. Intermittency is an important

type of dynamics in deterministic nonlinear models (see e.g. Berge et al. (1987) for

an accessible introduction based on low-dimensional discrete dynamical systems).

Intermittency is defined as the spontaneous switching between a (quasi-) regular (or

laminar) phase of dynamics (in our case the background oscillations) and irregular

outbursts of a second type of dynamics (in our case SWD). Different types of in-

termittency are classified according to the local instability of a periodic orbit using

Floquet multipliers (Berge et al., 1987). This means that the SWD spike trains

occur at irregular intervals and with irregular duration due to the intrinsic model

dynamics and do not require parameter changes or additional noise terms in the

model. Though we focus here on deterministic dynamics, the effect of noise on the

parameter I was tested (results not shown). Noise with standard deviation 25% of

I left the qualitative picture unchanged in that intermittent transitions with similar

characteristics to the deterministic case were observed. When the standard devia-

tion was increased to 50% of I, transitions became less distinguishable in terms of

the difference in amplitude between non-seizure and seizure periods.

In an initial investigation of long simulations (200 seconds) of this heterogeneous

system we noted that the mean value of bf was smaller on occasions leading to

the intermittent solution, and that in particular, values bf < 90 s−1 in a number

of compartments conferred either permanent SWD or intermittent dynamics. To

clarify this point we made 50 long simulations, each of 10,000 seconds duration and

each with a random normal distribution of bf parameters, centred at bf=100 s−1

and with standard deviation bf/10=10. We categorised each of these simulations

as either permanent SWD (Figure 4.9 (a), black regions), permanent Bckg (Figure

4.9 (a), white regions) or intermittent seizures (Figure 4.9 (a), grey regions) (see

section 4.3.3). Figure 4.9 (a) shows the distribution of number of compartments

with bf < 90 s−1 for each of the aforementioned categories. It is clear that there

is a systematic increase in propensity for SWD activity when a greater number of

compartments have bf < 90 s−1. Note that in a single compartment, values less

than 90 s−1 for bf lead to SWD rather than background activity (see Figure 4.3 (e)).

To study the nature of the intermittent seizure activity, we present in Figure

4.9 (b) 5000 seconds of one of the intermittent solutions. This solution corresponds

to a single point in parameter space. The horizontal lines provide a guide to the

amplitude cut off used to distinguish SWD from background. In this example,

a long simulation producing in excess of 1000 seizures provided a mean seizure

duration of 8 seconds and a mean inter-seizure duration of 74 seconds. Following the

analysis of intermittency in EEG from rat models of absence seizures (Hramov et al.,
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2006; Velazquez et al., 1999), we analysed the type of intermittency by examining

the distribution of lengths of the laminar phase (Figure 4.9 (c)) and by plotting

a second return map of model amplitude for the laminar phase (Figure 4.9 (d)).

Figure 4.9 (c) shows the distribution of laminar lengths on a log-log scale, overlaid

on which is the gradient -1.5 expected for the case of parametrically driven one-

dimensional maps with on-off intermittency (Heagy et al., 1994). Figure 4.9 (c)

therefore demonstrates that this specific instance of our model is not consistent

with power law scaling. Power law scaling is only expected close to the onset of

intermittent behaviour (Chate and Manneville, 1987). In addition, the study of

Hramov et al. (2006) demonstrated deviations from the power law under certain

experimental conditions. A more complete understanding of the intermittency in our

model and the relevance of this to experimental findings can therefore only be found

with a full characterisation of the distributions with respect to its parameter space.

The second return map of the laminar phases shows a noisy distribution of maxima

(Figure 4.9 (d)). This is in disagreement with any of the types of intermittency

that follow local bifurcations (e.g. type III intermittency) and in agreement with

intermittencies associated with a global bifurcation.

One of the seizures from an intermittent solution is explored further in Figure

4.10. Figure 4.10 (a), shows the mean field model EEG during the seizure period,

calculated as the average output of all 25 compartments. It can be seen that this

mode of transition from background oscillation to synchronous SWD is comparable

to the real seizure event shown in Figure 4.2 in terms of the change in amplitude

and also the spontaneous onset and offset of SWD.

Overlaid on Figure 4.10 (a) are a succession of grids indicating the involvement

of SWD in each of the twenty-five compartments during six five-second windows.

The grids are colour coded to indicate the presence of SWD at some point during

the window in each compartment, with grey indicating that a SWD oscillation was

present. This was achieved by comparing the average time series maxima in this

epoch against the mean from a known “seizure-free” period. Each grid represents

the five second window at which it is located between the tick marks on the horizon-

tal axis. It can be seen that in the pre-ictal and post-ictal periods, a small number

of compartments are involved in intermittent SWD and that this behaviour is gen-

eralised over the whole local system during seizure. We note that the grey shading

does not indicate that the compartment produced persistent SWD in this period,

rather it indicates the presence of at least one SWD. Figure 4.10 (b),(c) and (d)

show close ups of model time series at seizure onset, middle of seizure and seizure

offset, respectively. Before seizure onset, most of the compartments oscillate with-

out SWD dynamics, though the waveform of oscillations is heterogeneous due to the

variance in time scale parameter. Occasional SWD also appear in some time series.

During seizure, however, most compartments are clustered into SWD activity. The

82



heterogeneity in time scales can still be observed in the slight differences between

SWD waveforms, though the activity remains predominantly phase locked. At the

end of the seizure, this synchronous activity breaks apart as more compartments

revert to background oscillations.

Figure 4.10 (e) shows a close up of the mean field model activity during the

seizure, in which it can be seen that the underlying heterogeneity causes a fragmen-

tation of the “clean” SWD waveform. For comparison, a segment of EEG recording

during a typical absence seizure is shown in Figure 4.10 (g). Though the mean field

model captures well the fragmentation of the wave observed in the real recording,

the spike part of the SWD in the model is truncated. However, if an alternative

conversion of model output to EEG is used (see Chapter 5), in which the inter-

nal model variables carry adjusted weights, the dynamics of the real EEG can be

matched more closely. This is demonstrated by the model output of Figure 4.10

(f) in which the amplitude of spike relative to wave and the waveform in general

closely resembles the recorded time series. In this case, certain deformations of the

“classical” waveform, such as the introduction of small spikes into the wave, are

captured by the model.

Interestingly, the power spectrum of the “pre-seizure” model mean field has a

region of dominant power between 9 and 13 Hz. The power spectrum reflects the

desynchronised irregular background dynamics. Due to the ergodic properties of

the deterministic dynamical system, each of the compartments would have a similar

power spectrum if evaluated over a very long time. However, on short time scales,

the power spectrum of an individual compartment is typically more peaked than the

spectrum of the mean field signal. This is in contrast to the background solution

of the one compartment case which has a single peak at 15Hz (Figure 4.4). In the

SWD region, the power spectrum peak has increased to approximately 3.2Hz and

associated harmonics. However, due to the variability in waveform in the heteroge-

neous system, peaks are slightly broadened.

4.5 Discussion

We have shown that a cortical neural mass model containing two explicitly modelled

time scales of inhibition can produce slow SWD as well as sinusoidal background

oscillations, thus providing the means for a parameter driven transition to seizure.

Exploration of dynamics in coupled models revealed that spatial extensions could

in addition confer spontaneous transitions from irregular cortical background to

synchronised spike-wave dynamics.

The single compartment model was capable of producing low amplitude oscilla-

tory and high amplitude SWD or poly-SWD dynamics. The SWD oscillations were
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Figure 4.8: Bifurcation diagram over coupling strength for the homogeneous 25
compartment model (C=190, I=135 s−1). In (a), maxima and minima are plotted
for one compartment only, for clarity. Symbols are as in previous figures. “pBckg”
indicates the start of a solution in which the background oscillation undergoes pe-
riodic amplitude modulation and leads to multiple circular markers per value of R.
A bistable region is marked BS11. (b) shows the average pair-wise phase difference
between all 25 compartments over changing R. Different symbols indicate different
solutions as in Figure 4.3 (open circles are background, stars are SWD). Exemplary
background solutions are given as insets in (b) at parameter locations indicated by
arrows.

accompanied in the model by rhythmic “on/off” firing as is ubiquitously observed in

recordings from animal models of SWD (Gloor et al., 1977; Marescaux and Vergnes,

1995; Steriade and Contreras, 1998; Coenen and Van Luijtelaar, 2003). This fir-

ing pattern was mediated by the increased relative contribution of the slow IPSP,

whereas in the background state, a faster frequency of oscillation was present. We

note that the frequency of this background oscillation was of the same order of mag-

nitude as the spike of the SWD, as observed, for example, in the frequency of the

fast runs that lead to SWD in a feline model of SWD (Steriade et al., 1998a).

A transition between background oscillations and SWD dynamics could be ob-

served with an increase in C for fixed input (Figure 4.5). This parameter encom-

passes the magnitude of connectivity within a neural mass (Jansen and Rit, 1995)

and increasing its value results in two effects on system dynamics. Firstly, activated

84



Figure 4.9: Statistics relating to model intermittency. 50 long runs of 10,000 sec-
onds length were simulated, each with a randomly drawn spatial distribution of bf .
Other parameters were homogeneous (C=190, I=135 s−1, R=45). Each of the 50
simulations were classified as either “no seizure“ ((a), white regions), “intermittent
seizure” ((a), grey regions) or “always seizure” ((a), black seizures). (a) displays
the relationship between the number of compartments allocated a value of bf less
than 90 s−1 and the number of solutions in each category. (b) shows a 5,000 second
extract from one of the intermittent solutions. Horizontal lines are drawn at plus
and minus 5 around the mean as a guide to the amplitude cut-off for seizure iden-
tification (see section 4.3.3). (c) shows the distribution of laminar phase lengths for
an extended time series (containing more than 1200 seizures) of the solution in (b),
along with a line showing a slope of -1.5 for comparison. (d) shows a second return
map for maxima of the laminar phases of the solution plotted in (b).

excitatory and inhibitory interneurons move position in the sigmoid function towards

higher voltages and therefore are more excitable in the sense that their firing rate is

higher in the linear part of the sigmoid activation function, or closer to activation

in the non-firing part of this curve. Secondly, the firing rate of these neurons is

scaled to provide an increased input into the PSPs of the principal neurons. Indeed,

increasing C with constant input led to an increase in magnitude of oscillations

in internal PSPs (data not shown). In this sense, an increase in C encompasses

a notion of enhanced local excitability, which has been postulated during seizure

states in animal models (Steriade et al., 1998a; Polack et al., 2007). Alternatively,
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Figure 4.10: Intermittent SWD in a heterogeneous model of 25 compartments
(C=190, I=135 s−1, R=50). (a) shows an example of an intermittent model SWD
event, spontaneously arising from background. The insets of (a) are grid layouts of
the 25 compartments for 6 five-second windows through the time series, at the time
locations indicated by position of the grid on the horizontal axis. Grey indicates the
presence of SWD during the window, whereas white indicates no SWD, based on a
comparison of amplitude with the average of a known background state. For exam-
ple, the first grid of 25 squares represents the state of all 25 compartments between
t=90 and t=95 seconds. (b), (c) and (d) show two seconds of underlying time series
for seizure onset, seizure, and seizure offset respectively. Not all 25 time series are
plotted here for clarity. (e) shows a close up of the model output during seizure.
(f) shows the same model dynamics as (e) under an alternative conversion to EEG
output (see text). (g) shows a clinical EEG recording from a frontal electrode during
absence seizure.

individual spike wave responses could be induced transiently by means of a short

stimulus (Figure 4.5 (c)). This was further explored in a spatially extended version

of the single-compartment model.

We demonstrated that a spatial extension to this model confers the system with

additional dynamics (Figure 4.6), including the existence of a region of bistability

between background oscillations and SWD. In addition to differences in waveform

and frequency between the two solutions in this parameter region, there was also
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a difference in the phase relationship between the two compartments of the model,

namely that background oscillations were out of phase whereas SWD were in phase.

This is equivalent to the dynamics of brain activity during absence seizures in animal

model studies, in which the seizure state is accompanied by time locked firing of

cortical neurons relative to more diffuse temporal relationships during background

activity (Steriade and Amzica, 1994; Neckelmann et al., 1998). The large amplitude

observed on scalp EEG during SWD seizures is also indicative of a significantly

increased degree in time synchrony of underlying neuronal activity compared to a

background state.

The existence of a region of bistability between these two states indicates a capa-

bility of the system to undergo spontaneous transitions into and out of seizures. This

property could be important, for example, in explaining the spontaneous transition

from background EEG into 3/s SWD activity as seen in absence seizures (Lopes da

Silva et al., 2003a). Indeed, a previous model of the thalamocortical network was

demonstrated to be capable of noise-induced transitions in a region of bistability be-

tween a fixed point and limit cycle with relevant power spectra (Suffczynski et al.,

2004). In contrast, a different thalamocortical model demonstrated a transition from

background to SWD that was mediated by smooth changes in model output with

the dynamic modulation of a relevant model parameter (Breakspear et al., 2006). In

terms of system dynamics, the 2 compartment model presented here makes notable

improvements on these previous studies by reconciling i) an oscillatory background

state, ii) a relevant difference between the phase relationship of background and

seizure oscillations and iii) bistability between background and SWD oscillations.

We therefore present important new tools in the investigation of SWD generating

mechanisms from the non-linear dynamics perspective. A noise driven oscillatory

background state has been assumed in a large number of previous studies (see e.g.

Jansen and Rit 1995; David and Friston 2003; Wendling et al. 2002), whereas a

previous mathematical model of absence seizures assumed the background to be

a noise driven steady state in order to account for the irregularity of background

EEG (Breakspear et al., 2006). While our two compartment model is more regular

than clinical background EEG, we address this point by suggesting that the recorded

EEG signal is in fact a mean over a larger number of coupled compartments. For ex-

ample, the disorganised or complex oscillations in the mean field of the twenty-five

compartment model provides an alternative explanation for observations likening

background EEG to filtered noise.

Cortical stimulation has been shown to elicit seizure activity in the feline model

of SWD seizures (Steriade et al., 1998a). We investigated this mode of transition to

SWD in the model by applying a short time dependent rise in the input parameter,

I. It was shown that such stimuli could lead either to prolonged (permanent) SWD

dynamics or a transient period of SWD which decayed to the background state

87



(Figure 4.7). The fate of the system subsequent to stimulus depended upon, amongst

other factors, the state of the system at time of stimulus. System evolution post-

stimulus differed in terms of length of seizure activity and degree of homogeneity

in output between the two compartments, resulting in fragmentation of the SWD.

