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RÉSUMÉ 
 

L’épilepsie est une des maladies neurologiques les plus fréquentes, touchant près d’un 

pourcent de la population mondiale. De nos jours, bien qu’environ deux tiers des patients 

épileptiques répondent adéquatement aux traitements pharmacologiques, il reste qu’un tiers des 

patients doivent vivre avec des crises invalidantes et imprévisibles. Quoique la chirurgie 

d’épilepsie puisse être une autre option thérapeutique envisageable, le recours à la chirurgie de 

résection demeure très faible en partie pour des raisons diverses (taux de réussite modeste, peur 

des complications, perceptions négatives). D’autres avenues de traitement sont donc souhaitables. 

Une piste actuellement explorée par des groupes de chercheurs est de tenter de prédire les crises à 

partir d’enregistrements de l’activité cérébrale des patients. La capacité de prédire la survenue de 

crises permettrait notamment aux patients, aidants naturels ou personnels médical de prendre des 

mesures de précaution pour éviter les désagréments reliés aux crises voire même instaurer un 

traitement pour les faire avorter. Au cours des dernières années, d’importants efforts ont été 

déployés pour développer des algorithmes de prédiction de crises et d’en améliorer les 

performances.  

Toutefois, le manque d’enregistrements électroencéphalographiques intracrâniens (iEEG) de 

longue durée de qualité, la quantité limitée de crises, ainsi que la courte durée des périodes 

interictales constituaient des obstacles majeurs à une évaluation adéquate de la performance des 

algorithmes de prédiction de crises. Récemment, la disponibilité en ligne d’enregistrements iEEG 

continus avec échantillonnage bilatéral (des deux hémisphères) acquis chez des chiens atteints 

d’épilepsie focale à l’aide du dispositif de surveillance ambulatoire implantable NeuroVista a 

partiellement facilité cette tâche. Cependant, une des limitations associées à l’utilisation de ces 

données durant la conception d’un algorithme de prédiction de crises était l’absence 

d’information concernant la zone exacte de début des crises (information non fournie par les 

gestionnaires de cette base de données en ligne). Le premier objectif de cette thèse était la mise 

en œuvre d’un algorithme précis de prédiction de crises basé sur des enregistrements iEEG canins 

de longue durée. Les principales contributions à cet égard incluent une localisation quantitative 

de la zone d’apparition des crises (basée sur la fonction de transfert orientée –DTF), l’utilisation 

d’une nouvelle fonction de coût via l’algorithme génétique proposé, ainsi qu’une évaluation 

quasi-prospective des performances de prédiction. Les résultats ont montré une amélioration des 
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performances de prédiction par rapport aux études antérieures, atteignant une sensibilité moyenne 

de 84.82 % et un temps en avertissement de 10 %.  

La DTF, utilisée précédemment comme mesure de connectivité pour déterminer le réseau 

épileptique (objectif 1), a été préalablement validée pour quantifier les relations causales entre les 

canaux lorsque les exigences de quasi-stationnarité sont satisfaites. Ceci est possible dans le cas 

des enregistrements canins en raison du nombre relativement faible de canaux. Pour faire face 

aux exigences de non-stationnarité, la fonction de transfert adaptatif pondérée par le spectre 

(Spectrum weighted adaptive directed transfer function - swADTF) a été introduit en tant qu’une 

version variant dans le temps de la DTF. Le second objectif de cette thèse était de valider la 

possibilité d’identifier les endroits émetteurs (ou sources) et récepteurs d’activité épileptiques en 

appliquant la swADTF sur des enregistrements iEEG de haute densité provenant de patients 

admis pour évaluation pré-chirurgicale au CHUM. Les générateurs d’activité épileptique étaient 

dans le volume réséqué pour les patients ayant des bons résultats post-chirurgicaux alors que des 

foyers différents ont été identifiés chez les patients ayant eu de mauvais résultats post-

chirurgicaux. Ces résultats démontrent la possibilité d’une identification précise des sources et 

récepteurs d’activités épileptiques au moyen de la swADTF ouvrant la porte à la possibilité d’une 

meilleure sélection d’électrodes de manière quantitative dans un contexte de développement 

d’algorithme de prédiction de crises chez l’humain. 

Dans le but d’explorer de nouvelles avenues pour la prédiction de crises épileptiques, un 

nouveau précurseur a aussi été étudié combinant l’analyse des spectres d’ordre supérieur et les 

réseaux de neurones artificiels (objectif 3). Les résultats ont montré des différences 

statistiquement significatives (p<0.05) entre l’état préictal et l’état interictal en utilisant chacune 

des caractéristiques extraites du bi-spectre. Utilisées comme entrées à un perceptron multicouche, 

l’entropie bispectrale normalisée, l’entropie carrée normalisée, et la moyenne ont atteint des 

précisions respectives de 78.11 %, 72.64% et 73.26%. 

Les résultats de cette thèse confirment la faisabilité de prédiction de crises à partir 

d’enregistrements d’électroencéphalographie intracrâniens. Cependant, des efforts 

supplémentaires en termes de sélection d’électrodes, d’extraction de caractéristiques, d’utilisation 

des techniques d’apprentissage profond et d’implémentation Hardware, sont nécessaires avant 

l’intégration de ces approches dans les dispositifs implantables commerciaux.     
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ABSTRACT 
 

Epilepsy is a chronic condition characterized by recurrent “unpredictable” seizures. While 

the first line of treatment consists of long-term drug therapy about one-third of patients are said to 

be pharmacoresistant. In addition, recourse to epilepsy surgery remains low in part due to 

persisting negative attitudes towards resective surgery, fear of complications and only moderate 

success rates. An important direction of research is to investigate the possibility of predicting 

seizures which, if achieved, can lead to novel interventional avenues.  

The paucity of intracranial electroencephalography (iEEG) recordings, the limited number of 

ictal events, and the short duration of interictal periods have been important obstacles for an 

adequate assessment of seizure forecasting. More recently, long-term continuous bilateral iEEG 

recordings acquired from dogs with naturally occurring focal epilepsy, using the implantable 

NeuroVista ambulatory monitoring device have been made available on line for the benefit of 

researchers. Still, an important limitation of these recordings for seizure-prediction studies was 

that the seizure onset zone was not disclosed/available. The first objective of this thesis was to 

develop an accurate seizure forecasting algorithm based on these canine ambulatory iEEG 

recordings. Main contributions include a quantitative, directed transfer function (DTF)-based, 

localization of the seizure onset zone (electrode selection), a new fitness function for the 

proposed genetic algorithm (feature selection), and a quasi-prospective assessment of seizure 

forecasting on long-term continuous iEEG recordings. Results showed performance improvement 

compared to previous studies, achieving an average sensitivity of 84.82% and a time in warning 

of 10 %. 

The DTF has been previously validated for quantifying causal relations when quasi-

stationarity requirements are met. Although such requirements can be fulfilled in the case of 

canine recordings due to the relatively low number of channels (objective 1), the identification of 

stationary segments would be more challenging in the case of high density iEEG recordings. To 

cope with non-stationarity issues, the spectrum weighted adaptive directed transfer function 

(swADTF) was recently introduced as a time-varying version of the DTF. The second objective 

of this thesis was to validate the feasibility of identifying sources and sinks of seizure activity 

based on the swADTF using high-density iEEG recordings of patients admitted for pre-surgical 
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monitoring at the CHUM. Generators of seizure activity were within the resected volume for 

patients with good post-surgical outcomes, whereas different or additional seizure foci were 

identified in patients with poor post-surgical outcomes. Results confirmed the possibility of 

accurate identification of seizure origin and propagation by means of swADTF paving the way 

for its use in seizure prediction algorithms by allowing a more tailored electrode selection. 

Finally, in an attempt to explore new avenues for seizure forecasting, we proposed a new 

precursor of seizure activity by combining higher order spectral analysis and artificial neural 

networks (objective 3). Results showed statistically significant differences (p<0.05) between 

preictal and interictal states using all the bispectrum-extracted features. Normalized bispectral 

entropy, normalized squared entropy and mean of magnitude, when employed as inputs to a 

multi-layer perceptron classifier, achieved held-out test accuracies of 78.11%, 72.64%, and 

73.26%, respectively. 

Results of this thesis confirm the feasibility of seizure forecasting based on iEEG recordings; 

the transition into the ictal state is not random and consists of a “build-up”, leading to seizures. 

However, additional efforts in terms of electrode selection, feature extraction, hardware and deep 

learning implementation, are required before the translation of current approaches into 

commercial devices.  
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CHAPTER 1 INTRODUCTION 

1.1 Epilepsy 

1.1.1 General definition, prevalence, incidence, and etiology 
Epilepsy is one of the most common neurological disorders affecting ~300,000 people in Canada 

and 70 million worldwide [1]. It was first defined by Jackson in 1873 as “an occasional sudden 

and excessive discharge of grey matter”. This definition lasted for a long period of time, during 

which, investigations have given more insights into the characterization and mechanisms of this 

medical disorder on several levels. The fundamental elements of epilepsy are unprovoked, 

recurrent seizures [2] resulting from abnormal excessive hypersynchronous neuronal discharges. 

Seizure manifestations vary greatly depending on the site, intensity and propagation of the 

seizure discharge. In between seizures, brief (milliseconds) asymptomatic discharges called 

interictal epileptiform discharges (also known as spikes) may occur [3]. Although epilepsy can 

appear at any age, its incidence is higher in children and elderly (after the age of 65) [4]. The 

main causes of epilepsy include genetic mutations, gliosis from acquired brain insults (hypoxia, 

ischemia/stroke, trauma, and infection), malformations of cortical development, vascular 

malformations, brain tumours and degenerative disorders.   

1.1.2 Epileptic seizures 
A seizure is defined as a transient disturbance of brain functions due to an abnormal electrical 

synchronization of groups of neurons. Epileptic seizures can be divided into two main categories: 

focal and generalized [5]. Seizures are said to be focal when they start from a restricted area of 

the brain (thus in one hemisphere) while generalized seizures involved the whole of both 

hemispheres [6]. Focal seizures can be further classified into frontal, temporal, insular, parietal, 

and occipital, depending on the lobe involved at seizure onset. In generalized seizures, there is 

impaired consciousness from the onset as the excessive electrical discharge is widespread from 

the beginning. With focal seizures, earliest symptoms depend on the lobe of seizure onset (ex. 

visual symptoms with occipital lobe seizures, sensory symptoms in parietal lobe seizures, motor 

symptoms in frontal lobe seizures etc.). Consciousness is frequently not impaired at the onset of a 

focal seizure but such impairment may occur as the discharge spreads to larger areas of the brain 
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and even manifest as bilateral tonic-clonic seizures if the discharge spreads to the whole brain 

[6].  

Studies over the last few years have suggested that network connectivity is at the centre of 

epilepsy. A more complex ‘epileptic network’ concept has replaced the classical simplistic notion 

of a single epileptic focus [7]. In the ‘epileptic network’, the synchronized activity of ‘nodes’ 

with increased excitability (or decreased inhibition) is involved in the generation of pathological 

interictal epileptiform discharges as well as seizures [8, 9]. Vulnerability to seizure activity in any 

one part of the network is influenced by the activity elsewhere in the network, and the network as 

a whole is responsible for epileptic discharges and seizures. The network structures are connected 

functionally and structurally and the seizure activity can be entrained from any of its various parts 

[10]. One (or more) node(s) would have a level of excitability so high, that it (they) could 

autonomously generate seizure onset fast oscillations, driving or entraining through excitatory 

connections other distant nodes (acting as relays of those fast oscillations). Seizures can 

subsequently propagate in a variably extensive way that might involve any region or neural 

structure with anatomic connections to the primary seizure network. Seizure manifestations 

depend on these phenomena, which in some cases can mimic a normal cognitive process or, on 

the contrary, disrupt it. This ‘epileptic network’ concept may help reconcile some observations, 

such as the complex electrophysiological patterns seen during many focal seizures in intracranial 

electroencephalography (EEG) studies, often with the involvement of several distinct structures 

in as much that a clear qualitative (visual) identification of the area of seizure onset is difficult 

and the non-negligible failure rates (from 10 to 50%, notably in refractory focal epilepsy cases 

with normal magnetic resonance imaging (MRI)) of classical epilepsy surgeries, which consist of 

the resection of a single ‘epileptogenic zone’[7]. 

1.1.3 Electroencephalography  

1.1.3.1 General definition and brief history  
Because epilepsy is fundamentally the result of abnormal neuronal discharges, EEG is the single 

most important investigative technique for the study of epilepsy. EEG consists in an 

electrophysiological recording of the brain’s electrical activity. The electroencephalogram 

(recorded signal) displays spatial and temporal voltage variations due to ionic currents flowing 



3 

 

within brain neurons. It is characterized by a high temporal resolution (order of ms), allowing the 

evaluation of dynamic cerebral functions [11]. 

The first reported electrical activity-based neurophysiological monitoring was performed by 

Canton (British neuropsychologist) in 1875 in monkeys and rabbits [12]. It took another half 

century until the first recording of human brain electrical activity was performed by Hans Berger 

(German psychiatrist) in 1924 [12]. By the 1950’s EEG became widely used in clinical practice 

[13]. EEG is most widely used in clinical practice for the diagnosis of patients with epilepsy, 

suspected seizures (e.g. psychogenic seizures), unusual spells, and sleep disorders [14]. It has 

also been adopted to monitor the depth of anaesthesia during surgery [15]. In addition, EEG is 

extensively investigated in several research areas namely neuroscience, brain computer 

interfaces, and neuropsychology [11]. 

1.1.3.2 Brief background of EEG  
EEG displays neuronal electrical activity resulting from the summation of inhibitory and 

excitatory postsynaptic potentials of large group of neurons. It is considered to be mainly 

produced by pyramidal cortical neurons, which are arranged in parallel, perpendicularly to the 

surface of the brain, and have their cell bodies mainly in layers III and V of the cerebral cortex 

[16]. Spatial organization of the pyramidal cortical neurons creates a cortical dipole layer, that is 

assumed to be the electrical source of scalp-recorded EEG signals. Scalp EEG measures brain’s 

electrical activity by placing electrodes directly on the scalp (Figure 1.1). Thus, the electrical 

signal displayed on a selected channel is produced by clusters of similarly angled cortical neurons 

near the recording site. Each contact records a minimum of 6 cm2 of synchronous cortical activity 

(104 – 106 neurons). The summed electrical activity can be modelled as a dipole (a field with 

negative and positive poles) [17]. Direction of the energy flow of the generated dipole is parallel 

to the angle of the involved pyramidal cells. Negative poles are optimally sensed when they are 

perpendicular to the recording electrode. In such case, the dipole’s positive end is subcortical and 

can be only detected with depth electrodes. Thus, scalp EEG highly depends on the orientation 

and distance between the dipole and the corresponding recording electrode [18]. The highly 

resistive nature of the skull, the inhomogeneity and anisotropy of the intervening tissue as well as 

the head’s complex geometry result in a relatively high attenuation and distortion at the EEG 

signal level, with amplitudes, which  are around 10 times smaller than those of extracellular field 

potentials [11].  
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Figure 1.1 Scalp EEG electrode placement according to the 10-10 international electrode 
placement system [19] 

1.1.3.3 Intracranial EEG  
Intracranial electroencephalography (iEEG) allows to overcome the distortion of signals from the 

skull’s resistance. It is an invasive electrophysiological investigation requiring the placement of 

macro-electrodes directly on the surface or inside of the brain, allowing for a higher signal to 

noise ratio (as compared to scalp recordings). A grid or strip of electrodes can be placed on or 

slipped under the brain (Figure 1.2A) to record the brain’s electrical activity. Grid and strip 

electrodes can be complemented by depth contacts to record deep brain structures (Figure 1.2B). 

Thus, electrical fields generated by groups of neurons are measured intracranially. Unlike scalp 

EEG, electrode positions are chosen in a patient-specific manner during iEEG investigations. 

1.1.3.4 EEG frequency bands  
The EEG has a relatively large frequency bandwidth that can be sub-divided into well-defined 

rhythms or oscillatory waveforms. Main EEG rhythms are generally classified based on 

amplitude, frequency range, and area of the recorded brain signals [11]. The delta rhythm (0.5 – 4 

Hz) is characterized by high amplitude signals usually observed in sleep over frontal and 

occipital areas in adults and children respectively. The theta rhythm (4 – 8 Hz) shows an irregular 

morphology and is characteristic of sleep and drowsiness in adults. The alpha rhythm (8 - 13 Hz) 

is observed over the posterior regions of the head during wakefulness. The beta rhythm (13 – 30 

Hz) appears mainly in frontal and central regions during motor tasks but usually decreases during 

the execution of movements.  
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Figure 1.2 Intracranial electroencephalography. A: Intracranial study combining grid and strip 

electrodes as well as depth electrodes; B: Depth electrodes and grid electrodes; C: Skin flap 
sutured back with recorded wires tunnelling out; D: 3-D Representation of a subdural grid 
electrodes, strip electrodes and depth electrodes; E: Raw iEEG recordings from 5 electrode 

contacts. 
 
The gamma rhythm (30 – 80 Hz) is associated with information processing, consciousness and 

perception.  

1.1.4 The EEG in focal epilepsy 
Patients with focal epilepsy exhibit focal epileptiform abnormalities. These are usually divided 

into a) ‘interictal’ discharges (‘spikes’) which are brief (20-200ms) asymptomatic paroxysmal 

EEG transients clearly distinguished from background; and b) ‘ictal’ discharges which are sudden 

focal rhythmic activity with characteristic pattern of evolution (with respect to amplitude, 

frequency and spatial distribution) lasting at least several seconds to minutes. These ictal 

discharges are generally associated with clinical seizure manifestations (electroclinical seizures) 

but can sometimes be clinically silent (electrical seizures) [20]. With a routine 30- min EEG, 

interictal spikes can be found in approximately 50% of epileptic patients (and in up to 84% by the 

third serial EEG).  
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Because routine EEGs are brief in duration, seizures are rarely captured. In circumstances 

when seizures need to be recorded, long-term video-EEG monitoring is performed. Long-term 

video-EEG monitoring is particularly useful for the evaluation of drug-refractory epileptic 

patients who are candidate for epilepsy surgery [21]. It may provide useful information to 

localize the epileptic focus that needs to be removed to ensure seizure-freedom. Electrically, 

seizures typically appear as a sudden rhythmic activity evolving in frequency, amplitude and 

distribution over time with an abrupt ending. Seizures are analysed to infer on the side 

(lateralization) and site (localization) of the epileptic focus. For example, rhythmic epileptic 

discharges over the right temporal surface electrodes at seizure onset suggest a right temporal 

lobe focus. During their 1-2 week stay in the epilepsy monitoring unit, several (usually 3 to 5) 

seizures are recorded to make sure that the patient has only one epileptic focus, rather than 

multiple foci. While this can be easily achieved in patients with very frequent attacks, withdrawal 

of anticonvulsant medication under clinical supervision may be required when seizures do not 

occur with sufficient regularity for proper recording [22]. 

When scalp EEG and complementary non-invasive studies (such as brain MRI and positron 

emission tomography (PET)) fail to adequately localize the focus, invasive intracranial EEG 

studies are generally required to delineate the focus with more precision. These studies consist of 

the implantation of intracranial electrodes through craniotomy or burr holes under general 

anaesthesia in brain regions of suspected epileptogenicity, based on presurgical non-invasive tests 

and hypotheses about the localization of the epileptogenic zone. A post-implantation MRI is then 

used to verify the precise 3D location of each electrode contact. Whereas a large cortical surface 

(of about 6-10 cm2) is required to generate a recordable signal by extracranial electrodes, 

intracranial electrodes can pick up potential changes occurring over only a few millimetres of 

cortex with excellent temporal resolution (~ 1ms). While intracerebral EEG overcomes the 

sensitivity limitations of scalp electrodes because they are closer to bioelectric sources of 

epileptiform activity, only a limited number may be safely implanted to minimize risk of 

haemorrhage, oedema or infection. With intracranial EEG, several patterns have been reported at 

seizure onset but the most frequent one is the sudden appearance of a low voltage fast activity 

discharge with subsequent increase in amplitude and decrease in frequency. Propagation may be 

gradual or extremely rapid to surrounding and more distant structures for variable reasons, 

notably because of the connectivity of involved structures. Although intracranial electrodes allow 
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for better definition of the epileptogenic zone, its complete delineation may sometimes remain 

elusive. The reason for this is, in many cases, the seizure discharge may appear quite complex by 

visual inspection, with rapid involvement of more than one brain region due to the rapid 

propagation of discharges. Finally, it must also be mentioned that inadequate intracranial 

electrode coverage may produce a false electrographic picture as the first signal recorded may 

simply represent propagation if there is no electrode over the actual seizure onset zone.  

1.1.5 Treatment of epilepsy           

1.1.5.1 Medical treatment of epilepsy  
Following the diagnosis of epilepsy, the first line of therapy consists of the use of antiepileptic 

drugs. Several antiepileptic drugs are currently available on the market. The choice of the 

antiepileptic drug depends on several factors such as the type of seizures, the epileptic syndrome, 

antiepileptic drug side effects, comorbid medical conditions (such as psychiatric, renal or hepatic 

conditions for example), potential interactions with other drugs taken by the patients and costs 

[23].  

While there are more than 15 antiepileptic drugs to choose from, a third of patients continue 

to suffer from uncontrolled seizures. An important study by Kwan and Brodie has shown that 

after the first antiepileptic drug used, seizures in approximately 50% of patients are controlled, 

while in another 10%, seizures are eventually controlled by using a second antiepileptic drug. 

However, for the remaining patients, whatever next drug is chosen, only 5% of the patients show 

eventual control [24]. Potential explanations for this drug-refractoriness include the fact that 

several antiepileptic drugs share the mechanisms of action (ex. several are presynaptic voltage-

gated sodium channel blockers), the fact that most of these drugs were discovered/screened using 

the same old animal models of epilepsy, or that the patients have an intrinsic multidrug resistance 

mechanism. Finally, it must be noted that although majority of the epileptic patients are well 

controlled on medication, this may sometimes be accompanied by side effects (dizziness, fatigue, 

intermittent double vision, mental slowing, somnolence …). Furthermore, although a patient’s 

epilepsy is generally well controlled, it does not necessarily mean that he cannot have 

breakthrough seizures from time to time. Besides, adherence to treatment is a major issue as some 

studies, using a variety of direct and indirect methods, indicate that 30-60% of epileptic patients 

do not fully adhere to their antiepileptic drug [23].  
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Alternative possible treatments for patients with refractory epilepsy are discussed below.  

1.1.5.2 Non-medical treatment of epilepsy 
Several non-medical therapies are available. The ketogenic diet is sometimes used in very 

specific types of drug-resistant epilepsy, notably, for some epileptic encephalopathies in young 

children [25]. This treatment, however, is quite challenging and long-term consequences of a 

high fat, low sugar diet remains uncertain particularly on growth, cardiovascular and bone health. 

Vagus nerve stimulation is another non-medicinal option, which consists of the chronic 

stimulation of the left Vagus nerve using a generator inserted under the pectoralis muscle. 

However, this treatment is considered a palliative treatment. Indeed, while 30-40% of patients 

can experience a 50% reduction of their baseline seizure frequency, less than 3% of the patients 

become seizure-free [26].  

Epilepsy surgery is also an interesting option which consists in the surgical resection of the 

epileptic focus to cure seizures. In order to localize the epileptic focus to be removed, patients 

first need to undergo a battery of complementary non-invasive tests [27], which include: a) a 

good clinical history (seizure semiology can provide clues to focus localization); b) an MRI 

(looking for causal epileptogenic lesions); c) video-EEG monitoring (to observe seizure 

semiology and to characterize epileptic activity between and during seizures); and d) positron 

emission tomography (to reveal localized areas of abnormal glucose use). Some centers are also 

equipped to perform ictal single photon emission computed tomographies (revealing localized 

areas of increased blood flow during seizures), simultaneous EEG and functional MRI (analysing 

areas of transient increased blood flow and decrease in reduced haemoglobin during averaged 

spikes) and magnetoencephalography (to pinpoint sources of spike-triggered magnetic field 

disturbances). In case, these complementary non-invasive studies fail to adequately localize the 

epileptogenic zone, an invasive EEG study is then performed as mentioned above (required for 

about 25% of the patients with refractory epilepsy enrolled in the pre-surgical evaluation 

protocol) [27]. Despite important advances in the field of presurgical evaluation and epilepsy 

surgeries, it must be noted that success rates of these approaches remain modest. In temporal lobe 

epilepsy surgeries, the probability of becoming seizure-free is approximately 75% in lesional 

cases (i.e. with an MRI identifiable lesion) and only 50% in nonlesional cases. In frontal lobe 

epilepsy surgeries, the probability of becoming seizure-free is only 60% in lesional and a mere 

35% in nonlesional cases [28]. The most obvious explanation for surgical failures is inaccurate 
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localization of the epileptic focus [29]. This can in part be accounted for by limitations in the 

current localization techniques. Furthermore, not all patients can benefit from surgery, such as 

patients whose epileptogenic zone overlies eloquent functionally important brain regions 

(language, visual and sensorimotor cortices), patients with multifocal epilepsy and patients for 

whom the seizure onset could not be adequately identified. 

1.2 Problem statement 

Because of their unpredictable nature, uncontrolled seizures represent a major personal handicap 

and source of worry for patients. In addition, persistent seizures constitute a considerable burden 

on healthcare resources, accounting for a high number of disability days or unemployment and 

low annual income [1, 30]. Some difficulties and challenges faced in the treatment of drug-

refractory patients can be overcome by algorithms able to anticipate seizures. Seizure detection 

and prediction algorithms have been proposed in an attempt to deliver therapies during times of 

high likelihood of seizures [31]. It has been recently demonstrated that seizures are more likely to 

be controlled by means of closed-loop stimulations as compared to open loop strategies [32]. 

Although detection algorithms are currently better in terms of sensitivity (SS) and specificity 

(SP) than prediction algorithms, the activation of seizure-aborting interventions (such as focal 

cooling, electrical stimulation or release of anticonvulsants) after the electrical seizure onset 

means that patients could already have disabling clinical manifestations or that the brain has 

reached a point of no return after which it will evolve into a seizure with impaired consciousness 

or with bilateral tonic-clonic convulsions [33]. 

1.2.1 Seizure detection 

Over the last decade, we and others have mainly focused on seizure detection using scalp and 

iEEG recordings [34, 35]. Our group has worked on: a) a low-power integrated circuit, intended 

for real-time epileptic seizure detection, which was tested using intracranial long-term EEG 

recordings from 7 patients with an average seizure detection delay of 13.5s [36]; b) a low-power 

closed-loop neuro- stimulator composed of a detector chip and an electrical stimulator assembled 

with recording electrodes [37]; and c) a responsive focal drug delivery system based on a new 

asynchronous seizure detector (~16s latency) [31]. 
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Figure 1.3 NeuroVista ambulatory monitoring device’s implantation in dogs with naturally 

occurring focal epilepsy [38].  
 

Recently, the responsive neurostimulation (RNS) system (NeuroPace Inc.) was approved by 

the food and drug administration (FDA) as an adjunctive treatment of adult patients with 

medically refractory focal epilepsy [39]. The device continuously monitors brain activity and 

provides electrical stimulation upon seizure detection. Unfortunately, reduction in seizure 

frequency was only modest (44% at one year) [32, 40] and the device could only retain a low 

number of brief detected epochs due to power and storage constraints [41]. On the other hand, the 

NeuroVista ambulatory monitoring device was recently proposed to continuously acquire iEEG 

data and transmit them to an external processing unit for subsequent storage and analysis [42]. 

The implantable part of the device combines a lead assembly (4 x 4-contacts’ silicone strips) and 

telemetry unit. Intracranial EEG signals are amplified and sampled at 400 Hz within the 

implantable telemetry unit and then transmitted to a personal advisory device that features an 

embedded seizure detection algorithm, a user interface, and an email algorithm for output [42]. 

Interestingly, long-term continuous iEEG recordings spanning more than one year in some dogs, 

were recently acquired and made freely available at the ieeg.org portal. 
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Figure 1.4 Five-channels iEEG illustrating typical epileptic brain states; IT: intervention time 

Conceptually, any intervention based on seizure detection is faced with the problem that for 

most patients, overt clinical manifestations are already present by the time a seizure is detected 

(~10-15s), at which stage, aborting a seizure is more difficult (possibly past the ‘point of no 

return’). In contrast, seizure forecasting investigates the possibility of detecting patterns before 

seizure onset, providing more warning time and intervention much before the point of no return.  

1.2.2 Seizure prediction 

Cumulative data now indicate that there is a gradual transition between the interictal (in between) 

and ictal (during) seizure states, known as the preictal state [43-47]. Thus, seizure prediction can 

be considered as the early detection of the preictal state. Figure 1.4 shows 5-channel- iEEG 

recordings, illustrating typical brain states. The intervention time (IT) lies between the end of the 

preictal period and seizure onset. Unfortunately, the ability to accurately identify the pre-seizure 

state remains elusive [33, 48, 49]. The guidelines proposed by Mormann et al. 2007 have paved 

the way to more realistic and reproducible results although less optimistic [33]. In a recent 

review, we critically analysed all the existing work on seizure prediction, from signal acquisition 

to performance evaluation [48]. Although results varied between studies, many showed 

acceptable performances that could be appealing for the design of advisory/intervention devices. 

There is, however, a great potential for improvement and optimization in the seizure forecasting 

framework [33, 48, 49]. 

Some of the critical aspects that need to be addressed to improve seizure forecasting 

performances are briefly discussed below: 
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 1) In a great majority of previous seizure prediction investigations,  an initial set of only six 

electrodes (3 focal, 3 afocal) have been used [33, 48, 49]. This is mainly because these were the 

only ones available in international databases, selected based on visual inspections of seizure 

origin and propagation by expert neurophysiologists. Snyder et al. (2008) emphasized that 

reliable seizure forecasting algorithms should be implemented on electrodes placed in brain areas, 

where preictal changes are detectable [50]. Gadhoumi et al. (2012) reported promising results by 

including three bipolar channels for the 4-deepest contacts implanted in the seizure onset zone 

[51]. In contrast, several endeavours claimed that remote channels could also carry predictive 

information [52, 53]. Subsequently, Gadhoumi et al. (2015) highlighted the need for including 

bilateral neocortical electrodes in the design of seizure predictors [49]. On the other hand, due to 

the explosive nature of seizure propagation through the brain, recent studies have demonstrated 

an imperfect visual identification of the epileptogenic regions and favour the use of quantitative 

functional connectivity-based methods [7, 10, 54-56].  