Such variability is often observed on human EEG recorded during absence seizures

(Sadleir et al. 2006 and Figure 4.10 (g)).

In the study of Steriade et al. (1998a), the authors hypothesised that stimulating

fast bursting neurons would be particularly effective in generating spatially extended

pathological oscillations, presumably via synaptic connectivity, just as in our model

the two compartments interact via excitatory connectivity to synchronise in SWD.

However, we note that in our model, onset of seizure activity was predominantly

instant, whereas in the feline model repeated stimulus was required for a time delayed

transition to seizure. These differences can probably be explained by our simplistic

model of local interactions which does not incorporate the extensive and complex

activity of the brain in vivo.

An extended area of cortex was modelled by a network of twenty-five reciprocally

connected compartments. We observed that this configuration with heterogeneous

fast inhibitory time scales could display intermittent seizure activity in the mean

field. We stress that no time dependent noise term was applied to the model in

order to mediate these transitions, which therefore provide a means of SWD onset

and offset not previously reported in modelling studies of SWD to our knowledge.

The simulation depicted in Figure 4.9 (b) over a longer duration possessed mean

seizure and non-seizure lengths of 8 and 74 seconds, respectively, both of which

values are in line with analysis of recordings from the WAG/Rij rat model of absence

seizures (Akman et al., 2010; Hramov et al., 2006). Previous studies have attempted

to classify the nature of intermittency in both human epilepsy and animal model

EEG. Velazquez et al. (1999) described type III (low dimensional) intermittency

both in fast spiking recordings from human partial epilepsy and in SWD during

temporal lobe epilepsy (Velazquez et al., 2003). EEG of rats with genetic absence

epilepsy, on the other hand, have been reported to be of the on-off type (Hramov

et al., 2006). This latter characterisation was made by comparison to a power law

distribution with exponent -1.5. However, alternative analyses of ictal and inter-ictal

phase duration have hypothesised exponential or gamma distributions (Suffczynski

et al., 2004, 2006a). The results of our phase length and second return map in a

specific case (Figure 4.9 (c), (d)) do not support a straight-forward categorisation

of the behaviour of the single instance of our model shown. This is to be expected

given that the power law holds strictly near the onset of intermittency (Chate and

Manneville, 1987). Also the predictions of statistics regarding types of intermittency

were derived using low dimensional space independent models (Heagy et al., 1994)

or infinite dimensional partial differential equations (Chate and Manneville, 1987).

88



In principle, the behaviour of our coupled model with its 200 variables may allow

for different types of intermittent solutions which have not yet been characterised

mathematically. A detailed characterisation of the bifurcation scenarios leading to

the observed intermittency will provide further insight into the different types of

distributions to be expected in experimental models.

Previous mathematical models displaying intermittent behaviour have been of

an abstract nature (Ohayon et al., 2004). In contrast to the idea that intermittency

is only found in abstract constructs (Kalitzin et al., 2010), we find that this type

of dynamics can emerge when explicit spatial interactions and heterogeneities are

considered in a physiologically motivated model. Thus our current model provides

the means to investigate further the nature of such transitions to epileptic activity,

for example in relation to stimulus feedback control (Kalitzin et al., 2010).

In addition to intermittency in model behaviour, the mean field displayed frag-

mentation of the SWD waveform as commonly observed in SWD of human absence

seizures (Sadleir et al., 2006). We therefore propose that such fragmented SWD,

or the appearance of additional “spikes” could be mediated by spatial variation in

underlying pathological rhythmic activity. Interestingly, the frequency of the back-

ground model mean field consisted of peaks in the alpha range of the power spectrum

as is often observed in clinical EEG. This is in contrast to the one compartment

case, which possessed a single peak at 15Hz. We postulate that this more relevant

frequency of background activity is due both to the heterogeneity in time scale pa-

rameters and the effect of averaging local heterogeneous compartment behaviour to

form the mean field EEG.

The background state in this heterogeneous model included intermittent or per-

manent pathological oscillations in a subset of model compartments. Thus, the

mode of seizure onset at the macroscopic level related to the spreading of SWD

rhythms from a small number of compartments to the whole system. This is in

line with recent findings from animal model studies that suggest a cortical focus

for the initiation of generalised seizures (Meeren et al., 2002; Polack et al., 2007).

Polack et al. (2007) reported that epileptic foci were capable of producing patho-

logical oscillations that did not become generalised seizures, which relates directly

to our finding of clusters of SWD activity outside of the seizure period. However,

we note that in the findings of Polack et al. (2007) such “background” pathological

oscillations were not equivalent to those during the seizure periods.

Regional changes are found both structurally (Woermann et al., 1999) and func-

tionally (Holmes et al., 2010) in human generalised epilepsy. In addition, intra-

cranial recordings from human epileptic and control subjects suggest that in focal

epilepsy, pathological activity or “microseizures” do exist at small spatial scales

(Stead et al., 2010). This finding implies that epileptic rhythms could be an intrin-

sic part of healthy cortical circuits, and that icto- and epilepto-genesis are related to
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the ability of these pathological rhythms to spread in the cortex. Spatially extended

models like the one presented here will provide the means to investigate this spread

and therefore will be important in future studies of ictogenesis in both generalised

and focal seizures.

Numerical integration of spatially extended dynamic models requires a com-

partmentalisation of the system at a chosen spatial scale. The original model of

Jansen and Rit (Jansen and Rit, 1995) was formulated at the level of a cortical

column (Mountcastle, 1997) incorporating local inhibitory and excitatory feedback

mechanisms. It has become clear that this assumption of a well defined columnar

modularity is an over simplification of the complex horizontal and laminar connec-

tivity within different regions of the cortex (da Costa and Martin, 2010; Douglas

and Martin, 2007). At the other extreme, spatially continuous approaches cannot

so easily account for the observed spatially restricted activity of local neuronal sub-

systems. However, spatial extensions in the Jansen approach (David and Friston,

2003; Sotero et al., 2007; Babajani-Feremi and Soltanian-Zadeh, 2010; Ursino et al.,

2010) allow one to model connectivity at a hierarchy of scales. Thus, if the notion of

space in these models is made more abstract, so that we consider modelled compart-

ments to represent “canonical microcircuits” (da Costa and Martin, 2010), in the

spirit of the extended model of David and Friston (2003), the effect of connectivity

between heterogeneous local networks incorporating known feedback networks can

be investigated. Such an approach is particularly relevant in the study of epilepsy

where spatially isolated rhythm generation is an important observed phenomenon

(Stead et al., 2010).

Our model incorporates excitatory and inhibitory feedback with two inhibitory

time scales. The parameters of the excitatory PSP were preserved from the orig-

inal model (Jansen and Rit, 1995). A wide variety of synaptic inhibitory mecha-

nisms have been recorded in animal cortex preparations (for example Thomson and

Deuchars 1997; Otis et al. 1993), some of which have been incorporated in previous

models of focal epileptic dynamics (Wendling et al., 2002; Labyt et al., 2006). Since

there is no consensus regarding the exact origin of the hyperpolarising wave during

SWD, we fixed an arbitrary slow IPSP which, combined with the fast IPSP resulted

in SWD in the region of 3/s. We therefore suggest that this longer IPSP could

represent an average of fast and slow IPSPs from a variety of different inhibitory in-

terneurons. However, there is much evidence that this rhythmic hyperpolarisation is

not mediated by IPSPs, but could instead be attributable to a change in neuronal in-

put resistance, perhaps mediated by potassium ion concentrations (Bazhenov et al.,

2008). Though the model presented here is based on synaptic interactions, the prin-

ciple of delayed, non-linear activation of a slow inhibitory process could provide an

abstract model for non-synaptic mediated inhibition (Llinás, 1988). Furthermore,

since little is known about the cellular correlates of SWD in humans, one cannot rule
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out the presence of a long synaptic inhibitory process. We suggest that in order to

uncover further the effects of interactions between different time scales of inhibitory

and excitatory processes, future neural mass modelling work should explicitly ac-

count for a wide range of inhibitory time scales (Labyt et al., 2006), representative

of synaptic and non-synaptic processes. We also note that the principal aim of the

current study was to investigate the importance of spatial coupling between neu-

ral masses capable of rhythmic “on/off” firing, rather than to uncover the exact

physiological mechanisms mediating this behaviour.

Our spatial extension considered only excitatory coupling between pyramidal

neurons, and therefore does not account for spatially extended synapses onto in-

hibitory or excitatory interneurons. In previous models, these connections, as well

as interactions between different inhibitory populations, have been shown to affect

dynamics within the Jansen framework (e.g. Ursino et al. 2010). The values of

the connectivity parameter, R, used in this study are difficult to relate exactly to

physical coupling, though they embody a notion of number of synaptic connections

between pyramidal neurons (Jansen and Rit, 1995). We note that these values of R

are within bounds used in the study of Ursino et al. (2010).

In this study we have considered only cortical mechanisms for the onset of patho-

logical activity. However, subcortical structures are thought to play an ictogenic role

in some epilepsies. Despite reports of cortical initiation of absence seizures (Meeren

et al., 2002; Polack et al., 2007, 2009), for example, it is accepted that thalamic

mechanisms are necessary for the development of SWD in certain animal models

(Meeren et al., 2009). In fact, absence seizures are understood to be a disorder of

thalamocortical network interactions (Blumenfeld, 2005). A limitation of the cur-

rent model in explaining absence seizure ictogenesis in particular is the exclusion

of a thalamic component interacting with the cortex, as is presented in the models

of Suffczynski et al. (2004) and Breakspear et al. (2006). A natural extension to

the current model is therefore the addition of a thalamic component, as provided

in a recent study of whole brain dynamics within the neural mass model framework

(Sotero et al., 2007). An extension of the model into a larger cortical domain would

also provide further insight into the role of hierarchies of cortical connectivity in icto-

genesis. Such large scale neural mass models have previously been reported (Sotero

et al., 2007; Babajani-Feremi and Soltanian-Zadeh, 2010), as has the importance of

forward models in comparing simulations to empirical EEG data (Cosandier-Rimélé

et al., 2008). A large-scale extension of the model presented here, combined with

a forward model to EEG, may provide insight into the nature of cortical dynamics

underlying heterogeneous SWD recordings of human absence seizures (Weir, 1965;

Cohn and Leader, 1967; Lemieux and Blume, 1986; Rodin and Ancheta, 1987; McK-

eown et al., 1999).
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4.6 Summary

To summarise, we have demonstrated that important dynamic features of epilep-

tic EEG may emerge from a mathematical model with explicit spatial interactions.

In particular, the spatial extension can lead to intermittent seizure periods when

parameter distributions are heterogeneous. In recreating relevant aspects of back-

ground and SWD dynamics reported in humans and animal models, we thus provide

a framework with which to better understand ictogenesis in terms of spatio-temporal

cortical mechanisms.
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Chapter 5

Considerations on the mass

modelling of multi-modal

waveforms

5.1 Abstract

Neural mass models are used extensively in order to investigate the mechanisms of

epileptiform rhythms. In many cases, these rhythms manifest as complex, multi-

modal waveforms, which may bear a non-trivial relationship to the underlying activ-

ity of an assumed population of neurons. In particular in the case of SWD there is

an apparent conflict between the multi-phasic EEG waveform and the mono-phasic

burst pattern of neuronal firing observed in cortical neurons in animal models.

Since the traditional conversion of mass model activity to EEG is via a constant

of proportionality applied to the activity of principal neurons, or their net depo-

larisation, modelled EEG SWD are necessarily underpinned by a bi-modal firing

pattern. A more compatible approach would be to consider a uni-modal activity

pattern of firing during the spike and quiescence during the wave. Clearly this is

incompatible with a multi-modal EEG waveform under the traditional conversion

of mass model variables to EEG. Therefore, in the case of SWD, a more elaborate

consideration of the cortical contributions to EEG is required.

Here we propose an alternative approach in neural mass modelling assuming

four distinct cortical populations. We refer to animal model results for a differential

laminar distribution of the current sources and sinks to generate SWD. Based on a

simple conversion of model variables to EEG output we then show that this output

can recreate a variety of clinically observed SWD morphologies from a physiologically

plausible, uni-modal firing activity. We therefore argue that more detailed modelling

of cortical structure will be an essential part in furthering our understanding of

macroscopic epileptic dynamics resulting from specific interactions between neuronal

populations.
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5.2 Introduction

Neuronal firing during SWD in animal models

As described in Chapter 4, investigations into the cellular correlates of surface SWD

have been undertaken in animal models. Although these models fulfil criteria for

experimental absence seizures (Snead, 1995), they provide very different EEG mor-

phologies during seizures, none of which specifically match those observed in typical

absence epilepsy. However, cellular activity in each of these models during SWD are

commonly described as organised into firing during the spike and quiescence during

the wave (see for example Steriade et al. 1998a for feline recordings, Pinault et al.

1998 for GAERS and Inoue et al. 1993 for WAG/Rij). In general, action potentials

(single spikes, clusters or bursts) fire at the peak of a large depolarisation which is

rhythmically interrupted by a hyperpolarising wave. Although in the feline models

model faster hyperpolarisations can be seen to coincide with spike patterns, for ex-

ample in poly-spike wave trains, and firing at the peak of the depolarisation can be

clustered into two bursts (Steriade et al., 1998a), it has not been shown that a clear

bi-modal depolarisation or firing pattern is concomitant with surface SWD spikes

in general. Such analysis in the WAG/Rij rat model rather points to a uni-modal

firing on average during the spike (Inoue et al., 1993). In fact, a uni-modally dis-

tributed firing pattern has been specifically incorporated in the derivation of EEG

in a model recreating SWD patterns in the rat model (Sargsyan et al., 2007). In

this case, the depth distribution of synaptic activity was shown to be important

in recreating relevant EEG waveforms. In addition, models of network interactions

underlying SWD at the neuronal level do not require or produce strictly bi-modal

firing patterns (Destexhe, 1998; Traub et al., 2005).

Conversion of model variables to EEG

A review of models whose output resides at the scale of the EEG is provided in

Chapter 2. As described, the frequency of activity generated by these models is in

most cases the characteristic of interest and is assumed to be proportional to the

“activity” of principal cells within the model. Thus, a multi-modal waveform such

as the SWD is necessarily generated by an underlying multi-modal fluctuation in the

activity of modelled principal cell populations. Such activity is usually converted

into a firing rate by a non-linear activation function and then provides input into

other neural masses in the model system.