 2) Previous seizure forecasting investigations have generally looked at discontinuous 

recordings either from the University of Freiburg database, the European Epilepsy Database, 

Boston database, or local recordings. Considering the established effects of drug tapering/changes 

in medication, changes in vigilance states, and circadian influences on the dynamics of EEG 

recordings, more caution should be considered when assessing seizure forecasting performances 

based on such discontinuous recordings. In addition, because the discriminability of iEEG 

features is highly dependent on time and the non-stationary nature of EEGs can culminate in mis-

estimation of algorithm performance, long-term continuous recordings that mimic real clinical 

scenarios, rather than discontinuous recordings, are recommended [57]. Gadhoumi et al. (2015) 

established that the assessment of seizure forecasting algorithms on continuous long-term EEG 

recordings encompassing several conditions and states is sufficient to prove its clinical validity 

[49]. 

3) Previous feature selection efforts focused on ranking methods to select the most 

discriminative characteristics [45, 58, 59]. Although much effort has been made towards 

identifying unique precursors of seizure activity, no single feature has been shown to be capable 

of individually characterizing the preictal state [33, 48, 49]. However, a combination of features 

may be able to display brain dynamics during transition to seizure [49]. Thus, it is important to 
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use incremental feature selection algorithms that tend to establish which combination of 

features is discriminative of the preictal state. 

 4) Spectral band power, which aims to display amplitude modulations within defined 

frequency bands over time, has been most commonly used in previous seizure forecasting 

investigations. While this feature could quantify phase changes, it failed in identifying 

interactions between different frequencies. In contrast, higher order spectral measures based on 

cross frequency coupling have been proposed to be the carrier mechanism for the relationships of 

global and local neuronal processes.  Two recent studies in the field of seizure prediction 

attempted to explore cross frequency and reported promising performances [45, 60]. Investigating 

other types of frequency coupling may be an interesting and promising avenue for feature 

extraction in epileptic seizure prediction. 

1.3 Objectives, hypotheses, and research work overview 

The overarching goal of this thesis was the development of an accurate seizure forecasting 

algorithm based on continuous long-term iEEG recordings. 

Our specific aims are:  

AIM 1: To develop an accurate seizure forecasting algorithm, validated on long-term continuous 

canine bilateral iEEG recordings acquired using an ambulatory monitoring device.  

We hypothesize that 1) an adequate selection of electrodes based on an adaptive effective 

connectivity approach and 2) a new incremental feature selection based on a genetic algorithm 

can improve seizure forecasting capabilities. 

Article 1: Elie Bou Assi, Dang K. Nguyen, Sandy Rihana and Mohamad Sawan, A Functional-

Genetic Scheme for Seizure Forecasting in Canine Epilepsy, IEEE Transactions on Biomedical 

Engineering (IF: 4.288), 65(6), 1339-1348, June 2018, included in the journal’s feature story/ 

website main page, https://doi.org/10.1109/TBME.2017.2752081. 

This work was presented as an invited talk at the 1st Symposium on the Applications of Artificial 

Intelligence in Medicine (Montreal, May 2018).  

AIM 2: To investigate the feasibility of accurate identification of generators and sinks of seizure 

activity using high density human iEEG recordings based on the spectrum weighted adaptive 
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directed transfer function (swADTF) in patients with drug-resistant epilepsy and being 

investigated for potential epilepsy surgery. 

We hypothesize that the use of effective connectivity measures based on the swADTF allows an 

accurate identification of seizures’ origin and propagation (network of seizure activity).  

Article 2: Elie Bou Assi, Dang K. Nguyen, Sandy Rihana and Mohamad Sawan, Effective 

Connectivity Analysis of Operculo-Insular Seizures, Epilepsy Research (IF: 2.49), submitted 

(July 2018). 

This work was presented as part of an Investigators’ workshop entitled Insular Epileptic 

Networks at the 71st Annual Meeting of the American Epilepsy Society (Washington DC, 

December 2017).  

AIM 3: To assess the feasibility of seizure forecasting based on higher order spectral analysis 

and artificial neural networks.  

We hypothesize that 1) capturing information about multifrequency behaviours, quantified by 

complex metrics, related to the concept of cross-frequency coupling and 2) the design of a 

classifier based on such inputs can emerge as a new avenue for seizure forecasting. 

Article 3: Elie Bou Assi, Laura Gagliano, Dang K. Nguyen, Sandy Rihana and Mohamad 

Sawan, Leveraging Higher Order Spectra and Artificial Neural Networks: Towards New 

Precursors of Seizure Activity, Scientific Reports (IF: 4.122), revised version submitted (July 

2018). 

This work will be presented as part of the Artificial Intelligence in Epilepsy workshop at the 2018 

Canadian League Against Epilepsy Scientific Meeting (St John’s, September 2018). 

In parallel, additional scientific contributions were published during this thesis through auxiliary 

collaborative work:  

Additional related Articles (2):  

Elie Bou Assi, Dang K. Nguyen, Sandy Rihana, Mohamad Sawan, Towards accurate prediction 

of epileptic seizures: A review, Biomedical Signal Processing and Control, 34, 2017, 144-157, 

ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2017.02.001. 
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Laura Gagliano, Elie Bou Assi, Dang K. Nguyen, Sandy Rihana, and Mohamad Sawan, Bilateral 

preictal signature of phase-amplitude coupling in canine epilepsy, Epilepsy Research, 139, 2018, 

123-128, https://doi.org/10.1016/j.eplepsyres.2017.11.009 

Conference proceedings (4):  

Elie Bou Assi, Dang K. Nguyen, Sandy Rihana, and Mohamad Sawan, "A hybrid mRMR-genetic 

based selection method for the prediction of epileptic seizures," 2015 IEEE Biomedical Circuits 

and Systems Conference (BioCAS), Atlanta, GA, 2015, pp. 1-4. 

Elie Bou Assi, Dang K. Nguyen, Sandy Rihana, and Mohamad, "A 2D clustering approach 

investigating inter-hemispheric seizure flow by means of a Directed Transfer Function," 2016 3rd 

Middle East Conference on Biomedical Engineering (MECBME), Beirut, 2016, pp. 68-71. 

Elie Bou Assi, Dang K. Nguyen, Sandy Rihana and Mohamad Sawan, "Refractory epilepsy: 

localization, detection, and prediction," 2017 IEEE 12th International Conference on ASIC 

(ASICON), Guiyang, 2017, pp. 512-515. 

Laura Gagliano, Elie Bou Assi, Dang K. Nguyen, and Mohamad Sawan, Bicoherence of 

intracranial EEG: A novel precursor of seizure activity in canine epilepsy, submitted to the 2018 

2nd IEEE Life Sciences conference, Montreal, 2018. 

Related Conference abstracts (3):  

Elie Bou Assi, Dang K. Nguyen, Sandy Rihana, M. Sawan, "On the proper selection of 

electrodes for seizure forecasting in canine epilepsy" International Conference on Technology 

and Analysis of Seizures, 20-23 Aug. 2017 

Laura Gagliano, Elie Bou Assi, Dang K. Nguyen, Sandy Rihana, M. Sawan, "Bilateral Preictal 

Signature of Phase Amplitude Coupling in Canine Epilepsy" International Conference on 

Technology and Analysis of Seizures, 20-23 Aug. 2017  

Elie Bou Assi, Dang K. Nguyen, Sandy Rihana, M. Sawan, "Dimensionality reduction in seizure 

prediction studies" (Epilepsy Currents), 69th Annual Meeting of the American Epilepsy Society, 

4-8 Dec. 2015 
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This thesis is organized as follows: Chapter 2 reviews the general framework of reliable 

algorithmic seizure prediction studies, discussing each component of the whole block diagram. It 

explores steps along the pathway from signal acquisition to adequate performance evaluation that 

should considered in the design of an efficient seizure advisory/intervention system. Chapter 3 

briefly introduces different signal processing approaches used in this thesis. Chapters 4, 5, 6 

consist of published/submitted papers that addresses the 3 main objectives of this work. Chapter 

7 and 8 respectively elaborates a general discussion and conclusion of the entire thesis.  
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CHAPTER 2 LITERATURE REVIEW 
 
To date, very interesting reviews of seizure prediction have been published [33, 49], but 

none has been specifically dedicated to classification methods in an algorithmic seizure 

prediction framework. We start by presenting basic conventions and considerations for reliable 

seizure prediction. Various seizure prediction approaches adopted by the epilepsy research 

community are discussed while paying special attention to algorithmic studies because of their 

applicability in seizure advisory/intervention implantable devices. The basics, history, and 

advancements in algorithmic studies are detailed in a block-by-block fashion. We have reviewed 

state-of-the-art achievements in each block, highlighting signal processing methods that have 

contributed to progress and yielded realistic evidence in the field. Several acquisition modalities 

are covered, focusing on intracranial (iEEG) and/or scalp EEG recordings. The algorithmic 

studies reviewed are based on personal and international databases as well as long-term 

recordings with ambulatory devices. Feature extraction covers linear and nonlinear methods with 

both univariate and multivariate approaches. Prominent feature selection techniques, classifiers as 

well as regularization functions are compared. The discussion section emphasizes current issues 

and required considerations with analyses of the progress made in each block.  

2.1 State-of-the-art 

2.1.1 Basic conventions in seizure prediction studies 
Seizure detection employs algorithms that aim to detect seizure onset. Seizure prediction looks at 

the possibility of forecasting seizure occurrence and is therefore intended for fulfillment much 

earlier than detection. This review focuses solely on algorithmic seizure prediction studies. 

Published works were selected to cover different signal processing strategies proposed in a 

seizure forecasting framework. When several studies using similar processing approaches were 

found, only those adhering to the recommendation for reliable seizure prediction were selected 

[33]. Studies proposing novel methods, but not adhering to the reliable forecasting 

recommendations, were discussed, highlighting potential pitfalls. Numerous investigations have 

demonstrated gradual transition between interictal (in-between) and ictal (during ) seizure states, 

known as the preictal state [49]. Thus, seizure prediction can be considered as early detection of 

the preictal state. Some recent studies have added the notion of intervention time (IT) or seizure 

horizon [38]. IT, assumed to lie between the end of the preictal period and seizure onset, should 
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ensure enough time for intervention and help to distinguish seizure prediction from simple 

seizure detection. 

2.1.2 Different approaches to seizure prediction  
Seizure prediction is an active research topic dating back to the 1970s. In a detailed review on the 

predictability of epileptic seizures, Mormann et al. [33] presented a chronological overview of 

seizure prediction studies and their findings. Early approaches searched for precursors from scalp 

EEG with linear methods, such as autoregressive modeling [61, 62]. Then, studies suggesting the 

possibility of preictal phenomena started emerging. The latter – generally based on nonlinear 

dynamics [63] – were, however, limited to investigations of the preictal state, without taking the 

normal brain state into account. They were followed by proof-of-principle and controlled studies 

on predictability that tackled the issue of specificity by making comparisons between preictal and 

interictal states. Although these early findings were optimistic, the absence of statistical 

validation and reproducibility was a major constraint in the development of clinical devices. They 

led to a phase that Mormann et al. [33] called “the rise of skepticism”, during which studies based 

on extensive databases revealed poorer performance than earlier ones. It highlighted the need for 

statistical validation and long-term multi-day EEG recordings made possible at the turn of the 

millennium due to booming mass storage capability. Current seizure prediction approaches can 

be grouped into 2 main categories: analytical/statistical and algorithmic. Since the main goal of 

prediction studies is seizure control, it can be achieved by implementing algorithms able to track 

the preictal state. Accurate seizure-prediction algorithms may open possibilities for on-demand, 

EEG-triggered interventions once the preictal state is detected. Below, we review algorithm-

based studies in a methodological manner, discussing each component of the whole block 

diagram. 

2.1.3 Algorithmic-based studies 
These studies, which implement algorithms to detect the preictal state based on EEG recordings, 

typically start by preprocessing EEG signals to enhance their quality, extract different features 

able to display preictal state dynamics, and then select the most discriminative ones as inputs to 

the classifier. Most seizure prediction algorithms have a regularization function as a 

postprocessing step to smooth classifier output. Performance of the algorithm is then evaluated 

(Figure 2.1). 
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Figure 2.1Typical block diagram of algorithmic-based studies 

2.1.3.1 Signal acquisition 

2.1.3.1.1 Recording type: scalp EEG vs iEEG  
Both scalp and iEEG recordings have been considered in seizure prediction studies. Scalp EEG 

captures brain activity with equally-spaced surface electrodes glued to the skin while iEEG 

involves intracranial electrodes positioned in areas of suspected epileptogenicity identified from 

available clinical, structural and functional data collected prior to implantation [64]. Several 

studies have explored the utility of scalp recordings for seizure prediction [33]. For example, 

Teixeira et al. [65] compared the performance of a subject-specific algorithm on scalp EEG, 

iEEG and mixed scalp and iEEG recordings. Performance values were slightly better in terms of 

sensitivity and false prediction rate (FPR) with scalp EEG (sensitivity=73.55%±24.83%; 

FPR=0.28 h-1±0.28 h-1) than intracranial recordings (sensitivity=67.66%±21.83%; FPR=0.39 h-

1±0.37 h-1). However, when comparing statistical significance of the results with the Kruskal-

Wallis (K-W) test (p=0.01), these differences were found to be nonsignificant. Rasekhi et al. [66] 

tested the preprocessing effects of 22 linear univariate features on the performance of seizure-

prediction methods and concluded that scalp EEG (sensitivity=76.67%, FPR=0.08 h-1) fared 

better than iEEG recordings (sensitivity=68.7%, FPR=0.33 h-1). Their work was, however, 

limited by the small number of subjects and lacked statistical validation. 
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Table 2.1Recent studies comparing scalp and iEEG performances 

Authors Year Recording 
type 

Number of 
patients 

Sensitivity 
(%) FPR (h-1) Statistical 

testing 
Bandarabadi 

et al. [45] 2015 Scalp 16 73.98 0.06 None* 
iEEG 8 78.36 0.15 None* 

Teixeira et 
al. [65] 2014 Scalp 227 73.5±24.83 0.28±0.28 K-W 

iEEG 42 67.66±21.83 0.39±0.37 K-W 
Rasekhi et 

al. [66] 2013 Scalp 8 76.67 0.08 None 
iEEG 2 68.7 0.33 None 

*No statistical testing was undertaken to compare scalp and iEEG recordings 
 

In a recent study of spectral power quantification between 2 spectral bands of 2 channels, 

Bandarabadi et al. [45] reported comparative performance of scalp (sensitivity=73.98%; 

FPR=0.06 h-1) and iEEG (sensitivity=78.36%; FPR=0.15 h-1) recordings. Higher FPR values 

were attributed to the fact that more features were selected in the case of scalp EEG compared to 

iEEG signals (11.5 vs. 6.6 on average). Hence, the performance of seizure prediction algorithms 

on scalp EEG electrode recordings (obtained within the confines of a supervised epilepsy 

monitoring unit) would appear to be just as good as or superior to iEEG recordings, probably 

because the former can provide information on general brain state rather than localized 

information. It must be remembered, however, that on a practical level, iEEG recordings are 

more suitable for chronic intervention devices, as continuous surface EEG recordings during 

daily activities are impractical and fraught with artifacts. Table 2.1 summarizes the findings of 

recent seizure-prediction studies comparing scalp and iEEG performances.   

2.1.3.1.2 Patient database 
Early studies were based on local databases acquired from patients undergoing evaluation for 

epilepsy surgery. These investigations were limited to the analysis of short periods prior to 

seizures, small numbers of patients and limited amounts of ictal events, which restricted the 

possibility of assessing algorithm specificity over the interictal period. Schulze-Bonhage et al. 

(2011) [67] used  the nonparametric correlation coefficients of Kendall’s tau [68] and found 

statistically significant correlations in the sensitivity of seizure prediction systems with number of 

seizures and average recording duration. They raised the need for long-term recordings 

containing a higher number of seizures and allowing reliable estimation of algorithm sensitivity 

and specificity, ideally in prospective testing [67].  
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Table 2.2 Web-based seizure-prediction databases 

Database Number of 
subjects 

Number of 
seizures 

Type of 
recordings 

Total hours 
of EEG 

recordings (h) 

Sampling 
frequency 

(Hz) 
Flint Hills 10 59 iEEG 1,419 239.74  

Boston 23p 198 Scalp 940  256  
Freiburg 21 88 iEEG 708 256 
European 
Epilepsy 
Database 

250 2,400 Scalp and/or 
iEEG 

More than 
40,000 250-2,500  

p: the database includes recordings from pediatric patients 
 
Several web-based databases have emerged in recent years, such as those from the University of 

Bonn, the University of Freiburg and Boston Children’s Hospital. European Database on 

Epilepsy [69] is the largest currently-available seizure prediction database, containing 2,500 

seizures and 45,000 h of EEG recordings acquired from more than 250 patients, 50 of whom 

underwent iEEG with up to 122 channels sampled at 250-2,500 Hz. Table 2.2 lists the sizes and 

specifications of web-based seizure prediction databases in terms of subject and seizure numbers, 

EEG recording type and duration as well as sampling frequency. Apart from such databases of 

EEG signals acquired in epilepsy-monitoring units, recent studies [38, 70, 71] have started 

adopting signals provided by the NeuroVista ambulatory monitoring system which allows 

continuous iEEG data over months, albeit from a small number of contacts [41]. Cook et al. [70] 

prospectively assessed the performance and safety of a seizure advisory system in 15 NeuroVista-

implanted patients. It would be highly valuable to the seizure prediction community should such 

long iEEG recordings of naturally-occurring seizures become available in the future. Deploying 

the same device, Howbert et al. [38] evaluated the feasibility of seizure prediction in 3 dogs with 

naturally-occurring focal epilepsy. Fortunately, the data from their study are freely available on 

the iEEG portal (https://www.ieeg.org/). 

2.1.3.2 Signal Preprocessing  
This step is usually employed in any EEG analysis and attempts to remove artifacts, increase 

signal-to-noise ratio, and prepare signals for adequate feature extraction 

2.1.3.2.1 Denoising and filtering  
Since seizure-prediction algorithms are still in their exploratory, proof-of-principle stage, 

major approaches cover band-pass filtering of recorded signals into frequency ranges of interest 
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as well as removing bad segments identified by visual inspection [72]. Temporal filtering with 

digital filters, such as Infinite impulse response (IIR) and Finite impulse response (FIR) filters, 

has been mainly undertaken for seizure prediction [59, 73]. Since FIR filters induce a linear phase 

response, zero phase filtering is performed by applying them to the signal, inverting it in time, 

reapplying the FIR filters and then inverting the signal back [59, 74]. This results in zero phase 

distortion [75]. On the other hand, IIR filters have demonstrated good and uniform acceptance in 

EEG frequency of interest with quasi-no ripples in stop- and pass-bands [73]. Park et al. [72] 

explored the impact of spatial (bipolar) and/or time-differential methods on seizure prediction 

performance. They concluded that both approaches improved the sensitivity and specificity of 

seizure prediction with better results after spatial preprocessing. Bandarabadi et al. [46] found 

that space differential preprocessing decreases the discriminability between preictal and interictal 

classes in iEEG recordings.    

2.1.3.2.2 Data segmentation 
To extract features from preprocessed EEG recordings, they should be segmented into smaller 

windows assumed to have similar characteristics meaningful to EEG analysis. The duration of 

these windows in the context of EEG analysis in epilepsy has varied from 5 to 60 s. Park et al. 

[72] adopted moving window analysis engaging a 20-s window with half overlap. Others decided 

on a 5-s window with no overlap [45, 59, 65, 66]. Such a relatively short window is considered to 

be a compromise between the ability to capture specific patterns and stationarity assumptions. 

Howbert et al. [38] tested a segment of 1 min with no overlap in a study investigating the 

feasibility of seizure prediction in dogs with naturally-occurring epilepsy. Moghim and Come 

[43] adopted a 5-s window for EEG signal segmentation, then averaged features over long-term 

(180-s) and short-term (9-s) segments. These authors concluded that long-term outperformed 

short-term features.    

2.1.3.2.3 Preictal time choice  
Although early investigations into the feasibility of seizure forecasting date back more than 25 

years, no standard or optimal preictal time slot has yet been defined. The American Epilepsy 

Society’s seizure prediction challenge (https://www.kaggle.com/c/seizure-prediction) adopted a 

preictal time of 1 h prior to seizures, with a fixed intervention time of 5 min. Some studies have 

chosen fixed preictal times, such as 2 min [76], 20 min [77], 30 min [72], and 90 min [38], while 
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others have considered several different preictal times. In an extensive study, Teixeira et al. [65] 

tested 4 different preictal times (10, 20, 30, and 40 min) and observed no significant differences 

in terms of sensitivity, but longer preictal time was found to significantly reduce FPR. These 

authors concluded that preictal time of 30.47 min was the most appropriate average value, 

leading to a patient-specific best predictor. Because a firing power technique was included for 

regularization in their study, which structurally decreased FPR levels when longer preictal times 

were used, care should be taken before generalizing the results to studies using other 

regularization methods. Bandarabadi et al. [45] tested the same 4 preictal times and reported an 

optimal average of 33.7 min. In a study comparing 30 different features, Mormann et al. [47] 

adopted 4 different preictal times based on prior literature: 5, 30, 120 and 240 min. Recently, 

Bandarabadi et al. [46] searched for the optimal preictal time using a statistical measure based on 

amplitude distribution histogram (ADH). They varied preictal periods from 5 to 180 min prior to 

electrographic seizure onset and chose the one maximizing the discriminability between interictal 

and preictal periods. Interestingly, optimal preictal time was found to significantly vary between 

seizures even for the same subject. They reported an average of 44.3 min with optimal values 

ranging from 5 to 173 min. Conversely, Moghim and Come [43] proposed a preictal time-varying 

algorithm called Advanced Seizure Prediction via Pre-Ictal Relabeling. Preictal time was varied 

from 0 to 20 min prior to seizure with seizure occurrence period (SOP) fixed at 5 min. These 

authors started by fixing a 5-min window that ended at seizure onset. This window corresponds 

to the t=0 predictive model. Then, with a 1-min step, the window was moved far from seizure 

onset until t=20 min. The algorithm can be reformulated as starting from 0 until 20 min 

intervention time with steps of 1 min and constant SOP of 5 min. The authors [43] evaluated 

performance of the proposed algorithm by S1 score (harmonic mean of sensitivity and 

specificity) and claimed performance superiority of the predictive model corresponding to t=1 

min. Although optimal preictal time was not declared, it can be assumed to be 6 min. When 

comparing performance variations across patients among all predictive models, those 

corresponding to t=0 (seizure prediction between 0 and 5 min in advance) or t=14 min (seizure 

prediction between 14 and 19 min in advance) were the most reliable. Considering that each 

study uses a different algorithmic strategy, performance comparison is not reliable at this stage. 

However, it is clear that no preictal time can be considered optimal or standard.  
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2.1.3.2.4 Intervention time choice  
The study by Moghim and Come [43] gave optimistic results. The performance superiority of 

predictive models (t=1 min) and (t=14 min) ensures that, although not adopted in early studies, 

relatively longer intervention times may be investigated for seizure prediction. In contrast, using 

an Ngram-derived seizure prediction method Eftekhar et al. [78] analyzed three ITs (10, 20, and 

30 min) with a SOP of 10 min and found that shorter ITs (10 min) resulted in increased 

sensitivity. Schelter et al. [79] reported sensitivity as function of IT. Investigated ITs ranged 

between 2 and 40 min while FPR and SOP were fixed to 0.15 FP/h and 10 min respectively. 

Although this study included only the first 4 patients of the Freiburg seizure prediction database, 

interesting results were reported. Findings revealed a patient specific pattern of the SPH resulting 

in above chance performances when choosing adequate ITs (patients 1 and 4). A significant 

prediction performance was observed in ITs within 4-12 min and 18-24 min for patients 1 and 4, 

respectively. No specific conclusions could be deduced from patients 2 and 3 whose sensitivities 

did not beat those achieved by an unspecific predictor but, in general, lower ITs increased 

sensitivity results. It is highly recommended that these interesting findings be validated on a 

larger dataset. In an attempt to use a uniform set of parameters across all patients, the same group 

[80] adopted a fixed IT of 2 min achieving average sensitivities of 82%  and 89%  using the 

dynamic similarity index and the mean phase coherence, respectively. Similarly, recent seizure 

prediction studies adopting a fixed intervention time of 5 min have reported promising 

performances [38, 71]. Such classification strategies would allow more intervention time with 

chronic implantable devices. 

2.1.3.3 Feature extraction  
An extensive list of features has been proposed [33], and EPILAB is a MATLAB toolbox for 

computing the main features used in seizure prediction [73]. Some features are based on 

univariate measures while others include information extracted from a combination of multiple 

channels and are called multivariate. Features have been also classified as linear and nonlinear 

[33]. Mormann et al. [33] presented an extensive review of features, along with their 

mathematical formulation, used in seizure forecasting studies until 2007. In what follows, we will 

limit ourselves to most prominent characterizing measures while reviewing recent proposed 

methodologies in each subsection.  No specific type of features has been validated as the best, but 

Mormann et al. [47] reported that combining multivariate and univariate features results in better 
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predictive systems. In an extensive study supported by statistical validation and performance 

assessment, Mormann et al. [47] compared 30 bivariate and univariate features found in the 

literature. Bivariate measures exhibited higher statistical significance with constant baseline and 

were able to reveal preictal changes at least 240 min before seizures. On the other hand, preictal 

characteristics were found 5-30 min before seizures with univariate measures. An interesting 

outcome in this study was that linear features performed almost equally and sometimes even 

better than nonlinear ones. This finding was validated by Harrison et al. [81] who showed that 

when tested on long-term EEG recordings, the most promising nonlinear features were not 

predictive at all. McSharry et al. [82] established that nonlinear measures (correlation density) did 

not increase forecasting performance. They explained that the nonlinear nature of a signal does 

not necessarily require complicated nonlinear measures [33, 82]. Park et al. [72] assessed the 

linear features of spectral power, and explained the limitations of nonlinear measures in terms of 

computational intensiveness along with the difficulty in using them in real-time algorithms 

embedded in chronic-intervention, implantable devices. As addressed by McSharry et al. [82], the 

use of nonlinear measures can only be justified if they outperform linear features. 

2.1.3.3.1 Univariate linear measures  
Statistical measures, such as variance, skewness and kurtosis, have been adopted in several 

seizure prediction studies. Aarabi et al. [83] reported increased kurtosis and decreased variance 

during the preictal state. In addition, spectral band power features have been shown to be 

effective in EEG signal classification and have been considered extensively in seizure prediction. 

Five standard frequency bands have been defined in classical EEG analysis: delta (0.5-4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-128 Hz). Mormann et al. [47] 

reported power transfer from low to high frequencies during the preictal state. Since EEG signals 

contain much more power in the low-frequency range, a normalization procedure is usually 

preferred [45, 72]. It consists of computing relative spectral power by dividing the power in each 

of these frequency bands by the total power of the signal. Compared to other frequency bands, 

gamma band features have demonstrated their suitability for seizure prediction [59, 72]. Netoff et 

al. [84] suggested splitting the wide gamma band into 4 sub-bands (30-47, 53-75, 75-97, 103-128 

Hz). This particular splitting excludes powerline interference from the data, enhancing the 

discriminatory power of features. Hjorth mobility (HM) and Hjorth complexity (HC) have been 

shown to  increase during the preictal state [47]. In a comparative study of 30 features, Mormann 
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et al. [47] evaluated the performance of measures for which changes occur constantly on a similar 

level and on the same channel(s) across all seizures. HM and HC were found to be the best 

univariate performers. Furthermore, since power in an EEG signal dominates below 40 Hz, 

spectral edge power has been proposed as the lowest frequency up to which half of total power is 

contained in a signal. It is considered to be a characterizing measure of signal power distribution 

[85]. Decorrelation time, defined as first zero crossing of the autocorrelation function, has been 

reported to decrease prior to seizures [47, 73]. Moghim and Come [43] computed accumulated 

energy by summing the successive values of energy from a series of time-moving windows and 

ascertained that long-term energy (180 s) outperformed short-term energy (9 s) features. 

Although signal energy has been successfully employed in some seizure prediction studies, 

Mormann et al. [47] noted that it was unable to discriminate between preictal and interictal states 

above chance levels. In several seizure prediction studies, EEG signals were modeled as an 

autoregressive (AR), moving average model, and several parameters that described its evolution, 

such as prediction error, served as features. It was stated that EEG signals are more likely to be 

predicted by an AR model during the preictal period and thus prediction error decreases [73]. 

Direito et al. [58] discerned that AR model predictive error was the best predictor in patients 

exhibiting the highest performance values. However, no statistical validation was undertaken. 

Gadhoumi et al. 2013 [86] demonstrated the ability of wavelets’ energy to achieve above-chance 

prediction performances in 7 of 17 patients with medial temporal lobe epilepsy. Table 2.3 reports 

univariate features employed in seizure prediction.   

2.1.3.3.2 Univariate nonlinear measures  
Based on the fact that the brain passes through several dynamic states, a set of nonlinear features 

derived from the dynamic systems’ theory has been proposed, such as correlation dimension [87], 

largest Lyapunov exponent [63], and dynamic similarity index [77]. Mormann et al. [47] 

observed an increase in correlation dimension prior to seizure onset, while Lehnertz and Elger 

[87] reported a decrease 5-25 min prior to seizure onset. Largest Lyapunov (Lmax) exponent 

quantifies the convergence of nearby state-space trajectories. Although the first investigations 

revealed a decrease in Lmax several minutes before seizures [63], the contradictory results 

obtained indicate an increase 30 min prior to seizure onset [47].  
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Table 2.3 Prominent univariate features used in algorithmic seizure prediction studies 
Authors Year Dataset Measure Type Preictal 

time (min) Patients Type of 
recordings SS (%)  SP (%)/ 

FPR (h-1) 
Statistical 
validation 

Howbert et al. [38] 2014 Melbourne 
(ambulatory) Spectral power  Linear 90 3γ iEEG  78.6a % 0.08a h-1 

Comparison 
with poisson-

process 
predictor 

Teixiera et al. [65] 2014 EPILEPSIAE 

Decorrelation 
time 

Linear 10, 20, 30, 
40 278 

Scalp 73.55 ± 
24.83 % 

0.28 ± 
0.28 h-1 

Kruskal-
Wallis test of 
significance 

Energy 

HM and HC  

Relative power 

Statistics 

iEEG 67.66 ± 
21.83 % 

0.39 ± 
0.37 h-1 

SEP and SEF 

AR model error 

Wavelets energy 

Gadhoumi et al. 
[86] 2013 Personal Wavelets energy 

and entropy Linear 6.3-22δ 18 17 85% 0.35 h-1 
Comparison 
with random 

predictor 

Park et al. [72] 2011 FSPEEG Relative spectral 
power 

Linear 
 30  18 iEEG 97.5 % 0.27 h-1 No 

Netoff et al. [84] 2009 FSPEEG Relative spectral 
power Linear 5 9 iEEG 77.78 % 0 h-1 No 

 
Mormann et al. 

[47]  

 
2005 

 
Personal 

Energy 

 
 

5, 30, 120, 
240 

 

5 
 

 
iEEG 

 

 
67.66 ± 
21.83 % 

 

 
0.39 ± 
0.37 h-1 

 

 
Seizure time 
surrogates 

HM and HC  

Relative power 

Statistics 

SEP and SEF 

AR model error 

 
 

Wavelets energy 
Local flow 

 
Algorithmic 
complexity  

Loss of 
recurrence 

Moghim and Come 
[43] 2014 FSPEEG 

Signal energy Linear 

variable 21 iEEG 91.14 % 99.55 % 

Comparison 
with random 
and baseline 
predictors 

DWT 
Correlation 
dimension 

Non-
linear Lyapunov 

exponent 

C. Alvarado- Rojas 
et al. [88] 2014 EPILEPSIAE Phase amplitude 

CFC 
Non-
linear 60  53 iEEG 66* % 0.33* h-1 

Comparison 
with random 

predictor 

Sackellares et al. 
[89] 2006 Personal  

Largest 
Lyapunov 
exponent 

Non-
linear 

30  

10 iEEG 
80-100§ 

% 

 

0.56-0.71 
h-1 

Comparison to 
periodic and 

random naïve 
predictors 

60  0.27-1.4 
h-1  

90  0.19-0.29 
h-1 

120 0.15-0.24 
h-1 

150  0.12-0.18 
h-1 

180  0.10-0.16 
h-1 

Winterhalder et al. 
[90] 2003 Personal  Similarity index Non-

linear 30  21 iEEG 42 % 0.15 h-1  No 

Aschenbrenner-
Scheibe et al. [91] 2003 FSPEEG Correlation 

dimension 
Non-
linear 10, 20, 50 21 iEEG 8.3-38.3 

%ϐ 0.1 No 

Lehnertz et al. [87] 2001 Personal  Correlation 
dimension 

Non-
linear n.m. 59 iEEG 47 % 0 h-1 No 

Le Van Quyen et 
al. [77] 1999 Personal Dynamic 

similarity index 
Non-
linear  20 13 iEEG n.m. n.m. No 

SS: sensitivity; SP: specificity; FPR: False Prediction Rate; FSPEEG: Freiburg seizure prediction EEG database; γ: the study involves 3 dogs 
implanted with the NeuroVista ambulatory monitoring device; a: average across 3 dogs; n.m.: not mentioned; δ:actual duration of preictal period 
varied depending on the availability of continuous preictal data; ϐ: depends on length of prediction window; §: sensitivity was fixed at 80 and 
100% while FPR was reported; * average across 7 patients with statistical significant results  
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A comparative study of 30 linear and nonlinear features by Mormann et al. [47] found that  

univariate nonlinear measures (correlation dimension, Lyapunov exponent) were unable to 

significantly perform better than chance. Le Van Quyen et al. [77] proposed the dynamic 

similarity index as a measure of similarity between reference and moving test windows. 

However, by the turn of the millennium, the reliability of initial optimistic results was questioned 

by Winterhalder et al. [90] and Aschenbrenner-Scheibe et al. [91]. Other nonlinear univariate 

measures, such as correlation entropy [92], marginal predictability [93], state space dissimilarity, 

local flow and algorithmic complexity, have been proposed, but lack of reproducibility limited 

their use in future studies [33]. Recently, motivated by the fact that human iEEG studies have 

identified spatially-distributed modulation of cortical high frequency oscillations in the gamma 

band by theta oscillations and slow waves, recent studies have adopted slow modulation of high-

frequency gamma activity as a measure of brain excitability [88]. Interaction between the phases 

of low frequency bands and the amplitudes of gamma sub-bands was quantified by measuring 

mean coupling phases. Interestingly, prospective testing disclosed above chance preictal changes 

in 13.2% of patients. The proposed method demonstrated performance superiority (sensitivity 

and specificity) compared to predictions based on relative power in traditional frequency bands. 

2.1.3.3.3 Bivariate linear measures  
With increasing insights into the mechanisms and functional connectivity of epileptic networks, 

bivariate approaches studying synchronization between brain regions have been reported to be 

efficient in tracking the preictal state. Table 2.4 summarizes prominent bivariate features used in 

seizure prediction studies. The main goal of using these features is to investigate how interaction 

between several brain regions modulates epileptic seizure activity. As a measure of lag 

synchronization, the maximum of normalized cross-correlation served to quantify the similarity 

of 2 time series xi and yi [94] and has been employed in seizure prediction [47]. A comparative 

study of bivariate features found maximum cross-correlation to be one of the most discriminative 

bivariate measures [47]. Recently, Bandarabadi et al. [45] extended the use of spectral power to a 

bivariate approach. With normalized power in each of the standard EEG bands, the proposed 

feature quantifies cross-power information between 2 different frequency bands and channels.  
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Table 2.4 Prominent bivariate features used in algorithmic seizure prediction studies 
Authors Year Dataset Measure Type Preictal 

time (min) Patients Type of 
recordings SS (%) FPR (h-

1) 
Statistical 
validation 

Bandarabadi 
et al. [45] 2015 EPILPESIAE 

Bivariate 
spectral band 

power 
Linear 

10,20,30,40  24 iEEG or 
scalp 75.8  0.1  

Comparison 
with random 

predictor 
Mormann et 

al. [95] 2003 Personal Cross-
correlation 240  10 iEEG 86  0 Surrogate 

data testing 

Mormann et 
al. [47] 2005 Personal  

Max cross-
correlation 

5, 30, 120, 
240 5 iEEG n.m. n.m. Seizure time 

surrogates 

Mean phase 
coherence* 

Non-
linear 

Conditional 
probability*  

Shannon 
entropy* 

Measures for 
non-linear 

independence 
Mirowski et 

al. [96] 2009 FSPEEG Wavelet 
synchrony 120  15 iEEG 71 0 Seizure time 

surrogates 

Winterhalder 
et al. [97] 2006 FSPEEG 

Mean phase 
coherence 

Lag 
synchronization 

index 

30 21 iEEG 60 0.15 
Comparison 
with random 

predictor 

Iasemidis et 
al. [98] 2005 Personal Dynamic 

entrainment 120  2 iEEG 82 0.15  No 

Le Van 
Quyen et al. 

[99] 
2005 Personal Phase locking 

value Variable 5 iEEG 70  n.m No 

Mormann et 
al. [52] 2003 Personal  Mean phase 

coherence 240 18 iEEG 81  0  No 

SS: sensitivity; FPR: False Prediction Rate; n.m.: not mentioned; FSPEEG: Freiburg seizure prediction EEG database; *: applied to phase 
variables based on both the Hilbert Transform and Wavelet Transform 

 

These authors tested the proposed bivariate feature as well as traditional spectral power as inputs 

to a feature-selection method based on maximum difference of amplitude distribution histograms 

(mDAD) and concluded that bivariate spectral power was selected as the best in 90% of cases.  

2.1.3.3.4 Bivariate nonlinear features 
Bivariate nonlinear measures have also been deployed in seizure prediction and show good 

predictive performances [33]. Measures based on mutual information and similarity between 

channels have been studied to characterize synchrony level between EEG channels [100]. 

Iasemidis et al. [98] proposed dynamic entrainment, a multichannel version of the Lyapunov 

exponent, and demonstrated good predictive power with relatively low FPR. Le Van Quyen et al. 

[99] evaluated the suitability of phase-locking values for all pairs of EEG channels placed over 

the temporal lobe, with sliding window analysis on 15 frequency bands performed over the entire 

dataset. These authors stated that a specific state of synchronization could be observed in 70% of 

cases during a relatively long preictal time of several hours. No general trend of synchronization 

was evident, but changes were most often localized in the primary epileptogenic zone and 

occurred within the 4-15 Hz frequency band. Mormann et al. [52] studied mean phase coherence 
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(MPC) and reported a drop in synchronization during the preictal state. This same group [95] 

compared MPC and maximum linear cross-correlation in a follow-up investigation. They saw 

similar performance with both synchronization methods in terms of predictive power as well as 

anticipation times. Similarly, Winterhalder et al. [97] studied short-term changes of increasing 

and decreasing synchronization during the preictal state via MPC and the lag synchronization 

index. Unlike those of Mormann et al. to [52], their results revealed non-uniform changes in 

synchronization. They stated that evaluating increasing as well as decreasing synchronization 

may yield significant prediction performance. These results are concordant with those reported in 

[47]. They suggest that such measures perform better than a random predictor with both increased 

and decreased synchronization during the preictal state. Mirowski et al. 2009 [96] evaluated 

combinations of different bivariate features and machine-learning approaches and found wavelets 

synchrony with convolutional networks as the most successful prediction scheme. The proposed 

methodology allowed achieving 71% sensitivity and 0 false alarms in 15 patients. In addition, 

indexes based on conditional probability and Shannon entropy have been proposed [101] as 

measures of phase synchronization [47]. Mormann et al. [47] compared 8 different bivariate 

nonlinear features [47] and found MPC, the Shanon entropy index, and the conditional 

probability index to be the best nonlinear bivariate measures.  

2.1.3.4 Feature selection  
Since transition from the interictal to the ictal state consists of complex mechanisms, prediction 

algorithms usually combine several features in an attempt to cover brain dynamics. This results in 

high dimensional feature spaces. It is thus crucial to select the most discriminative features that 

will best contribute to identification of the preictal state. Some may be redundant while others 

can be confounding and degrade classifier performance. Several feature selection methods have 

been used in seizure prediction studies, such as ReliefF [43], minimum normalized difference of 

percentiles [102], mDAD [102], forward selection [38],  minimum redundancy maximum 

relevance (mRMR) [59, 103], and genetic algorithm (GA) [58, 59]. We will discuss the latter 2 

methods in this review because of their extensive citation. Table 2.5 summarizes prominent 

feature selection and classification methods used in seizure prediction studies.  
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Table 2.5 Prominent feature selection and classification methods used in algorithmic seizure 
prediction studies 

Authors Year Feature 
type 

Selection 
method 

Initial 
set 

Red. 
set Classifier Classifier 

type SS (%) SP (%)/ 
FPR (h-1) 

Stat. 
valid 

Bandarabadi 
et al. [102] 2012 Bivariate 

linear 
mRMR 435 9.1 

 Binary 
SVM (RBF 

kernel) 

Non-linear 

60.87 % 0.11 h-1 No mDAD 8.75 76.09 %  0.15 h-1 

Bou Assi et 
al. [59] 2015 Univariate 

linear  

mRMR 

224 

28 86.07 % 79.13 % 

No GA 44.2 87.09 % 85.71% 
mRMR & 

GA 5 90.28 % 88.53 % 

Direito et al. 
[58] 2011 Univariate 

linear 
mRMR 200.44 132 42.56 * % 73.44 * % No GA 47.89 * % 81.59 * % 

Moghim 
and Come 

[43] 
2014 

Univariate 
linear and 
non-linear 

ReliefF 204 14 Multi-class 
SVM (RBF 

kernel) 

91.14 % 99.55 % Yes 

Teixeira et 
al. [65] 2014 Univariate 

linear  - 132 - 
73.73 % 0.19 h-1 

Yes MLP ANN 74.17 % 0.29 h-1 
RBF ANN 69.14 % 0.42 h-1 

Bou Assi et 
al. [59] 2015 Univariate 

linear GA 224 44.2 

ANFIS 

82.0 %  77.6 % No 

Rabbi et al. 
[104] 2013 

Univariate 
and 

bivariate 
non-linear 

- 4 - 80 ϐ % 0.46 ϐ h-1 No 

Mirowski et 
al. [96] 2009 Bivariate 

non-linear 
Lasso 

algorithm 6300§ Variable CNN 71.0 % 0 h-1 Yes 

Howbert et 
al. [38] 2014 Univariate 

linear 
Forward 
selection 96 10 Logistic 

regression Linear 78.66 % 0.08 h-1 Yes 

SS: sensitivity; SP: specificity; FPR: False Prediction Rate; *: Average calculated over 3 subjects; ϐ: sensitivity at specificity reported for 
a preictal time of 45 min; §: patterns of bivariate features containing 60 consecutive frames (5 min) of 105 simultaneous features. 
 

The mRMR algorithm ranks features by criteria of maximum relevance and minimum 

redundancy, defined in terms of cost function. While mutual information is one of the most 

common cost functions [45, 59, 103], several metrics have been proposed, all having the same 

principle and relying on criteria of similarity. In [58], the mRMR cost function was based on 

statistical F-testing as a measure of relevance and Pearson’s correlation as a measure of 

redundancy and used to reduce feature dimensions from 4,410 to the first 132 ranked features. 

Bandarabadi et al. [102] employed the mRMR method based on a mutual information criterion to 

decrease feature dimensions from 435 to an average of 9.1 features. Recently, our group [59] also 

adopted the mRMR paradigm  combined with a GA for optimal selection of electrode-feature 

combinations, allowing the selection of the first 28 ranked features out of 224 electrode-feature 

combinations. Although the number of features was reduced from 224 to 28, predictor 

performances were comparable using a support vector machine (SVM) with a radial basis 

function (RBF) kernel. Mean sensitivity was 86.07% and specificity was 79.13% after mRMR 

compared to mean sensitivity of 84.49% and specificity of 80.11% with the entire feature set.         

GAs tend to replicate the principles of biological evolution. Starting from an initial, random 

population, the strongest recombine to survive and adapt to their external environment. Inspired 
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by natural evolution, GAs generate solutions to optimization problems based on mutation, 

crossover, inheritance and selection. Several GA types in terms of selection method, genetic 

structure, and fitness function have been tested in seizure-prediction studies. In [58], genetic 

structure is a binary string that includes features as well as classifier hyper-parameters. An Elitist 

Non-dominated Sorting-based GA was included for the selection stage. Ataee et al. [105] 

proposed a GA-based method that optimizes selection of the best feature vector as well as its 

optimal window length. GA fitness function was based on Fisher Discriminant Ratio. These 

authors stated that window length and feature vector should be chosen simultaneously. However, 

it is not clear if out-of-sample testing was performed in this study. In [59], genetic structure was a 

binary string in which each feature was a binary number. The fitness function was classification 

loss according to a K-Nearest-Neighbor classifier. It is important to mention that since GA is an 

iterative procedure that aims to find an optimal combination of features, the size of the selected 

subset is not fixed and may vary. Our group [59] showed that, after GA feature selection, 

reducing their number from an average of 221.2 to 44.2 features, the selected subset of features 

(SS=87.09%; SP=85.71%) outperformed the whole set (SS=85.49%; SP=80.11%) in terms of 

sensitivity and specificity. Direito et al. [58], who conducted a comparative study of mRMR, GA, 

and Recursive feature elimination, concluded that dimensionality reduction improved predictor 

performance but that the best selection method was patient-specific. As in [58], the optimal 

selection method was subject-specific with mRMR and GA combination always achieving the 

best performance. It is noteworthy that ranking selection methods is limited by the requirement of 

fixing the size of the selected subset of features. Five different sizes of feature subsets were 

assessed in [102]: 3, 5, 10, 20 and 40. The authors stated that the best size was selected in such a 

way that performance was close to an optimal predictor (SS=100%; SP= 0 FP/h) in a patient-

specific manner. The mean number of selected features was 8.75. Unfortunately, it was not 

reported if such optimization was performed on the training sample or on the whole set. Selection 

on the whole set may give overoptimistic results. Direito et al. [58] fixed the number selected at 

the first 132 highly-ranked features, but it was not clear why they chose this number. Moghim 

and Come [43] fixed the number of selected features at 14, stating that it would facilitate the 

benchmarking results of a previous study [106]. In  [59], our group fixed the number of 

electrodes at 2 per feature, then tested a GA to select combination of the most discriminative 

features. The advantage of a GA is that it does not require fixing the size of the selected feature 
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subset. Feature selection was only performed on the training set. An average number of 5 features 

was selected when combining mRMR with GA and rose to 44.2 with the GA only. Interestingly, 

reducing the number of features to 5 (SS: 90.28%; SP: 88.53%) increased predictor performance 

with an SVM. 

2.1.3.5 Classification  
Based on the features selected, a prediction scheme that detects preictal changes should be 

implemented. Two main approaches have been proposed and they form the core of algorithmic  

seizure prediction studies [73]. The first is threshold-based while the second involves machine-

learning techniques to detect the preictal state. In what follows, we focus on prominent classifiers 

in seizure prediction. 

2.1.3.5.1 Support vector machines 
SVMs, currently the most popular approach in supervised machine-learning, have been adopted 

in a large number of seizure-prediction studies in their binary form [45, 59, 72] and extrapolated 

to multi-class form [65]. An SVM is a margin classifier that implements a separating hyper-plane 

that maximizes the distance between the nearest training points. Two hyper-parameters need to 

be defined with such a decision boundary: cost and cost factor. Optimal pairing of these 

parameters can be achieved with cross validation [72] or grid search [43, 45, 65]. One of the 

problems facing machine-learning techniques in seizure prediction studies is the imbalance 

between preictal and non-preictal samples. Obviously, the number of non-preictal samples is 

much larger than the number of preictal samples, and classifiers usually tend to be more accurate 

over the class with the greater number of training samples [107]. Several approaches have been 

taken to address this issue, such as reducing the number of interictal samples by resampling, 

resulting in a balanced number of samples between the 2 classes [45, 65]. Park et al. [72] 

deployed cost-sensitive support vector machines to handle imbalances in sample numbers. This 

type of SVM is implemented by setting higher misclassification penalties on preictal data than on 

non-preictal data. SVMs have proved to outperform other types of classifiers in terms of 

sensitivity and specificity. In a study of 278 patients from the European Epilepsy Database, 

Teixeira et al. [65] compared the performance of 3 classifier types: an SVM, an artificial neural 

network (ANN) with a multilayer perceptron (MLP) structure and an ANN with a RBF structure. 

Interestingly, considering different processing possibilities, this comparison included 224,928 
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different classifier structures. These authors found that performance of the prediction algorithm 

significantly depended on classifier type (K-W test, p<0.01) with better SVM performance in 

terms of FPR. Our group [59] also discerned performance superiority with a SVM compared to 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) in terms of sensitivity and specificity. 

However, due to the small population size, no statistical testing or validation was undertaken. 

SVMs are linear classifiers but can produce non-linear decision boundaries using the kernel trick. 

Although several kernel functions have been explored, the Gaussian Radial Basis Function kernel 

is the most widely used in seizure prediction [45, 59, 66, 72]. 

2.1.3.5.2 Artificial and cellular neural networks 
ANNs have the ability to produce nonlinear decision boundaries while assembling several 

artificial neurons. The general structure consists of an input layer, a hidden layer, and an output 

layer. These classifiers are known as universal approximators because of their capacity to 

approximate any continuous function if a sufficient number of neurons and layers are given. 

However, they are sensitive to overtraining and may fail with non-adequate input features. While 

several studies have looked at ANNs in the field of seizure prediction, few have adhered to the 

requirements for practical seizure prediction. Costa et al. [106] compared the performance of 6 

different ANN architectures for predicting epileptic seizures: RBF, Feed-Forward Back 

Propagation, Layer-Recurrent, Feed-Forward Input Time-Delay Back Propagation, Elman, and 

Distributed Time Delay. While they reported optimistic results, the lack of adequate performance 

evaluation limited the significance and reproducibility of their findings. Teixeira et al. [65] 

compared the performance of 2 different ANN structures: MLP and RBF. K-W testing showed 

that MLP outperformed the RBF classifier in terms of FPR with no statistically significant 

differences in terms of sensitivity. Interestingly, these authors [65] found 2,000 or 4,000 epochs 

to be adequate, considering the number of hidden layers and neurons included. Cellular neural 

networks (CNNs) are a subset of ANNs where only local connections between cells are allowed. 

They have been adopted in recent seizure-prediction studies owing to their capability of universal 

computation and massive computing power [108, 109]. They have been mainly employed in an 

attempt to approximate synchronization degree and nonlinear dynamics in EEG signals. ANFISs 

have been explored in seizure prediction and combine a Sugeno Type Fuzzy Inference unit for 

classification rules with an ANN to increase and adapt learning capabilities. Rabbi et al. [104] 

tried an ANFIS to predict epileptic seizures with both linear and nonlinear features. They stated 
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that the proposed method achieved the highest sensitivity of 80% and FPR of 0.46 h-1. However, 

their study was limited to 36 h of iEEG recordings in 1 patient, raising doubts about 

reproducibility of the results. Our group [59] targeted linear univariate features with several 

selection methods and demonstrated that combining an ANFIS with a GA yielded promising 

results. 

2.1.3.5.3 Logistic regression 
Logistic regression is a linear classifier parameterized by weights and biases. Training the 

classifier consists of finding adequate weights optimized by minimizing a predefined loss 

function. Although this classifier sets linear decision boundaries, it has been successful in seizure 

prediction. In a recent study that investigated the feasibility of seizure forecasting in canine 

epilepsy, Howbert et al. [38] engaged the logistic regression classifier to detect the preictal state 

based on spectral power features and were able to beat a random predictor in all 3 dogs with 

acceptable FPR and sensitivities. Mirowski et al. [96] evaluated the performance of bivariate 

synchronization features  with 3 different classifiers: SVM, Logistic Regression, CNNs. 

Although the best results were obtained by combining wavelet coherence and CNNs, the logistic 

regression classifier allowed perfect seizure prediction in 14 out of 21 patients from the 

University of Freiburg Database. 

2.1.3.6 Regularization 
After classification, a regularization function should be added to attenuate the number of false 

alarms. Methods taking into account temporal signal dynamics, such as Kalman filtering [110] or 

the firing power technique [73], have been employed. The main goal is to improve classifier 

specificity by constraining alarm generation.  

Firing power is a measure that quantifies the number of predictions classified as preictal 

during the SOP. If this measure exceeds a normalized threshold, an alarm is generated. Several 

studies recently adopted the firing power technique in their prediction schemes and reported 

relatively good results [45, 65]. Teixeira et al. [65] and Bandarabadi et al. [45] adopted a fixed 

threshold of 0.5. C. Teixeira et al. [111]  compared different thresholds (0.10, 0.15,…, 0.85) and 

showed that in general lower FPRs were achieved with low threshold values. No optimal 

threshold value was reported.  
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Chisci et al. [110] were the first to take the Kalman filtering approach as a regularization 

method to smooth SVM classifier output. It is a statistical paradigm that produces estimates 

tending close to true measurements. With estimated AR coefficients as inputs to an SVM, these 

authors compared the performance of the proposed method with that of a non-regularized 

classifier on iEEG in 9 patients from the University of Freiburg database. Significant 

improvement in performance was reported but no statistical testing was done. Kalman filtering 

was subsequently successful in other studies [72, 110]. Park et al. [72] went with second-order 

discrete-time Kalman filtering to smooth undesired fluctuations of SVM outputs.  

Teixeiria et al. [111] compared both regularization measures and found that the “firing 

power” method was more conservative in raising alarms. These authors justified its superiority by 

the fact that it maintains longer memory of classification dynamics and creates time constraints 

for alarm-raising. They stated that the number of false alarms obtained with Kalman filtering was 

too high and impractical for most patients [111]. However, the Kalman filtering regularization 

function produced relatively better sensitivities. 

2.1.3.7 Performance evaluation  
As with any classification problem, algorithm performance should be tested with common 

performance descriptors.  

2.1.3.7.1 Performance descriptors 
A large number of seizure prediction studies have adopted common descriptors to evaluate the 

performance of prediction algorithms, with mostly sensitivity and specificity being analyzed. It is 

important to mention that these measures should be reported on unseen test data never used for 

training or optimization, ideally in a prospective setting. Testing system performance on data 

used for training has previously led to overoptimistic results, as discussed in [33]. Several other 

measures have been adopted to evaluate system performance in terms of specificity, such as FPR 

and Time Under False Warning. As its name implies, FPR is the number of false predictions per 

hour. A false positive event occurs when an alarm is raised during any period other than preictal. 

FPR has been adopted as a measure of specificity in a large number of seizure-prediction studies 

[45, 47, 52, 65, 72, 95, 102, 111]. However, no minimum FPR value has been adopted as 

standard. Aschenbrenner-Scheibe et al. [91] used seizure frequency in presurgical monitoring 

settings as reference to define maximum acceptable FPR. Considering a mean of 3.6 seizures per 
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day, the clinical applicability of open-loop algorithms with FPR higher than 0.15/h was 

questioned [49]. Such comparison is not always valid, since although the number of generated 

alarms is comparable, false prediction means that these alarms are not generated at the correct 

time. Triggering interventions during low seizure likelihood or omitting them during the preictal 

period may limit seizure control effectiveness. Interestingly, some recent studies have reported 

FPR to be less than 0.15/h. Bandarabadi et al. [45] ascertained average FPR of 0.1 h-1 with 

bivariate spectral power methodology. In a comparative study of 278 patients from the European 

Epilepsy Database, Teixieira et al. [65] established that some predictors were able to predict at 

least half of the seizures with FPR of less than 0.15 h-1. Howbert et al. [38] found FPR of less 

than 0.12 h-1 in data on 3 dogs implanted with a long-term monitoring system.   

2.2 Discussion 
Although much effort has been expended towards better prediction of epileptic seizures, the 

translation of current approaches and algorithms into commercial clinical devices is still not 

possible. The guidelines proposed by Mormann et al. [33] have paved the way for more realistic 

and reproducible albeit less optimistic results. Analytical and algorithmic studies have provided 

evidence that transition to the seizure state is not random and that a certain build-up leads to 

seizures. Heterogeneity between studies supports the fact that ictogenesis mechanisms are 

probably complex and suggests that the approaches taken to deal with this state should be 

envisaged with more precaution. In what follows, we discuss, summarize and analyze the 

progress made in main blocks of the seizure prediction framework.  

As already suggested in the earlier review [33], no single feature can be considered as 

standard on its own to characterize preictal state. However, combination of univariate and 

bivariate features may be a good choice. Two recent studies in the field of seizure prediction 

attempted to explore cross frequency coupling in their feature extraction block [45, 88] and 

generated promising results compared to traditional spectral power features. The implemented 

features were based on univariate phase-amplitude coupling as well as bivariate amplitude-

amplitude coupling. Investigating other types of coupling may be a tempting idea for feature 

extraction in epileptic seizure prediction. 

Combining several features to track the preictal state may increase feature space dimensions, 

triggering the need for feature selection algorithms. Although the vast majority of seizure 

prediction studies confirmed the need for subject-specific, individually-tailored algorithms, few 
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have reported the most discriminative features across all subjects. It may be reminded that out-of-

sample testing should be considered in feature selection. Samples for feature selection should 

never be used for performance evaluation. 

Several types of classifiers have been investigated in seizure-prediction studies. Comparison 

is difficult due to the heterogeneous aspect of preprocessing, input features and patient data. 

Several authors have shown that combination of linear features and nonlinear classification 

methods is a good approach. It has been adopted in several prediction schemes, especially those 

involving SVMs with nonlinear kernels, and yielded relatively good performances [45, 65, 72]. 

Logistic regression, a linear classification method, has yielded acceptable results [96]. It is 

important to mention that the use of non-complex classifiers, employing relatively simple 

decision boundaries, is worthwhile.     

Both Kalman filtering and firing powers have been able to reduce FPR in seizure-prediction 

studies [45, 65, 72]. Deploying such advanced postprocessing techniques to achieve reliable 

performance, one could question the statistical existence of a preictal state. Herein lies the 

importance of performance evaluation, especially methods employing extensive statistical 

validation and comparison with random predictors. Proof-of-principle studies [65] conducted on 

a large cohort of patients (278) and employing reliable statistical validation and testing 

techniques, have demonstrated the existence of preictal state. At this stage, the performance 

improvement after applying such post processing techniques can be explained by the fact that 

they decrease the vulnerability of seizure-prediction systems to brain vigilance states.  

The studies covered in this review have generally looked at discontinuous recordings either 

in the University of Freiburg database, the European Epilepsy database, or local recordings. 

Because the discriminability of iEEG features is highly dependent on time and the non-stationary 

nature of EEGs can culminate in mis-estimation of algorithm performance, long continuous 

recordings that mimic real clinical scenarios rather than discontinuous recordings are 

recommended.   
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CHAPTER 3 THEORY AND METHODOLOGY 
This chapter summarizes signal processing approaches used in chapters 4, 5, and 6 namely in 

terms of EEG signal processing and classification as well as effective connectivity measures. 

3.1 EEG signal processing and classification  

3.1.1 Feature extraction  

3.1.1.1 Univariate linear features  
As explained in the literature review, univariate linear features have been adopted in recent 

studies [43, 65, 72] and showed a better predictive performance than non-linear ones [47]. 

Traditional univariate linear features, most prominent in the EEG seizure prediction literature 

with reproducible performances were adopted in this work and are briefly explained: statistical 

moments, relative spectral power, Hjorth parameters, spectral edge frequency and power, and 

decorrelation time. 

3.1.1.1.1 Statistical moments  
Considering a discrete time series xi, the variance is the second statistical moment and reflects the 

energy content of a signal (1).  
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The skewness is the third statistical moment and is a measure of symmetry (2).  
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The kurtosis is the fourth statistical moment and reflects a measure of flatness of the amplitude 

distribution (3). 
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3.1.1.1.2 Relative spectral band power  
Spectral band power was computed by calculating the average power in each frequency range of 

interest as integrated across the periodogram of the signal [112]. As discussed in the literature 

review, the relative spectral power feature (RSP) will be computed based on standard EEG 

frequency bands and the wide gamma band will be split into four further sub-bands. This results 

in the following frequency bands: delta (0.5- 4 Hz), theta (4-8Hz), alpha (8-13 Hz), beta (13-30 
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Hz) and gamma (30-47, 53-75, 75-97, 103-128 Hz). In order to get the relative spectral power, 

each of the frequency bands is divided by the total power of the signal. 

3.1.1.1.3 Hjorth parameters  
Hjorth parameters have been extensively used to quantitatively describe the temporal dynamics 

of EEG signals in seizure prediction and have shown to increase during the preictal state [47]. 

The HM (5) reflects the mean frequency of a signal while the HC (6) is an estimate of its 

bandwidth. 
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where x(t) is a time series.  

3.1.1.1.4 Spectral edge frequency and power 
The spectral edge frequency (SEF) has been defined as the minimum frequency (below 40 Hz) up 

to which 50% of the power is contained in a signal. It is considered as a characterizing measure 

of the power distribution of a signal [85]. The Spectral Edge Power (SEP) is the corresponding 

half power up the spectral edge frequency.  