Therefore, a model verified by its alignment with different SWD morphologies

in the standard conversion of output to EEG necessarily conducts different firing

patterns through its network connectivity, which in turn are not the mono-phasic

patterns observed in vitro. In addition, under this kind of model, differences in SWD

waveforms (which are ubiquitous (Weir, 1965)), would be underpinned by a model
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conducting different activity through its network. However, results from animal

model studies suggest that differences in surface EEG patterns are more likely to

reflect changes in intracortical laminar current flow rather than underlying cellular

firing patterns (Gloor et al., 1979; Giaretta et al., 1987). Thus, the conclusions drawn

from modelling studies such as that of Marten et al. (2009a), in which different SWD

waveforms are specifically suggested to be generated by different parameter sets of

a model (and therefore different population dynamics) can be questioned. Detailed

analyses of cortical activity during SWD have revealed the complex, laminar, multi-

phasic and dynamic nature of cortical contributions to SWD (Kostopoulos et al.,

1982; Kandel and Buzsáki, 1997). In contrast, the gross, or population level “on/off”

firing of cortical neurons appears to be conserved. It is therefore clear that further

considerations regarding the origin of the EEG are required for mathematical models

of SWD. This requires a more detailed examination of the creation of electrical fields

in the brain.

Generation of the EEG

A thorough exploration of the generation of potential fields in the brain has been

provided in the work of Nunez (Nunez, 1981). Equations for the generation of elec-

tric fields on the scalp given known current sources have been provided under certain

assumptions relating to, for example, the shape of the head and the conductivity of

the different tissues between generators and recording equipment. However, record-

ings of EEG from the scalp or the ECoG do not derive from sources of known size or

origin. The question of inferring these brain tissue generators of EEG recordings is

known as the “inverse problem”, and is a major problem without a unique solution.

Despite early ideas relating EEG generation to action potential firing of neurons,

electrical activity recorded on the scalp EEG (or intracortically on the ECoG) is now

known to derive predominantly from currents generated by post-synaptic potentials

on pyramidal dendrites (Creutzfeldt and Houchin, 1974; Niedermeyer and Lopes da

Silva, 2005; Olejniczak, 2006). Evidence for this theory is given, for example, by the

observation of EEG waves during periods of neuronal silence (e.g. under anaesthe-

sia). In this case, EEG waves are produced by sub-threshold membrane oscillations

(Creutzfeldt and Houchin, 1974). In addition, the time scale of action potentials

(O(1ms)) is considered too short to contribute to deflections on the EEG, whereas

the time scale of post-synaptic potentials is generally slower (O(10ms)). A particular

structural reason for the predominance of post-synaptic currents is the orientation

of cortical pyramidal neurons which are aligned perpendicular to the surface of the

brain. This means that currents induced in a population of pyramidal neurons are

also oriented perpendicularly to the surface, in the so called “open field” configu-

ration, and thus facilitate the formation of summed current dipoles (Niedermeyer

and Lopes da Silva, 2005), or dipole layers (Nunez, 1981). This is in contrast to
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other neuronal populations with radially oriented dendrites, which permit instead

a “closed field” in which current dipoles cancel out and no field potential can be

recorded at macroscopic distances.

Although the relationship between post-synaptic potentials on cortical pyrami-

dal neurons and EEG waves is established, there unfortunately is not a one to one

relationship between the observed surface deflection and the type, or vertical loca-

tion of the PSP (Creutzfeldt and Houchin, 1974; Niedermeyer and Lopes da Silva,

2005). This in turn reflects an ambiguity in the relationship between underlying

neuronal firing patterns and observed EEG waves. Thus, in modelling the neuronal

mechanisms of complex, human, epileptiform EEG rhythms an additional “inverse

problem” relates to inference regarding the accompanying firing patterns of princi-

pal and inter-neurons. This is a particular problem that forms the motivation for

the current chapter.

In fact, the relationship between neuronal firing patterns, PSP direction (ex-

citatory or inhibitory) and EEG waves can be shown to be state dependent. For

example, the negative deflection of surface EEG spindle waves has been shown to

be underpinned by a cellular depolarisation of cortical neurons (Creutzfeldt and

Houchin, 1974; Niedermeyer and Lopes da Silva, 2005). However, the exact phase

relationship between neuronal membrane and EEG wave is diffuse, implying the

existence of spatio-temporal delays between the depolarising influences, which are

thought to be summed EPSPs. The relationship between neuronal activity and

waveform here is compounded by the observation that many of the depolarisations

are sub-threshold, thus implying that IPSPs do not contribute to the surface wave-

form, as presumably cortical inhibitory circuits are not activated. In the case of

spike-wave discharges (SWD), however, it has been shown that the surface nega-

tive EEG wave corresponds to a hyperpolarised state of cortical neurons (Steriade

et al., 1998a), though it is unclear whether this is likely to be mediated by IPSPs

(Bazhenov et al., 2008). The spike of the SWD is associated with a depolarisation

of cortical neurons and subsequent bursting, such that in this case, the relationship

between gross neuronal firing patterns and EEG waveform is a little clearer. How-

ever, the mechanisms leading to the generation of the multi-phasic EEG waveform

of the SWD have not been made explicit.

Previous approach to the problem

Lopour and Szeri (2010) identified the problem of relating mean soma potential to

EEG dynamics when employing macroscopic modelling to investigate stimulation

feedback control in epilepsy. The authors pointed out that one should consider

measured EEG as a function of extra-cellular currents rather than the mean soma

potential. It was also highlighted that the depth of sources and sinks relative to

the recording electrode would affect their contribution to surface EEG deflections.

96



Their solution to this problem was to form a linear sum of afferent activity to the

excitatory neuronal population, weighted in direction to the presumed contribution

to surface deflection. This was then filtered with the synaptic operator to provide an

approximation to trans-membrane potential and compared to the resting membrane

potential to determine the direction of current flow.

Aims of the current chapter

The neural mass model described in Chapter 2 (Jansen and Rit, 1995) specifically

incorporates time courses of inhibitory and excitatory PSPs on pyramidal neurons.

This provides the opportunity to examine how these dynamics might combine to

provide multi-modal waveforms. We aim to take an abstract approach to this prob-

lem in the first instance by assigning a sign to these dynamics based upon their

putative contribution to the surface EEG. In particular, we aim to address the ques-

tion of how multi-modal waveforms can be produced by an underlying uni-modal

“on/off” dynamic in neural masses.

5.3 Model

The model employed in the current chapter is the same as that in Chapter 4. We

recreate the equations here so that the conversion operations on its variables is more

readily accessible within the current chapter.

The model equations are:

ẏ0(t) = y4(t)

ẏ4(t) = AaS[y1(t)− 0.5y2(t)− 0.5y3(t)]

− 2ay4(t)− a2y0(t)

ẏ1(t) = y5(t)

ẏ5(t) = Aa{I + C2S[C1y0(t)]} − 2ay5(t)− a2y1(t) (5.1)

ẏ2(t) = y6(t)

ẏ6(t) = Bb{C4S[C3y0(t)]} − 2by6(t)− b2y2(t)

ẏ3(t) = y7(t)

ẏ7(t) = Bsbs{C4S[C3y0(t)]} − 2bsy7(t)− b2sy3(t)
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Parameter Description Value
A Average excitatory gain 3.25mV
B Average standard inhibitory gain 22mV
Bs Average slow inhibitory gain 8.8mV
a Average excitatory time constant 100s−1

b Average standard inhibitory time constant 50s−1

bs Average slow inhibitory time constant 20s−1

C,C1, C2 Connectivity constants C = 300, C1 = C,C2 = 0.8C
C3, C4 C3 = C4 = 0.25C
I External input to pyramidal neurons I = 200
v0 Parameters of the sigmoid function v0 = 6mV
e0, r e0 = 2.5s−1, r = 0.56mV −1

Table 5.1: Parameter values used for all output shown in this chapter. Note pa-
rameter values are identical to the standard values used in Jansen and Rit (1995),
except for those of the slow inhibitory process. These parameters were derived by
fixing the time scale and then deriving the gain from the ratio B/b, as suggested by
David and Friston (2003).

5.4 Calculation of EEG output

As described in Chapter 2, the output of this model is traditionally assumed to be

directly proportional to the net depolarisation of principal neurons (see e.g. David

et al. 2005) which in our model is given by the term y1(t)− 0.5y2(t)− 0.5y3(t). To

formulate a more relevant transformation to EEG output in the case of SWD, we

refer directly to the study of Kandel and Buzsáki (1997). The authors examined

the laminar distribution of cortical sources and sinks during SWD in a rat model of

absence epilepsy. In particular they noted the presence of 3 dominant time-varying

dipoles that contributed to the surface signal. Dipole 1 was an early positive deflec-

tion mediated by a deep sink in layer 6, dipole 2 was a layer 4 sink corresponding

to a surface negative deflection and dipole 3 was a delayed surface negative com-

ponent. Strong sources were also observed in layers 2 and 3 and were adjudged to

contain an active, inhibition mediated component. We focus here upon the first two

dipoles and the superficial sources. Though the origin of these sources and sinks is

not exactly known, the authors suggested that they derived predominantly from the

intra-cortical circuitry.

The Jansen model is based upon the feedforward and feedback mechanisms in-

herent in cortical column or canonical circuit architecture, namely i) principal (pyra-

midal) neurons; ii) positive feedback (stellate) cells and iii) negative feedback (in-

hibitory interneurons) cells (Jansen and Rit, 1995; Douglas and Martin, 2007). We

note that the depth locations of these model populations have previously been con-

sidered in a hierarchical model of evoked potentials (David et al., 2005). In that

study model pyramidal neurons occupied agranular layers and model stellate cells
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were positioned in layer 4. Similar considerations were also made in Lopour and Sz-

eri (2010) in which the authors specifically weighted the afferent activity according

to its signed contribution to surface recording deflections.

In order to model the contribution to the EEG of the cortical sources and sinks

referred to in Kandel and Buzsáki (1997), we must make assumptions regarding their

electro-physiological origin (for a review of absence siezures see Pinault and O’Brien

(2005)). If they are to contribute to the surface EEG, it is likely that they are

derived from PSPs on pyramidal neurons (Schaul, 1998; Olejniczak, 2006). Three

such PSPs are already represented in the model equations, namely the excitatory

(E)PSP (y1) and the two inhibitory (I)PSPs (y2 and y3). If we assume that the

sink in layer 4 is derived from EPSP activity on principal neurons (mediated by

positive feedback from stellate cells in this layer), we can model the strength of

this sink by some function of y1. Similarly, if we assume that the layer 2/3 sources

are derived from IPSPs on principal neurons (mediated by negative feedback from

inhibitory interneurons in those layers) the strength of these sources can be modelled

by functions of of y2 and y3. We assume that the sink in layer 6 is mediated by the

excitation of layer 6 pyramidal neurons via EPSPs in layer 6 from other pyramidal

cells (in the same layer or from layer 2/3) (Binzegger et al., 2004; Douglas and

Martin, 2007). An approximation to the EPSP induced by pyramidal neurons in the

model is the excitatory impulse response used to activate interneurons via activity

of pyramidal cells, i.e. y0.

In lieu of a detailed, mechanistic derivation, we initially seek a simple functional

form relating model variables to the strength of these sinks and sources. The simplest

such transformation is a linear combination of model variables. Although it is not

known how these sinks and sources contribute to the surface EEG, we refer directly

to the observations of Kandel and Buzsáki (1997) which suggest that the layer 6 sink

is responsible for a positive surface deflection, whereas the layer 4 sink corresponds

to a surface negative deflection. We assume that the active superficial sources also

contribute to surface positivity. This allows the sign of contribution to the surface

EEG to be designated, similarly to the study of Lopour and Szeri (2010). However, in

the current study we neglect the conversion of trans-membrane potential to current

source magnitude in the first instance.

In summary, EEG output can be modelled as a linear combination of the 4

model variables, with their laminar position fixed. We use the results of Kandel and

Buzsáki (1997) to directly infer the sign of their contribution to the surface signal.

The layer 6 sink (y0) corresponds to a surface positive deflection and is therefore

positively weighted, as are the superficial sources (y2 and y3, placed in layers 2 and

3, respectively). The layer 4 sink (y1) corresponds to a surface negative deflection

and is therefore negatively weighted. Thus we find the following equation for EEG

output:
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Y = w0y0 − w1y1 + w2y2 + w3y3 (5.2)

We note that since the magnitude of the model variables are asymmetric, the

terms wiyi give the relative strength of contributions, rather than the weights (wi)

themselves.

5.5 Examples

In Figure 5.1 we demonstrate previous observations regarding neuronal firing pat-

terns during experimental SWD seizures. Figure 5.1 (a) shows the widely reported

alternating depolarisations and hyperpolarisations with action potential bursting at

the peak of the depolarisation. Figure 5.1 (b) demonstrates that these depolarisa-

tions can be interrupted by faster rhythmic hyperpolarisations, which could con-

tribute to spiking patterns on the depth EEG. On the other hand, Figures 5.1 (c)

and (d) show unimodal averaged firing of neurons in cortex and thalamus recorded

during experimental seizures in WAG/Rij rats and the feline models, respectively.

Figure 5.2 (a) shows the assumed firing pattern in a widely studied thalamocor-

tical mass model of SWD activity (Robinson et al., 2002; Breakspear et al., 2006;

Marten et al., 2009a). The output of the variable taken to represent EEG clearly

propagates a bi-modal firing pattern through the model thalamocortical network. In

contrast, we show in Figure 5.2 (b) the output of the cortical neural mass model em-

ployed in this study, which can display a uni-modal firing pattern. The top picture

in Figure 5.2 (b) demonstrates that this uni-modal firing pattern is not converted

into a SWD EEG waveform under the assumption that the EEG is proportional to

a net depolarisation on pyramidal neurons.