3.1.1.1.5 Decorrelation time 
The decorrelation time is defined as the first zero crossing of the autocorrelation function. As 

shown in (7), the autocorrelation function is an estimation of the degree of similarity between a 

signal xi and a delayed version of itself xi-t.  
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The autocorrelation function can have values between -1 and 1. An autocorrelation value of 1 

reflects an optimal positive correlation while a value of -1 reflects an optimal negative 

correlation. Initially (τ =0), the autocorrelation function is equal to 1. Considering a non-periodic 

signal such as the EEG, A (τ) decreases with increasing values of τ. The slower the 

autocorrelation function decreases, the stronger are the linear correlations of the signal. 
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Therefore, the decorrelation time can be considered as an estimate of the strength of the linear 

correlations. A drop in the decorrelation time had been reported prior to seizures [47, 73]. 

3.1.1.2 Univariate nonlinear features  
The commonly used spectral band power feature in seizure prediction studies display amplitude 

modulations within defined frequency bands over time. While this feature is able to quantify 

phase changes, it fails identifying the interactions between different frequencies. Cross-frequency 

coupling (CFC) among different frequency bands has been recently proposed to be the carrier 

mechanism for the relationships of local and global neuronal processes [113]. Two recent studies 

in the field of seizure prediction have attempted to explore specific types of CFC in their feature 

extraction block [45, 88]. The implemented features were based on a phase-amplitude [88] CFC 

and amplitude-amplitude CFC [45]. As already discussed, recent iEEG studies found a 

modulation of cortical high frequency oscillations in the gamma band (40-120 Hz) by slow 

cortical potentials [114]. As emphasized in [88], low frequency oscillations seem to trigger high 

frequency oscillations. M. Le Van Quyen et al, 2014 [88] focused on coupling between the phase 

of slow oscillations (slow wave and theta) and the amplitude of different sub-bands of gamma 

rhythms in a univariate manner. Interestingly, the authors compared the proposed methodologies 

with predictions based on the individual power in each frequency band (delta, theta, gamma) and 

found superior performance when quantifying the coupling between different frequency bands. 

Recently, M. Bandarabadi et al, 2015 [45] proposed a new bivariate feature for the prediction of 

epileptic seizures and reported promising results (Sensitivity= 75.8% and FPR= 0.1 h-1). 

Although not termed as cross frequency coupling, the proposed feature (discussed in the literature 

review) quantifies the cross-power information between two different frequency bands and two 

different channels (across all possible combinations) by calculating the ratio between the 

normalized PSD among different channels and frequency bands combinations. The authors used a 

selection method that performs a ranking of the input features (bivariate/univariate PSD); 

relative, bivariate spectral power features were selected as the best in 90% of the cases. The 

mentioned previous studies [45, 88] are both prospective and follows methodological 

recommendations for practical seizure prediction studies [33]. Therefore, there is recent evidence 

that coupling between different frequencies may better discriminate the preictal state. Using 

phase-amplitude coupling, C. Rojas et al, 2014 [88] identified preictal changes above chance 

levels in 13.2% of patients. Bandaradabi et al, 2015 [45] found promising results using the cross-
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frequency information based on spectral power which only take into consideration the amplitude 

of the signal. In contrast, the bispectrum (BIS) measure have been proposed to take into 

consideration both the amplitude of the signal and the degree of phase coupling between two 

frequencies.  

3.1.1.2.1 Higher order spectra 
Higher order spectral analysis is an advanced signal processing method that allows exploring the 

existence of quadratic (and cubic) non-linearities. In contrast to traditional power spectrum which 

quantifies the power of a time series over frequency, HOS analysis employs the Fourier 

transform of higher order correlation functions investigating non-linear coupling information. 

The bispectrum splits the skewness (third order moment) of a signal over its frequencies 

quantifying the coupling between a signal’s oscillatory components. The bispectrum, quantifying 

oscillatory relationships between basic frequencies f1, f2, and their harmonic component “f1+f2” 

is computed from the Fourier transform of the third-order correlation (8). 

                                             	_>`(a$, a") = lim
f	→h

1$
f
5i[/(a$ + a")/∗(a$)/∗(a")]                      (8) 

where X(f) is the Fourier transform of a time series x(t), (*) is the complex conjugate, and E 

denotes the arithmetic average estimator over time duration T.  

3.1.1.2.2 Higher order spectra features 
In order to characterize and compare time series, quantitative features must be extracted from the 

bispectral density array. Bispectrum analysis yields a 3D mapping of the level of interaction 

between all frequency triplets in the signal. In order to characterize and compare time series, 

quantitative features must be extracted. In this work, three features were computed from the non-

redundant region: the mean magnitude (Mave) of the bispectrum, the normalized bispectral 

entropy (P1) and the normalized squared bispectral entropy (P2). The mathematical equations of 

extracted features are briefly explained: 

The first feature, bispectrum’s mean of magnitude (Mave) (9), has been commonly used to 

extract quantitative information from the bispectrum [115, 116].  

                                                              DB?V = 	 $
n
∑ |_>`(a$, a")|p                                               (9) 

where L is the total number of sample points in the bispectral density array non-redundant region 

(Ω).  
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In an attempt to extract regularity from bispectrum plots, normalized bispectal entropy (P1) and 

normalized bispectral squared entropy (P2) have been recently proposed [115] and were used in 

this work  (10) and (12):  

                                                             r$ = −∑ UsGEtUss                                                         (10) 

                                                              Us =
|u*v(wx,w])|

∑ |u*v(wx,w])|p
                                                            (11) 

                                                              r" = −∑ ysGEtyss                                                        (12) 

                                                             ys =
|u*v(wx,w])|]

∑ |u*v(wx,w])|p
]                                                            (13) 

where n=0, 1, … L-1; L is the total number of sample points in the bispectral density array non-

redundant region (z). 

3.1.2 Feature selection: genetic algorithm  
As already discussed in the literature review, no single feature had been found capable to 

individually characterize the preictal state, but a combination of features may be able to display 

brain dynamics during the transition to seizures. Thus, a Genetic Algorithm (GA) (described in 

the literature review) was be used in this study since it allows finding which combination of 

features is discriminative of the preictal state rather than performing a ranking of the features. In 

addition, the advantage of using a GA is that such an iterative algorithm doesn’t require fixing 

the size of the selected subset of features. The computation requirements of the GA were 

considered as an obstacle towards the development of predictors in studies which didn’t perform 

electrodes selection [58]. In its simplest form, a GA requires a genetic representation and a fitness 

function. While several presentations have been proposed, the standard one is an array of bits. In 

feature selection, generally each bit can be considered as a feature. Binary bit representations 

have been adopted where 1 means that the feature is discriminative of the classification target and 

0 otherwise [58, 59]. The fitness function can be considered as the cost function that will ensure 

the convergence of the problem into a good potential solution. Thus, it is important to note that 

the GA doesn’t perform a ranking of the features in terms of their discriminative power but tends 

to find a good feature combination for the given problem. This structure can be an advantage in 

seizure prediction studies where a combination of features, each displaying a certain aspect of 

brain dynamics, have shown a better performance than using individual features [33].  
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Figure 3.1Support vector machine optimal linear hyperplane 

 
After defining the fitness function and the genetic representation, the GA initializes an initial 

population of chromosomes and then improves it through generations. The general algorithm is 

briefly explained: After selecting an initial random population, a proportion of the individuals is 

selected to create a new population. The selected individuals are generally the ones with the best 

fitness. Then a combination of genetic operators (crossover and mutation) is used to generate the 

following generation. Crossover and mutation are applied on a pair of parents from the initial 

population to create a new solution (child). This process is repeated until reaching a certain 

termination condition such a maximum number of generations or a minimum value of the fitness 

function. Several types of genetic algorithms in terms of selection methods, genetic structure, and 

fitness function have been used in seizure prediction studies and have been discussed in the 

literature review. 

3.1.3 Classification  

3.1.3.1 Support vector machine 
Several studies have demonstrated the superiority of SVMs over other supervised machine 

learning techniques in seizure prediction and were discussed in the literature review. As shown in 

Figure 3.1, the main idea behind support vector machines is to separate classes using a linear 

hyperplane (14). 

                                                                 a()) = 	{f) + F                                                        (14) 
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Figure 3.2 Multi-layer perceptron network architecture 

 
However, using the kernel trick, these are capable of projecting the data into a higher dimensional 

non-linear space. It often happens that data non-separable in the original space become separable 

in a high dimensional space. Several kernels have been used in EEG classification such as the 

Gaussian, Radial Basis Function (RBF), polynomials and Multilayer Perceptron. The RBF kernel 

(15) is the most exploited in seizure prediction [45, 58, 59, 65, 72] and will be used in this study. 

                                                             |(), @) = V)U 1&
|2&M|]

"\]
5                                              (15) 

where x and y are the input feature vectors and σ is the scale parameter. This hyperplane tends to 

maximize the distance between the nearest training points (margins) what increases 

generalization capabilities and makes SVMs more resistant to overtraining. Using such a decision 

boundary, two hyper parameters need to be defined: the cost (C) and the cost factor (R). Actually, 

while searching for the hyperplane that maximizes the margins between the support vectors, 

some of the training points may be misclassified. The cost is the tradeoff between the 

classification margins and the non-separable or misclassified samples. On the other side, the cost 

factor is the trade-off between the number of false positives and false negatives. 

3.1.3.2 Multi-layer perceptron  
A multi-layer perceptron (MLP) classifier has the capability of reproducing nonlinear decision 

boundaries while assembling several neurons. MLP is one the most commonly used feedforward 

artificial neural networks architecture and consists of an input layer, one or multiple hidden 

layers, and an output layer. MLP classifiers are known as universal approximators since they can 

approximate any continuous function when subject to enough neurons and layers. Network 
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training and weights optimization is performed by backpropagation, a supervised learning 

technique. Each neuron requires a linear activation function, which maps its weighted inputs to 

its output. Figure 3.2 shows the typical architecture of an MLP network.  

3.1.4 Regularization function 
As discussed in the literature review, this step is considered as a post-processing that regularizes 

the output of the classifier to reduce the number of false alarms. C. Teixeira et al. 2012 [111] 

showed that the firing power technique is more conservative than the Kalman filter. Thus, the 

firing power method will be used in this project and is briefly explained: A sliding window equal 

to the preictal time is considered in which a measure of the number of samples classified as 

preictal is calculated (16): 

                                                                  aU[}] = ∑ ~[�]Ä
ÅÇÄÉÑ

^
                                                     (16) 

Where fp [n] is the firing power at time point n, O[k] is the output of the classifier and τ is the 

number of samples in the preictal time. In most of the cases, a fixed firing power threshold is 

fixed at 50 % (fp =0.5) above which an alarm is generated. After alarm generation, a new alarm 

can only be raised at a time at least equal to the considered preictal time only if the threshold is 

crossed in an ascending way [73]. 

3.2 Effective connectivity measures  

3.2.1 Directed Transfer Function 
The directed transfer function (DTF) is a multichannel extension of the Granger causality using a 

multivariate autoregressive model. The Granger causality is a method used to determine whether 

a time series is useful in predicting another one [117]. Recently several directed connectivity 

measures based on the theory of Granger causality have been proposed in an attempt to discern 

neuronal sources of epileptic activity [118, 119] and provided promising results in the 

identification of generators of ictal activity. Some of them were based on pairwise measures 

while other extended to multivariate approaches. Kus et al, 2004 [120] compared directions of 

activity propagation between pairwise estimates of granger causality and coherences with the 

multivariate DTF. Based on simulated data and experimental EEG signals, the authors found that 

the DTF method was better in estimating the sources/generators of ictal activity. Actually, 

pairwise causality measures have an innate inconvenient when applied to multivariate signals 
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such as the multichannel EEG. In such case, spurious causal connections may appear between 

electrodes or regions of interest when no such coupling exists. The mathematical principles of the 

DTF, a multivariate approach, are explained and were used in this thesis for the determination of 

ictal generators and sinks. As already stated, the DTF is defined in terms of a multichannel 

autoregressive model (MVAR). As depicted in equation (17), a MVAR model is a parametric 

time series representation that describes each channel as a linear combination of its own past and 

the past activity of all other channels added to an uncorrelated white noise. 

                                                            )s = ∑ ;Ö)s&Ö
Ü
Ö.$ + Vs                                              (17) 

where xn is a multichannel signal at time point n containing k channels (18), en is the uncorrelated 

white noise matrix (19) and Am is the matrix containing the coefficients of the MVAR model at a 

time delay m.  

                                                       )s = [)$(}), 	)"(}),… , )�(})]f                                          (18) 

                                                        Vs = [V$(}), 	V"(}),… , V�(})]f                                          (19) 

The DTF attempts to examine the causal relation between the signals in the frequency domain. 

Thus equation (18) is Fourier transformed as follows (20):  

                                                                  i(a) = ;(a)/(a)                                                     (20) 

  where E (f), X (f) are the Fourier transforms of the error and time series matrices; A (f) is the 

Fourier Transform of the coefficient matrix and expressed as follows (21):  

                                                            ;(a) = −∑ ;ÖV&à"âwÖ
Ü
Ö.ä                                             (21) 

Assuming that A (f) is non-singular and thus invertible, equation (20) can be reformulated as 

follows (22):  

                                                         /(a) = ;&$(a)i(a) = ã(a)i(a)                                    (22) 

H (f) is defined as the transfer matrix of the process and is a k x k matrix. Interestingly, the 

elements of the transfer matrix Hij (f) express the causal relations at frequency f from channel xj 

to channel xi. The DTF is then estimated in terms of the transfer function and estimates the flow 

from channel xj to channel xi (23):  

                                                                 	åçé*à(a) = èã*à(a)è
"
                                                (23) 

Kaminski et al, 2001 [121] demonstrated the equivalence between DTF and Granger causality. In 

almost all studies [54, 122], the DTF is normalized with respect to the incoming inflow in such a 

way that the normalized DTF (nDTF) quantifies the ratio of the inflow from signal j to signal i 

with respect to all inflows to signal i at frequency f (24). 
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                                             (24) 

As clear, the current formulation of the DTF quantifies the amount of outflow of activity at a 

specific frequency. As it is dedicated to analyze quasi-stationary segments of seizure activity  

which span over a spectral band of frequency, the integrated DTF (iDTF) had been proposed 

[123] and consists of integrating the nDTF over the desired frequency band (25).  
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                                       (25) 

3.2.2 Spectrum weighted adaptive directed transfer function  
The adaptive directed transfer function (ADTF) allows investigating time-varying connectivity 

patterns and does not entail stationarity requirements. It is based on a multivariate adaptive auto 

regressive model (MVAAR) [124] (26):  

                                                  /(=) = ∑ ;(>, =)/(= − >) + i(=)Ü
*.$                                           (26) 

where X(t) is a multivariate signal, A (i, t) is a matrix gathering time varying model coefficients, 

E(t) is the error matrix and p is the model order. Non-linear Kalman filtering, based on a 

combination of observation and state space equations, is used to estimate model’s time varying 

coefficients [124]. The frequency domain transfer matrix Hij (f, t) is obtained by Fourier 

transforming equation (26). Hij (f, t) displays causal relations from the electrode j to electrode i at 

time instant t and frequency f. Although the clinical validity of the ADTF has been demonstrated 

[124], Mierlo et al. 2013 found that at some frequency f and time t, the term Hij(f,t) may be high 

even though power of signal j is relatively low [125]. 

They subsequently proposed the swADTF in which Hij (f, t) is divided by the auto spectrum of 

the sending channel (27). 
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                              (27) 

where f1 and f2 are frequency bounds of interest, and K is the total number of channels. 

Mierlo et al. 2013 demonstrated how the auto-spectrum can be estimated out of the coefficients 

and residuals of the MVAAR [125]. Considering equation (22), the power spectral density matrix 

can be calculated as follows (28): 

ò(a) = /(a)/∗(a) = ã(a)i(a)i∗(a)ã∗(a) 

                                                  = ã(a)Σöã∗(a) = ã(a)õöúã∗(a) = õöã(a)ã∗(a)              (28) 
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where * represents the complex conjugate and åe is the noise covariance matrix. Assuming that 

the error time series can be represented by an uncorrelated white noise, the covariance matrix åe 

can be approximated by a diagonal matrix sI. Thus, the auto-spectrum of a channel xi can be 

estimated as in (29):  

                                    ò**(a) = õö ∑ ã*�(a)ã�*
∗ (a) = õö ∑ |ã*�(a)|"ù

�.$
ù
�.$                              (29) 

3.2.3 Outflow and inflow of seizure activity  
Seizure activity outflow and inflow were extracted from the DTF or swADTF transfer matrix 

(TF). As Hij quantifies seizure activity flow from channel xj to channel xi, summing and 

normalizing along columns of the transfer matrix determine outflow from xj to all remaining 

electrodes (30): 

                                                                   }ûA(ü) =
∑ f†3ë
í
3Çx

ù
                                                     (30) 

for j=1 to K, where K is the number of iEEG channels, and TF is the transfer matrix.  

Similarly, integrating and normalizing across lines of the transfer matrix quantifies normalized 

inflow values (nIV) from all channels to channel xi (31): 

                                                                      }úA(>) =
∑ f†3ë
í
ëÇx

ù
                                                (31) 

for i=1 to K, where K is the number of iEEG channels, and TF is the transfer matrix.  

3.2.4 Statistical significance of causal links: surrogate data testing 
This is an essential step to remove the links that may create spurious interactions between the 

EcoG channels. It is mainly performed to validate the statistical significance of the causal 

interaction among the channels. Since the DTF have a highly non-linear relation with the time 

series from which it is derived, and thus the estimators’ distribution under the null hypothesis of 

no connectivity is not well established, a non-parametric statistical analysis should be used. As 

discussed in the performance evaluation section of the literature review, a non-parametric 

statistical method based on surrogate data testing has been proposed [126] and used in several 

source localization studies [54, 124]. In summary, it consists of randomly and independently 

shuffling the phases of the Fourier transform to create a new surrogate time series. This 

procedure is repeated several times to obtain an empirical distribution of the DTF values under 

the null hypothesis of no causal interaction. This distribution is then used to assess the statistical 

significance of causal interactions.  
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This article addresses the first objective of this thesis, namely the design of an accurate 

seizure forecasting algorithm, based on long-term continuous canine bilateral iEEG recordings. 

This paper was published in IEEE Transactions on Biomedical Engineering (Vol. 65, No. 6, June 

2018) and was selected as a feature article for the IEEE TBME journal website. This work was 

awarded a travel grant (Alliance for Epilepsy Research) for presentation at the International 

Conference on Technology and Analysis of Seizures (ICTALS2017, Minneapolis, 2017). 

4.1 Abstract 
Objective: The objective of this work is the development of an accurate seizure forecasting 

algorithm that considers brain’s functional connectivity for electrode selection. Methods: We 

start by proposing Kmeans-directed transfer function, an adaptive functional connectivity method 

intended for seizure onset zone localization in bilateral intracranial EEG recordings. Electrodes 

identified as seizure activity sources and sinks are then used to implement a seizure-forecasting 

algorithm on long-term continuous recordings in dogs with naturally-occurring epilepsy. A 

precision-recall genetic algorithm is proposed for feature selection in line with a probabilistic 

support vector machine classifier. Results: Epileptic activity generators were focal in all dogs 

confirming the diagnosis of focal epilepsy in these animals while sinks spanned both hemispheres 

in 2 of 3 dogs. Seizure forecasting results show performance improvement compared to previous 

studies, achieving average sensitivity of 84.82% and time in warning of 0.1. Conclusion: 

Achieved performances highlight the feasibility of seizure forecasting in canine epilepsy. 

Significance: The ability to improve seizure forecasting provides promise for the development of 

EEG-triggered closed-loop seizure intervention systems for ambulatory implantation in patients 

with refractory epilepsy. 
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connectivity, seizure forecasting, genetic algorithm 

4.2 Introduction 
pilepsy is a chronic condition characterized by recurrent seizures (or ‘ictus’) resulting from 

abnormal and excessive neuronal discharges. The most common form of treatment is long-term 

medication, to which 30% of patients are refractory. Brain surgery is recommended when 

medical therapy fails. The outcome of surgery depends on the accurate localization of foci. 

Seizure manifestations (semiology) and surface electroencephalographic (EEG) epileptiform 

discharges are key features of broad anatomical localization, which can be further refined with 

appropriate neuroimaging tests and intracranial EEG (iEEG) recordings [1]. Despite decades of 

research, the rate of epilepsy surgery failures in patients with drug-refractory seizures remains 

significant (30% of temporal and 50% of frontal lobe surgeries) [1]. A potential explanation is the 

inaccurate determination of seizure onset zones (SOZ) by expert neurophysiologists visually 

interpreting EEG. Indeed, epileptic activity triggered in SOZ can rapidly propagate to remotely-

connected brain areas (part of the epileptic “network”) that can be falsely identified as regions to 

be resected since intracerebral electrodes can only cover a small fraction of the brain. While the 

historical and traditional way to understand higher-level brain systems (such as seizure 

generation mechanisms) is to decompose the brain into distinct anatomical regions with specific 

local properties and functions, modern approaches focus on the analysis and modeling of 

networks, emphasizing connectivity, interaction, and synchronization on both local and large 

scales [2]. In a recent review of methods identifying epileptic neuronal networks and their own 

clinical findings, Stephan and Lopes da Silva [2] re-evaluated the concept of dichotomic 

classification of focal and generalized epilepsies and emphasized that, in both situations, specific 

epileptogenic networks are involved in seizure activity. Many methods have been designed to 

study the principle of functional connectivity and the dynamics of neuronal networks, such as 

those related to the Granger Causality (GC) concept [3] or directed transfer function (DTF), that 

extends GC to multichannel causality and has been successfully applied in epilepsy [2], [4], [5].  

Besides brain surgery, refractory epilepsy can benefit from algorithms able to anticipate seizures. 

Recent research is currently oriented towards the prediction of epileptic seizures long in advance 

to accommodate acute interventions.  

 

E 
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Figure 4.1 Framework of proposed seizure-prediction algorithm; The first cluster in each dog 
was used for training and validation (seizure used for training were not included in validation or 
testing); All remaining clusters were completely held out during algorithm development and were 
used for testing. DTF-SOZ: direct transfer function-seizure onset zone; SEF: spectral edge 
frequency; SEP: spectral edge power; PR-GA: precision recall-genetic algorithm; TIW: time in 
warning; AUC: area under the curve. 
 
Although early seizure prediction investigations lacked adequate statistical rigor, recent studies 

have demonstrated that the transition to seizures is not random [6], [7], [8]. Paucity of iEEG 

recordings, limited amounts of ictal events and short duration of interictal periods are major 

obstacles to adequate assessment of seizure forecasting. In addition, these recordings are usually 

acquired in spatially-confined areas of suspected epileptogenicity ascertained on an individual 

basis after semiology and non-invasive, presurgical tests. Recently, long-term continuous 

bilateral iEEG recordings were acquired from dogs with naturally-occurring epilepsy using the 

implantable NeuroVista ambulatory monitoring device [9]. Canine epilepsy is a suitable model of 

human epilepsy with homologous clinical representation, electrophysiology, clinical therapeutic 

response, and epidemiology [10]. Howbert et al [11] proposed a seizure prediction algorithm 

combining spectral band power features and a logistic regression classifier in 3 dogs implanted 

with the NeuroVista monitoring device. The same group [12] extended these investigations to 

inter-electrode synchrony features in conjunction with a support vector machine (SVM). 

However, one of the major caveats of using these long-term canine iEEG recordings in seizure-

prediction investigations was non-a priori knowledge of SOZ.  
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Figure 4.2 Approximate positioning of iEEG electrodes. The 3D canine brain mesh was 
generated by segmentation and reconstruction of magnetic resonance imaging canine brain scans 
on Matlab. 
 
Our group [5] recently proposed a DTF-based adaptive method for the appraisal of seizure 

activity sources and sinks in multichannel bilateral iEEG recordings. In this work, we validated 

the suggested method and then exploited it to assess SOZ extent. A seizure-prediction algorithm 

was implemented on electrodes selected with Kmeans-DTF. A preprocessing step was 

undertaken to filter EEG recordings and remove discontinuities encountered upon 

device/electrode breakage.  

Fourteen features were extracted from iEEG recordings and used as inputs to a genetic algorithm 

(GA) for feature selection. A new fitness function, based on precision-recall area under the curve 

(PR-AUC), was proposed and tested for problem optimization. The selected combination of 

features was used for classification with a probabilistic SVM. A post-processing step, based on 

the firing power technique, smoothed the classifier’s output. Figure 4.1 depicts the 

methodological framework developed in this work. 

4.3 Materials and methods 

4.3.1 Database 
Dogs were implanted with the NeuroVista ambulatory monitoring device for iEEG recordings 

[9]. Numbers of seizures and long-term recordings suitable for seizure prediction were adequate 

in 3 out of 7 dogs [11]. Data were acquired at 400 Hz through 4-bilateral 4-contact electrode 

strips (2 over each hemisphere) with a standardized protocol [9]. Dogs underwent continuous 

iEEG and video monitoring at the University of Minnesota canine epilepsy assessment unit.  
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Figure 4.3 Four-channel iEEG recording showing preictal time and IT 
 
For more technical and demographic details about canine iEEG recordings in this work, readers 

are referred to [11] and [12]. On average, recordings duration was 326±127 days including a total 

of 125 seizures. Figure 4.2 shows approximate positioning of the implanted electrodes. The 3D 

canine brain mesh was generated by segmentation and reconstruction of magnetic resonance 

imaging canine brain scans on MatlabÓ. The data are publicly available through the iEEG.org 

portal [11]. This type of recording allowed exploration of inter-hemispheric SOZ extent. Studies 

involving data acquisition and labeling were previously approved by the University of Minnesota 

Institutional Animal Care and Use Committee [11].  

4.3.2 Kmeans-DTF: SOZ extent 
Previous seizure-forecasting studies frequently lacked adequate electrode selection [8]. To 

address this drawback, we designed an adaptive, quantitative framework to evaluate SOZ extent 

in bilateral iEEG recordings. In [5], we tested DTF, a prominent multichannel causality measure 

to quantitatively define ictal activity generators and sinks in 1 of the dogs implanted with the 

NeuroVista device. Here, we extended these investigations to localize SOZ in 3 dogs with 

naturally-occurring focal epilepsy and then implemented a seizure-prediction algorithm using 

electrodes identified as seizure activity sources and sinks. 

4.3.2.1 Directed transfer function 
DTF is a multichannel causality estimate based on a multivariate autoregressive (AR) model. 

Kaminski et al [13] demonstrated equivalence between DTF and GC in determining whether a 

time series is useful in forecasting others. While several bivariate-directed connectivity measures 

have been proposed, multivariate approaches, namely, DTF, have proven to outperform pair-wise 



55 

 

methods [14]. The latter techniques are innately inconvenient when applied to multivariate 

signals, such as EEG recordings. In such cases, spurious causal connections may appear between 

electrodes or regions of interest, even when no coupling exists. The mathematical principles of 

DTF are briefly explained: as shown in (1), a multivariate AR model is a parametric time series 

representation that expresses each EEG channel as a linear combination of its past activity and 

that of all other EEG channels added to uncorrelated white noise:              

                                                                   )K = ∑ ;°)K&° +	VK
Ü
°.$                                               (1) 

where xt is the k-channel signal at time point t and et is the uncorrelated white noise matrix while 

Ad contains 2D coefficients of the multivariate AR model at time delay d.  

Equation (1) is Fourier-transformed in the DTF formulation, allowing causal interactions in the 

frequency domain to be examined, as shown in (2):  

                                                                         i(a) = ;(a)/(a)                                                 (2) 

where A(f), E(f), and X(f) are Fourier transforms of coefficient, error and time series matrices, 

respectively. 

Assuming that A(f) is invertible and non-singular, (2) can be reformulated as (3):  

                                                                /(a) = ;&$(a)i(a) = ã(a)i(a)                                (3) 

for k-channel signals, where H(f) is a k x k matrix and defines the transfer matrix. Hij(f) elements 

quantify causal relations at frequency f from channel xj to channel xi. Transfer matrix Hij(f) is 

then normalized with respect to incoming flow, allowing the ratio of inflow from channel xj to 

channel xi to be quantified with respect to all inflows to xi at a frequency f (4): 
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As DTF is dedicated to analyzing quasi-stationary seizure epochs spanning a frequency band, 

integrated DTF (iDTF) is employed by integrating normalized DTF over the frequency band of 

interest. 

4.3.2.2 Statistical significance of causal interactions 
Statistically validating the significance of causal interactions is an essential step in any 

connectivity analysis simulation. Since DTF has a highly non-linear relationship with the time 

series from which it is derived, the distribution of estimators under the null hypothesis of no-

interaction is not well-established. Thus, a non-parametric statistical test was included: surrogate 

data testing [4]. In summary, surrogate data testing consisted of randomly and independently 
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shuffling Fourier transform phases to create new surrogate time series. This procedure was 

repeated several times to obtain an empirical distribution of DTF values under the null hypothesis 

of no causal interaction. This distribution then served to assess the statistical significance of 

causal interactions.  

4.3.2.3 Seizure activity outflow and inflow 
Seizure activity outflow and inflow were extracted from the DTF matrix and considered as 

features of an unsupervised Kmeans-clustering algorithm. As Hij quantifies seizure activity flow 

from channel xj to channel xi, summing and normalizing along columns of the transfer matrix 

determine outflow from xj to all remaining electrodes (5): 

                                                                          	}ûA(ü) =
∑ *¢f†3ë
í
3Çx

ù
                                            (5) 

for j=1 to K (i ¹ j), where K is the number of iEEG channels.  

Similarly, integrating and normalizing across lines of the transfer matrix quantifies normalized 

inflow values (nIV) from all channels to channel xi (6): 

                                                                              }úA(>) =
∑ *¢f†3ë
í
ëÇx

ù
                                          (6) 

for i=1 to K (j ¹ i), where K is the number of iEEG channels. 

Usually, electrodes with relatively high nOV and nIV are defined as sources and sinks of seizure 

activity respectively [4], [5]. 

4.3.2.4 Kmeans clustering: seizure activity sources and sinks 
Previous DTF-based SOZ localization studies fixed a threshold for normalized outflow values 

(nOV) to determine seizure activity sources [4], [5]. In this work, we propose a clustering 

approach which attempts to adaptively evaluate seizure activity sources and sinks. Several 

assumptions support our motivation for such a scheme. First, employing adaptive, unsupervised 

clustering ensures the identification of a population with relatively normal outflow and inflow 

values (electrodes not implied in the network of seizure activity) compared to those featuring 

abnormal values (seizure activity sources and sinks). In contrast to previous studies, we assumed 

that seizure activity sources/generators feature high nOV and low nIV compared to sinks with 

low nOV and high nIV. Electrodes not implied in the network of seizure activity may exhibit low 

nOV and nIV. The separation hyperplane based on nOV and nIV is found using Kmeans 
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clustering, an adaptive partitioning algorithm. Clustering ensures minimizing intra-class variance 

while maximizing inter-class variance [15]. 

4.3.3 Seizure-prediction algorithm  
As discussed in the introduction, one of the major caveats concerning these long-term iEEG 

recordings in previous seizure prediction investigations was non-a priori knowledge of SOZ 

extent. In this work, after employing automated functional connectivity analysis (Kmeans-DTF), 

a seizure prediction algorithm was implemented on electrodes identified as seizure activity 

sources and sinks.  

4.3.3.1 Preprocessing  
Long term continuous iEEG recordings of dogs with naturally occurring epilepsy are used in this 

study. A finite impulse response 6th order Butterworth band pass filter was used to select EEG 

frequencies of interest [0.5-180 Hz] [16]. Forward-backward filtering was performed to maintain 

signal phases intact [15]. As sketched in Figure 4.3, preictal time of 1 hour was considered with 

intervention time (IT) of 5 minutes. Such IT ensured enough time for intervention prior to any 

seizure manifestation. Continuous interictal segments were chosen from the whole recording with 

a restriction of 4 hours prior to or after seizure. A post-ictal state of 15 minutes was considered to 

avoid any contamination by ictal data. Thus, seizures separated by at least 1 hour 20 minutes 

were considered. 

4.3.3.2 Feature extraction  
Univariate linear features adopted in recent seizure prediction studies [7] manifested better 

predictive performance than non-linear features [8], [17]. Fourteen linear univariate features, 

most prominent in the EEG seizure prediction literature with reproducible performances, were 

extracted from iEEG signals in non-overlapping 1-minute windows [8]: relative spectral band 

power (9 features), Hjorth mobility and complexity, spectral edge frequency and power, and 

decorrelation time. Spectral power features were extracted from standard EEG bands while 

splitting the gamma band into 4 sub-bands: delta [0.5-4] Hz, theta [4-8] Hz, alpha [8-13] Hz, beta 

[13-30] Hz, gamma 1 [30-47] Hz, gamma 2 [53-75] Hz, gamma 3 [75-97] Hz, gamma 4 [103-

128] Hz, and total power [0.5-180] Hz. Each of the spectral power features was divided by the 

total power of the signal.  
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Figure 4.4 Flowchart of proposed PR-based genetic algorithm. SVM: support vector machine; 
PR_AUC: precision recall-area under the curve; CL: chromosome length; #SF: number of 
selected features 

4.3.3.3 Feature selection: precision-recall genetic algorithm  
Although much effort has been put into identifying unique precursors of seizure activity, no 

single feature has been found capable of individually characterizing the preictal state. However, a 

combination of features may be able to display brain dynamics during transition to seizure. Thus, 

a genetic algorithm in this work will allow us to establish which combination of features is 

discriminative of the preictal state rather than ranking them. In addition, the advantage of a GA is 

that such an iterative algorithm does not require fixing the size of the selected subset of features. 

The computation requirements of GAs are considered to be obstacles to the development of 

predictors in studies which did not perform electrode selection [18], [19].  

 

Tournament of Size 2

Create Initial 
Population

For each chromosome 
        Train SVM
        Fit Posterior probabilities 
        Evaluate PR_AUC 
        Fit = (1-PR_AUC/( CL- #SF)
end
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Selection of Parents 
Chromosomes

Crossover 
Children
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Elite 
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New 
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Termination 
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Best 
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Table 4.1 Data splitting into train, validation, and test 

 
In its simplest form, a GA requires genetic representation and fitness function. While several 

presentations have been proposed, the standard is an array of bits. In feature selection, each bit 

represents a feature. Binary representations have been adopted where 1 indicates that the feature 

is discriminative of the classification target and 0 indicates otherwise [18].  

The fitness function can be considered as the cost function that will ensure convergence of the 

problem into a potentially good solution. Thus, it is important to note that the GA does not rank 

features in terms of their discriminative power but tends to find good feature combination for the 

given problem. This structure can be an advantage in seizure prediction studies where a 

combination of features, each displaying a certain aspect of brain dynamics, performed better 

than looking at individual features [8]. 

After defining fitness function and genetic representation, the GA initializes an initial population 

of chromosomes and then improves it through generations. Figure 4.4 is a flowchart of the 

proposed precision-recall genetic algorithm (PR-GA).  

After selecting an initially-randomized population, a proportion of individuals were selected to 

create a new population. The selected individuals were those with the best fitness.  

Then, a combination of genetic operators (crossover and mutation) was used to generate the next 

population. Crossover and mutation were applied on a pair of parents from the initial population 

to create a new solution (child). This process was repeated until a termination criterion, 

maximum number of generations or minimum value of the fitness function was reached. 

Receiver operating characteristic (ROC) curves, which display relationships between the number 

of correctly-classified positive and negative examples, are recommended when evaluating binary 

decision problems. However, they cannot be employed as a fitness function of an optimization 

problem, such as a GA when large skew occurs in class distribution (preictal vs interictal), since 

they may show interictal-biased, overoptimistic performance [20]. Precision-recall curves have 

 

Dog ID 
# of 

recording 
days 

# of 
Seizures 

Training and 
Validation 

(# of seizures) 

Testing  
(# of seizures) 

A0002 451 83 37 days (11) 414 days (72) 
A0003 197 27 22 days (7) 175 days (20) 

A0004 330 15 26 days (5) 304 days (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vertical lines are optional in tables. Statements that serve as captions for the entire 
table do not need footnote letters. 

aGaussian units are the same as cg emu for magnetostatics; Mx = maxwell, G = gauss, 
Oe = oersted; Wb = weber, V = volt, s = second, T = tesla, m = meter, A = ampere, J = 

joule, kg = kilogram, H = henry. 
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been reported to provide more reliable information on algorithm performance [20]. Davis and 

Goadrich [20] noted that an algorithm which optimizes PR-AUC augments the ROC-Area under 

the curve (ROC-AUC), but the inverse is not always valid. Subsequently, the PR-AUC was used 

in this work as a fitness function of the GA. The PR-AUC allows inclusion of the whole interictal 

training set in the algorithm’s cost function (no need for under-sampling interictal 

training/validation data). The proposed GA iterates through 150 generations with an initial 

population equal to twice the chromosome length (number of electrode-feature combinations) 

[21]. Based on trials, cross-over and mutation probabilities were fixed at 0.8 and 0.1, 

respectively. A tournament of size 2 was used for the selection process. 

4.3.3.4 Classification: probabilistic support vector machine  
Several recent seizure prediction investigations have demonstrated the superiority of SVMs over 

other supervised machine learning techniques [7]. The main idea behind SVMs is to separate 

classes using a linear hyperplane. Interestingly, with the kernel trick, they are capable of 

projecting the data into high-dimensional, non-linear space. The RBF kernel (7) was the most 

employed in seizure prediction and adopted in this work: 

                                                                     |(), @) = V)U 1&
|2&M|]

"\]
5                                          (7) 

where x and y are input feature vectors, and σ is scale parameter. Hyperplanes tend to maximize 

the distance between the nearest training points (margins), which increases generalization 

capabilities and makes SVMs more resistant to overtraining. SVM hyper-parameters were found 

through a hold-out validation grid search. In this work, a probabilistic SVM was implemented by 

fitting Plat’s posterior probabilities [22]. Output was a normalized score (0-1) quantifying 

preictal state probability.            

4.3.3.5 Output regularization: firing power  
This step was considered as post-processing which regularizes the classifier’s output to reduce 

the number of false alarms. Teixeira et al. reported that the firing power technique was more 

conservative than the Kalman filter in terms of alarm generation [23]. Thus, it was included in 

this work and explained briefly: a sliding window equal to preictal time was considered in which 

the number of samples classified as preictal was calculated (8):  

                                                                       aU[}] = ∑ ~[�]Ä
ÅÇÄÉÑ

^
                                                  (8) 
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Figure 4.5 Time frequency-energy distribution of seizure onset patterns in each dog 
 

where fp[n] is firing power at time point n, O[k] is the classifier’s output, and τ is the number of 

samples in the preictal state.  

4.3.4 Data splitting  
Previous seizure-prediction studies lacked adequate performance assessment, giving 

overoptimistic results. In this work, we ensured reliable performance evaluation while employing 

frameworks that imitated real clinical scenarios.  
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Table 4.2 Functional connectivity results averaged across 3 seizures per dog 

 
In these continuous, long-term iEEG recordings, seizures occurred in cluster/seizure bursts. Data 

were grouped into training, validation, and testing. The first cluster in each dog was considered 

for training and validation while all remaining clusters were targeted for testing. Held-out 

validation made sure seizures undergoing connectivity analysis were not subjected to validation. 

Preictal data were divided on a seizure-per-seizure basis to avoid any contamination/time-

correlation of the data. Table 4.1 states the number of recording days and number of seizures for 

each dog as well as data distribution across training, validation and testing.  

4.3.5 Performance evaluation  
Following the recommendations for reliable and practical seizure prediction systems [17], 

performance was assessed rigorously in this work. It was evaluated on held-out long-term and 

continuous test data using 3 measures: sensitivity, time in warning (TIW), and ROC-AUC. TIW 

is a measure of specificity, representing the fraction of interictal time classified as preictal over 

interictal duration.   

4.4 Results 
This section was grouped into 2 main parts showcasing functional connectivity simulations and 

performance results of the seizure-prediction algorithm. The former covers data segmentation and 

adequate multivariate AR model order, frequency band of interest, iDTF computation and 

statistical validation, while the latter discusses performance evaluation, comparison to previous 

work and selected feature distribution. All methods were implemented on Matlab©. Functional 

connectivity simulations were performed with eConnectome open source Matlab© Toolbox [24].  

 

Dog ID Sources Sinks Frequency 
range (Hz) 

A0002 2, 3, 4 1, 5, 6 (5-8) 

A0003 11 1, 2, 4, 9, 
14, 16 (8-12) 

A0004 13 1, 2, 3, 4, 6, 
7, 9, 11, 14 (5-9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vertical lines are optional in tables. Statements that serve as 
captions for the entire table do not need footnote letters. 

aGaussian units are the same as cg emu for magnetostatics; Mx 
= maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s 
= second, T = tesla, m = meter, A = ampere, J = joule, kg = 

kilogram, H = henry. 
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4.4.1 Kmeans-DTF: SOZ extent 

4.4.1.1 Data segmentation and multivariate autoregressive model 
Connectivity analysis was undertaken in 3 seizures per dog. A 3- to 7-second window after 

seizure onset was selected during regular, highly synchronous EEG activity to ensure quasi-

stationarity [4]. In addition, time-varying power spectra were analyzed for each window to make 

sure frequency content remained stable. As is common in all studies of DTF as a basis for 

connectivity analysis, optimal AR model order was selected by finding the minimum on Bayesian 

information criterion (BIC) plots. Segments for which it was impossible to find a clear minimum 

on BIC plots were discarded as they could have given rise to spurious, non-relevant links. iEEG 

recordings were fitted with a multivariate AR model by solving Yule-Walker equations with the 

multichannel Levinson algorithm. Model orders ranged from 2 to 4.  

4.4.1.2 Wavelet time-frequency analysis  
Wavelet time frequency analysis was based on Morlet mother wavelet to ascertain the frequency 

range of interest for each seizure. Stereotypical seizure onset patterns were apparent in each dog 

with a similar frequency range for all seizures of a given dog. Figure 4.5 reports the time-

frequency energy distribution of seizure onset patterns. 

 Upper and lower bounds of frequency bands were 5 to 8 Hz, 8 to 12 Hz, and 5 to 9 Hz for dogs 

A0002, A0003, and A0004, respectively. Chosen bounds corresponded to frequencies with power 

values higher than half the maximum power. 

4.4.1.3 Transfer matrices computation 
iDTFs were computed on the basis of AR coefficients to quantify flow causal patterns within 

frequency ranges identified through time-frequency analysis. A statistical significance level of 

0.01 was considered, and phase shuffling was repeated 1,000 times for each seizure. Three 

seizures per dog whose onset patterns were adequate for connectivity analysis were selected and 

then averaged. Figure 4.6 displays averaged transfer matrices Hij for each dog. As already 

explained, Hij revealed causal interactions from channel xj to xi. Although no thresholding or 

selection was performed, electrodes 11; 2, 3, 4; and 13 could be considered as sources of seizure 

activity in dogs A0002, A0003 and A0004, respectively. 
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Figure 4.6 Averaged DTFs of all dogs. Electrodes 2, 3 and 4 were identified as sources of seizure 
activity in dog A0002, 11 in dog A0003, and 13 in dog A0004. 
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Figure 4.7 Strength of causal interactions in dogs A0003 and A0004. The results highlight inter-
hemispheric seizure flow during seizure initiation, even in dogs with focal epilepsy 

4.4.1.4 Adaptive selection of sources and sinks  
As mentioned in Section II.B.4, seizure activity sources and sinks were identified adaptively via a 

3-class Kmeans-clustering approach. Table 4.2 illustrates the connectivity analysis results for 

each dog, namely, seizure activity sources and sinks, seizure onset patterns, and identified 

frequency range. Seizures evaluated for source and sink localization were not appraised in 

validation or testing. 
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4.4.1.5 Inter-hemispheric activity flow 
Interestingly, inter-hemispheric seizure activity flow was apparent in 2 out of 3 dogs with 

naturally-occurring epilepsy. Epileptic activity generators were focal in all dogs (left hemisphere 

in A0002 and right hemisphere in A0003 and A0004), confirming the diagnosis of focal epilepsy 

in these animals. However, seizure activity sinks spanned both hemispheres in dogs A0003 and 

A0004, indicating communication between both hemispheres during seizure initiation. Figure 4.7 

shows causal interaction strength averaged across 3 seizures in dogs A0003 and A0004.  

4.4.2 Seizure-prediction algorithm  
The results of seizure-prediction performance are presented along with selected feature 

distribution and compared with previous efforts to implement a seizure prediction algorithm in 

the same canine database. 

4.4.2.1 Seizure prediction: performance evaluation  
The proposed forecasting algorithm was implemented on seizure activity sources and sinks as 

they are involved the most in the epileptogenic network. Table 4.3 presents the performance 

evaluation results in terms of sensitivity, TIW and AUC. The whole proposed framework was 

implemented, including the proposed PR-GA. The restriction of 4 hours before or after seizures 

was not applied on the testing set where continuous iEEG recordings were used. Ictal and post-

ictal data were removed from the test continuous recording and their duration was subtracted 

from interictal duration while calculating TIW. Alarms falling within the IT window were 

considered as false alarms. Firing power threshold was subject-specific. It was determined by 

searching different possibilities (from 0 to 1 with 0.05 increments) and choosing the one 

achieving highest AUC on the validation set. As shown in Fig. 4.8, the firing power technique 

operates using a moving window equal to preictal time in which the number of samples classified 

as preictal was calculated. After threshold crossing (in an ascending way), an alarm was raised 

for a duration equal to the preictal time (meaning the dog can have a seizure at some point in the 

next hour). No other alarms were permitted during the warning period. Average sensitivity of 

84.42%, TIW of 0.1, and AUC of 0.87 were achieved with 1-hour preictal time (5 min IT).  

4.4.2.2 Comparison with previous work 
Interestingly, the long-term canine data in this work are freely available through the iEEG.org 

portal which allows benchmarking with studies sharing the same databases.  
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Table 4.3 Seizure-forecasting results 

 
Howbert et al implemented a seizure prediction algorithm, combining spectral power features 

with a logistic regression classifier, and reported their results on the same 3 dogs in our study 

[11]. Table 4.4 compares this study with previous works [11]. Although different algorithmic 

strategies were adopted in both studies, which restricted direct inference, the proposed 

methodology delivered higher performance. Higher sensitivity and lower TIW were noted for all 

3 dogs.  Recently, a seizure prediction competition was held on Kaggle.com reporting promising 

performances [25]. Direct result comparisons with our findings is difficult as different 

perspectives were adopted in the competition namely, data structure, human and canine 

recordings and generic algorithmic strategies. The contest required classification of non-

continuous 10-minute intracranial EEG clips labeled as “preictal” and “interictal” and testing data 

was provided in a random order. In this manuscript, the algorithm operated on long-term 

continuous intracranial EEG recordings. Competition administrators tailored an adaptive data 

structure dedicated for data science competitions (differentiate between preictal and interictal 

clips by assigning a single score to each 10-min clip). In this work, we used all continuous iEEG 

recordings available through the iEEG.org portal. The Kaggle seizure prediction contest involved 

both human and canine iEEG recordings. Our study involves only canine recordings. The 

objective of the contest was to find a single algorithm able to classify preictal and interictal 

labeled clips. In this work, we designed subject-specific algorithms individually tailored for each 

dog. Although points discussed above restrict direct inference, comparable results were achieved. 

The mean AUC score on the held-out data was 0.74 (Six Winning teams, Max: 0.79, Min: 0.59) 

in the Kaggle context. Our algorithm achieved an average AUC of 0.87 when considering a 

preictal time of 1 hour with a 5-min IT on held-out test data. 

 

Dog  # of 
seizures 

# of 
selected 

electrodes 

Preictal 
time 

# of electrode 
feature combinations 

Population 
size (GA) 

Firing 
power 

threshold 
SS (%) TIW  AUC 

A0002 83 6 
60 min 21 

168 
0.35 87.50 0.21 0.83 

30 min 19 0.30 91.66 0.09 0.91 

A0003 27 7 
60 min 24 

196 
0.30 81.25 0.08 0.86 

30 min 24 0.35 81.25 0.19 0.81 

A0004 15 10 
60 min 21 

280 
0.35 85.71 0.01 0.92 

30 min 18 0.35 71.42 0.21 0.85 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vertical lines are optional in tables. Statements that serve as captions for the entire table do not need footnote letters. 
aGaussian units are the same as cg emu for magnetostatics; Mx = maxwell, G = gauss, Oe = oersted; Wb = weber, V = 

volt, s = second, T = tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry. 
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Table 4.4 Comparison with previous work 

 

 
Figure 4.8 Alarms generation based on the Firing power technique. Area highlighted in yellow 
and red respectively depict a 30 min preictal time and 5 min IT. Blue and black lines represent 
the firing power output and probabilistic support vector machine output respectively. The vertical 
red line and arrow respectively indicates seizure onset and generated alarm. Any alarm generated 
during the preictal period (highlighted in yellow) is considered as true 

4.4.2.3 Selected features distribution  
The selected features in each of the 3 dogs were different, confirming the need for patient-

specific, individually-tailored algorithms. Band power features, mainly the gamma band, were 

selected most frequently (37%). These features have already demonstrated their superiority in 

seizure-prediction studies [7], [8], [17], [26]. Figure 4.9 reports selected feature distribution in all 

3 dogs. 

4.4.2.4 Preictal time choice  
Since recent seizure prediction investigations have reported good performances for preictal times 

in the range of 30 minutes [7], [8], [27], a similar preictal period with 5-minutes intervention time 

was also adopted in this work. As seen in Table III and in line with previous findings, preictal 

 

Dog SS (%) in 
this work 

TIW in this 
work  

SS (%)            
in [11] 

TIW 
in 

[11] 
A0002 87.50 0.21 66.7 0.2 

A0003 81.25 0.08 73.3 0.3 

A0004 85.71 0.01 75.9 0.1 
Average 84.82 0.1 71.96 0.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vertical lines are optional in tables. Statements that serve as 
captions for the entire table do not need footnote letters. 

aGaussian units are the same as cg emu for magnetostatics; Mx = 
maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s = 

second, T = tesla, m = meter, A = ampere, J = joule, kg = 
kilogram, H = henry. 
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time was subject-specific with better average performance for a preictal time of 1 hour with a 5-

min intervention time. 

4.5 Discussion  
The benefits of this study confront 2 research communities. We start by proposing a quantitative 

and automatic functional connectivity framework to localize SOZ in bilateral iEEG recordings of 

dogs with naturally-occurring epilepsy. Then, a seizure-prediction algorithm is implemented on 

electrodes in the identified SOZ. The purpose behind proposing such a methodology is to 

prospectively determine if electrodes within SOZ allow good prediction of epileptic seizures and 

thus contain ictal activity generators. This could lead to better and more precise delineation of 

epileptogenic zones. Such promising performances may encourage researchers to prospectively 

perform quantitative source localization methods for presurgical evaluation. To our knowledge, 

no previous seizure prediction investigations have undertaken functional connectivity-based 

electrode selection prior to implementing their seizure prediction algorithm. With this 

methodology, we assume that selecting electrodes through functional connectivity analysis 

allows the identification of those recording electrical potentials over seizure activity generators 

and sinks and are thus more suitable for seizure forecasting.  

 In all 3 dogs, seizure activity sources were focal and localized in 1 hemisphere, confirming the 

focal nature of epilepsy in these animals. However, seizure spread shows an inter-hemispheric 

nature, which indicates that, although not adopted in earlier seizure prediction studies, bilateral 

iEEG recordings may represent added value in seizure forecasting. 

In addition, Kmeans-DTF allowed a sort of electrode selection based on raw data and overcoming 

computation constraints of the GA.  

In the seizure prediction part, we ensured rigorous methodology and adequate performance 

evaluation to avoid overoptimistic results. The following points were considered:  

• Continuous, long-term iEEG recordings  

• Data splitting into training, validation and testing 

• Held-out validation and testing  

• Splitting on a seizure-per-seizure basis to avoid contamination or time correlation  

• Scaling parameters (Z-score) were computed on train sets only and used for validation 

and testing. 
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Figure 4.9 Selected features distribution 

 
The seizure prediction algorithm showed good performance on all 3 dogs with average sensitivity 

of 84.82% and TIW of 0.1. Recently, our group proposed a GA-based feature selection method 

for seizure prediction [18]. However, the GA fitness function was the classification loss of the K-

Nearest Neighbor classifier which requires under-sampling the interictal class to balance the 

preictal one, resulting in non-optimal optimization. In this work, proposing the PR-AUC fitness 

function allowed inclusion of the whole interictal training set in the algorithm’s cost function. To 

our knowledge, no previous seizure prediction investigations have explored fitness function 

insensitive to skewed class distribution. Common methodology has randomly under-sampled the 

interictal class prior to problem optimization or classification. On the other side, the fitness 

function was based on a probabilistic SVM which was in line with the classification methodology 

undertaken in this work. The proposed methodology includes the firing power technique as a 

regularization function. Another advantage of this technique relies on a threshold for alarm 

generation. The threshold allows compromising between sensitivity and specificity and 

subsequently adjusts them according to the context of use (advisory/intervention).  

A preictal time of 1 hour gave better average predictive performance in terms of sensitivity, TIW 

and AUC. However, since the firing power technique regularization method structurally increases 

specificity with longer preictal periods, care must be taken to avoid generalizing the findings to 

studies using different post-processing techniques.  

In a recent clinical trial, Cook et al. 2013 designed a system that includes a series of advisory 

lights depending on seizure likelihood (low, moderate, or high) [28]. Considering the 



71 

 

probabilistic SVM output adopted in our design, the implementation of an output similar to that 

proposed in [28] is feasible and will be considered in future investigations.  

Reducing the number of electrodes enables a more exhaustive feature search to be conducted (in 

the case of the genetic algorithm) to determine the most useful features to identify the preictal 

state. Given limitations in benchmarking prediction performances, sometimes within the same 

dataset [29], it might have been useful to provide some internal benchmark. However, the 

algorithmic structure adopted in this work restricts a reliable internal benchmark. Due to the 

iterative nature of the genetic algorithm and given it starts from a random initial population; it 

was unfair to compare the performance with other strategies. Furthermore, to be able to perform 

such an internal benchmark, high computational resources are needed to reach a point where the 

genetic algorithm has relatively converged in all cases and where it might be possible to compare 

internal results. This goes beyond the perspectives of this manuscript but will be addressed in 

future work.  

In this work, seizure activity generators/sources were identified on the basis of available iEEG 

coverage; thus, SOZ may not have been totally sampled. However, the proposed scheme ensured 

that identified electrodes were the closest to SOZ as seizure activity generators/sources feature 

the highest causal interactions within the ictal frequency range. Another limitation was the 

relatively low sampling frequency (400 Hz). Our group is currently assessing the value of the 

same analytical framework on high-density iEEG recordings obtained from epileptic patients 

sampled at 2,000 Hz. 

4.6 Conclusion 
This work can be considered as a “proof of principle” evaluation of seizure forecasting in canine 

epilepsy. A seizure prediction algorithm was proposed after adaptively identifying seizure 

activity sources and sinks. The proposed Kmeans-DTF method allowed a quantitative delineation 

of SOZ in bilateral iEEG recordings avoiding inaccuracies induced by EEG visual interpretations.  

The use of continuous and long-term EEG recordings (several months duration) allowed 

performing adequate assessment of the methods presented in this study, a main challenge 

encountered in prior seizure prediction investigations. The scarcity of EEG recordings and short 

duration of interictal periods were previously considered as major constraints to proper 

assessment of false positive rates. The results highlight the possibility of seizure forecasting in 

canine epilepsy and subsequently the development of an EEG-triggered closed-loop seizure 
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intervention system for ambulatory implantation in epileptic patients. Final judgment can be 

made after assessing the proposed framework in a significant number of epileptic patients.  
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This paper presents the second objective of this thesis, namely the feasibility of quantitative 

identification of sources and sinks of seizure activity using high density iEEG recordings. We 

restricted ourselves to a relatively homogeneous group of patients with apparent operculo-insular 

epilepsy, due to several reasons. These include: 1) the insula is a highly connected brain 

structure, characterized by fast spreading seizure, thus creating a challenge for localization by 

means of the swADTF; 2) access to insular recordings was possible given that the CHUM is 

well-recognized for this particular type of epilepsy and 3) the swADTF was previously tested on 

temporal lobe epilepsy recordings but not on other types of focal epilepsy. This work was 

presented as part of insular neural networks investigator workshop at the 71st Annual meeting of 

the American Epilepsy Society (December 2017, Washington, D.C.) and the manuscript was 

submitted to Epilepsy Research in July 2018.  

5.1 Abstract  
Recognition of insular epilepsy may sometimes be challenging due to the rapid speed at which 

insular seizures can spread throughout the cortex via extensive connections to surrounding 

cortices. The spectrum weighted adaptive directed transfer function, a multivariate causality-

based effective connectivity measure, was applied to intracranial electroencephalography 

recordings to identify generators of seizure activity. A non-parametric test based on surrogate 

data testing was used to validate statistical significance of causal relations. Outflow and inflow of 

seizure activity were extracted from the computed transfer matrix. Recorded data from seven 

patients were analyzed including five who were rendered seizure-free after operculo-insular 

resection. Results confirmed an operculo-insular seizure origin in patients with a good post-

operative seizure outcome, and for whom the resected region was sampled by intracranial 

electroencephalography contacts. Different or additional seizure foci were identified in patients 
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with a bad post-operative seizure outcome. Findings highlight the feasibility of accurate 

operculo-insular seizure foci localization based on quantitative approaches.  

Keywords: Insular Epilepsy, Effective connectivity, Intracranial electroencephalography, 

Autoregressive modeling, Spectrum weighted adaptive directed transfer function.  

5.2 Introduction  
Epilepsy is a chronic condition characterized by recurrent seizures (or ‘ictus’) resulting from 

abnormal and excessive neuronal discharges. When antiepileptic drugs fail to control seizures, 

surgical resection of the epileptic focus is recommended if it can be delineated by a set of tests 

which often include qualitative visual interpretation of intracranial electroencephalography 

(iEEG) recordings of seizures. Several authors have recently applied quantitative effective 

connectivity analyses on such recordings to characterize the complex epileptic network of the 

different brain areas involved in the generation, propagation, and modulation of seizures. By 

exploiting temporal precedence among a set of signals to reveal information transfers from 

‘driver’ to ‘secondary’ nodes of the network, effective connectivity analyses may help understand 

seizure semiology and optimize delineation of the area to be resected for seizure cure [1, 2]. Until 

now, such methods have mainly been used to analyze temporal or frontal lobe seizures [1, 3-5]. 

While little attention has been given to insular seizures [6], effective connectivity measures could 

possibly help explain the diversity in their ictal symptoms and facilitate their identification 

knowing how complex their ictal intracranial EEG patterns can be (often with the involvement of 

several distinct structures in as much that visual identification of the area of seizure onset is 

difficult) [7]. 

Highly connected to surrounding frontal, temporal and parietal lobes [8], the insula is a 

multimodal area involved in the processing of several sensory stimuli (viscerosensory, 

somatosensory, auditory, gustatory, and olfactory) and cognitive processes (attention, social 

cognition, and decision-making) [9]. Such structural and functional connectivity considerations 

may explain why insular seizures are diverse in terms of EEG patterns but also in clinical 

presentation such as early viscerosensory auras (common in temporal lobe seizures), 

somatosensory auras (as in parietal lobe seizures) and hypermotor symptoms (resembling frontal 

lobe seizures) [10]. Such mimicry has most likely misled some clinicians into thinking that their 

patients, suffering from insular epilepsy, had temporal, frontal or parietal lobe seizures leading to 

the resection of the wrong cortical area [11]. 
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Table 5.1 Clinical caracteristics of patients 

 

A long list of measures has been proposed for the study of effective connectivity and neuronal 

network dynamics. Compared to bivariate measures, multivariate approaches showed more 

accurate performances in estimating causal relations during seizure initiation and spread [12, 13]. 

The directed transfer function (DTF), a multivariate directional connectivity measure, has been 

validated for quantifying causal relations when quasi-stationarity requirements are met [5, 14]. 

Although quasi-stationary EEG signals can be identified when analyzing a relatively small 

number of electrodes, it is more difficult when dealing with a higher number of electrodes. To 

cope with stationarity issues, Wilke et al. (2008) proposed the Adaptive Directed Transfer 

Function (ADTF), a time varying version of the DTF [15]. However, for both DTF and ADTF, 

visual analysis remained necessary for identifying frequency ranges of interest. Subsequently, the 

spectrum weighted ADTF (swADTF) was proposed, taking into account the full frequency range 

of the signal and weighting each element of the transfer matrix by the sending channel’s auto 

spectrum [1,3]. In this study, we investigate the effective connectivity of apparent operculo-

insular seizures of different semiology using the swADTF. 

 

Patient 
ID 

Gender DOB Epilepsy 
duration 

(Y) 

SOZ Side MRI # of iEEG 
contacts 

Outcome 
(Engel) 

Follow-up 
(years) 

1 F 1974 33 aINS + F 
op 

L N 110 IA 5 

2 M 1967 9 pIINS L N 61 IB 4 
3 M 1975 10 supINS + 

F op 
R N 100 IA 7 

4 M 1965 31 pINS, P 
op/T op 

L N 91 IA 5 

5 F 1997 9 sup INS, 
F op 

L N 114 IA 2 

6 F 1977 14 pINS, T 
op/P op 

R N 74 IIIA 5 

7 M 1975 4 aINS, F 
op 

R N 112 IIIA 2 

F: female; M: male; DOB: date of birth; Y: years; aINS: anterior insula; F op: frontal operculum; 
pINS: posterior insula; supINS: superior insula; P op: parietal operculum; T op: temporal operculum; 
L: left; R: right, MRI: magnetic resonance imaging, N: normal 
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Figure 5.1 Framework of the swADTF-based connectivity implementation (iEEG: intracranial 
electroencephalography; MVAAR: multivariate adaptive autoregressive model; swADTF: 
spectrum weighted adaptive directed transfer function) 

5.3 Materials and Methods  
Figure 5.1 shows the block diagram of the implemented swADTF-based connectivity analysis 

framework. High-density iEEG recordings following onset of ictal seizure activity were first 

selected. Connectivity between iEEG electrodes was obtained by applying the swADTF to iEEG 

time series. Statistical validation was performed by means of surrogate data testing. Outflow and 

inflow values were quantified, and seizure activity sources and sinks were identified. 