We explored the effect of varying the strengths of contributions from modelled

sources and sinks by varying the weight parameters described in section 5.4. In Fig-

ures 5.3 and 5.4 we present a comparison of model output to real EEG recordings

from frontal electrodes during absence seizures. Each component of Figures 5.3 and

5.4 displays real EEG recording (top), model output (middle) and laminar represen-

tation of inferred underlying contributions (bottom). This latter figure colour codes

sinks in blue and sources in red with intensity of colour proportional to strength of

sink or source, normalised to the maximum strengths observed in Figure 5.4 (d) and

5.4 (f) (c.f. figures in Kandel and Buzsáki (1997)). Overlaid on these images are the

time courses of the underlying model variable at each location, with positivity up,

and deflection dependent upon whether the variable represents source (upwards) or

sink (downwards). Model and real EEG are displayed with negativity up in order

to draw comparison with the results of a published study of SWD waveforms (Weir,

1965), which we also refer to for its descriptive terminology. We stress that in each

of these figures the underlying pattern of mass activity is identical and “on/off”, as

100



Figure 5.1: A collection of results relating to neuronal firing during experimental
seizures. (a) and (b) represent intra-cellular recordings from spontaneously occurring
and cortically initiated seizures in a feline model, respectively. (a) shows top: depth
EEG from area 5 and bottom: intracellular recording from area 5. (b) shows top:
field recording from area 4, middle: intracellular recording from area 4 and bottom:
intracellular recording from ventral lateral thalamus. (c) shows spike averaged unit
firing in cortical and thalamic regions of WAG/Rij rats during SWD. (d) shows
wave triggered unit firing recorded in a feline model. (a) and (b) are adapted from
Steriade et al. (1998a), (c) from Inoue et al. (1993) and (d) from Kostopoulos et al.
(1981).

seen in Figure 5.2 (b).

Figures 5.3 and 5.4 demonstrate four different morphologies commonly seen in

EEG recordings from absence seizures and attainable from identical model dynamics.

Figure 5.3 (a) shows a rounded initial wave segment followed by a sharp “positive

transient”. The spike (“spike 2” of Weir (1965)) begins on the down slope of the

wave and hence the second positive component of the spike is more prominent than

the first (compare Figure 4, 2, occipital lead in Weir (1965)). We note that this

waveform is brought about by the inclusion of a strong sink in layer 6 as well as a
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Figure 5.2: Model EEG and underlying activity in (a) the model of SWD activity
of Marten et al. (2009a) and (b) an extended version of the cortical model proposed
by Jansen and Rit (1995) with rhythmic “on/off” firing. In each case the top panel
shows model EEG output and the bottom panel shows the time course of the variable
output as it is connected to other masses in the network.

Figure 5.3: Comparison of model output with clinically recorded EEG. (a) and (b)
represent 1 second of real recordings from frontal electrodes of two different patients
(Hjorth reference). (c) and (d) show 1 second of model EEG. (e) and (f) show
corresponding laminar activity in the model.

strong source in layer 3, corresponding to the slow inhibitory time scale. There is

little contribution from the fast inhibitory process here. Figure 5.3 (b) shows the

appearance of a small “spike 1” (Weir, 1965), followed by a more pronounced “spike

2” than that observed in Figure 5.3 (a) (compare Figure 4, 2, temporal lead in Weir

(1965)). The underlying strength of both sinks and the slow source are lower here

than in Figure 5.3 (e) although the fast source in layer 2 has increased contribution.

Figure 5.4 (a) shows a small spike at the bottom of the positive transient and a more

pronounced “wave” (compare Figure 6 trace 1 or 2 in Weir (1965)). In this case,
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Figure 5.4: Comparison of model output with clinically recorded EEG. (a) and (b)
represent 1 second of real recordings from frontal electrodes of two different patients
(Hjorth reference). (c) and (d) show 1 second of model EEG. (e) and (f) show
corresponding laminar activity in the model.

all 4 model PSPs provide similar contributions. The strength of these contributions

compare to those of Figure 5.3 (f), although the strength of the slow source in layer

3 has increased. Figure 5.4 (b) shows a pronounced “spike 2” of amplitude greater

than that of the wave. This output arose from very strong contributions from all

variables except that representing the fast inhibitory time scale.

5.6 Discussion

In this study we presented a new method for calculating the EEG output of a neural

mass model. We showed that by relating model variables to the putative activity

of depth distributed sources and sinks a variety of relevant SWD waveforms can

be realised in a model of underlying uni-modal firing. Thus we suggest that future

modelling studies of epileptiform activity could benefit from a detailed consideration

of the vertical distribution of cortical activity.

The morphology of SWD were extensively discussed by Weir (1965) and shown

to be highly variable. Weir (1965) also suggested that SWD morphology can be

explained in terms of the relative contribution of 4 components, namely spikes 1

and 2, a positive transient and the wave. In Figures 5.3 and 5.4 we demonstrated

that, under the assumptions of the model, this variability in SWD can be modelled

by depth weighted activity. It is therefore suggested that modelling of realistic

epileptic waveforms can be achieved with a simple transformation of model variables

to EEG output within the Jansen framework (Jansen et al., 1993; Jansen and Rit,

1995), so long as depth distributions of activity are accounted for. We note that
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the study of Kandel and Buzsáki (1997) provided the means with which to locate

relevant sources and sinks within the cortex during SWD. Such electrophysiological

investigations combined with mass modelling of underlying activity may therefore

provide additional insight into the mechanisms of epileptiform activity.

In addition, future benefits may be found by adding a forward model to the gen-

eration of the EEG to account for the measurement of activity at different locations

on the scalp. Cosandier-Rimélé et al. (Cosandier-Rimélé et al., 2007; Cosandier-

Rimélé et al., 2008; Cosandier-Rimélé et al., 2010) provided such an approach in the

context of epilepsy. In this case it was assumed that the time varying dynamics of

the current dipole induced by afferent synaptic activity on principal neurons could

be related to mass model variables. The authors considered the dynamics of current

dipoles in a triangular mesh approximation to the cortical geometry derived from

MRI, with each triangle representing 1mm of cortical area. The intensity of the

dipole was assumed to be weighted by the output of the neural mass model, thus no

consideration was given to the laminar arrangement of afferent activity in generating

the signal.

The new assumptions presented here regarding the transformation of model vari-

ables to EEG represent the simplest means with which to account for a laminar

organisation of model activity. Model variables appropriately relating to observed

sources and sinks were identified and then weighted in order to produce the EEG

output. This provides a first attempt at incorporating depth location factors re-

lating to the production of EEG directly into a single neural mass model, though

we note that similar considerations have been made regarding the connection of

multiple neural masses in the generation of realistic evoked responses (David et al.,

2005). The array of model waveforms closely matching clinical EEG demonstrate

that such an approach is relevant. Strictly one should aim to calculate the magni-

tude of current sources and sinks in the vertical direction for a population of neurons.

In the Hodgkin-Huxley formalism, one can consider the capacitive currents across

the membrane as proportional to the time derivative of the membrane voltage. In

the model of Jansen and Rit (1995) one can therefore consider the first derivative

of the PSP variables (i.e. y5,y6 and y7 in the formula above) to be representative of

currents (Moran et al., 2007) and construct the measured field potential accordingly.

Incidentally, it was found that linear combinations of these variables can also give

rise to relevant SWD morphologies (data not shown).

The current study invites a more detailed derivation of methodological approaches

that can account for laminar activity using neural mass model variables. Such ad-

vances will provide valuable tools for the investigation of epileptiform activity in

humans via the mechanistic modelling of epileptic dynamics. In particular, mod-

els at the neural mass scale will be vital in understanding epileptiform activity at

the level of large cortical regions, an undertaking that is recently being pursued
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(Cosandier-Rimélé et al., 2008). For example, the relative depth of PSP activity

in the cortex, which is known to attenuate contributions to cortical EEG (Nieder-

meyer and Lopes da Silva, 2005; Avitan et al., 2009), has been considered in the

derivation of a recent forward model of EEG activity (Avitan et al., 2009). Sargsyan

et al. (2007) also considered depth dependent contributions of activity to local field

potentials, whereas Destexhe (1998) used an integration of postsynaptic currents

in one dimension. In contrast, our approach explicitly relates model variables to

experimentally localised current source distributions (Kandel and Buzsáki, 1997).

The consideration of underlying firing patterns is vital in modelling epileptic

rhythms arising from connected brain networks. Previous macroscopic modelling

studies have considered small local cortical networks (Wendling et al., 2002), thala-

mocortical networks (Breakspear et al., 2006; Marten et al., 2009a) or models with

more expansive connections (Labyt et al., 2006). In each case conclusions and infer-

ence are based upon a comparison of aspects of model output with clinical or animal

model data. We argue here that the modelled networks supporting the production

of pathological rhythms should incorporate some consideration of the underlying

dynamics of neuronal activity. That is, more emphasis should be placed on the rel-

evance of the interactions at the level of information transfer in the circuits, i.e. the

neuronal firing of action potentials. This is imperative when conclusions are to be

drawn from the dynamics of a system built to model synaptic connectivity. These

considerations will prove vital as macroscopic models are expanded to incorporate

larger network connectivities, an undertaking which will be necessary in order to

understand generalised epilepsies at a level corresponding to clinically relevant ac-

tivity, i.e. distributed regions of cortical and thalamic structures (Moeller et al.,

2008; Westmijse et al., 2009).

We note that our results also carry implications for the practice of measuring

functional connectivity or correlation structures within EEG time series. Measures

of connectivity that rely on the co-morphology of waveforms, such as linear and non-

linear regressive measures, may be unable to reveal that the activity underlying the

waveforms of model output in Figures 5.2 (b), 5.3 and 5.4 is identical. On the other

hand, our approach emphasises that two identical EEG waveforms will appear as

such not solely due to a strong connection between the underlying activity, but also

due to the local distribution of sources, or equivalently the local cellular architecture.

Future investigations of connected models within the present framework will explore

the extent to which connectivity vs. local architecture contribute to observations of

functional cortical connectivity.
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5.7 Summary

In summary, the problem of modelling multi-modal waveforms such as the SWD

using average soma membrane potential in neural mass models was discussed. In

particular, it was proposed that the depth profile of current sources and sinks,

along with the firing patterns of neural populations, should ultimately be taken into

account. A simplified solution was proposed in which current sources and sinks

were identified in the literature and their concordance with EEG deflections logged.

When this information was used to provide a weighting for model variables, various

relevant SWD morphologies could be accounted for by the same dynamical model,

which incorporated an “on/off” firing pattern as seen in animal models of SWD.
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Chapter 6

Analysis tools for the comparison

of spatio-temporal patterns

6.1 Abstract

Ultimately, inference made in modelling studies of macroscopically derived EEG

rhythms will rely on the quantitative comparison of spatio-temporal patterns, for ex-

ample to compare model data with clinical data. Here we investigate the application

and development of methods with which to make these comparisons. The focus is on

properties of the channel interrelations which capture multi-variate characteristics

of the data. Specifically we extend previous work which utilises the eigenvectors of

the correlation matrix to represent interrelations of spatio-temporal patterns. These

methods yield a vectorisation of the interrelation structure which can therefore fa-

cilitate comparisons via vector distance measures (Euclidean distance or Hamming

distance).

These comparison methods are applied to seizures of patients with absence

epilepsy in order to test for the conservation of spatio-temporal patterns in seizures

of the same patient. Each method reveals that indeed the distance between seizure

patterns is smaller when seizures of the same patients are compared.

6.2 Introduction

Spatiotemporal patterns in scalp EEG of absence seizures

Scalp EEG typically consist of electric potential recordings from multiple electrodes

(for example according to the standardised 10-20 system) and thus yield a mul-

tivariate time series that represent spatio-temporal patterns of electrical activity

in the brain. Segments of these time series that contain epileptic activity reflect

pathophysiological brain activity and are therefore often examined in order to re-

veal clinically relevant univariate properties or voltage distributions. In univariate
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time series analysis of epileptic EEG, important features of the data are frequency,

amplitude and waveform. This can be appreciated given predominant descriptions

and analyses, such as the segmentation of EEG into frequency bands (delta, theta,

beta, gamma etc. ), the description of high amplitude SWD and the low amplitude,

high frequency onset of focal seizures, for example.

Existing methods for visualising the spatially extended patterns of activity in-

clude detailed topographic voltage and contour maps (Lemieux and Blume, 1986;

Rodin and Ancheta, 1987; Yoshinaga et al., 1996) derived from univariate proper-

ties, and more sophisticated transformations such as source analysis (Rodin et al.,

1994) and independent component analysis (McKeown et al., 1999), which utilise

spatially extended information.

The visual analysis of generalised seizures using the above methods have high-

lighted several important features, and also the non-trivial and variable nature of

scalp EEG during seizure. Using a dense scalp electrode grid covering central and

anterior positions, Lemieux and Blume (1986) described the spatiotemporal evolu-

tion of the spike and wave components of SWD. The authors reported a spatially

stationary pattern for the negative wave as opposed to a dynamic evolution of the

spike. A lateral origin for spikes was reported with subsequent evolution to the mid-

line or contralateral evolution. Interestingly the authors reported that the spike

component was often bilaterally asynchronous, in contrast to the definition em-

ployed for absence seizures as bilaterally synchronous. Symmetry was higher in the

wave component. The spatial distribution of all components was localised on the

scalp predominantly to anterior positions, using both visual analysis and a variety

of methods to quantify position. The importance of frontal regions in SWD was

affirmed by Rodin and Ancheta (1987) as the location for maximum positivity and

negativity. These authors also reported complex spatio-temporal dynamic evolution,

which could vary within seizures and also between different seizures.

In addition to these results, several other studies have reported a focal onset in

human absence seizures. Westmijse et al. (2009), for example, reported onset in

frontal or central regions in a MEG study. A dense array EEG study also reported

frontal onset to absence seizures Holmes et al. (2004), with frontal maximum of

activity over frontal regions.

Quantifying EEG rhythms

The visualisation and description of spatio-temporal patterns during seizure repre-

sents a qualitative analysis. Based on the above methods, and also the qualitative

comparison of pair-wise interrelation measures (see e.g. Amor et al. (2005); Gar-

cia Dominguez et al. (2005); Aarabi et al. (2008); Ponten et al. (2009)), it has been

consistently reported that there is larger inter-patient than intra-patient variability
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in the spatio-temporal EEG during absence seizures. Unfortunately, no quantifica-

tion of such comparisons has been given. In general, the quantification and quan-

titative comparison of spatio-temporal dynamics is an important unsolved question

in non-linear dynamics (Hutt and Neff, 2001).

It is assumed that a quantification of spatial patterns will require the extraction

of some features. Hutt and Neff (2001), for example, in analysing excitable media,

utilised the characteristics of nearest neighbour similarity. In spatially extended

neurological time series, the relationship between constituent time series is also an

important characteristic (see e.g. Cohn and Leader (1967) for an early example

of interrelations in time series of SWD). A variety of bivariate measures can be

employed to quantify the statistical similarity between pairs of EEG channels and a

number of these measures have been evaluated for absence EEG (Amor et al., 2005;

Garcia Dominguez et al., 2005; Aarabi et al., 2008; Ponten et al., 2009).