5.3.1 Patients 
Intracranial EEG recordings of seven patients diagnosed with insulo-opercular epilepsy were 

retrospectively analyzed (Table 5.1). Patients were selected based on the following inclusion 

criteria: (1) seizure onset zone located within the insula (with or without extension to the adjacent 

operculum) as assessed by the clinician of the iEEG study; (2) iEEG electrodes sampled the 

insula, opercula, as well as temporal, parietal or frontal structures. In 5 patients, focal cortical 

resection of the seizure onset zone resulted in a good seizure outcome (Engel I) with at least two 

years of follow-up. The two remaining patients had a poor outcome (Engel IIIA).  



79 

 

 
Figure 5.2  Graphical node illustration of the simulated propagation pattern. Node 5 was 
simulated as a generator of seizure activity that propagates to all remaining nodes (sinks). 
 

Raw iEEG signals were acquired using the Harmonie monitoring system (Stellate Systems Inc.), 

sampled at 2000 Hz and filtered at 500 Hz. The research protocol was approved by our local 

ethical research committee.  

5.3.2 Spectrum weighted adaptive directed transfer function  
For each patient, three iEEG-recorded seizures were randomly chosen and analyzed using 

swADTF. The ADTF allows investigating time-varying connectivity patterns and does not entail 

stationarity requirements. It is based on a multivariate adaptive auto regressive model (MVAAR) 

[15] (1):                                             

                                               /(=) = ∑ ;(>, =)/(= − >) + i(=)Ü
*.$                                               (1) 

where X(t) is a multivariate signal, A(i,t) is a matrix gathering time varying model coefficients, 

E(t) is the error matrix and p is the model order.  

Non-linear Kalman filtering, based on a combination of observation and state space equations, 

was used to estimate model’s time varying coefficients [15]. The frequency domain transfer 

matrix Hij(f,t) is obtained by Fourier transforming equation (1). Hij(f,t) displays causal relations 

from the electrode j to electrode i at time instant t and frequency f. 

Although the clinical validity of the ADTF has been demonstrated [15], Mierlo et al. 2013 found 

that at some frequency f and time t, the term Hij(f,t) may be high even though power of signal j is 

relatively low [1]. They subsequently proposed the swADTF in which Hij (f,t) is divided by the 

auto spectrum of the sending channel (2). 
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Figure 5.3 Illustrative one-channel raw iEEG recordings with different SNRs. top: SNR = 12 dB; 
middle: SNR = 0 dB; bottom: SNR= -12 dB. A Gaussian white noise was added with SNRs 
ranging from -12 dB to 12 dB to assess the proposed framework’s robustness to noise; SNR: 
Signal to noise ratio. 
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where f1 and f2 are frequency bounds of interest, and K is the total number of channels. 

Three seizures per patient were randomly chosen and seizure onset was marked by an expert 

epileptologist (DKN). For each seizure, an ictal segment from 5sec prior to 7sec after the labeled 

onset was selected for analysis. Extracted epochs were bandpass [0.5 – 40 Hz] filtered using a 6th 

order zero-phase Butterworth filter. Filtered iEEG signals were then standardized (mean 

subtraction, and standard deviation division) to avoid any amplitude-based bias. Multivariate 

autoregressive model orders were adaptively determined by finding the minimum on the 

Bayesian Information Criterion plot for each individually analyzed seizure [5].  



81 

 

 
Figure 5.4 Simulation results: swADTF transfer matrix (left), outflow (right, top) and inflow 
(right, bottom) of seizure activity 
 

Minimum and maximum model order limits were respectively fixed to 1 and 10 with unity 

increments and an update coefficient of 0.001 was used to compute model coefficients [1]. 

5.3.3 Surrogate data testing  
The swADTF exhibits a highly non-linear relation with the time series from which it is derived 

resulting in a fairly well-established estimators’ distribution under the null hypothesis of no 

causal interaction. Subsequently, a non-parametric statistical test is required to validate the 

statistical significance of causal relations among iEEG channels. Surrogate data testing was 

performed by independently and randomly shuffling Fourier transform phases, thus resulting in a 

new time series (surrogate). Replicating this operation several times creates an empirical 

distribution of computed swADTF values under the null hypothesis of no interaction. Statistical 

significance of causal interactions is then assessed through comparison to the generated 

empirical/random distribution. The shuffling was repeated 1000 times and a significance level of 

0.05 was considered. 

5.3.4 Outflow and inflow of seizure activity  
Since the swADTF displays causal relations from channel j to channel i, outflow of seizure 

activity (from channel j to all remaining ones) can be quantified by integrating and normalizing 

across the transfer matrix’s columns (3). Similarly, seizure activity inflow can be determined by 

repeating the same procedure across the rows of the transfer matrix (4). 

                                                              û£=aGE{(ü) = 	
∑ v§I¢f†3ë
í
3Çx

ù
                                            (3) 
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Figure 5.5 Noise simulation results (-12 dB ≤ SNR ≤ 11 dB): The swADTF is stable in 
identifying node 5 as the generator of seizure activity. Noise simulation results highlight 
swADTF’s resistance to noise for a SNR as low as -12 dB. 
 

                                                             ú}aGE{	(>) = 	
∑ v§I¢f†3ë
í
ëÇx

ù
                                              (4) 

for i=1 to K, and j=1 to K where K is the total number of channels.  

High outflow or inflow values indicate that a given electrode can be respectively considered as a 

source or sink of seizure activity. In line with previous investigations, the electrode contact 

exhibiting the highest outflow across each analyzed seizure was considered the ictal generator 

[1]. In contrast, to assess the spread of ictal activity, sinks of seizure activity were electrode 

contacts exhibiting inflow values higher than 80% the maximal inflow value. 
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Figure 5.6 Time-Frequency energy distribution for seizures of (a) Patient 1, (b) Patient 2 , and (c) 
Patient 3 

5.3.5 Synthetic iEEG recordings  
The implemented swADTF-based seizure generators/sinks identification framework was first 

tested on a 9-node simulated connectivity pattern (3x3 grid).  

A primary generator of seizure activity, consisting of real ictal data (sampled at 400 Hz), was 

propagated to the 8 remaining nodes. This connectivity propagation model was provided as part 

of the eConnectome Matlab toolbox for mapping and imaging of brain functional connectivity 

[14] and was previously used to validate other connectivity methods such as the DTF [5] and the 

ADTF [15]. The swADTF was evaluated and integrated across frequency range (4-10 Hz) and 

whole segment duration. Figure 5.2 illustrates the simulated propagation pattern. In order to 

evaluate the resistance of the proposed analytical framework to noise and interference, an 

additive Gaussian white noise was imposed to raw iEEG recordings. Recently, Paris et al. 2016 

demonstrated that noises interfering with iEEG recordings could be modeled by an additive white 

Gaussian noise or a causal periodic autoregressive moving average model [17]. Different noise 

levels were added to the generated 9-node connectivity pattern resulting in signal-to-noise ratios 

(SNR) between -12 dB and 12 dB (unity increments). Figure 5.3 displays illustrative raw iEEG 

recordings with SNRs of 12 dB (top), 0 dB (middle), and -12 dB (bottom).   

5.4 Results  

5.4.1 Simulation results  
Figure 5.4 displays the transfer function (0 dB noise), as well as normalized outflow and inflow 

of seizure activity. Electrode 5 can be quantitatively identified as the source of seizure activity 

confirming the simulated connectivity pattern.  
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Table 5.2 Group results in terms of resected regions, sources, and sinks of seizure activity 

 

In addition, contact 5 exhibited highest and lowest outflow and inflow values respectively. 

Remaining electrodes (sinks of seizure activity) displayed low outflow and high inflow values, as 

expected. 

The entire localizing methodology, including surrogate data testing (1000 times shuffling, a= 

0.05) was applied to the simulated data. As shown in Fig. 5.5, the swADTF is stable in 

identifying node 5 as the generator of seizure activity even in the presence of high noise levels. 

Patient ID SOZ Resection: 
Ins/op 

Seizure Semiology Outcome 
(Engel) 

Ictal 
generators 

Ictal sinks 

1 Ant Ins + F 
op 

Ant and 
middle/FT  

No 
aura/laughing/complex 

motor behavior 

IA Ant Ins + 
Medial OF + 

ant STG  

Lateral OF + 
Fusiform + 
Post central 

gyrus 
2 Post Ins Post/T R arm painful 

somatosensory 
symptoms/Dystonic 

posturing   

IB Pos Ins Cingulate 
+para-central  
+MFG/SFG  

       
3 Sup Ins + F 

op 
Ant/F No aura/laughing or 

swearing, complex 
motor behavior 

IA Medial OF Lat OF  
+ SFG 
+ SPL  

4 Post Ins, P 
op/T op 

Post/PT Diurnal: audiogenic 
reflex L hemiface 

somatosensory 
symptoms; Nocturnal: 
no aura/complex motor 

behavior  
 

IA Pos Ins  IFG + Post-
central gyrus 

5 Sup Ins, F 
op 

Ant/F Anxiety, palpitations/R 
dystonic posturing and 

head deviation  

IA F op  Pre-central  
+ F op 

6 Post Ins, T 
op/P op 

Post and Inf/ 
TP 

L hemiface 
somatosensory, 

olfactory and auditory 
auras ± L facial clonic 

jerks and bilateral 
convulsive 

IIIA Ant Ins/P 
op/IFG   

Ins + Lat OF 

7 Ant Ins, F 
op 

Ant/- No aura, behavioral 
arrest, ± bilateral 

convulsive 

IIIA STG Fusiform+ 
T Pole+ 

Medial OF 
SOZ: seizure onset zone; Ant Ins: anterior insula; F op: frontal operculum; Post Ins: posterior insula; 
Sup Ins: superior insula; P op: parietal opercula; T op: temporal operculum; L: left; R: right; Ins: 
insular; op: operculum; Ant: anterior; F: frontal: T: temporal; Rad: radical 
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Figure 5.7 Individual swADTF connectivity results for patient 1; U: insular depth electrodes, G: 
Grid electrodes OF: orbito-frontal strip electrode; MEG: Magnetoencephalography; t: time 

5.4.2 Sources of seizure activity – group results   
Using the MVAAR model coefficients, swADTF was integrated from f1= 3 Hz to f2= 40 Hz 

based on equation (2). The high cut-off frequency (3Hz) was chosen in an attempt to exclude low 

frequency background electrical activity [1]. Complex Morlet wavelet time-frequency analysis 

was performed to ensure ictal activity, across all analyzed seizures, occurred within the chosen 

frequency range [18]. Figure 5.6 shows illustrative time-frequency energy distribution of seizure 

onset patterns for patients 1, 2, and 3. The 5-sec frame prior to seizure onset was discarded from 

the analysis. It was only included to let the Kalman filter adapt to the iEEG recordings. Outflow 

and inflow of seizure activity were extracted from the time and frequency integrated swADTF 

transfer matrices. Table 5.2 depicts results for all patients in terms of regions selected by visual 

analysis, resected region, as well as swADTF-identified ictal generators and sinks. 
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Figure 5.8 Individual swADTF connectivity results for patient 4 
 
For patients with Engel I outcome, and for whom the resected region was sampled by iEEG 

contacts, ictal generators were within the resected volume and among electrode contacts visually 

identified by the expert epileptologist. Note however that for patient 1, swADTF identified three 

ictal generators (different generator for each seizure) from three distinct non-contiguous areas, 

only one of which was resected to provide seizure freedom. For the remaining two patients (#6 

and #7) with poor post-operative seizure outcome, the identified ictal generators were outside of 

the resected region. For patient 6, while the parietal operculum was resected, two nearby contacts 

in the anterior insula and inferior frontal gyrus with quasi-similar outflow scores were not. For 

patient 7, the identified generator in the superior temporal gyrus was right below the resected area 

(anterior insula). 

5.4.3 Individual results  
In this section, illustrative cases of patients are discussed. Inflow and outflow of seizure activity 

were plotted on individual brain surfaces as reconstructed from a T1 magnetic resonance imaging 

(MRI) volumetric scan using Freesurfer. Individual cortex surfaces were registered to a Desikan-

Killiany anatomical atlas using Brainstorm, an open source Matlab toolbox [19].  
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Figure 5.9 Seizure specific swADTF analysis for patient 4. Seizure 1 is a night seizure 
characterized by complex motor behavior semiology while seizure 2 is a diurnal seizure 
characterized by somatosensory semiology 
 

To facilitate interpretation, inflow of seizure activity was converted from channels to brain 

regions. Electrodes on the vertices of a given region as well as the connectivity of pairs of 

electrodes between two regions were averaged.  

5.4.3.1 Illustrative case 1 
Patient 1 is a 38-year-old female who suffered from non-lesional focal epilepsy since the age of 5 

years. After failing six antiepileptic drugs, she was referred for epilepsy surgery. Clinically, 

seizures were characterized by sudden non-mirthful laughter and complex motor movements, 

suggestive of prefrontal lobe involvement. However, non-invasive investigations suggested a 

seizure focus in the left anterior insula (see magnetoencephalography (MEG) results in Figure 

5.7). An intracranial EEG subsequently confirmed a seizure onset zone in the left anterior insula 

extending to the frontal operculum. She underwent surgical resection of the left anterior and 

middle insula and part of the adjacent frontal and temporal opercula with good post-operative 

seizure outcome (Engel IA outcome). As mentioned in Table 5.2, swADTF identified three 

contacts (one for each individually analyzed seizure). While electrode contact U11 located in the 

anterior insula was within the seizure onset zone, the other two (contact OF11 in the orbitofrontal 

cortex and G125 in the superior temporal gyrus) were not. This may suggest that swADTF as 

integrated across the first seven seconds of the seizure may not always be able to distinguish a 

primary ictal generator from secondary ictal generators (a node with high inflow but also high 

outflow).  In an attempt to distinguish primary from secondary generators of seizure activity, 

time-varying outflow of seizure activity was plotted at the early seizure onset. As shown in 
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Figure 5.7, the insula exhibited the highest outflow of seizure activity at time t =1; afterwards the 

lateral orbitofrontal gyrus becomes the highest source of seizure activity.  

5.4.3.2 Illustrative case 2 
Patient 4 is a 46-year-old male with non-lesional drug-resistant epilepsy since age 16 years. He 

presented diurnal seizures manifesting as paroxysmal pain over the right face often triggered by 

loud noises, suggestive of a focus involving the posterior insula at the junction of the secondary 

somatosensory cortex (pain) and the auditory cortex both in the parietal operculum, and possibly 

also the inferior primary sensory cortex (face sensory). He also presented sleep-related episodes 

with complex motor behaviours suggesting prefrontal propagation. Invasive EEG recordings 

confirmed the location of the seizure onset zone in the left posterior insula extending to the 

adjacent parietal and temporal opercula; a subsequent left operculo-insular resection led to 

seizure-freedom (Engel IA outcome). The electrode contact identified as the maximal source of 

outflow based on swADTF was indeed located within the resected volume which led to seizure-

freedom (Figure 5.8). Averaging inflow activity across three seizures, the highest inflow of 

seizure activity included the inferior frontal gyrus and the post central gyrus (where the primary 

and secondary somatosensory functional cortices are located). Because diurnal and nocturnal 

seizures were different, we individually analyzed each seizure type. As shown in Figure 5.9, the 

analyzed nocturnal seizure which was not triggered by loud noises and featured complex motor 

behaviour (suggestive of prefrontal involvement) exhibited high activation of the left inferior 

frontal gyrus while the analyzed diurnal audiogenic reflex painful somatosensory seizure 

exhibited propagation to the post central gyrus (primary and secondary somatosensory cortices), 

the temporal neocortex and the pars opercularis. 

5.4.3.3 Illustrative case 3  
Patient 7 is a 36-year-old male with non-lesional predominantly nocturnal epilepsy since age 31 

years. Seizures were characterized by sudden awakening, fixed gaze and behavioral arrest 

followed by limb hypertonia. MEG and ictal single-photon emission computed tomography 

(SPECT) (Figure 5.10) suggested a left operculo-insular focus. Intracranial EEG revealed 

interictal broadly distributed spikes involving the anterior insula, the frontal operculum, the 

orbitofrontal cortex and temporal areas.  



89 

 

 
Figure 5.10 Individual swADTF connectivity results for patient 7; SPECT: single-photon 
emission computed tomography 
 

Seizures started with a broadly distributed spike and wave discharge followed by relatively 

diffuse low-voltage fast activity involving several contacts. Based on visual analysis, maximum 

evolution was felt to be in the anterior insula, inferior frontal gyrus, superior temporal gyrus, and 

orbitofrontal gyrus. The anterior insula and frontal operculum were resected (sparing Broca’s 

language area) with a worthwhile seizure reduction but not seizure freedom (Engel III outcome). 

Interestingly, swADTF analysis identified the maximum outflow of seizure activity in the 

superior temporal gyrus which was not part of the resection volume. The region exhibiting 

highest inflow of seizure activity was the fusiform gyrus, the temporal pole and the medial 

orbitofrontal gyrus.  
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5.5 Discussion  
In this work, we have investigated the ability of the swADTF in identifying seizure foci in 

patients with apparent operculo-insular seizures. More specifically, we applied the swADTF to 

iEEG recordings of seven patients with insular epilepsy who underwent an operculo-insular 

resection guided by iEEG findings, five of whom with subsequent good outcome and 2 with 

poorer outcome. To our knowledge, this is the first study to use multivariate autoregressive 

modeling based effective connectivity for the analysis of operculo-insular seizures. 

For four of the five patients with good outcome, swADTF-identified the electrode contact 

exhibiting highest outflow within the resected volume. For one of these four patients however, 

more than one electrode contact was identified as a possible generator. For this patient (#1), three 

different non-contiguous electrode contacts were identified, indicating that swADTF as integrated 

across the first seven seconds of the seizure may not always be able to distinguish a primary ictal 

generator from secondary ictal generators and that visual inspection of the time-varying outflow 

of seizure activity may be necessary. Regarding the single patient with good outcome for whom 

swADTF identified a generator in the medial orbitofrontal gyrus rather than in the insula, it 

should be noted that the depth electrode initially destined to reach the anterior insula was found 

to be located on the post-implantation MRI in the posterior insula close to the second depth 

electrode positioned in the posterior insula (as intended). This is a reminder that swADTF cannot 

obviously identify the ictal generator if the epileptic zone is not sampled. However, the identified 

generator was located within the iEEG-sampled region close to the anterior insula (resected 

region-not sampled by iEEG contacts for this patient). Structural connectivity results from our 

group have suggested that the orbitofrontal gyrus and anterior insula are highly connected brain 

regions [8]. For the final two patients with a poor post-operative seizure outcome, the swADTF-

identified contact of maximum outflow was outside the surgical volume, suggesting resection of 

the wrong area or only part of it (albeit this cannot be verified as both patients declined a second 

iEEG study). Our observations are in line with previous investigations applying the swADTF to 

patients with other types of focal epilepsy [1]. In a series of 8 temporal lobe epilepsy patients 

operated successfully (Engel I outcome), Van Mierlo et al. (2013) showed that the electrode 

contact with the highest outflow, so called “driver”, was within the region clinically identified as 

the epileptogenic zone and resected volume [1]. In another series of eleven pediatric patients with 

frontal or parietal lobe epilepsies, Wilke et al. (2010) applied the DTF to selected quasi-stationary 
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iEEG epochs and integrated the transfer matrix across the frequency range of interest (as 

identified by means of Morlet wavelet-based time frequency analysis) [5]. They showed that 

electrode contacts with normalized outflow values higher than 0.8 (DTF-identified generators) 

highly correlated with seizure onset zones identified by expert epileptologists.   

Although very preliminary, initial observations also suggest that regions identified as 

generators (defined as the contact of maximal outflow) or sinks (defined as areas of inflow values 

higher than 80%) of seizure activity, appeared to correlate with seizure semiology. For the three 

patients who exhibited somatosensory auras (#2, 4, and 6), all had ictal generators in the posterior 

insula or parietal operculum which are known to produce such symptoms when electrically 

stimulated. We also note that two out of the three patients with complex motor behaviours (#1 

and 2) had sinks of seizure activity in the orbitofrontal cortex (an area which is typically expected 

to be involved during such manifestations, in addition to the medial prefrontal region); the third 

(#3), who did not have electrodes sampling the orbitofrontal cortex nor the medial prefrontal 

region, had an identified-sink in the nearby inferior frontal gyrus.  

Our study has some merit and limitations. First, the recordings we used to perform 

multivariate effective connectivity were obtained from a high number of intracranial electrode 

contacts (mean of 95) sampling a number of brain areas. Previous investigations used a limited 

number of electrodes [3], shorter analysis segments [5], or visually identified regions of interest 

[1, 6]. Still, we acknowledge that some of regions of interest were probably not recorded. 

Computational requirements of adaptive multivariate modeling with surrogate based statistical 

validation can constitute a major constraint. In this work, we took advantage of high 

computational capabilities (160 cores, 1TB RAM, IBM X3850 X5, 8* Intel E7-8870 CPU) to 

include all implanted electrodes in swADTF analysis. In addition, simulations were optimized 

and parallelized over available cores using Matlab© parallel computing toolbox. Despite 

computational requirements, the swADTF is preferred as compared to other quantitative 

measures based on Granger causality. The major advantage of using the swADTF is that it allows 

to overcome the non-stationary nature of iEEG recordings, previously considered as an issue 

when using traditional autoregressive modeling strategies. The relatively small number of 

patients is another limitation. Although an increasing number of cases are being identified, 

operculo-insular epilepsy cases remain small in comparison with temporal or frontal lobe 

epilepsy. In addition, we chose to restrict ourselves to a relatively homogeneous group of patients 
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with operculo-insular epilepsy to better understand this focal epileptic condition at times 

considered as a great mimicker due to the variety of associated ictal manifestations. Obviously, 

larger studies are necessary to reproduce our preliminary findings, both for operculo-insular 

epilepsy or any type of focal epilepsy. Recent studies have demonstrated that high frequency 

oscillations (HFOs) may be correlated with the seizure onset zone. Due to limitations imposed by 

under sampling iEEG time series to cope with computational requirements, we were unable to 

study interactions within HFOs. Future perspectives include additional processing and swATDF 

computational optimization to study seizure onset patterns within HFOs. 

5.6 Conclusion 
In this work we examined the ability of the swADTF in localizing the seizure onset zone in 

patients with apparent operculo-insular epilepsy. Preliminary results showed that, despite the 

rapid spread of seizure activity, swADTF is a promising tool to complement visual assessment of 

seizure origin and propagation. Caveats include adequate sampling by electrode contacts of 

suspected areas of epileptogenicity, separately analyzing different seizure types if more than one 

seizure focus is suspected, and using a time-varying outflow representation when swADTF is 

unable to distinguish a primary ictal generator from secondary ictal generators. Larger 

prospective studies are obviously necessary before considering translation into clinical practice. 
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This article addresses the third objective of this thesis, namely the assessment of the 

feasibility of seizure forecasting based on higher order spectra features. The revised version of 

the manuscript, based on reviewers’ comments was submitted to Scientific Reports in July 2018.   

6.1 Abstract  
The ability to accurately forecast seizures could significantly improve the quality of life of 

patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification 

of seizure activity precursors from electroencephalography recordings. Although a long list of 

features has been proposed, none of these is able to independently characterize the brain states 

during transition to a seizure. This work assessed the feasibility of using the bispectrum, an 

advanced signal processing technique based on higher order statistics, as a precursor of seizure 

activity. Quantitative features were extracted from the bispectrum and passed through two 

statistical tests to check for significant differences between preictal and interictal recordings. 

Results showed statistically significant differences (p<0.05) between preictal and interictal states 

using all bispectrum-extracted features. We used normalized bispectral entropy, normalized 

bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multi-layer perceptron 

classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%. 

 
Keywords:  Epilepsy, seizure prediction, intracranial electroencephalography (iEEG), feature 

engineering, cross frequency coupling, bispectrum, multi-layer perceptron 
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6.2 Introduction  
Epilepsy is a chronic condition characterized by recurrent ‘unpredictable’ seizures.  While the 

first line of treatment consists of long-term drug therapy, more than a third of patients are 

pharmaco-resistant [1]. The availability of several new antiepileptic drugs over the last two 

decades helped in reducing the risk of adverse events but their impact on the rate of seizure 

control is only modest [2]. In addition, recourse to epilepsy surgery remains low in part due 

variable success rates depending on the complexity of the case at hand, accessibility, and 

persisting negative attitudes towards it and fear of complications [3,4].  

Predicting the possible occurrence of seizures is an unmet medical need and such capability 

can lead to novel therapeutic avenues to treat patients with refractory epilepsy. Unlike seizure 

detection, seizure prediction can foresee the possibility of future occurrence of seizure in 

advance, thus allowing medical intervention to potentially prevent the seizures or reduce their 

magnitude and/or frequency. However, the ability to accurately identify the pre-seizure state 

remains elusive. Despite several attempts to identify a specific and unique feature that can be 

used to predict seizures, no single characteristic has been established as a potential and universal 

precursor of epileptic seizure activity [5-7]. 

The commonly used feature in seizure prediction, the spectral band power, is derived from 

the frequency domain characteristics of electroencephalography (EEG) signals [8]. It quantifies 

amplitude modulations across time, within the defined frequency bands. While the spectral band 

power displays phase changes, it cannot identify interactions among frequency components of the 

signal. However, information regarding multi-frequency behaviors can be captured by more 

complex metrics, related to the concept of cross-frequency coupling (CFC) [9]. Recently, 

Alvarado-Rojas et al. (2014) introduced a new measure of brain excitability based on phase-

amplitude coupling (PAC), consisting of a slow (delta, theta) modulation of high (gamma) 

frequency intracranial EEG (iEEG) signal’s components [10]. They reported promising 

prospective results suggesting that preictal PAC modulations may be significant for the whole 

group of patients (p<0.05). We later showed the existence of significant difference in mean PAC 

distribution between the preictal and interictal states on bilateral canine iEEG recordings [11]. 

Furthermore, Bandarabadi et al. (2015) reported promising results with a new bivariate feature 

(although not termed as CFC) quantifying the cross-power information between two different 
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frequency bands (assessed in terms of power spectral density) and two different channels [12]. 

Overall, these findings suggest that seizure prediction may be possible using cross-frequency 

coupling. In contrast to the previously discussed measures, higher order spectral measures based 

on CFC have been proposed to be the carrier mechanism for the relationship between global and 

local neuronal processes [9]. 

The bispectrum is an advanced signal processing technique based on higher order statistics 

which considers both the amplitude and the degree of phase coupling of a signal. In contrast to 

traditional power spectrum, which quantifies the power of a time series over frequency, higher 

order spectral (HOS) analysis employs the Fourier transform of higher order correlation functions 

to explore the existence of quadratic (and cubic) non-linear coupling information. Although the 

bispectrum has shown promising results within the context of seizure detection and EEG signals 

classification [13], it has not yet been used for seizure prediction. In this work, we investigated 

the suitability of the bispectrum in quantifying changes between the interictal and preictal states. 

Adequate statistical tests were employed to assess if there are significant differences among the 

quantified changes. A seizure prediction algorithm employing a multi-layer perceptron (MLP) 

neural network was used, showing good performances in classifying preictal and interictal 

samples. The seizure prediction algorithm was designed and tested to perform an automatic 

classification of preictal and interictal samples. Such algorithm could eventually be embedded in 

an advisory/intervention closed-loop system, resulting in a life-changing solution for patients 

with refractory epilepsy.  

6.3 Methods 

6.3.1 Database  
HOS analysis features were extracted from interictal and preictal iEEG recordings of 3 mixed 

hounds implanted with the NeuroVista ambulatory monitoring device. These recordings were 

downloaded from the NIH-sponsored international electrophysiology portal 

(https://www.ieeg.org/). The NeuroVista ambulatory monitoring device consists of an 

implantable lead assembly in line with a telemetry unit and a personal advisory device. Data were 

acquired at 400 Hz using 16 channels (4×4 contact electrode strips) implanted bilaterally 

according to a standardized canine implantation protocol [14]. Preictal and interictal segments 

were extracted from the iEEG recordings of 3 dogs with naturally occurring focal epilepsy. In 
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line with previous investigations [11, 15, 16] and the American Epilepsy Society seizure 

prediction challenge consensus, preictal segments consisted of recordings of 1 hour prior to 

seizure onset with a 5 min intervention time. Interictal segments were randomly chosen from the 

entire recording with a restriction of 4 hours before or after a seizure. 

6.3.2 Higher order spectra  

Higher order spectral analysis is an advanced signal processing method that allows exploring the 

existence of quadratic (and cubic) non-linearities. In contrast to traditional power spectrum, 

which quantifies the power of a time series over frequency, HOS analysis employs the Fourier 

transform of higher order correlation functions investigating non-linear coupling information. 

The bispectrum splits the skewness (third order moment) of a signal over its frequencies, 

quantifying the coupling between a signal’s oscillatory components. The bispectrum, quantifying 

oscillatory relationships between basic frequencies f1, f2, and their harmonic component “f1+f2”, 

is computed from the Fourier transform of the third-order correlation (1). 

                                         	_>`(a$, a") = lim
f	→h

1$
f
5i[/(a$ + a")/∗(a$)/∗(a")]                        (1) 

where X(f) is the Fourier transform of a time series x(t), (*) is the complex conjugate, and E 

denotes the arithmetic average estimator.  

6.3.3 Higher order spectra features  
In order to characterize and compare time series, quantitative features must be extracted from the 

bispectral density array. Bispectrum analysis yields a 2D mapping of the level of interaction 

between all frequency pairs in the signal. In order to characterize and compare time series, 

quantitative features must be extracted. In this work, three features were computed from the non-

redundant region (shown in Fig. 6.1): the mean magnitude (Mave) of the bispectrum, the 

normalized bispectral entropy (P1) and the normalized squared bispectral entropy (P2). The 

mathematical equations of extracted features are briefly explained: 

The first feature, bispectrum’s mean of magnitude (Mave) (2), has been used commonly to 

extract quantitative information from the bispectrum [13, 17].  

                                                               DB?V = 	 $
n
∑ |_>`(a$, a")|p                                              (2) 

where L is the total number of sample points in the bispectral density array non-redundant region 

(z) defined in Fig. 6.1.  
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Figure 6.1 2D Bispectrum color map highlighting the non-redundant region used in feature 
extraction; FFT = Fast Fourier Transforms. Axes coordinates display relative/normalized 
frequencies where 0.5 represents the maximum frequency (180 Hz). Color indicates degree of 
coupling (Bispectral value) between f1 and f2. 
 
In an attempt to extract regularity from bispectrum plots, normalized bispectral entropy (P1) and 

normalized bispectral squared entropy (P2) have been proposed recently and were used in this 

work [13]:  

																																																																														r$ = −∑ UsGEtUss 																																																								(3)	

																																																																							Us =
|u*v(wx,w])|

∑ è_>`Qa1,a2Rèp
                                                      (4)	

																																																																												r" = −∑ ysGEtyss 																																																									(5)	
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Figure 6.2 Artificial neural network architecture. The input layer consists of 16 nodes. The first, 
second, and third hidden layers respectively consists of 30, 60, and 30 nodes. The output layer 
features 2 nodes for a binary classification.			
 

																																																																					ys =
|u*v(wx,w])|]

∑ è_>`Qa1,a2Rèp
]                                                      (6)	

where n=0, 1, … L-1; L is the total number of sample points in the bispectral density array non-

redundant region (z). A 30-sec non-overlapping moving window was used to compute the 

bispectrum and its subsequent features from epileptic canine iEEG recordings. Zero-phase notch 

(cut-off frequency=60 Hz) and band pass filtering in the frequency range [0.5 - 180] Hz were 

performed to keep signals’ phase intact. The higher order spectral analysis (HOSA) Matlab© 

toolbox was used to extract the bispectrum. Following equation (1), the bispectrum matrix was 

estimated for all possible frequency pairs (f1, f2) in the range [0.5 - 180] Hz based on the direct 

fast Fourier transform approach. 

6.3.4 Statistical analysis  
To assess bispectrum related features’ capability in distinguishing between interictal and preictal 

iEEG recordings, a statistical analysis was performed to measure the level of statistically 

significant differences between the three features extracted from 30-sec non-overlapping 

windows. Firstly, the general level of interaction between the type of recordings (interictal vs. 

preictal) and the values of each feature were evaluated for each dog, using one-way ANOVA. 

This analysis indicates whether there is a statistically significant difference between preictal and 

interictal recordings for each of the three features.  
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Table 6.1 Mean values of HOS features and One-Way ANOVA global statistical analysis results 

 
Dog 
ID 

 
Nb. 

Seizures 

Mave P1 P2 

Pre Inter F, p Pre Inter F, p Pre Inter F, p 

0002 17 (4’080) 3.31e3 
±3.30e3 

3.49e3 
±2.57e3 

F = 6.07, 
P = 

0.0138 

4.79 
±0.30 

4.94 
±0.21 

 F = 
2480, 
P = 0* 

3.45 
±0.53 

3.71 
±0.45 

 F = 
2800, 
P = 0* 

0003 17 (4’080) 
1.79e3 
±1.04e3 

 

2.02e3 
±1.24e3 

 F = 167, 
P = 

4.113e-
38 
 

4.49 
±0.24 

4.75 
±0.28 

 F = 
98.3, 
P = 

3.67822e
-23 

 

3.35 
±0.46 

3.26 
±0.43 

 

 F = 346, 
P = 

5.50e-77 
 

0004 11 (2’640) 7.44e3 
±1.46e3 

5.99e3 
±4.33e3 

F = 18.5, 
P = 

1.75e-5 

4.05 
±0.38 

4.72 
±0.34 

 F = 
2340, 
P = 0* 

3.04 
±0.59 

3.28 
±0.51 

 F = 
1360, 
P = 

3.262e-
292 

Mean values and standard deviation of HOS features for each dog were computed using recordings from all available seizures. 
Independent Analysis of Variance tests comparing preictal and interictal HOS feature distributions were conducted on recordings 
of each dog. Nb. Seizures: total number of seizures; the numbers in parentheses indicate the total number of 30-sec data samples 
used in the comparison; F: F statistic of one-way ANOVA; p: p-value of one-way ANOVA indicating probability that the null 
hypothesis (HO) is falsely rejected (HO: preictal and interictal feature distributions have equal means), *p-value is less than 
Matlab’s digit precision = 4.9407e-324. 
 
One-Way ANOVA was preferred over Student’s t-test, since the data were randomly and 

independently selected from the entire record and multiple features were compared. 

Then, to assess the spatial localization of the change in bispectral features during the preictal 

period, the distribution of each feature for each hour of the preictal recordings (120 samples) was 

compared to the features for one hour of the interictal recordings, selected from the same 

electrode, with the restriction of 4 hours prior to the preictal time, by the Mann-Whitney U-Test. 

A p-value <0.05 from this test indicates statistically significant difference. 

Finally, for each feature, a color map of the brain was created to visualize the percentage of the 

seizures at each electrode for which the difference measured by the Mann-Whitney U-Test is 

significant at a confidence level of at least 95%. This representation allows a visualization and 

identification of the brain regions where the changes in bispectral features are most prominent 

during preictal periods. 

6.3.5 Seizure prediction algorithm  

6.3.5.1 Network architecture  
To assess the feasibility of seizure prediction based on bispectral features, a 5-layer MLP neural 

network classifier was trained to differentiate preictal and interictal recordings. Different 

classifier configurations were trained for each feature.  
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Figure 6.3 Box and Whisker plots for all features from all three dogs. The red central mark 
indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively, and the whiskers extend to the most extreme data points to a maximum of 1 times 
the interquartile range. Outliers are points located beyond the whiskers and are marked with a red 
‘+’. The columns from left to right show plots for Mave,, P1 and P2, while the rows correspond 
to the 3 dogs. All available seizures are included in these box plots. 
 
The input layer consisted of 16 nodes (corresponding to 16-input channels). The first, second and 

third hidden layers, respectively, consisted of 30, 60, and 30 nodes (ReLu activation function). 

The output layer contains 2 nodes for a binary decision function (Preictal vs Interictal). A 

stochastic gradient decent optimizer was used during backpropagation. The fitness function was 

the classification cross entropy. Training iterated through 10,000 epochs with a learning rate of 

0.001 and a training and validation batch size of 200 samples. Figure 6.2 shows the architecture 

of the implemented neural network. All algorithmic development steps were performed on 

PyTorch, an open source Python-based machine learning library. 
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6.3.5.2 Data splitting and training strategy  
Held-out validation and test were performed. A total of 45 seizures were included in the analysis. 

A subject-specific algorithm was implemented. Features were extracted using a 30-sec non-

overlapping moving window (total of 10,800 classification samples). Training, validation, and 

testing data were respectively in the following proportions: 40%, 30%, and 30%. To avoid any 

contamination, time correlation or leakage, the data (train, validation, and test) were split on a 

seizure per seizure basis. More specifically, the whole preictal period (1 hour segmented using a 

30-sec non-overlapping window) of a considered seizure was used for either training, validation, 

or testing. Splitting samples from the same preictal period (although not identical) into training, 

validation, and testing may prompt the classifier to learn temporal correlations rather than class 

information. This, in turn, would result in overoptimistic classification performances. The 

proposed strategy ensured that preictal samples originating from seizures used in training were 

neither assessed during validation nor testing. 

6.4 Results 

6.4.1 Statistical Analysis  

6.4.1.1 ANOVA- Global assessment of significance  
One-way ANOVA tests were conducted for each dog to compare HOS features extracted from 

preictal and interictal iEEG recordings. Results from these variance tests are shown in Table 1 

and in the box-and-whisker plots in Figure 6.3. For the bispectral magnitude (Mave), the 

distributions from two of the three dogs show a slight decrease in magnitude during the preictal 

phase, while the ANOVA tests for all three dogs indicate that preictal and interictal Mave 

distributions are statistically different at a confidence of at least 95% (Dog 2: F1,4078 = 6.07, p 

<0.05; Dog 3: F1,4078 = 167, p <0.001; Dog 4: F1,2638 = 18.5, p <0.001). As for the normalized 

bispectral entropy (P1), distributions from all three dogs show a general decrease in P1 values 

during the preictal phase and the ANOVA tests confirm that the difference in P1 distributions 

between preictal and interictal recordings is statistically significant in all three dogs (Dog 2: 

F1,4078 = 2480, p <0.001; Dog 3: F1,4078 = 98.3, p <0.001; Dog 4: F1,2638 = 2340, p <0.001). 

Finally, the normalized squared bispectral entropy (P2) values generally decrease while variances 

of the distributions increase during transition to seizure. The differences between the P2 

distributions are statistically significant for all three dogs (Dog 2: F1,4078 = 2800, p <0.001; Dog 3: 
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F1,4078 = 346, p <0.001; Dog 4: F1,2638 = 1360, p <0.001). These strong significant differences 

imply that interictal and preictal recordings are statistically distinguishable based on the three 

HOS features tested.  

6.4.1.2 Mann Whitney - inter seizure assessment of significance  
The second statistical test aimed to evaluate the potential patient-specific seizure prediction 

capability of the three HOS parameters by analyzing the spatial distribution of the iEEG 

channels, for which the bispectral changes are most prominent.  The HOS parameters extracted 

from 30-sec non-overlapping windows for a total of 45 preictal hours were compared to 45 

interictal hours channel per channel. The Mann-Whitney U test was used to compare specific 

bispectral feature distributions for each seizure and each channel. The results of the specific 

statistical comparison tests are presented in Figure 6.4. The colormaps represent the percent of 

predictable seizures, occurring in each dog, for which each specific feature distribution is 

statistically different (p <0.05) during the preictal hour at that channel. For dog 2, the P1 and P2 

distributions change significantly during the preictal periods for 100% of the seizures (n = 17) at 

several contacts located in both hemispheres (Fig. 6.4, top).  

Furthermore, these specific regions of consistent bispectral change coincide with the regions of 

most prominent cross-frequency phase-amplitude coupling (PAC) change, which we identified in 

an earlier study [11]. These regions include channels 2 and 5 in the left hemisphere and channels 

10 and 14 in the right hemisphere. For dog 3, mean magnitude (Mave) and normalized bispectral 

entropy (P1) show significant distribution changes during preictal periods for 100% of the 

seizures (n = 17). As shown in Figure 6.4 (middle), these distribution changes are most prominent 

at channels 1, 5 and 6 in the left hemisphere and channels 10 and 13 in the right hemisphere. This 

spatial distribution of preictal bispectral feature change, again, coincides with the spatial 

distribution of preictal PAC change for this dog identified in our previous study [11]. Finally, for 

dog 4, the mean bispectral magnitude and normalized bispectral entropy showed most consistent 

seizure prediction potential. 
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Figure 6.4 Mann-Whitney statistical test results: percentage of predictable seizures using each of 
the extracted features (p<0.05). From top to bottom: Dog 2, Dog 3, Dog 4. Each cell represents a 
combination of a HOS feature and a contact. Dark red color indicates that 100% of seizures 
showed a statistically significant change in that feature during the preictal period at that specific 
contact. 
 

Table 6.2Multi-Layer Perceptron-based classification results 
 P1 P2 Mave 

Train Acc. 
(%) 

Test Acc. 
(%) 

Train Acc. 
(%) 

Test Acc. 
(%) 

Train 
Acc. (%) 

Test Acc. 
(%) 

Dog A002  84.23 76.71 79.81 77.61 94.23 61.84 

Dog A003 71.71 67.23 75.58 61.52 79.26 67.15 

Dog A004 90.89 90.40 83.36 78.78 94.58 90.80 

Mean 82.8 78.11 79.58 72.64 89.36 73.26 
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Once again, as shown in Figure 6.4 (bottom), there was a statistically significant change in Mave 

and P1 during progression to seizure for 100% of the seizures (n = 11) in bilateral regions, which 

coincide with those we identified as PAC change regions in Gagliano et al. (2018) [11]. These 

channels include 3, 4, 6, 7 and 8 in the left hemisphere and channel 13 in the right hemisphere.  

6.4.2 Seizure prediction algorithm  
As previously mentioned, a 5-layer MLP was trained to classify interictal and preictal samples. 

As shown in Table 6.2, average test accuracies of 78.11%, 72.64%, and 73.26% were achieved 

using features P1, P2, and Mave, respectively. Table 6.2 reports performance results, in terms of 

accuracy, during training and testing, for all features from the 3 dogs. Training and testing 

performances were close in the case of P1 and P2, whereas it was not in the case with the Mave 

feature, suggesting that the latter may be less useful for seizure prediction. An early stopping 

strategy was used during training. Training and validation were iterated through 10,000 epochs. 

Checkpointing was performed on a 10 epochs basis (save classifier model). The best model was 

chosen as the latest saved classifier model before validation loss starts increasing. The model was 

then assessed on held-out test data.  

6.5 Discussion 
In this work, we have examined the ability of HOS features in distinguishing preictal from 

interictal iEEG recordings in canines implanted with the NeuroVista ambulatory monitoring 

device. To our knowledge, this is the first investigation of the bispectrum within the context of 

seizure prediction. Unlike power spectrum (commonly used in forecasting studies), the 

bispectrum preserves phase information, which is useful for displaying quadratic nonlinear 

coupling between the different frequency components of the signal. Results highlight the 

feasibility of seizure forecasting, based on higher order spectra. These results compliment 

previous investigations of cross-frequency analysis, namely phase-amplitude coupling for seizure 

forecasting [10,11]. In addition, prominent performances of EEG-bispectrum features were 

reported within the context of EEG signal classification [13]. Chua et al. 2009 demonstrated a 

significant difference between EEG recordings from healthy and epileptic patients, using a one-

way ANOVA test [13]. 
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Figure 6.5 Distribution of P1 values during preictal (left) and interictal (right) periods. Each 
represents values extracted from 1h of continuous recording from Dog 2. 
 

ANOVA statistical analysis results revealed a general tendency for P1 and P2 features to 

decrease during the preictal state (decrease in mean amplitude for all 3 dogs). As these features 

display irregularity in the properties of iEEG signals, it seems that the iEEG characteristics tend 

to become more regular during the preictal state. These findings are in agreement with previous 

dimension analysis of EEG studies, which showed that seizures can be considered as emergent 

brain states with reduced complexity as compared to non-seizure activity [18, 19]. As emphasized 

in [20], it appears that a loss of complexity is associated with functional impairment of biological 

systems. In addition, Mann-Whitney test results confirmed the observed decrease of irregularity, 

while displaying a more normal distribution of interictal values as compared to preictal ones (Fig. 

6.5).  

The use of the NeuroVista database allowed investigating the bilateral nature of HOS 

changes. Although dogs were diagnosed with focal epilepsy [11, 15], bilateral preictal HOS 

changes were found in all 3 dogs. Interestingly, these findings correlate with our previous PAC-

based preictal changes [11]. Unfortunately, we were unable to correlate these findings with 

respect to the exact location of the seizure onset zone, as this information is not provided within 

the dataset. 

 Recent reports have shown that high frequency oscillations can be used as a predecessor 

of seizure activity [21]. Considering the sampling frequency limitation imposed by the 

NeuroVista ambulatory monitoring device (Fs=400 Hz), we were unable to explore quadratic 

non-linear coupling at the HFO level. 
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In this work, we did not explore the interaction among pre-defined frequency bands 

(standard iEEG frequency bands). The whole available frequency range was included in the 

analysis. The fact that standard iEEG frequency bands are used in power spectrum-based analysis 

does not necessarily justify their use in bispectrum analysis. Although this research avenue is 

tempting, it goes beyond the focus of this manuscript.    

In this manuscript, we have demonstrated the suitability of MLP neural networks for the 

classification of interictal and preictal samples based on bispectrum-extracted features. 

Considering the image-based nature of bispectrum plots, it would be interesting to investigate the 

use of other types of neural networks’ architectures, namely, convolutional neural networks 

(CNNs). The design of seizure predictors, combining raw bispectrum plots and CNNs, is a 

tempting approach that may improve seizure prediction capabilities.    

Each of the aforementioned features was used as an input to a seizure prediction algorithm. 

To avoid any bias, no previous assumption (based on the statistical analysis) was included during 

the seizure forecasting algorithm design. For each feature, all electrodes were used as inputs to a 

5-layer MLP neural network. We ensured adequate performance evaluation and employed 

rigorous methodology to avoid reporting overoptimistic results: (1) data were split into training, 

validation, and testing; (2) Splitting was performed on a seizure per seizure basis to avoid 

leakage, or time correlation; and (3) Held-out validation and testing were performed. As in 

previous seizure forecasting investigations, results highlight that changes are not homogenous 

across the tested dogs and that subject-specific algorithms are required. It is worth mentioning 

that no post-processing has been performed in this work in an attempt to improve forecasting 

capabilities. Our objective was to test the capability of a neural network for individually 

classifying feature samples extracted from 30-sec iEEG samples as preictal or interictal. Future 

perspectives include extrapolating this methodology to a continuous seizure prediction 

framework which considers time-based modulation of HOS features. Such algorithms could be 

implemented into closed-loop intervention systems for advisory or intervention purposes.  

6.6 Conclusion 
In conclusion, this work can be considered as a proof of principle study on the feasibility of 

seizure prediction based on HOS features. We have demonstrated statistically significant 

differences between preictal and interictal iEEG recordings for all the computed features. In 

addition, HOS analysis showed promising forecasting performances, when used as inputs to a 
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neural network classifier. Additional studies assessing the performance of HOS features for 

seizure forecasting, ideally in a quasi-prospective setting, are necessary to advance the 

development of seizure advisory/intervention devices. 
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CHAPTER 7 GENERAL DISCUSSION  
 

This thesis confirms the feasibility of seizure forecasting based on long term continuous 

iEEG recordings. The transition into the ictal state is not random with a build-up leading to 

seizures. Throughout this thesis, we attempted to address the main perspectives recently proposed 

by the seizure prediction community. These includes: 1) the need for bilateral long term 

continuous iEEG recordings [49], 2) the adequate identification of the epileptogenic network and 

electrodes’ location for seizure prediction [48, 50], 3) the clinical utility of probabilistic outputs 

as compared to binary classification [127], and 4) the need for new precursors of epileptic 

activity [48, 49, 127]. First, an accurate seizure forecasting algorithm was proposed after 

adaptively identifying sources and sinks of seizure activity in bilateral continuous canine iEEG 

recordings (objective 1). Then, to allow reproducing such methodology in high density human 

iEEG recordings, the swADTF was validated as a quantitative tool for the determination of 

seizure origin and propagation (objective 2). In parallel, new precursors of seizure activity were 

proposed and used as inputs to an MLP classifier (objective 3).  

7.1 Summary of contributions 
Accurate seizure forecasting is currently an important target in the epilepsy research community. 

For a long time, the paucity of iEEG recordings, the limited amounts of ictal events, and the short 

duration of interictal periods have been the major obstacles for adequate assessment of the 

seizure forecasting algorithms. The first objective of this thesis was the development and 

validation of an accurate seizure forecasting algorithm combining effective connectivity 

measures for seizure onset zone localization and artificial intelligence techniques for algorithm’s 

development. To our knowledge, no previous seizure prediction investigation had undertaken 

effective-connectivity based raw electrode selection prior to algorithm’s implementation.  

Reported performance measures were assessed on a total of 893 days of ambulatory iEEG 

recordings. We proposed the use of Kmeans-directed transfer function, an adaptive effective 

connectivity method intended for the seizure onset zone localization in bilateral iEEG recordings. 

Electrodes identified as seizure activity sources and sinks were then used to implement a seizure-

forecasting algorithm on long-term continuous recordings in dogs with naturally-occurring 

epilepsy. In addition, proposing the precision recall-area under the curve fitness function allowed 

inclusion of the whole interictal training set in the algorithm’s cost function. This is the first 
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study to explore the use of a fitness function insensitive to skewed (unbalanced) class 

distribution. Results showed performance improvement compared to previous studies, achieving 

average sensitivity of 84.82% and time in warning of 10%. 

The second objective of this thesis was to propose and validate a quantitative framework for 

the determination of seizure activity sources and sinks when dealing with high density iEEG 

recordings (mean of 96 electrodes). Operculo-insular epilepsy was a suitable model for assessing 

such a framework as ictal discharges propagate very rapidly through its dense connections to the 

surrounding lobes. This may explain the reason for the resemblance of insular seizures to parietal 

lobe seizures (with the presence of somatosensory symptoms), frontal lobe seizures (with the 

occurrence of hypermotor manifestations) and temporal lobe seizures (when viscerosensory or 

dysphasic symptoms are present). Because access to the insula is relatively difficult (it is deeply 

seated, below highly eloquent opercula and above the extreme/external capsules and surrounded 

by a dense wall of middle cerebral artery branches), only specialized centers such as the CHUM 

can explore the insula during iEEG studies. This work is likely the first investigation of 

multivariate adaptive autoregressive modeling-based effective connectivity for the analysis of 

patients with operculo-insular epilepsy. The swADTF has been recently proposed as an effective 

connectivity measure able to cope with iEEG stationarity requirements while considering the full 

frequency range of the signal. In this work, the ability of the swADTF in localizing the seizure 

onset zone in 7 patients with apparent operculo-insular seizures was examined. Results confirmed 

an operculo-insular seizure origin in patients with good post-surgical outcomes while different or 

additional seizure foci were identified in patients with bad post-operative outcomes. These 

findings highlight the possibility of using quantitative approaches to accurately identify 

generators and sinks of seizure activity, based on high density iEEG recordings, thus paving the 

way for their use in seizure prediction algorithms in human iEEG recordings.  

Although several endeavors have been made to identify a unique precursor of seizure 

activity, no single feature has shown to be capable to individually track changes during the 

transition to seizures. Spectral band power, the commonly used feature in seizure prediction, 

cannot identify interactions among frequency components of a signal. In contrast, information 

regarding multi-frequency behaviors can be captured by more complex metrics related to the 

concept of cross frequency coupling. The third objective of this thesis was to investigate the 

suitability of bispectrum-extracted features in quantifying changes between preictal and interictal 
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states. To our knowledge, this is the first investigation of the use of the bispectrum for seizure 

forecasting. The mean of magnitude, normalized bispectral entropy, and normalized squared 

bispectral entropy were extracted from the bispectrum, estimated for all possible frequency pairs 

(f1, f2) in the range [0.5 - 180] Hz. To analyze the general level of interaction between the type of 

recording and the value of each feature, as well as the spatial localization of bispectral features’ 

changes, One-Way ANOVA and Mann-Whitney U-test statistical tests were respectively 

performed. In addition, a 5-layer MLP was trained to automatically classify preictal and interictal 

samples and showed promising performances. This work can be considered as a preliminary 

investigation on the feasibility of seizure forecasting based on higher order spectra features. 

7.2 Adequate assessment of seizure forecasting  
Throughout the whole thesis, we ensured a rigorous methodology and an adequate 

performance evaluation to avoid reporting overoptimistic performances. Data were always split 

into train, validation, and test on a seizure-pre-seizure basis, to avoid contamination or time 

correlation. Scaling parameters were always assessed based solely on the training set.  

In the first reported work, we made sure that seizures undergoing connectivity analysis were 

neither subjected to validation nor to test. In addition, we attempted to imitate a real clinical 

scenario: the first cluster of each dog was used for training and validation while all the remaining 

recording was subjected to test in a quasi-prospective manner. While a great majority of previous 

seizure forecasting investigations reported testing performances on less than 30% of the data, we 

assessed our algorithm’s performance on more than 90% of the available data. Using such large 

amounts of data for testing allows assessing long-term seizure forecasting capabilities. To our 

knowledge, this is one of the first studies to include a high percentage of days in the testing set. 

In the prospective trial led by Cook et al. (2013), the percentage of days used for test was an 

average of 16.32% [70]. Subsequently, Karoly et al. (2017) used 62.61% of total data for testing 

[128]. In a follow-up study, Kiral-Kornek et al. (2018) increased the proportion of test data to 

88.9 % [129]. In addition, although long-term quasi-prospective testing (with relatively high 

number of testing days) was performed, we statistically validated the significance of reported 

performances by comparison to a Poison-process chance forecasting algorithm, as proposed by 

Snyder [50]. The proposed methodology achieved average sensitivity of 84.82% and average 
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time in warning of 10% significantly beating a random predictor by an average of 74.82% for all 

three dogs (p<0.01). 

In the analysis-based-studies, we ensured using adequate statistical tests. Surrogate data 

testing was specifically designed and used to validate the significance of causal relations. We 

imposed a significance level of 0.05 to ensure the statistical significance of reported results. 

In the third reported work, we made sure not to include any prior assumptions (based on 

statistical results) during the design of the seizure forecasting algorithm. The two sub-parts of this 

study were conducted separately. 

7.3 Bilateral recordings for seizure prediction 
Although the dogs were diagnosed with focal epilepsy, the implantation of electrodes covered 

both hemispheres and allowed investigation of the bilateral nature of preictal changes. The DTF 

identified focal generators in all the dogs, confirming the diagnosis of focal epilepsy and sinks 

spanned both hemispheres in 2 of the 3 dogs, suggesting an interhemispheric communication 

during seizure initiation. Analyzing the spatial distribution of the iEEG channels for which 

bispectrum-extracted features were most prominent, bilateral preictal changes were found in all 

the 3 dogs. The spatial distribution of preictal changes coincided with that of PAC preictal 

changes, reported in our previous study [130]. It has been previously suggested that CFC 

changes, namely in terms of PAC, vary within different brain areas in a subject specific manner 

[25]. However, the analysis was limited to electrodes implanted within the SOZ as identified by 

visual inspection. These results suggest that, although not considered in earlier seizure prediction 

investigations, bilateral iEEG recordings may represent an added value in seizure forecasting. 

This observation is in line with the recently proposed recommendations, by Gadhoumi et al. 2015 

[49]. 

7.4 Electrode selection based on raw recordings  
The effective connectivity-based approach discussed in this thesis allowed a sort of electrode 

selection based on raw data, which reduced computational requirements of the GA, that is 

considered as a main constraint for the development of seizure predictors. In contrast, recent 

studies have discussed a degradation of classifier’s performance over time, due to the non-

stationary nature of iEEG recordings [127, 128]. Subsequently, Kiral-Lornek et al. (2018) 
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proposed a dynamic seizure prediction strategy, allowing for the algorithm to be retrained with 

the 30 most recent days [129]. Using an electrode selection based on raw data rather than 

electrode-feature combinations makes such retraining strategy possible in real clinical settings. 

More specifically, the proposed framework allows independently identifying the network of 

seizure activity (sources and sinks) from high density iEEG recordings, followed by algorithmic 

development. Only selected electrodes are kept during device deployment. Since electrodes are 

chosen based on raw data, and thus are feature-independent, new features can be re-selected at 

any time during re-training without changing electrode positions or requiring the implantation of 

new electrodes. In this work (Objective 1), we did not attempt to investigate the effect of time on 

the performance of the proposed algorithm. Nevertheless, reported performances suggest that a 

system able to autonomously operate over long time periods, without the need for reconfiguration 

or maintenance, is feasible. 

7.5 Performance comparison  
Due to the absence of an established gold standard for the assessment of seizure forecasting, we 

could only compare prediction performances with those achieved by previous endeavours [49]. 

Interestingly, the long term ambulatory continuous canine iEEG recordings used in this thesis 

allowed a comparison with the work reported by Howbert et al. (2014) [38]. On the other hand, a 

seizure prediction competition was recently held on Kaggle.com (a platform for data science and 

machine learning competitions) during which data scientists and researchers from all around the 

world designed algorithms for the classification of non-continuous 10-minutes “interictal” and 

“preictal” iEEG clips of canine and human recordings. Although direct comparison to the results 

of the contest is not possible due to the reasons stated above, comparable performances were 

achieved. While the six winning teams of the contest reported an average AUC of 0.74 (min: 

0.59, max: 0.79), our strategy achieved an average AUC of 0.87 (1-hour preictal time and 5 min 

intervention time). Despite the fact that canine epilepsy is a suitable model for human epilepsy, 

with similar electrophysiology, epidemiology, clinical representation and therapeutic response 

[131], it would be interesting to investigate how our proposed methodology can be translated to 

human models of epilepsy. Recently, Cook et al. implanted 15 patients with the same NeuroVista 

ambulatory monitoring device [70]. Subsequently, the same group proposed two seizure 

forecasting algorithms based on a logistic regression classifier [128] and a deep learning 

approach [129]. Unfortunately, comparison with the aforementioned studies is not possible since 
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the data has not been made publicly available. Should such long-term iEEG human recordings 

become available in the future, it would be highly valuable to the seizure prediction community. 

The availability of such recordings could advent the possibility of benchmarking for new studies 

exploring seizure prediction. 

7.6 Ambulatory iEEG recordings  
One of the limitations of previous seizure prediction investigations, namely those based on the 

Freiburg seizure prediction database, is the non-availability of information regarding medication 

levels and vigilance states [49]. Although iEEG recordings acquired during presurgical 

evaluation of patients with refractory epilepsy represent a tempting opportunity to investigate 

seizure forecasting capabilities, such data are usually discontinuous, of relatively short duration, 

and affected by drug tapering and effects of surgery [38]. Taking into account the established 

effect of the aforementioned factors on EEG recordings’ dynamics [132, 133], they should be 

considered with more precaution in future seizure forecasting studies, based on such recordings. 

As addressed in [47], this could be a challenge to overcome in seizure prediction investigations, 

but in practice, a seizure forecasting algorithm can be considered as “clinically useful”, if it can 

operate on long-term continuous iEEG data that captures different conditions and states. 

Interestingly, the ambulatory monitoring recordings used in this thesis (Objectives 1 and 3) 

allowed overcoming the above challenges by testing the algorithm on long-term recordings, 

eventually covering several states and conditions. 

7.7 New precursors of seizure activity  
Traditionally, we and others have extracted power-spectrum based features and used them as 

inputs to classifiers [38, 45, 72, 128, 134]. Although band power has proved to be one of the most 

successful features used in seizure prediction, it only displays a partial description of signal’s 

characteristics. Considering uniform and Gaussian white noises, two discrete random processes 

commonly used in signal processing; both can share similar spectral characteristics though their 

time series are different [135]. In such case, power spectrum is not able to distinguish between 

them. In contrast, extending the power spectra to orders higher than 2 makes such distinction 

possible [135]. The third objective of this thesis explored the use of higher order statistics (also 

known as higher order spectra) within the context of seizure prediction. Promising performances 

were reported highlighting the feasibility of seizure forecasting based on bispectrum-extracted 
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features. Normalized spectral and squared bispectral entropies showed the most statistically 

significant differences. As these features have been associated with irregularity properties of EEG 

signals, it seems that iEEGs tend to be more regular during the preictal state (decrease in mean P1 

and P2 values across 3 dogs). Results are in agreement with previous investigations which 

showed that seizures are emergent brain states with decreased complexity [136, 137]. 