Measuring the interrelation between neurologically derived time series is of ma-

jor interest in neuroscience, and is referred to as estimating functional connectivity.

A high functional connectivity implies that the time varying output at two dif-

ferent spatial locations is statistically similar. The use of the term connectivity

here is perhaps unfortunate, given the importance of structural connectivity in the

brain. The potential ambiguity of this description can be appreciated in the tran-

sition from background to absence seizures, wherein both the linear and non-linear

functional connectivity has been shown to increase at seizure onset (Aarabi et al.,

2008). Clearly spatially segregated regions of the brain do not somehow become

more synaptically “connected” at the onset of seizure activity, despite the appar-

ent increase in similarity of functional output at different spatial locations. This

is also a case in which the univariate properties of the signals affects the measures

of interrelation obtained. The drop in frequency, i.e. the appearance of the SWD

“wave”, means that in any SWD epoch two channels contain substantial segments of

co-incident waveforms. A large component of these interrelations are expected to be

conserved under randomisation of the multi-variate time series (surrogate creation),

and as such the interrelations are said to have a high random correlation component

(Müller et al., 2008).

Correlation matrix properties in multi-variate data

Recently, multivariate methods have been applied to the analysis of correlation struc-

tures in epileptic EEG (Müller et al., 2005; Baier et al., 2007; Rummel et al., 2007).

These methods are based on the eigenvalues and eigenvectors of the correlation ma-

trix C and therefore find benefit in a reduction of information from M × (M − 1)/2

coefficients to M eigenvalues for the quantification of correlation structure (Müller

et al., 2005).
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Quantitative measures of spatio-temporal patterns based on the correlation ma-

trix eigenvectors include the participation ratio, which is proportional to the sum

of the absolute value of eigenvector components for each eigenvector. This sum de-

scribes a notion of collectivity in the contribution of channels to each eigenstate and

has been shown to vary in line with changes in system correlations (Müller et al.,

2005). The distribution of these elements within an eigenvector capture the extent

to which each channel contributes to that eigenstate. In terms of principal compo-

nent analysis, this can also be thought of as describing the relative contribution of

each channel “direction” to a principal component. Müller et al. (2005) showed that

in addition to the largest eigenvector (the eigenvector corresponding to the largest

eigenvalue, henceforth reffered to the principal eigenvector), useful information can

be gleaned from some of the smallest eigenvectors (those which correspond to the

smallest eigenvalues). Since the aim of the current work is to introduce methods

for comparing spatio-temporal patterns, and since the principal eigenvector cap-

tures relevant features of these, we leave the analysis of other eigenvectors to future

studies.

Correlation clusters

A complementary recent focus is the identification of underlying correlation clusters

in which the information contained in the eigenvector components of C is reduced to

M labels in vector form. This represents an interesting and potentially highly useful

transformation of the spatial structure of EEG time series. Essentially, the complete

interrelation structure of the data, which is an important component of the spatially

extended system (see above), is collapsed onto an M dimensional vector. It will be

proposed in the current chapter that this projection offers a novel way in which

to quantitatively compare spatio-temporal patterns. Essentially, the vectorisation

of the data renders them amenable to quantitative comparison by vector distance

measures. The feature of spatio-temporal patterns captured by this method of

clustering is the optimal partitioning of channels into highly interrelated blocks

(Rummel et al., 2008). This is an abstraction from the details of channel inter-

relations since equivalent block structures may be composed of different pair-wise

interrelation distributions.

A particular advantage of the cluster identification method proposed in (Rummel

et al., 2007) is that it is entirely data-driven. The importance of this advance cannot

be overstated; unlike other clustering methods (see e.g. (Jain and Dubes, 1988)),

the number of clusters or algorithm parameters do not have to be pre-defined. The

collective morphology of activity patterns is the entire basis on which the algorithm

proceeds, and it can therefore be regarded as a self-contained map from multivariate

time series to cluster vectors.

This important shift of emphasis towards the creation of a simplifying map brings
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with it the requirement for new tools to deal with i) variability inherent in the

method; and ii) possible inconsistency in the output labels. The first is due to the

estimate of number of clusters and the stochastic optimization procedure whilst the

second arises because the order of the eigenvectors relating to each cluster is not con-

served. This means that equivalent cluster structures may not be labelled in a way

that supports a straightforward comparison of two cluster vectors, or a trivial choice

of quantitative distance measure. These factors contribute to an inherent variability

in the output cluster vectors. It is clear that if the aforementioned problems can

be addressed this conceptual shift towards mapping time series into vectors could

provide important advances in the characterisation and quantitative comparison of

spatio-temporal patterns in multivariate time series.

Aims of this chapter

In this chapter we investigate the vectorisation of the correlation matrix as a means

to quantify and quantitatively compare multi-variate time series (spatio-temporal

patterns). The projection onto vectors allows spatio-temporal patterns to be com-

pared by distance measures such as Euclidean distance or Hamming distance. We

demonstrate the use of these methods to quantitatively compare absence seizure

epochs. Three vectorisation methods are tested, namely i) the vectorised abso-

lute correlation matrix; ii) the absolute entries of the principal eigenvector and iii)

the cluster vector formed by the approach of Rummel et al. (2007). These three ap-

proaches give a successive abstraction from the detailed arrangement of the pair-wise

correlation structure, as outlined in section 6.4.

6.3 EEG data

Clinical EEG data containing typical absence seizures were used in this study. These

data provide a well defined ictal period in which 3 cycles per second activity is gen-

eralised on the EEG. EEG data were obtained from the Klinik für Neuropädiatrie,

Universitätsklinikum Schleswig-Holstein, Kiel, Germany, and the Department of

Neurology, Inselspital, Bern University Hospital, Bern, Switzerland. The data were

sampled at f=256 or 250 data points per second. Data were used in the Hjorth

reference and filtered with a high pass filter at 2.5Hz to reduce the influence of

slow activity unrelated to the spike-wave discharges and with a low pass filter at

25Hz to eliminate high frequency artefacts. There were i=22 patients, and j=60

seizures. These were structured in terms of the number of seizures per patient as

Nsi, {i = 1, .., 22}, where Nsi is the number of seizures recorded for patient i. The

average number of seizures recorded per patient was Nsi=2.7. The average length

of seizure was lsij=10.5 seconds, where lsij is the duration of seizure j for patient i.

For each patient dataset, seizure periods were automatically located by increased
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power in the 2-4Hz range. Specific seizure onset and offset times were located at

positions encompassing all generalised spike-wave complexes.

6.4 Methods

As discussed in section 6.2, the eigenvectors of the correlation matrix contain infor-

mation regarding spatio-temporal patterns in multi-variate data (Plerou et al., 2002;

Müller et al., 2005; Rummel et al., 2007, 2008). The principal eigenvector provides

a projection of the inter-relation structure which preserves more information than

a point quantification such as the mean absolute correlation, whilst reducing the

number of data from M × (M − 1)/2 pair-wise interrelation measures for multi-

variate data with M channels. In analogy with principal component analysis, the

principal eigenvector points in the direction of largest variance in the data, and thus

the absolute principal eigenvector captures the magnitude of contribution of each

channel to this sub-space. The absolute principal eigenvector is a direction in a pos-

itive sub-space in RM and thus can be compared to other vectors in this space in a

simple way using the Euclidean distance. This is the first of our methods employed

to quantitatively compare spatio-temporal patterns of EEG from our database.

The vectorised entries of the absolute correlation matrix provide a direction in

a positive sub-space in R
M×(M−1)

2 and can therefore also be quantitatively compared

using the Euclidean distance. Intuitively, comparing the values of the correlation

matrix is sensitive to specific deviations in the order of pair-wise interrelations,

whereas the eigenvector method penalises relative contributions to the direction of

largest variance and is therefore less sensitive to the specific ordering of correlations.

In section 6.4.2, the cluster vector method outlined maps spatio-temporal patterns

to optimally interrelated blocks of channels, and is therefore even less sensitive to

the specific arrangement of entries of the correlation matrix. The three compar-

ison methods employed therefore rely on successive abstractions from the specific

organisation of pair-wise interrelations.

All of the three methods employed stem from the correlation matrix, the forma-

tion of which is therefore the first step in each case. Since spatio-temporal patterns

during seizure periods are the focus of this chapter, each segment of EEG contain-

ing a seizure period was extracted as a multi-variate time series block of dimension

19× lsj × f , where lsj is the length of seizure j, 19 is the number of channels and

f is the number of data points per second. The correlation matrix, C, was then

formed from the pair-wise Pearson cross-correlation coefficients between each pair

of channels.

Since the analysis of eigenvectors and vectorised correlation matrices is less

volatile and computationally expensive than the cluster vector method, this method

was also used to analyse peri-ictal (around the seizure) and inter-ictal (between
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seizures) periods. For peri-ictal analysis, a segment of data of length lsj× f was ex-

tracted immediately preceding and immediately following the seizure. For inter-ictal

analysis, a data set was formed for each patient by removing all of the ascertained

seizure periods (see section 6.3 for the method to locate these periods) and con-

catenating the remaining data. Nsi inter-ictal periods were then randomly sampled

from this new dataset, with the length of each period set to the average length of

seizures for that patient, f × lsi· (lsi· =
∑Nsi
j=1 Lsij

Nsi
).

6.4.1 Eigenvector and correlation vector methods

The principal eigenvector of the correlation matrix was extracted for each epoch.

In addition, the 171 entries of the absolute correlation matrix were arranged in a

vector by scanning row-wise along the upper triangle of the matrix. For comparison

of these vectors the Euclidean distance was employed, as defined below:

dxy =

√√√√Nvec∑
i=1

(xi − yi)2 (6.1)

where x and y are the two vectors to be compared and Nvec is the length of the

vector (here Nvec is 19 for eigenvectors and 171 for the vectorised absolute correlation

matrix).

In order to test the hypothesis that spatio-temporal patterns are conserved for

seizures recorded from the same patient, pair-wise Euclidean distances (dxy) were

calculated on two arrangements of vectors. In the first arrangement, only seizures of

the same patient were compared, which resulted in a distribution of 83 distances. We

call this distribution the within patient distribution of distances (dw). The second

set contained all 60 seizures, but compared only seizures of different patients and

thus yielded 60× 59/2− 83=1687 distance measures. We call this distribution the

between patient distance for all seizures (db). By comparing these two distributions,

we can estimate the degree to which spatio-temporal patterns are conserved for EEG

of the same patient. The distributions were compared by the Mann-Whitney test

(“ranksum” in Matlab) for differences in medians. This analysis was also imple-

mented for the non-seizure periods described above.

It is clear that these comparisons can be confounded by a number of factors.

Firstly, it is possible that there exists an underlying preference for correlations

in EEG in general, such that the differences between spatio-temporal patterns of

EEG from different patients is more conserved than that of randomly generated

spatio-temporal patterns. This could occur due to reference effects and preferred

patterns due to the distribution of tissue in humans (skull thickness and conductiv-

ity, for example). The specific effects of reference could be examined by performing

the analysis on data transformed to different montages, though this is beyond the
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scope of the current study. Instead, we take a more general approach by examining

whether the distributions dw and db deviate from the random case. To this end, the

distributions of absolute correlation matrix entries and absolute principal eigenvec-

tor entries over all ictal and inter-ictal periods were examined and then randomly

sampled to form a database of eigenvectors and correlation matrices according to

the patient-seizure structure Nsi. The overall distributions of entries for the patient

(absolute) eigenvectors and (absolute) correlation matrix are displayed in Figure 6.1.

For these curves and subsequent distribution plots for continuous data, the prob-

ability distributions were estimated from histogram data using a Gaussian kernel

density estimation method (the “kde” function in Matlab). This allows for neater

visualisation and easier visual comparison of these distributions.

Some general features of Figure 6.1 are apparent. Most notable are the larger

absolute values of the correlation vector (“Cvec”) in the ictal case as compared to

the inter-ictal case. This is expected given the increased power at low frequencies

during seizure periods, which leads to higher levels of correlation (Müller et al.,

2008). Also interesting is that the mode of the distribution of absolute eigenvector

entries (“Evec”) is almost equivalent for the ictal and inter-ictal cases, although the

distribution is considerably narrower for the ictal case, indicating preferred absolute

eigenvector values in this case of absence seizure periods in general.

Figure 6.1: Distributions of absolute values of the principal eigenvector and absolute
correlation matrix for all ictal and inter-ictal periods.

The distributions characterised in Figure 6.1 were sampled to form random ab-

solute eigenvectors and random absolute correlation vectors in keeping with the
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patient-seizure structure Nsi. The distribution of distances for these vectors was

then computed in the same way as for the actual patient data. Explicitly, “within

patient” and “between patient” distance distributions were formed for the random

data sets (we denote these distributions drandw and drandb , respectively). Comparing

these randomly generated vectors also allows one to account for differences that

might arise between dw and db in the data due to the effects of asymmetry in the

sizes of distributions |dw| � |db| where | · | indicates the order (size) of the set.

6.4.2 Cluster vector method

The approach described in this section is based on a method to identify correlation

clusters using the eigenvector components of the correlation matrix (Rummel et al.,

2007). Other methods of clustering time series require the pre-specification of either

the number of clusters or arbitrary parameters and thus the output is not entirely

driven by aspects of the data. The method of Rummel et al. (2007), however, is

entirely data-driven and therefore its application can be interpreted as a map from

time series space into the cluster vector space. As this map is derived from the

equal-time correlation matrix, it is underpinned by aspects of the co-morphology of

the time series.

Summary of the cluster identification method

Since the cluster identification method employed has been discussed elsewhere, read-

ers are referred to Rummel et al. (2007), Rummel et al. (2008) and Rummel (2008)

for a detailed explanation. We summarize the method below and in the flow chart

in Figure 6.2.

For this method, the original segment under analysis was used to generate a

set of 90 shift surrogate data per data window (Netoff and Schiff, 2002), for which

the correlation matrices were also formed (Cn
surr, 1 ≤ n ≤ 90). This number of

surrogates corresponds to the notion of a 0.1 significance level for the identification

of clusters. The number of large eigenvalues of C significantly larger than those of

the distribution from Cn
surr gave the estimate of number of clusters, K.

Once the number of clusters, K had been estimated, the K eigenvectors of C

corresponding to the K largest eigenvalues (henceforth referred to as the K largest

eigenvectors) were used to generate K cluster participation vectors (CPV) (Rummel

et al., 2007). In short, the eigenvectors are rotated until their entries are maximally

non-overlapping, which reveals the optimal block structure for correlations in C.

The stochastic optimization procedure used to produce CPV was the great deluge

algorithm (Dueck, 1993). Automatic attribution of clusters to channels was per-

formed using the “ratio×difference” method of Rummel et al. (2007, 2008). This

method automatically detects which groups of eigenvector entries can be separated

into clusters.
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Figure 6.2: Flow chart of the map from a time series segment to a vector.

Relabelling of cluster vectors

The output of the map are cluster vectors, v, of dimension equal to the number of

channels, M (M = 19 in our data). Each position, k, of this vector represents a

channel with the cluster membership recorded by an integer value, vk, 0 <= vk <=

Kmax = 9, where 0 indicates no cluster membership. Unfortunately, a consistent

order of cluster allocation is not guaranteed by the CPV algorithm and therefore

equivalent cluster structures may not be consistently labelled. A solution to this

problem involves minimising the distance between vectors and therefore ensuring

that common clusters in each vector are given the same label. An example of two

vectors, u and v, that should be relabelled is shown below. The number of channels

has been reduced here to 4 for ease of representation.

u =


1

2

2

3

, v =


2

3

3

1

 (6.2)
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Both vectors represent the same cluster structure with all channels involved in

one of three clusters, though the labels are in different positions in each vector. The

method for relabelling the second vector to match the first is now described.

Each vector is split into a binary matrix consisting of its substructures, where

column j contains the binary representation of cluster j:

ubin =


1 0 0

0 1 0

0 1 0

0 0 1

, vbin =


0 1 0

0 0 1

0 0 1

1 0 0

 (6.3)

We aim to reorder the columns of vbin, vbin.j , 1 ≤ j ≤ K such that the sum of

pair-wise distances with columns of ubin, H(ubin.j , v
bin
.j ), 1 ≤ j ≤ K, is minimised. In

practice, the distribution of distances between column pairs is evaluated and the

columns of vbin closest to each successive column of ubin are relocated.

The distance measure used here is the Hamming distance, calculated by:

H(u, v) =
a

n
(6.4)

where a is the number of mismatches between vectors, and n is the length of each

vector. In cases where v has more clusters than u, any remaining unmatched clusters

are assigned the next smallest unused integers. The result of this relabelling process

performed on v, above, is as follows:

u =


1

2

2

3

, v′ =


1

2

2

3

 (6.5)

It can be seen that the consistency in cluster structure is thus revealed.

Quantification of cluster vector variability

The CPV components are generated in a stochastic optimization procedure which

is not unambiguously defined. In addition, there is an unavoidable uncertainty in

the automatic attribution of CPV components to cluster labels. These two effects

create a variability in the cluster output that is due to the method. We henceforth

refer to this variability as “technical variability” as opposed to data-based variability

in the output. In order to evaluate the technical variability in cluster calculation,

ten iterations of the clustering algorithm were performed on each seizure with equal
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settings, and the output examined. Variability was defined by the distribution of

Hamming distances over all pairs of vectors in this output. The clustering of each

data set therefore yielded ten separate estimates of the cluster vector, vn, 1 ≤ n ≤ 10

and a distribution of 10×9/2 = 45 Hamming distances, Hm, 1 ≤ m ≤ 45, calculated

according to the method described above after relabelling.

Figure 6.3 shows two extreme examples of technical variability. The two top

panels of Figure 6.3 show ten realisations of cluster output for each seizure and the

bottom panels of Figure 6.3 show the distribution of Hamming distances calculated

for pairs of output within each seizure. It can be seen that on the one hand, the

distribution in Figure 6.3 (c) (corresponding to output in Figure 6.3 (a) is dense

at low values of H, meaning that large distances were not found and therefore in

general only few corresponding labels in cluster vector pairs are different. On the

other hand, the distribution in Figure 6.3 (d) (corresponding to output in Figure

6.3 (b)) shows increased density at larger distances with a modal value between 0.3

and 0.4 reflecting the higher degree of variability in cluster output. It can be seen

that the apparent difference in consistency of output in these data sets is captured

by the difference in their Hamming distance distributions.

Since technical variability is quantified by a distribution of distances Hm(1 ≤
m ≤ 45), we can characterise the technical variability of each clustering by the

median of this distribution, Hmed. The distribution of Hmed, over all data sets

analysed, is shown in Figure 6.4 (a). The resulting distribution can in turn by

characterised by a median Hamming distance of approximately 0.03 (Figure 6.4 (a)),

a crude interpretation of which is that we might expect 1 out of 19 channels to be

allocated to different clusters by this method, even though the underlying structure

is the same. Figure 6.4 (b) shows the dependancy of this median on the median

number of clusters over the 10 repeats. It can be seen that there is a general trend of

increasing variability with increasing number of clusters, though the variability can

still be high in data sets where the median number of clusters is low (e.g. see the case

of K = 3). Variation in the estimate of number of clusters is a contributing factor to

the measured technical variability and arises due to variability in the distribution of

shift surrogates. The difference in estimate of number of clusters was rarely greater

than 1 (data not shown) and hence this estimate was considered robust.

6.5 Results

6.5.1 Euclidean distance method

In order to illustrate the degree of conservation of correlation vectors and eigen-

vectors in EEG epochs from the same patient, examples are given in Figures 6.5

and 6.6. In Figure 6.5, top panel, the similarity between the red and black lines

indicates the degree of conservation of patterns in 2 different seizures of the same
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Figure 6.3: (a) and (b): Cluster output over 10 repeats for 2 different seizures.
Clustered channels are coded by equivalent colours. The 10 repeats are organised
on the x-axis and separated by vertical dashed lines. (c) and (d): Corresponding
distributions of pairwise Hamming distances (n=45) for these output.

patient. The blue line which derives from a seizure of a different patient is shown

to deviate from this pattern. In the inter-ictal case, shown in the bottom panel of

Figure 6.5, a much reduced degree of conservation is apparent. Figure 6.6 shows

vectorised correlation matrix entries across the same seizures as in Figure 6.5, top

panel. The picture here is similar in that the correlation entries show a great degree

of overlap for seizures of the same patient.

An examination of the distributions of Euclidean distance derived from the abso-

lute eigenvectors and absolute vectorised correlation matrix are provided in Figure

6.7 and Figure 6.8, respectively. The median values for these distributions are dis-

played in Table 6.1.

Several interesting points emerge from Table 6.1 as well as by examining Figures

6.7 and 6.8. For each of the epochs examined, the within patient distribution of

distances (in both eigenvectors and correlation vectors) was centred around a value

lower than the distances calculated between patients indicating that spatio-temporal

patterns are conserved for patient EEG. This effect was more pronounced for the
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Figure 6.4: (a) Distribution of median technical variability (Hmed) for n=60 absence
seizures. (b) Dependancy of median variability on median number of clusters (with
an integer median cluster number).

correlation vector than for the eigenvector measure. The largest separation of within

patient and between patient distributions was seen in the ictal period which suggests

an increased conservation of spatio-temporal patterns during seizures, as compared

to background periods.

However, all of the randomly sampled vectors led to distance distributions cen-

tred at larger values than those observed in patient data. In the eigenvector measure,

ictal and inter-ictal between patient comparisons were close to the random distribu-

tions. This suggests that when epochs of EEG from different patients are compared

via the principal eigenvector, they are essentially unrelated. However, if the en-

tries of the absolute correlation matrices are compared instead, one might expect

some degree of conservation of patterns such that randomly sampled vectors cannot

account for the observed distribution of vector distances.

Importantly, the “within” and “between” distributions as calculated from ran-

dom data were very closely matched (see e.g. d
rand(ictal)
b = 0.60 and d

rand(ictal)
w =

0.58). This indicates that any differences observed in “within” versus “between”

distributions in the patient data are not due solely to asymmetry in the distribution
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Figure 6.5: Example comparison of absolute entries of the principal eigenvector
within and between patients. The top panel shows absolute eigenvector entries
during seizure epochs for two seizures of patient 1 and one seizure of patient 2. The
similarity between the eigenvectors of the same patient can be seen. The bottom
panel shows a similar comparison for inter-ictal periods.

sizes. Thus, the distributions observed provide good evidence for the conservation

of spatio-temporal patterns in seizures of the same patient. In addition, this is not

simply a feature of the generic or synchronous properties of SWD since seizures of

different patients are very different. Little evidence is presented for patient specific

pre- or post- ictal states since the degree of conservation within patients in these

epochs is similar to that observed in the inter-ictal state.

Since the distribution of distances can be quantified by the median value (see

Distribution Median (Evec) Median (Cvec) Interpretation

dictalb 0.56 3.91 Between patient distances: ictal
dictalw 0.18 1.59 Within patient distances: ictal

d
rand(ictal)
b 0.60 4.47 Between random data distances: ictal

d
rand(ictal)
w 0.58 4.42 Within random data distances: ictal

dinterb 0.62 3.13 Between patient distances: inter-ictal
dinterw 0.44 1.85 Within patient distances: inter-ictal

d
rand(inter)
b 0.67 3.46 Between random data distances: inter-ictal

d
rand(inter)
w 0.64 3.40 Within random data distances: inter-ictal

Table 6.1: Median distances for the distributions in Figures 6.7 and 6.8
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Figure 6.6: Example comparison of absolute entries of the vectorised correlation
matrix within and between patients. Comparisons here are for the ictal period only.
The 171 entry vector is split across the top and bottom panels.

Comparison Absolute difference in medians p-value
dictalb vs. dictalw 0.38 3.0× 10−51

d
rand(ictal)
b vs. d

rand(ictal)
w 0.019 0.03

dinterb vs. dinterw 0.18 1.5× 10−22

d
rand(inter)
b vs. d

rand(inter)
w 3.8× 10−4 0.63

Table 6.2: Selected comparisons of median eigenvector differences

Table 6.1), they can also be quantitatively compared by the difference in medians,

the significance of which can be assessed using a Mann-Whitney type of statistical

test. In Table 6.2 we present the quantification of distances for some important

comparisons.

6.5.2 Cluster vector method

Cluster vectors were produced for each seizure period. Figure 6.9 shows one re-

alisation of clustering for some exemplary seizures, arranged by patient. Visual

inspection of Figure 6.9 shows striking variability in the output between patients,

although some consistency is present in the sense that most channels are allocated to

a cluster in all seizures. There is a suggestion of some degree of consistency between

different seizures of the same patient. Four seizures of patient 1 are identical, for
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Figure 6.7: The distribution of distances between absolute eigenvectors. Distri-
butions are compared for ictal, per-ictal and inter-ictal periods. In addition, the
distances obtained from comparisons involving randomly sampled vectors are plot-
ted.

example (Figure 6.9, patient 1). The seizures of patients 16, 17 and 22 appear to

show within patient variability of the order of mild technical variability (cf. Figure

6.3 (a)). However, the seizures of patient 8 appear to show a greater degree of

variability (cf. Figure 6.3 (b)).

The within- and between- patient variability of cluster output were quantified.

Clearly the Hamming distance between two output vectors is insufficient for this task

because two different seizures may represent the same cluster structure but map to

different cluster vectors only as a result of the inherent technical variability. We

account for this effect by considering Hamming distances only if they are greater

than the maximum of those observed in the technical variability distributions of

each seizure. The difference between two vectors, u and v, is therefore calculated as

follows:
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Figure 6.8: The distribution of distances between absolute correlation vectors. Dis-
tributions are compared for ictal, per-ictal and inter-ictal periods. In addition, the
distances obtained from comparisons involving randomly sampled vectors are plot-
ted.

d(u, v) =

 H(u, v′)−max(max
m

(Hu
m),max

m
(Hv

m)), H(u, v′) > max(max
m

(Hu
m),max

m
(Hv

m))

0, H(u, v′) ≤ max(max
m

(Hu
m),max

m
(Hv

m))

(6.6)

Figure 6.10 represents the quantification of within- and between- patient vari-

ability as calculated for 60 seizures. The proportion of comparisons that yielded

a difference only of the order of the maximum technical variability is represented

by the first bar of the histograms, centred at d = 0.05. Both histograms contain

a large proportion of density in this bin, which would suggest a degree of consis-

tency between cluster vectors in general, even when seizures of different patients
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Figure 6.9: Cluster output for one run of the algorithm on a number of seizures in 5
patients. Multiple seizures (labelled on the x-axis) are separated by vertical dashed
lines within patient. These are labelled according to patient number in our data
base.

are compared. Around 88% of comparisons between seizures of the same patient

lie in this region (Figure 6.10 (a)) and subsequently less than 15% of within patient

comparisons display distances in excess of that explained by technical variability

(Figure 6.10 (a)). In contrast, 53% of between patient comparisons display distances

in excess of that explained by technical variability (Figure 6.10 (b)). Together, these

results suggest a conservation of cluster vectors in seizures of the same patient.

6.6 Discussion

In this chapter, methods were introduced to quantify and quantitatively compare

spatio-temporal patterns. The general method was a vectorisation of properties of

inter-relation structures for quantification without reduction to a point measure,

such as the mean inter-relation between channels. Quantitative comparison was

introduced by means of vector distance measures. In applying these methods to EEG

from patients with absence epilepsy we were able to demonstrate quantitatively the

extent to which seizure patterns are conserved within, rather than between, patients.

Each method employed in the current chapter was based on properties of inter-

relations in multi-variate time series, in this case quantified by the correlation matrix.

This linear measure has been applied successfully to the analysis of bivariate prop-

erties in epileptic EEG and, in particular, absence seizures for a number of decades
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Figure 6.10: Distribution of (a) within and (b) between patient variability in corre-
lation cluster vectors, corrected for technical variability as described in section 6.5.2.
Calculation performed on the 60 seizures used in Figure 6.4.

(see e.g. Cohn and Leader (1967) for an early reference and Aarabi et al. (2008) for

a more recent study). While during the last two decades nonlinear measures were

widely studied and given preference, comparative studies of bivariate measures have

found the correlation coefficient to perform no worse than the nonlinear measures

under comparable conditions, e.g. in the prediction of epileptic seizures (Kreuz et al.,

2007; Mormann et al., 2005).

The three methods applied to vectorise the correlation matrix relied on differ-

ent abstractions from the distribution of pair-wise correlations. It was found that

the vectorised correlation matrix and the principal eigenvector gave qualitatively

similar results when applied to different EEG epochs. In addition, the preserved

within-patient spatio-temporal patterns were verified by the cluster vector method.