7.8 Limitation of iEEG recordings  
Although iEEG electrodes can capture potential changes occurring over few millimeters of cortex 

with a relatively high temporal resolution, they are subjected to spatial resolution and coverage 

constraints. Throughout this thesis, generators and sinks of seizure activity as well as prominent 

electrodes recording preictal changes were assessed on the basis of available iEEG coverage. 

Thus, iEEG contacts may have not sampled the complete SOZ. However, the proposed 

methodology ensured the identification of most prominent contacts for seizure prediction based 

on the available iEEG coverage as guided by non-invasive pre-surgical investigations.  

In contrast, several studies have investigated the use of functional and effective connectivity 

measures to locate seizures from scalp EEG using source space connectivity [138, 139]. 

Employing a connectivity approach based on scalp EEG recordings to guide the implantation of 

intracranial electrodes is an interesting approach, yet to be explored within the context of seizure 

prediction and surgical planning.  
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 
 

The findings of this thesis highlight the feasibility of seizure forecasting, in long-term canine 

epilepsy model, assessed in a pseudo-prospective setting. Combining artificial intelligence and 

effective connectivity approaches has the potential to improve seizure forecasting capabilities. 

One of the major caveats of early seizure forecasting investigations was an inadequate assessment 

of seizure forecasting capabilities. The guidelines for adequate performance evaluation have 

paved the way for more reproducible performances although less optimistic. This thesis has also 

established a new strategy for data splitting in ambulatory recordings allowing for a quasi-

prospective testing of seizure forecasting capabilities. On the other hand, bispectrum-extracted 

features showed promising performances as a possible new biomarker for seizure forecasting. 

Obviously, larger studies, ideally with human recordings, are required before the translation of 

current approaches into clinical practice. We hope that this thesis will serve as a motivation for 

further progress towards the development of seizure forecasting devices which could be a life 

changing solution for patients with refractory epilepsy.  

In a recent survey led by the Epilepsy Foundation, the most significantly disabling aspect of 

epilepsy was the unpredictable nature of seizures, which creates a constant source of anxiety for 

the patients and puts them at a high risk of injury. There is currently an unmet demand for a 

system that can provide warnings for high seizure likelihood. Considering the complex nature of 

epilepsy and its underlying mechanisms, there are several theoretical and technological 

constraints that need to be overcome for the development of a practical seizure advisory device. 

Based on findings discussed above, several avenues can be explored to pinpoint towards the 

short-term availability of such solutions to patients with refractory epilepsy.  

With current advances in signal processing and artificial intelligence techniques, 

investigations are being conducted for proposing powerful algorithms for predicting epileptic 

seizures, sometimes combining features and classifiers. These powerful algorithms are 

implemented on electrodes within and outside the seizure onset zone, classified visually by expert 

neurophysiologists. Our findings highlight the importance of selecting appropriate electrodes in 

seizure-prediction studies. In the 3 sub-studies of this work, we ensured to include the complete 

set of available electrodes in our analysis. Interestingly, bilateral preictal changes were found in 
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dogs with naturally occurring focal epilepsy (Articles 1 and 3). In contrast, while connectivity-

based estimations of sources and sinks of seizure activity were in-line with the regions identified 

by clinical interpretation (patients with good post-surgical outcomes), additional or different 

generators were sometimes found in the case of patients with poor post-surgical outcomes 

(Article 2). Considering the retrospective nature of this study, it was not possible to investigate 

whether the resection of suggested brain regions would have rendered the patients seizure-free, 

and thus if the identified regions contained the actual generators of seizure activity. Although this 

thesis highlights the potential of electrode selection based on effective connectivity, further 

efforts with larger cohorts are required. 

Future algorithm-based studies should investigate features and classifications that can be 

interpreted physiologically, which in turn could provide more insights into the mechanisms of 

ictogenesis. These algorithms should be simple, so that they can be correlated with clinical 

events. Combining features and selecting the most discriminative ones to create a subject-specific 

predictor, is likely to be a convenient approach. Since the information provided by different 

extracted features may be complementary in some cases, we recommend using feature-selection 

algorithms to search for the best combination of features instead of ranking them. In contrast, 

very interesting studies have been published in the field of seizure detection. In terms of feature 

extraction, Tzallas et al. 2009 [140] reported high classification abilities of time-frequency based 

feature extraction in epileptic seizure detection. In addition, Rivero et al. (2015) [141] and (2013) 

[142] demonstrated the suitability of automatic feature extraction, namely genetic programming, 

in the detection of the seizure onset as well as for EEG signal classification. Subassi et al. (2007) 

[143] demonstrated the potential of a mixture of expert models in detecting epileptic seizures. 

Classification has also been well-tackled in the field of seizure detection. For example, Rivero et 

al. (2009) [144] proposed a new evolutionary classification approach based on forward and 

recurrent neural networks. They reported promising performances in detecting epileptic seizures 

[144]. For a detailed review of different transforms applied to EEG recordings, feature extraction 

strategies and classification methods developed within the context of seizure detection, readers 

are referred to [145]. It is highly recommended that these methodologies be extrapolated to the 

problem of seizure forecasting. 

Our third finding highlights the feasibility of seizure forecasting based on bispectrum-

extracted features. Although not included in this thesis, we have also investigated the use of 



121 

 

phase-amplitude coupling and bicoherence, which reported less promising performances [130]. 

Interestingly, the bispectrum can be extrapolated to its bivariate form called “cross-bispectrum”, 

which is asymmetric and thus allows to evaluate coupling directionality. Investigating multi-

frequency behaviours among different channels is a promising avenue that could be explored in 

future studies. An additional perspective is to assess the feasibility of seizure forecasting, based 

on bispectrum-extracted features on human high density iEEG recordings. 

In many studies, relatively low sampling frequency is considered to be a constraint, and 

predictive capability is found to correlate with sampling frequency [65]. Therefore, new 

approaches should benefit from currently-available signal acquisition systems allowing higher 

sampling rates and detection of high frequency oscillations (80-500 Hz). 

We and others have demonstrated the feasibility of seizure forecasting on desktop 

computers, which are obviously not very practical for clinical use [33, 48, 49, 128, 129]. The 

NeuroVista ambulatory monitoring device included a rechargeable handheld device containing a 

processor. However, all subsequently developed algorithms were not subject to any 

power/processor constraints. Since the design of accurate seizure predictors, based on complex 

algorithms, requires robust and power-intensive processors, the next challenge for translating 

seizure prediction to clinical practice is to address the issue of hardware implementation.  

Deep learning, a newly investigated approach for seizure prediction, has great potential for 

answering the question of hardware implementation as it features relatively low power 

consumption. However, using deep learning to forecast seizures requires specifically tailored 

approaches and network architectures. Although breakthroughs were recently achieved in 

intractable classification problems such as natural language processing, EEG-motor signals 

decoding [146], action recognition, and image classification [147] by applying deep learning 

approaches [148], these techniques cannot integrate time and magnitude-varying temporal 

information. In contrast, interesting architectures have been recently deployed by weather 

forecasters in an attempt to incorporate forecasting algorithm combining spatio-temporal 

information of multiple scales [149].  On the other hand, iEEG recordings can be easily 

transformed into 2D images (as in the case of bispectrum), where there is a great potential for 

convolutional neural networks to perform an image-based classification of preictal and interictal 

samples. 



122 

 

Finally, a promising avenue for future seizure forecasting investigations is the 

implementation of advisory devices using simple/minimally invasive measures. The recent 

progress in smart-wear monitoring allows the retrieval of a large amount of physiological 

measures using ergonomic and comfortable acquisition techniques. A multimodal setting able to 

capture complementary measures such as heart rate monitoring, respiration, accelerometry, and 

even time of day (circadian profile) is an interesting perspective with a broader target/scale. 
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APPENDICES 

MATHEMATICAL DETAILS OF METHODS DISCUSSED IN THE 
LITERATURE REVIEW 
 
This appendix presents a mathematical overview of different methods employed in earlier seizure 

predictions investigations as discussed in the literature review.  

 
A. Preprocessing 

1. Finite impulse response (FIR) filter: 

FIR filters are usually implemented in a non-recursive form [150]: 

                             ´[}] = Fä/[}] + F$/[} − 1] + F"/[} − 2] + ⋯+ F%/[} − ≠]                  (1) 

where Y[n] is the filtered EEG signal, X[n] is the unfiltered EEG signal, and bi are the filter’s 

coefficients also known as the filter’s weights.  

2. Space differential filtering  

Some studies have explored the effect of bipolar (space differential) preprocessing on the 

performance of seizure prediction algorithms [72]. Since bipolar preprocessing consists of 

subtracting two single-ended channels, it enhances common mode rejection ratio and it improves 

the spatial resolution as compared to single single-ended electrodes [151]. In a study including 18 

patients from the Freiburg EEG database, Y. Park et al, 2011 showed that bipolar processing 

significantly improved the performance of the seizure prediction algorithm in terms of sensitivity 

and specificity [72]. 

3. Signal Normalization 

All seizure prediction studies deal with multichannel signals that are sometimes recorded with 

different type of electrodes. Therefore, these should be normalized to allow a reliable comparison 

and feature extraction. The first step is to divide by the maximum value of the EEG signal to 

normalize its amplitude as shown in eqt.2.  

                                                                    /s =
2

|ÆØ∞	(2)|
                                                              (2) 

Then the value of the signal is normalized by making its mean equal to zero and its standard 

deviation equal to 1.  

                                                                    /
±%.	
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                                                            (3) 
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B. Feature extraction 

I. Univariate linear measures:  

1. Energy and accumulated Energy  

The energy and accumulated energy had been commonly employed in seizure prediction studies 

[43, 106]. The signal energy is the mean energy of a signal over a time period (4).   

                                                                         i(=, {) $

§
∑ `(>)"Kµ§
*.K                                              (4) 

Long-Term Energy (LTE) and Short Term Energy (STE) have been proposed [106] and used in 

seizure prediction studies [43]. These corresponded to the energy of the signal averaged over 9s 

for the STE feature and 180 seconds for the LTE feature. Since the average power of a signal is 

given by its variance (Parseval’s theorem), the accumulated energy at a given time point is 

computed by summing the variance of all previous time windows [33] (5):  

                                                                        ;i(=) = ∑ õ�
"K

�.$                                                 (5) 

With σk2 the variance of the kth time window.  

N. Moghim and D. Come, 2014 [43] computed the accumulated energy by summing the 

successive values of energy from a series of time moving windows. Although signal energy have 

been successful employed in some seizure prediction studies, Mormann et al, 2005 [47] found it 

unable to discriminate between the preictal and the interictal states above chance levels.  

2. Autoregressive model  

In several seizure prediction studies, the EEG signal was modeled as an autoregressive moving 

average (ARMA) model and several parameters that describe the evolution of this model were 

used as features (model order, prediction error, characteristic of the transfer function, 

coefficients, or power spectrum) . Such a model contains a combination of three linear model 

processes: an autoregressive model (AR), a random model (white noise), and a moving average 

model (MA). As shown in (6), an AR model indicates that the value of a signal at a given time 

point is a linear combination of its past values and a random process εi.  

                                                                       )* = ∑ BZ)*&Z + ∂*
Ü
Z.$                                               (6) 

However, some correlations may occur in the random process and therefore εi can be modeled as 

a moving average process (7).  

                                                                    ∂* = ∑ F�∂*&�
∑
�.$                                                      (7) 

The combination of equations 6 and 7 results in the ARMA model (8):  
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The model coefficients al and bk are found by fitting the data. Several algorithms have been 

proposed such as the least-squares algorithm.  The prediction error (mean square error) derived 

from such a model has been proposed for seizure prediction [152]. It was stated that as the 

seizure approaches, the EEG signals are more likely to be predicted by an AR model and thus the 

prediction error decreases [73]. B. Direito et al, 2011 found the AR model predictive error as the 

best predictor for the patient exhibiting the highest performance values [58]. 

3. Wavelets Energy  

The wavelets transform is a multi-resolution analysis in which time and frequency resolutions 

compromise is overtaken by decomposing the signal into a basis of functions [11]. These 

functions are a set of wavelets Фa,b . Each wavelet is a scaled and translated version of the mother 

wavelet (9). 

                                                                    ∅π,Y(=) =
$

∫(π)
∅ 1K&Y

π
5                                               (9) 

where b is the translation factor, a is the scaling factor and Ф is the mother wavelet.  

The continuous wavelet transform is computed as shown in (10).  

                                                               ª2(`, £) = ∫ /(=)∅Ω,v(=)æ=
µh
&h                                     (10) 

In this way, it is possible to analyze the signal at multiple scales and resolutions at the same time 

allowing an examination of low frequency components with high frequency resolution and high 

frequency components with high temporal resolution. In the field of seizure prediction, the 

wavelet transform was used as quantification of the energy in different frequency bands over a 

time window [73].  

 

II. Univariate nonlinear measures:  

Based on the fact that the brain passes through several dynamical states, a set of non-linear 

features derived from the theory of dynamical systems has been proposed in an attempt to 

quantify the properties of state space trajectories in a Cartesian space. The state space trajectory 

is first reconstructed from the scalar time series xi (for i=1, … N). Two types of reconstructions 

have been proposed: a type-delay embedding and spatial embedding [33]. As its name implies, 

the time-delay embedding (11) is performed by means of time delay coordinates [153]. 
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with i=1,…, M; and M=N-(m-1) τ 

where m is the embedding dimension and τ is the time delay. With this configuration, the 

evolution of the system can be now seen as the projection of Xi into the state space 

(multidimensional space).  

On the other side, in a spatial embedding, mostly used in the study of electroencephalography, 

each channel is considered as an axis of the Cartesian space. Therefore, the embedding dimension 

is fixed and is equal to the number of channels. It should be noted that a combination of time-

delay and spatial embedding is possible. 

Several univariate non-linear measures based on the reconstruction of the state based trajectory 

have been proposed such as the correlation dimension [154], the largest Lyapunov exponent 

[155], and the dynamical similarity index. In a comparative study of 30 linear and non-linear 

features, Mormann et al, 2005 found that the used univariate non- linear measures (correlation 

dimension, Lyapunov exponent) weren’t able to significantly perform better than chance  [47]. 

1. Correlation density  

The correlation density estimates the number of active states of a dynamic system [154]. It was 

explained by Mormann et al, 2007 [33] as the correlation sum of a fixed hypersphere radius. 

Mormann et al, 2005 [47] found an increase in the correlation dimension prior to seizure onset 

while Elger and Lehnertz, 2008 [137] reported a decrease 5-25 min prior to the seizure onset. 

Therefore, contracting evidences have been reported what limited the use of this measure in 

future studies.  

2. Largest Lyapunov exponent (Lmax) 

The Largest Lyapunov exponent has been largely employed in early seizure prediction studies as 

a quantification of the convergence or divergence of nearby state space trajectories. Exponential 

values of divergence are considered as the most basic indicator of chaos and non-linearity in a 

univariate EEG time series. The rate at which the distance between two initially close trajectories 

changes during time is described by an exponent: V√3  (λi being the lyapunov exponent at the ith 

dimension). In a multidimensional state space, the Lyapunov exponent is the sum of all the 

exponents (at all dimensions) and indicates the evolution of the so-called hypercube [100].  A 

positive value of λi is indicative of a divergence (chaotic behavior) while negative value indicates 
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a convergence in the ith dimension. Several studies have adopted the largest exponent as a 

characterizing measure of EEG signals. As shown in eqt. 12, Lmax quantifies the expansion of the 

hypercube along the principal axis (pi) over a given time interval t [100]:  

                                                                 ƒ* = lim
K→h

$

K
GEt" ≈

Ü3(K)

Ü3(ä)
∆                                           (12) 

The first algorithm applied to estimate the largest Lyapunov exponent from a measured time 

series was proposed by Wolf et al, 1985 [155]. The algorithm starts by finding the point nearest 

to the starting point in the embedded state space then following the trajectories between this point 

and the starting point during a fixed interval. The next step consists of measuring the initial 

distance d0 and d1 (the distance after the first-time interval). If d1 is less than a fixed threshold, 

the procedure is repeated. On the other side, if d1 becomes larger than the threshold, a rescaling 

of the distance is performed by searching for a new point closer to the reference trajectory [100, 

155]. Iasemidis et al, 1990 [63] revised this rescaling algorithm for application to EEG and iEEG. 

As shown in eqt. 13, the largest Lyapunov is computed by repeating the procedure k times to 

cover the state space from t0 to tk. 

                                             λÆØ∞ =
$
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∑ log" ≈

ÕŒ
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Although first investigation revealed a decrease in Lmax several minutes before seizures [63], 

contradictory results have been also reported suggesting an increase 30 min prior to seizure onset 

[47]. Furthermore, Lai et al, 2003 [156] challenged its suitability for seizure prediction.  

3. Dynamical Similarity Index 

Le Van Quyen et al, 1999 [77] proposed the dynamical similarity index as a measure of 

dynamical similarity between a reference window (beginning of the recordings, 300s) and a 

moving test window. Interestingly, the authors preprocessed the signals by segmenting them into 

30 sec non- overlapping consecutive windows. These were transformed to the domain of inter-

event intervals by taking the sequence of time intervals between the positive-going crossings of a 

fixed threshold. Then each of the time series was converted into a state space embedding. The 

dynamical similarity between the two windows was calculated in terms of the cross-correlation 

index. Thus, changes in the dynamical state leading to an increased non-stationarity of the EEG 

result in lower values of correlation. The authors evaluated the presence of a preictal state by 

statistically assessing the deviation of the moving test window from the reference state 
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(Chebushev’s inequality). Persistent deviations from the reference state have been found about 18 

min prior to the seizure onset. However, by the turn of the millennium, the reliability of these 

optimistic results was questioned by Winterhalder et al, 2003 [91]. 

Other non-linear univariate measures have been proposed such as the correlation entropy [92], 

the marginal predictability [93], the state space dissimilarity measures, local flow and algorithmic 

complexity. Since several studies showed non-superiority of univariate non-linear measures as 

compared to linear ones [47, 82], we will be limited to the most prominent ones in this paper. 

4. Phase Frequency Coupling  

Additionally, motivated by the fact that human intracranial EEG studies have identified a 

spatially distributed modulation of cortical high frequency oscillations in the gamma band (40-

120 Hz) by theta oscillations (4-8 Hz) [157] and slow waves (0.5-3 Hz) [114], recent studies have 

adopted the slow modulation of high-frequency gamma activity as a measure of brain excitability 

[88].  The interaction between the phase of low frequency bands and the amplitude of gamma sub 

bands was quantified by measuring the mean coupling phases. Interestingly, the authors 

performed prospective testing and found above chance preictal changes in 13.2% of the patients 

(7/53). M. Tort et al, 2010 proposed an algorithm for measuring the phase amplitude coupling: It 

starts by bandpass filtering the signals into the frequencies of interest, then extracting the 

amplitude and phase using the Hilbert Transform. The analytical representation (Xa) of a signal x 

(t) is obtained by means of the Hilbert Transform (14). 

                                                                    /π(=) = ;2(=)V&à—O(K)                                            (14) 

where Ax is the envelope and “2 is the instantaneous phase of the filtered signal.  

The next step consists of quantifying the modulation between phase-amplitude pairs 

(“2(=), ;2(=)).    

 

III. Bivariate Linear Measures  

1. Maximum linear cross-correlation  

As a measure of lag synchronization, the maximum of the normalized cross-correlation (15) is 

used to quantify the similarity of two time series xi and yi [94] and have been employed between 

EEG signals in seizure prediction studies [47].  
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where C(x,y)(τ) is the linear cross correlation function (16).  

                                          C(x, y)(τ) = fi
$

fl&÷
∑ x–µ÷y–fl&÷
–.$ 								τ ≥ 0

C(y, x)(−τ)																	τ < 0
                       (16) 

The value of Cmax is between 0 and 1 with high values indicating time course similarities 

between the two time series (possibly shifted by a time lag τ) while not correlated signals will 

show values close to zero (16).   

In comparative study with several non-linear bivariate signals, Mormann et al, 2005 [47] found 

the maximum cross-correlation as one of the most discriminative bivariate measures. 

 

IV. Bivariate non-linear Measures  

Bivariate non-linear measures were extensively employed in seizure prediction investigations and 

showed good predictive performances [33].  Measures based on mutual information and 

similarity between channels has been used to characterize the level of synchrony between EEG 

channels at different locations [100]. The advantages of using such measures rely in their 

capability of capturing the brain’s dynamics from a network point of view.  

1. Dynamical entrainment   

Some non-linear univariate measures described above have been extrapolated into a multichannel 

version. Iasemidis et al, 2001 [158] proposed the dynamical entrainment, a multichannel version 

of the Lyapunov exponent that quantifies the statistical difference between the largest Lyapunov 

exponents Lmax of two signals recorded at two different recording sites (17). 

                                              T∞⁄ = √l	
è〈ÊÁËÈ,È&ÊÁËÈ,Í〉è

ÏÈÍ
                                             (17) 

where l is the number of consecutive windows, <…> denotes the mean over l and σ∞⁄ is the 

standard deviation [33, 158]. This measure has shown a good predictive power with a relatively 

low false prediction rate [83].  

2. Phase Synchronization Measures  

As their name imply, phase synchronization measures tend to quantify the degree at which two or 

more signals tend to oscillate with repeating sequences of relative phase angles. Different 
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measures have been applied in EEG time series analysis and seizure prediction and will be 

discussed:  

i- Phase Locking Value  

The phase locking value (PLV) has been also used as a measurement of phase synchrony and 

coupling between two or several signals. Two EEG signals X(t) and Y(t) are said phase locked if 

the difference of their corresponding phases  ∅2 and ∅M  fluctuates around a constant value (18).  

                                                  ∅2 − ∅M = <=V                                                  (18) 

The instantaneous phases of each signal are estimated using the Hilbert Transform (previously 

explained). Le Van Quyen et al, 2005 [99] evaluated the suitability of the phase locking value for 

all pairs of EEG channels placed of the temporal lobe. A sliding window analysis on 15 

frequency bands (between 0 and 30 Hz with 2 Hz steps) has been performed over the entire 

dataset (305 hours). The authors stated that in 70% of the cases (36 out of 52 seizures), a specific 

state of synchronization can be observed during a relatively long preictal time of several hours 

before the seizure onset. No general trend (increase or decrease) of synchronization has been 

observed but changes were most often localized in the primary epileptogenic zone and occurred 

within the 4-15Hz frequency band.     

ii- Mean Phase coherence 

Mormann et al, 2003, [52] used the mean phase coherence and reported a drop in synchronization 

during the preictal state (19). 

                                                                DrS = Ó$
%
∑ V*Ô∅OQKëR&∅QKëRÒ%
*.$ Ó                                  (19) 

In a follow up study, Mormann et al, 2003 [95] used the mean phase coherence as a measure of 

phase synchronization and the maximum linear cross-correlation (bivariate linear measure) as a 

measure for lag synchronization for the automatic detection of the preictal state. Interestingly the 

authors found a similar performance for both synchronization methods in terms of predictive 

power as well as anticipation times. The authors suggested that the preictal synchronization 

dynamics can be sufficiently characterized using a linear measure. 

Similarly, Winterhalder et al, 2006 [97] investigated short-term changes of increasing and 

decreasing synchronization during the preictal state (50 min) using the mean phase coherence and 

the lag synchronization index. In contrast with [52], the results revealed non-uniform changes in 
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synchronization and the authors stated that evaluating increasing as well as decreasing 

synchronization may yield to significant prediction performance. These results are concordant 

with those obtained in the comparative study of the 30 different measures for seizure prediction 

[47] suggesting that these measures perform better than a random predictor with both an increase 

and a decrease in synchronization during the preictal state.          

iii- Indexes based on conditional probability and Shannon entropy 

Indexes based on conditional probability and Shannon entropy have been proposed by Tass et al, 

1998 [101] as measures of phase synchronization and have been adopted in earlier seizure 

prediction studies [47]. A detailed mathematical explanation of these measures has been 

emphasized in [33]. Morman et al, 2005 [47] compared 8 different bivariate non-linear features.  

The mean phase coherence, the Shanon entropy index, and the conditional probability index, 

were calculated based on both the Wavelets Transform and the Hilbert Transform. Two 

additional measures of non-linear independence were used (called H and R) [47]. High values 

(close to 1) are obtained when and high-nonlinear dependence exists between two time series and 

vice versa. The authors found that the mean phase coherence, the Shanonn entropy index, and the 

conditional probability index computed based on the Hilbert Transform as the best non-linear 

bivariate measures.    

C. Feature selection  

1. Minimum normalized difference of percentiles (mNDP) 

The basic idea of this method is to minimize the overlap between the percentiles of the samples 

between the two classes for a given feature. M. Bandarabadi et al, 2012 [102] introduced a new 

measure to quantify the overlap value (20):  

                                                          ≠år = ÜÄx(	JZπvv	$)&ÜÄ](	JZπvv	")

ÜÚ (JZπvv	")&ÜÚ (JZπvv	$)
                                         (20) 

where pn is the nth percentile of features’ values of the preictal or interictal classes. 

The selection method performs a ranking of the features based on their normalized difference of 

percentiles values. The discriminative features are those which exhibit the minimum normalized 

difference of percentiles. However, the limitation of this method is the need for finding the 

adequate values of the percentiles what limited its application in seizure prediction studies. Based 
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on trial and error, M. Bandarabadi et al, 2012 [102] selected the 70th and 30th percentiles for class 

1 and class 2 respectively. 

2. Maximum Difference of Amplitude Distribution Histograms (mDAD) 

This method was mainly introduced for feature selection in seizure prediction applications [102]. 

As it name implies, it is based on the amplitude distribution of preictal and non-preictal samples. 

An amplitude distribution histogram (ADH) represents the histogram of the samples of a feature 

associated with one class. In seizure prediction studies a binary classification problem is usually 

addressed, therefore two ADH were considered. To have a good discriminative power, a feature 

should maximize the difference between the two ADHs. Therefore, the method will search for the 

features that have the Maximum Difference of ADHs (mDAD). As shown in (21), the difference 

of ADHs is defined in terms of common area (CA) of the two normalized ADHs:  

                                                                  å;å = 1 − S;                                                         (21) 

The common area is computed as the difference of the classes’ normalized histograms. The ADH 

(22) is normalized by dividing the original histograms by the number of samples in each class.  

                                                                  ;åãsXÛÖà =
I¢êë
sv∗§

                                                     (22) 

                                                     S; = { ∗ ∑ min	(;åãsXÛÖ$, ;åãsXÛÖ")s
*.$                         (23) 

Where w is the bin width (of the feature axis), ADHnormj is the normalized ADH of class j. The 

features are ranked in terms of common area. Most discriminative features are those which 

exhibit the lowest values. This method was first used in [102] in which from 435 features of 

relative spectral power, an average of 8.75 most discriminative features were selected. The 

authors compared the performance of the proposed approach (sensitivity: 76.09%; FPR: 0.15; 

number of selected features: 8.75) to the well-used mRMR (sensitivity: 60.87%; FPR: 0.11; 

number of selected features: 9.91) method and reported a better mean performance. In a follow-

up study, M. Bandarabadi et al, 2015 [45] extended their investigations into long-term continuous 

EEG recordings of twenty-four patients from the European Epilepsy database. The authors 

performed a comparative study and found that the mDAD (sensitivity: 75.8%; FPR: 0.10; number 

of selected features: 9.9) outperformed the mRMR (sensitivity: 64.4%; FPR: 0.09; number of 

selected features: 11.9) selection method in terms of sensitivity and number of features with 

comparable performance in terms of FPR.  
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3. ReliefF feature selection 

Relief was first proposed by Kira and Rendel, 1992 [159] as a feature selection algorithm 

dedicated to binary classification. It was then extrapolated into a multi-class version [160]. In 

summary, it is an iterative procedure that starts by assigning a zero weight to each feature. The 

next step consists of sampling a random instance, finding a sample of the closest data instances 

from the same class, and a sample of the closest data instances form the other classes. Then 

feature weights are adjusted increasing those of highly discriminative features. A detailed 

description of the algorithm is available in [160]. N. Moghim and D. Come used the reliefF for 

feature selection within the framework of the proposed Advanced Seizure Prediction via Preictal 

Relabeling Algorithm (discussed in the literature review). The algorithm was used to reduce 

feature dimensions from 204 features to the 14-highest ranked features. The authors fixed the size 

of the selected subset of features to 14 considering that this may make results benchmarking 

possible with a previous study that used 14 features based on wavelet transforms, signal energy 

attributes, and non-linear system dynamics [106]. The authors stated that their results 

outperformed the benchmarking feature set and the baseline predictors. 

D. Regularization  

1. Kalman Filtering  

L.Chisci et al, 2010 [110] were the first to use the Kalman filtering approach as a regularization 

method to smooth the output of an SVM classifier. It is a statistical method used to produce 

estimates that tend to be close to the true measurements. The basic mathematical principle of this 

method is briefly explained:  

The Kalman filter is applied directly on the continuous decision variable (zk) of the classifier 

(mainly SVM) which is the real value of the classifier’s output signal (before the SVM decision 

threshold). The idea behind this method is to model the continuous signal (zk) as a state space 

model and filter it using the Kalman filter. The continuous variable zk can be considered as the 

sum of a noiseless decision variable (dk) and a noisy measurement process (24).  

                                                       zœ = dœ + vœ                                                             (24) 

where vk is a zero-mean measurement noise with a standard deviation σv.  

Considering that the brain undergoes a smooth transition between different states, the authors 

proposed to naturally enforce the regularity of the decision variable by means of a White Noise 
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Acceleration (WNA) model [Y. Bar-Shalom et al, 2001; L.Chisci et al, 2010]. Then the 

continuous variable zk can be represented by the following state space model (25):  

                                                 ¯sœµ$ = 8
1 Ṫ
0 1

:	sœ +	wœ

zœ = 			 [1								0]	sœ +	vœ
                                              (25) 

                                                         sœ = Ôdœ, dœ̇Ò
˝
                                                          (26) 

where dœ̇ is the rate of change of dœ , wœ is the process noise, and Ṫ  is the prediction interval. 

More details about the Kalman filter implementation and tuning can be found in [110].  

E. Additional performance evaluation measures  

Some studies have adopted other measures to evaluate the performance of their predictors. N. 

Moghim and D. Come, 2014 [43] adopted the S1-score which is the harmonic mean of specificity 

and sensitivity (27). The authors considered that using such a measure may simplify the 

discussion of the results.  

                                                              ò1 = 2	)	 1˛ösv*K*L*KM	2	˛ÜöJ*w*JKM	
˛ösv*K*L*KMµ˛ÜöJ*w*J*KM

5                                  (27) 

The time under false warning and warning rate were also proposed as performance evaluation 

measures in terms of specificity. 