However, the clustering method sometimes suffered from high levels of technical vari-

ability and therefore its performance in quantifying data variability was deficient in

comparison to the other methods. The problem of consistent labelling of clustered

time series has been noted in attempts to visualise consistency of cluster vectors

calculated at different time points. In the context of human EEG, one method used

a symbolic approach to address this problem (Bialonski and Lehnertz, 2006). In

contrast, our method, based on a binary vector expansion allows a consistent data-

based labelling of seizures that avoids ad-hoc adjustments. Although we have used

this relabelling for the purpose of whole seizure analysis in the present study, it also
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facilitates the representation of dynamical changes in cluster vectors.

In examining distances between vectors derived from different methods we have

demonstrated a general framework for the comparison of features of spatio-temporal

patterns. Clearly in future expansions to the methods presented here other impor-

tant features should be incorporated such as frequency and amplitude. Importantly,

these can be introduced within the vector distance framework. An example of a

more thorough approach might be to characterise spatio-temporal patterns by three

vectors in RM accounting for vectorised frequency, amplitude and inter-relations. In

this case the distance between two spatio-temporal patterns will be a point in R3.

The comparison of cluster vectors relied on our being able to account for tech-

nical variability, which arises due to a combination of two factors; (i) differences in

the estimate of the number of clusters and (ii) subtle differences in the components

of the CPV. The observed trend of increasing variability with increasing median

number of clusters is therefore to be expected; as more CPV are taken into account,

more subtle variability in their components is translated into variable cluster mem-

berships. Technical variability of the method was seen to be low in 100 trials of the

algorithm for certain test conditions when clusters are accurately identified (Rum-

mel, 2008). It could be the case with absence seizure data that a poorly defined

block structure of correlations leads to competing optimal solutions for the CPV

vectors. Such hypotheses can be investigated in future studies and are made pos-

sible by the introduction of the methods in this chapter. However, the occurrence

of technical variability is unavoidable in a method that uses a discretisation and an

optimisation step to characterise complex spatio-temporal patterns.

Various studies have been devoted to the investigation of variability in absence

seizures both in terms of univariate and bivariate properties. The morphology of

SWD have been shown to be variable, even within seizure, and the spatial distri-

bution of its components have been observed to be particularly variable in seizures

of different patients (Weir, 1965; Lemieux and Blume, 1986; Rodin and Ancheta,

1987; Hughes et al., 1990; Ferri et al., 1995; Rodin, 1999), with Rodin and Ancheta

remarking that their study of field maps of SWD “clearly showed that even the most

classic 3/sec spike-wave pattern is neither truly generalised nor bilaterally symmet-

rical or synchronous” (Rodin and Ancheta, 1987) . Despite this massive variability

in SWD, a few studies have also noted a reproducibility of certain properties of

SWD dynamics between seizures of the same patient (McKeown et al., 1999; Aarabi

et al., 2008; Amor et al., 2005) but no generally applicable quantification of the

reproducibility were provided.

In this chapter we aimed to provide this quantification. To this end, the “dis-

tance” between seizures of the same patient and seizures of different patients were

quantified by the methods introduced, and their distributions compared. In all three

methods it was observed that the distribution of within patient distances resided at
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lower values of d. The comparison of these distributions was more robustly made

in the case of the vectorised correlation matrix and the principal eigenvector, than

for cluster vectors. This is due to issues of technical variability, and also due to

the continuous nature of the distribution derived from the Euclidean distance, as

opposed to the discrete Hamming distance. The quantification of preserved pat-

terns of seizure activity within patients is an important verification of the notion

of stereotypy (Schindler et al., 2011). This term pertains to the repeatability of

aspects of seizure evolution within patients and is an important correlate to the

presence of epileptic activity (Schindler et al., 2011). Thus it will be interesting in

future studies to apply the methods presented in this chapter to different types of

epileptic seizure. In general, the finding of conserved, or repeatable, patterns during

seizure evolution adds weight to the notion of determinism in the evolution of brain

dynamics (Schindler et al., 2011) and therefore provides important evidence for the

validity of the dynamical systems approaches employed in Chapters 3 and 4.

Interestingly, the differences in distributions were not restricted to seizure pe-

riods, with inter-ictal epochs also displaying a degree of within-patient similarity

(e.g. third entry in Table 6.2), although these were less pronounced than the seizure

epochs. Thus, we have presented evidence for the conservation of EEG patterns

in inter-ictal periods. An interesting future investigation will be to examine if this

degree of conservation is also present in control subjects without absence epilepsy.

Evidence to the contrary could support an ongoing pathological spatio-temporal

dynamics for absence seizure patients. Also of interest was the deviation of these

distributions from the random case, which was shown not to be due to the asym-

metry in distribution sizes. This suggests that scalp EEG patterns in general are

somehow constrained. This could be due, for example, to reference effects or consis-

tent head geometry. It will be interesting to test these hypotheses further in future

studies.

The methods presented, which enable the quantitative comparison of spatio-

temporal patterns in epileptic multivariate time series are of general importance

in epilepsy research for a number of reasons. Firstly, they facilitate a meaningful

comparison between complex spatio-temporal patterns in different seizures and thus

reveal their degree of consistency or difference (McKeown et al., 1999). While tra-

ditionally comparisons in the morphology of univariate properties are employed in

the classification of epilepsy syndromes, quantitative comparisons based on bivariate

properties have also been shown to be potentially useful (Dondey, 1983). Secondly,

the proposed multivariate method allows the quantitative comparison between ictal

spatio-temporal patterns in clinical EEG data and simulation output from spatially

extended models of brain activity. Current models are typically univariate and make

comparisons to clinical data using the qualitative properties of single channels (for

absence seizure modelling see e.g. Suffczynski et al. (2004), Breakspear et al. (2006),
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Marten et al. (2009a) and references therein). Although these models provide much

insight into temporal brain dynamics, information derived from spatially extended

models is required to appreciate the full extent of spatio-temporal diversity in the

epileptic domain.

Absence seizures are characterised by the appearance on the EEG of spike and

slow wave discharges, a feature that has been the object of representation of various

mean field computer models, e.g. (Breakspear et al., 2006; Marten et al., 2009a).

However, the conservation of spatio-temporal patterns reported in Figure 6.10 ad-

ditionally suggests a manifestation of the underlying mechanisms in the spatial dis-

tribution of the SWDs (not only in their univariate morphology). Similar consid-

erations hold for the so-called partial seizures where epileptic activity only appears

in a subset of scalp channels. Apart from epileptic EEG, other research dealing

with spatio-temporal aspects of the EEG, e.g. the study of sleep patterns and its

disorders, might benefit from the present approach.

In extracting and visualising spatio-temporal patterns from clinical EEG, the

choice of reference is known to affect the patterns observed. Indeed, the problem

of referencing in analysis of spatio-temporal EEG data is well known. A particular

problem is that of contamination of electrode recordings by common reference effects

or long range activity. Nunez estimated that only half of the contribution to a scalp

electrode recording comes from within a 3cm local region (Nunez et al., 1997).

Laplacian methods (such as the Hjorth montage used here) aim to extract a time

series at each electrode more closely related to proximal sources (Nunez and Pilgreen,

1991), and therefore give a better spatial resolution of activity. The effects of choice

of reference have been investigated in a number of studies in relation to seizures with

SWD. Rodin and Cornellier (1989), for example, examined seizure data in linked

earlobes, common average and source derivation (Hjorth) montage. The source

derivation approach was shown to reveal more complex spatio-temporal patterns,

and there was a clear difference in SWD patterns between the three methods.

Traditionally, in EEG analysis, measures of channel association are used to inves-

tigate the degree of “functional connectivity” between regions from which they are

recorded. We must therefore stress that although we have employed an interrelation

measure in the method presented, our aim is not to use the results to make direct

inference regarding associations between underlying brain activity. The use of the

correlation measure in this context is purely to extract spatio-temporal patterns in

order for them to be more succinctly represented and quantitatively compared. In

this sense, the correlation measure we use is solely a means of quantifying the degree

of co-morphology of waveforms. It is also important to note that the estimate of

number of clusters is reliant on the correlation structure of the surrogate data sets,

which have previously been described as embodying “random correlations” (Müller

et al., 2005). We must therefore remember that both the correlation structure and
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the channel auto-correlation contribute to the outcome of the map in the case of

cluster estimation.

For these reasons we make no inference from the number of clusters found or the

allocation of channels to clusters in terms of underlying brain function or connectiv-

ity. However, it is interesting to note that not one of the seizures analysed resulted

in a single cluster, as would be expected in an event that is perfectly synchronised

across the cortex. While the fact that more than one cluster is found in absence

seizures may appear surprising at first glance it is entirely consistent with the pre-

viously reported observations of time delays between SWD time series from linear

measures (Cohn and Leader, 1967; Aarabi et al., 2008). Also using a correlation

matrix approach, evidence for the presence of more than one correlation cluster in

absence EEG has been reported (Baier et al., 2007). However, our estimation of

the number of clusters based on surrogate correlations is free of any arbitrary choice

of reference interval and avoids comparison of patterns with drastically different

Fourier spectral properties.

6.7 Summary

In this chapter we described methods by which spatio-temporal patterns in EEG

data can be vectorised and quantitatively compared. Applying these methods to

EEG recordings from patients with absence seizures enabled the visualisation and

quantification of the degree to which these patterns are conserved within-patient. In

particular we offered further evidence that spatio-temporal patterns during absence

seizures display patient-specific spatio-temporal dynamics. The methods presented

in this chapter will allow the future comparison of simulated spatio-temporal pat-

terns with empirical data and therefore assist in our search for deeper insight into

the mechanisms underlying the generation of epileptic seizures.
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Chapter 7

Conclusions

7.1 Summary of findings

The aim of the current thesis was to advance our understanding of the patho-

physiological mechanisms that lead to the production of abnormal spatio-temporal

EEG dynamics in human epilepsy. In the spirit of systems biology and the physical

sciences it was assumed that these mechanisms can be investigated within the frame-

work of dynamical systems. That is, the assumption was made that the generation

of abnormal rhythms can be formulated in terms of mathematical evolution equa-

tions derived from relevant interactions and processes in the brain. Currently this

is the best method by which to relate underlying mechanisms to the production of

measurable brain activity (Breakspear and Jirsa, 2007). The approach taken in the

thesis was to model the interaction between networks of neural masses, which repre-

sent the mechanisms of spatially extended interactions in the cortex. To summarise,

the main important results were as follows:

Stimulus response dynamics (Chapter 3)

It was demonstrated that long lasting and space dependent, transient response to

perturbation could be produced in networks of nearest neighbour coupled neural

masses with spatial heterogeneities. This provides a first mechanistic account of

the observation of differential responses to spatially varying perturbations. The

hypothesis generated in this study is that regions of functional abnormality exist

(here diminished inhibition) which imbue certain regions of tissue with the capability

to produce prolonged oscillations by direct stimulation. It is proposed that these

“abnormal” regions posses different dynamics in relation to equivalent input levels,

as received to the EPSP of populations of principal neurons. In the backdrop of

“normal” excitable media, this can cause the persistent activation of neural tissue.
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Dynamic intermittency for rhythmic transitions (Chapter 4)

It was demonstrated that a model with “background” and “seizure” dynamics could

make autonomous transitions between these two states in spatially extended sys-

tems. The mechanism in the model relates to the transient synchronisation of ex-

citable neural masses and subsequent de-synchronisation by invasion of the “noisy”

background rhythm. Thus it is proposed that spontaneous transitions to seizure

activity from background can be caused by the activation of intrinsic excitability

dynamics in “normally” functioning regions due to the persistent activation of cer-

tain dynamics in other neural masses. This model therefore predicts the importance

of spatially distributed masses which are more prone to abnormal oscillations. This

is verified by the presence of “microseizures” in human epilepsy (Stead et al., 2010).

Uni-modal firing can underpin SWD (Chapter 5)

It was demonstrated that, when the laminar distribution of neural mass activity

is taken into account, the uni-modal dynamics presumed to underlie surface SWD

can produce a multi-modal waveform. This highlights important problems in the

macroscopic modelling of EEG rhythms and offers some initial solutions to a specific

problem in relation to modelling SWD.

New tools for comparing spatio-temporal patterns (Chapter 6)

The problem of comparison of spatio-temporal patterns was highlighted and new

approaches tested on EEG data from patients with absence epilepsy. Using these

methods, a conservation of patterns during seizure periods was found. The com-

parison of spatio-temporal patterns by feature vector distance will be important in

future for verification of spatially extended models of clinical data.

7.2 General considerations on the modelling ap-

proach

The modelling approach employed in Chapters 3 and 4 proceeded from several im-

portant simplifying assumptions, which therefore must be examined in light of the

results obtained. Firstly, the level of formulation of these mechanisms was chosen to

be at the macroscopic scale in order for the system to be tractable in terms of com-

putation and the exploration of parameter sets, and so that the measurable output

of the system resided at the same level as the production of clinical data. Secondly,

a spatially extended formulation was found to be important in this framework. The

approach in this direction was also a simplified or abstracted one in which EEG

generation was assumed to be underpinned by coupled local units.
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Regarding the first point, it is the author’s opinion that lumped or macroscopic

models of brain activity are currently an essential means of interrogating the dy-

namics of brain activity recorded in clinical scenarios. Perhaps the most crucial

reason for this is that the processes must be abstracted to a degree that enables a

conceptual formulation to be made of the processes under question. The alternative

and often employed tools with which to understand brain activity are microscopic

models containing single neuronal elements. In reality, addressing the problem of

rhythm generation at either of these scales has its advantages and disadvantages,

which are summarised in Table 7.1. It is important to note that these advantages

and disadvantages also exist in the context of understanding treatment in the clin-

ical setting. The models referred to in Table 7.1 are those which embody a notion

of physiologically relevant parameters or variables. Many other more abstract mod-

els can be used to address specific problems in epilepsy such as the distribution of

seizure events, or the theoretical modes for intervention via stimulation, for example

(Kalitzin et al., 2010).

Clearly the choice of scale for modelling studies depends on the questions to be

addressed and the observable data to be investigated. In the case of clinical epilepsy

data, and with questions regarding the role of connectivity in spatially extended

systems for the production of EEG rhythms, the macroscopic scale provides an

essential starting point. However, clear disadvantages in this setting are i) the lack

of direct mechanistic interpretations of the effects of treatment and ii) the lack

of a direct and completely understood link between the output of activity based

macroscopic models and the EEG. Regarding the first point, the models are still

useful as abstract and relativistic inference on the important components of the

system can be made. The second point is an important shortcoming of the approach

currently, and is an important direction for future research. Recent exposure of this

problem has been given by Truccolo et al. (2011), in which the link between firing

activity of neuronal populations and observed EEG rhythms were shown to be non-

trivial in human epilepsy. The details of this link will be crucial to ascertain in future

applications of population firing rate based models for the production of EEG.

Given the choice of macroscopic models to model the generation of spatio-

temporal rhythms we must address the relevance of the coupled network node ap-

proach. Clearly this is a crude approximation to the dynamics of spatially extended

nervous tissue, given that the latter is formed by spatially continuous synaptic in-

teractions. However, the conceptual model of the cortical column provides a hint

that certain functional oscillatory units may exist (Mountcastle, 1997), although

the accuracy of this assumption is unknown (da Costa and Martin, 2010). Despite

the potential shortcomings, there are clear questions that can be addressed within

this framework. For example, abnormal oscillations have been observed in human

epilepsy in recordings from electrodes of the order of 40 µm diameter which suggests
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Microscopic Advantages Disadvantages

Components Single neurons. Fundamental network Often unmeasurable
communication unit. clinically.

Require O(106) for
EEG generation.
This is intractable
computationally and
conceptually.

Parameters Membrane electrical Detailed pharmacological Unmeasurable in humans
properties and effects. Measurable (in vivo).
synaptic mechanisms. and interpretable Variability in space

parameters. unknown (though
can distribute
probabilistically).

Networks Coupled neurons Detailed information Omitted details
transfer mechanisms become important
and dynamics. when inference

is made on
emergent network
properties due
to detailed
models

Macroscopic Advantages Disadvantages

Components Neuronal populations. Closer to EEG Link between population
generation (which activity and EEG is not
is clinically trivial and is incompletely
measurable). understood.
Good coverage of
clinically relevant sizes
of nervous tissue.

Parameters Lumped parameters. Relative exploration No mechanistic link to
Abstract representations of parameters enabled fundamental processes.
of synaptic time by reduced complexity Only relativistic
courses, gains and of the model. interpretation of the
connectivities. effects of parameter

changes e.g. by
intervention.

Networks Coupled oscillators Good coverage of Synchronisation
clinically relevant sizes properties within
of nervous tissue. the neural mass
Effect of coupled are unmodelled.
oscillators directly Connectivity is
investigated. lumped between
Can investigate separate nodes
large scale network
connectivity.

Table 7.1: Comparison of the microscopic and macroscopic modelling approaches.
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that functionally isolated rhythms do emerge. One can then ask, within this frame-

work of the emergence of abnormal rhythms, how do these synchronise or spread

to produce visible abnormalities at a larger spatial scale. Essentially, these are the

questions asked in Chapters 3 and 4. In answering these questions importance was

placed upon the mechanism of dynamic excitability at the macroscopic scale.

7.3 Neural mass excitability

The autonomous transitions observed in our two models rely on the principle of

excitability in spatially extended systems. Crucially, in the systems presented here,

the excitable components are neural masses. The idea of neural mass excitability is

a natural cross-scale extension of the paroxysmal depolarisation shift (PDS), which

led to the coining of the term population PDS (pPDS) in Chapter 3. This is the

very principle that is thought to underlie the production of inter-ictal spikes, which

are considered an archetypal feature of abnormal synchronisation in epileptic tissue

(McCormick and Contreras, 2001) (although it is assumed that the mechanisms of

inter-ictal spikes are not directly related to seizure mechanisms). The transmission

of the excitation response between neural masses makes use of the conceptualisation

of a neural mass as an input to output converter. The formalism employed usually

takes input into a dendritic pulse-to-wave conversion and therefore provides a useful

theoretical link between the micro- and macro- scales (see Chapter 2). This has

allowed, in the current thesis, to examine the effect of neural mass output in spatially

extended systems, via connection of mass output to the input of other masses.

Exploring macroscopic rhythms generated by excitable neural masses leads to

new avenues of research into epileptiform EEG. Firstly, it suggests that one should

seek the neuronal and neural network properties that imbue a local population of

neurons with the capability to give a non-linear threshold response. Traditionally,

single neural mass populations are formulated as linear systems, for example as sec-

ond order linear impulse responses (Freeman, 1975; Robinson et al., 1997). Since

each component of the neural mass model of Jansen and Rit (1995) is linear, the

excitability of this model, and its interesting non-linear dynamics, arises due to

non-linear coupling in the excitatory/inhibitory feedback network. Excitability in

mathematical models residing at the macroscopic scale has not been ubiquitously

reported, though perhaps this is because neural mass models have not been in-

vestigated in this context. Since we consider here that the properties of neural

mass excitability is important, future experimental work should aim to investigate

which neuronal and neural network properties are responsible for these dynamics

in nervous tissue. This defines a truly multi-scale research endeavour, in which the

small scale mechanisms responsible for the emergence of macroscopic level proper-

ties (mass excitability) are sought. Indeed, we might suppose that excitability is a
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truly multi-scale phenomenon, and that the current work puts this into the context

of dynamical systems. In addition, the presence of certain oscillatory modes within

a neural mass may be important. One should then examine, within the neural mass,

which microscopic properties, for example the neural network connectivity, the pres-

ence of certain membrane currents, “pacemaker neurons”, or simply external forcing,

can lead to the production of these rhythms.

The latter point has relevance for multi-scale investigation in systems biology in

general. The question of the relative benefits of top down or bottom up modelling is

an important one in this field (Noble, 2002). Clearly different insights are obtained

at different scales, and the scale at which to approach a problem is an important

consideration. In the above discussion we have highlighted a potential multi-scale

approach to the problem of epilepsy. The notion is that one can identify, at the

macroscopic scale, important properties of the system under investigation for the

production of high-level observations. In the case presented here, one such property

is neural mass excitability, which has consequences for rhythm generation in spatially

extended models of epilepsy. On identification of important macroscopic properties,

one can proceed to investigate, at a smaller spatial scale, the components that lead

to their emergence. Thus one can define an iterative scheme for the investigation of

complex, multi-scale biological systems in the spirit of “middle-out” systems biology

(Noble, 2002).

7.4 The importance of network connectivity and

spatial heterogeneity

Another important new direction in the work undertaken in this thesis is that het-

erogeneities in macroscopic formulations of brain dynamics were modelled, and their

effects on rhythm emergence investigated. This is clearly an important advance as it

allows many important new questions regarding epilepsy to be investigated, such as

the role of spatially varying functional and structural abnormalities and the modes

of transition from isolated, sub-clinical microseizures to full clinical seizures. It also

allows one to reframe the emergence of rhythms from single neural mass dynamics

to self-organising dynamics in networks of connected brain regions. Perhaps most

crucially we present new conceptual frameworks for icto- and epilepto-genesis. In

particular, these concepts, in the spatially extended neural mass model framework,

are no longer restricted to the time domain, in that nervous tissue should become

more likely to seize over time. In the new frameworks proposed in this thesis, these

are now also rendered into the spatial domain, such that one may begin to think

of a distribution of epileptogenic locations in space. This is demonstrated in the

model of absence seizure generation by a spatially distributed system parameter

which places certain network nodes into dynamics more likely to be “abnormal”.
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The intermittency model permits the possibility that these spatial abnormalities

might be ever-present in the epileptic brain. This is in contrast to inference gleaned

from previous models in which temporal changes in local excitatory or inhibitory

efficacy (Wendling et al., 2002), or changes in the communication between the thala-

mus and cortex (Breakspear et al., 2006) are necessary for the onset of pathological

rhythms. A further possibility is that spatial ictogenesis presents a hybrid of these

two approaches in which the pre-ictal state is defined by certain spatially localised

regions of nervous tissue changing parameters in the pathological direction, which

imbues the locally connected network with self-organising, seizure generation po-

tential. Much evidence exists for the spatial ictogenesis model. For example in

WAG/Rij (Lüttjohann et al., 2011) and GAERS (Polack et al., 2007) models of ab-

sence seizures, some deep cortical layers of the somatosensory cortex are thought to

be ictogenic. In addition, abnormal spatially restricted activity has been observed

in human epilepsy at small spatial scales (Stead et al., 2010).

In this thesis, epileptiform rhythm generation is placed firmly in the domain of

network dynamics. A major implication of this is that one should clearly address

the following two mechanistic components, namely i) the network connectivity struc-

ture and ii) the (heterogeneous) distribution of intrinsic node dynamics. Clearly in

evaluating the role of these components, one should aim to conduct validating exper-

iments in vitro and in vivo. Thus, future experimental direction in epilepsy research

should be placed upon i) evaluating intra-cortical and cortico-cortical connectivity

and ii) evaluating the repertoire of intrinsic neural mass dynamics. The first point

is currently being addressed at large scales by diffusion tensor imaging, whilst at the

local level, studying the response of neurons to photo-stimulation of their counter-

parts can be utilised to map the probability of connectivity with respect to distance

(Boucsein et al., 2011). Regarding the second point, emphasis should be placed on

determining the extent to which local neural masses are excitable to stimuli and how

this varies across nervous tissue and across normal and epileptic brains. Work in

this direction has been undertaken recently (Lüttjohann et al., 2011). In general we

should explore the oscillatory repertoire and stimulus responses of local masses, i.e.

at the mesoscopic scale. This will ensure that our models of node dynamics are rele-

vant for investigation of network connectivity in epilepsy. This clearly puts emphasis

on the active probing of tissue rather than the passive observation of rhythms in

different states (Suffczynski et al., 2008; Kalitzin et al., 2010), and in turn has impli-

cations for our models of ictogenisis, as expanded below and discussed by Lopes da

Silva et al. (2003a) and Milton (2010), for example.
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7.5 Modes of transition to seizure activity

A further implication of the current thesis is in relation to our abstract conceptu-

alisation of dynamic models of transition in epilepsy. Two predominant models in

this context are i) the presence of a normal and a pathological attractor (bistabil-

ity) and ii) the formation of new attractors due to shifts in underlying parameters

(bifurcations). These models have been examined in single location neural mass

formulations (Suffczynski et al., 2004; Breakspear et al., 2006) as well as in spatially

extended models (Kramer et al., 2005; Shusterman and Troy, 2008; Kim et al., 2009).

An important finding in the current thesis was the presence of intermittency in a

physiologically motivated neural mass model. This mode of transition had previ-

ously been alluded to for seizures though was proposed not to be present in models

of neural interactions (Kalitzin et al., 2010). One of the appealing properties of the

intermittent mode of transition proposed in Chapter 4 is that it relies on mecha-

nisms of synchronisation and excitability. The former is often assumed for large

amplitude rhythmic activity seen on the EEG and is often explicit in definitions of

epileptic activity as being underpinned by abnormal synchrony. In this context, the

findings of Chapter 4 give new conceptual foundations for studying the mechanisms

of ictogenesis.

Combined with the model of Chapter 3, new emphasis is placed upon tran-

sient dynamics as a model for epileptiform rhythms. In the case of Chapter 4 these

rhythms are transient excursions into a certain region of the brain attractor, whereas

Chapter 3 supposes a transient deviation between rest states. The latter is therefore

an example of a case in which stable phase space entities will not inform completely

on the waveform generated by this transient excursion. From the dynamical systems

perspective, the current thesis suggests a shift in emphasis from the study of stable

structures to also include transient phase space trajectories and separatrices (unsta-

ble manifolds). These will explain the excitability of the nodes and the waveforms

of transient rhythms that are expected to emerge due to transient self-organisation.

The idea that epileptiform activity could be underpinned by transient dynamics,

rather than stable attractors has also recently been proposed by Milton et al. (2011).

In this case, the mechanism for transient dynamics is based on the presence of

metastability in neuronal systems with delays (Milton et al., 2010). In particular,

this mechanism has been used to describe seizures which occur at the transition

between macroscopic states (Milton et al., 2011). In an abstract formulation, a

transient limit cycle could be observed when the system switched between two fixed

points. In the context of epilepsy, a general dynamical mechanism might be the

emergence of bistability at the cusp of evolution of a new stable state, and the

emergence of metastable dynamics around the burgeoning separatrix.

The idea that epileptiform events can be modelled as complex transients has

important implications. First of all it suggests that we might have to fundamentally
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re-structure our analysis of dynamical systems with respect to inference regarding

the mechanisms of epilepsy. In particular, it would no longer be sufficient to show

that a certain stable structure in phase space exists. Rather, one would have to

demonstrate the existence of a transient phase space trajectory with relevant features

in comparison to clinical or experimental data. Thus, a numerical continuation

approach in which stable structures are mapped over changing parameters, or the

use of prolonged numerical simulation to demonstrate the long-term behaviour of

a system will not be sufficient. An additional property of interest will be to map

the response of a system to perturbation. Interestingly, this brings the study of

dynamical systems more closely into line with our experimental and human systems

of interest wherein the observation of complex transient responses to stimulation are

ubiquitous (Penfield and Jasper, 1954; Lüttjohann et al., 2011).

Indeed, this shift in emphasis will also require changes in the way in which ex-

periments into, and observation of, epilepsy are conducted. It may become apparent

that the analysis of spontaneous transitions might not give enough information to

characterise system dynamics in epilepsy. The transients present in real epilepsy

systems will need to be explored by stimulation. Crucially, since we are motivated

by the use of spatially extended neural mass models, the spatio-temporal dynamics

of stimulus responses will need to be analysed and catalogued. This is in line with

recent model based suggestions that active stimulation paradigms might be more

appropriate for predicting the onset of seizure activity (Suffczynski et al., 2008).

7.6 The analysis of spatio-temporal patterns

Finally, we also addressed the problem of the quantitative comparison of spatio-

temporal patterns. If it is accepted that seizures can be defined in terms of changes

in spatio-temporal patterns our models and data analysis should exist in the spatio-

temporal domain. In future it will not be sufficient to demonstrate the emergence

of a certain uni-variate rhythm in models of epileptiform activity. In addition to the

aforementioned investigations of the stimulation response dynamics, it will also be

required to classify these rhythms in the spatio-temporal domain. To this end, we

have demonstrated the application of measures derived from the eigenvectors of the

correlation matrix. In reality, this analysis represents just one important feature of

these patterns, which derives from the interrelations between channels. In future,

a more comprehensive description of epileptiform spatio-temporal patterns will be

given by at least one other feature, namely the distribution of frequencies. Together

with the amplitude of waveforms, these features represent the fundamental aspects

of epileptiform rhythms. Thus, in future the characterisation of EEG rhythms by

these features and their quantitative comparison in 2 or 3 dimensional feature vector

distance space should be explored.
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